
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 7 (2011), 005, 11 pages

The Quantum 3D Superparticle?

Luca MEZINCESCU † and Paul K. TOWNSEND ‡

† Department of Physics, University of Miami, Coral Gables, FL 33124, USA

E-mail: mezincescu@miami.edu

‡ Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences, University of Cambridge,
Wilberforce Road, Cambridge, CB3 0WA, UK

E-mail: p.k.townsend@damtp.cam.ac.uk

Received November 29, 2010, in final form January 05, 2011; Published online January 10, 2011

doi:10.3842/SIGMA.2011.005

Abstract. The minimal (N = 1) superparticle in three spacetime dimensions (3D) is
quantized. For non-zero mass it describes a spin-1/4 semion supermultiplet of “relativistic
helicities” (−1/4, 1/4). The addition of a parity-violating Lorentz–Wess–Zumino term shifts
this to (β − 1/4, β + 1/4) for arbitrary β. For zero mass, in which case spin is not defined,
the quantum superparticle describes a supermultiplet of one boson and one fermion.
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1 Introduction

From a mathematical standpoint, an isolated fundamental particle in a Minkowski spacetime is
a unitary irreducible representation (UIR) of the Poincaré group. These UIRs are labelled by
mass and some number of spin variables, depending on the spacetime dimension. Here we shall
be concerned with the three-dimensional (3D) case in which the Lie algebra of the Poincaré
group is spanned by a 3-momentum Pµ (µ = 0, 1, 2) and a 3-vector J µ that generates Lorentz
transformations: the non-zero commutators are

[J µ,J ν ] = iεµνρJρ, [J µ,Pν ] = iεµνρPρ,

where ε012 = 1 and Lorentz indices are raised or lowered with the Minkowski metric; we use the
“mostly plus” metric signature convention. The UIRs of the 3D Poincaré group were classified
by Binegar [1]. There are no spin labels for zero mass (if the possibility of continuous spin is
excluded) but there are still two possible UIRs, corresponding to a distinction between bosons
and fermions (see also [2] for a discussion of this point). For non-zero mass, the UIRs are
classified by the two Poincaré invariants

P2 ≡ −m2, P · J = ms,

where m is the mass and s is naturally thought of as “relativistic helicity”, which can be any
real number; we shall call |s| the “spin”. In principle, m2 may be negative but the UIR describes
a tachyon unless m2 ≥ 0.

?This paper is a contribution to the Proceedings of the Workshop “Supersymmetric Quantum Me-
chanics and Spectral Design” (July 18–30, 2010, Benasque, Spain). The full collection is available at
http://www.emis.de/journals/SIGMA/SUSYQM2010.html
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Here we shall be concerned with the extension of the Poincaré group to the N = 1 super-
Poincaré group, the Lie superalgebra of which has an additional 2-component Majorana spinor
charge Qα (α = 1, 2). The additional non-zero (anti)commutation relations are

[J µ,Q] = − i
2

ΓµQ,
{
Qα,Qβ

}
= (P/C)αβ ,

where P/ = ΓµPµ and C is the charge conjugation matrix. We may choose C = Γ0 in a real
representation of the 3D Dirac matrices Γµ, so that the Majorana conjugate of Q is

Q̄ = QTΓ0.

The Majorana condition is then equivalent to reality of the two spinor components of Q, which
become hermitian operators in the quantum theory. When it is useful to have an explicit
representation for the 3D Dirac matrices we shall make the choice

Γ0 = iσ2, Γ1 = σ1, Γ2 = σ3.

To our knowledge, a systematic analysis of the UIRs of the 3D super-Poincaré group, along
the lines of [1], has not been undertaken but it is not difficult to guess what the results would
be. One would expect there to be a unique massless UIR that pairs the massless boson and
fermion UIRs of the Poincaré group. In the massive case the UIRs must be classified by the two
super-Poincaré invariants

P2 ≡ −m2, P · J +
i

4
Q̄Q = mS,

where S is the superhelicity of the multiplet (the average of the relativistic helicities s) and
we expect a multiplet of superhelicity S to consist of two states of helicities (S − 1/4, S + 1/4)
[3, 4, 5]. For S = 0 this gives the (−1/4, 1/4) semion1 supermultiplet, which has the curious
feature that the two states paired by supersymmetry have the same spin! Since parity flips
the sign of helicity, this spin-1/4 supermultiplet also preserves parity, which just exchanges the
two states. In fact, it is the unique irreducible supermultiplet that preserves parity. This fact
presumably explains why it has occurred in diverse N = 1 supersymmetric 3D models [8, 9, 10].

In this paper we shall show that all the above mentioned supermultiplets arise from quan-
tization of corresponding N = 1 3D superparticle models. In general terms, a superparticle
action is a super-Poincaré invariant action for a particle moving in a superspace extension of
spacetime [11, 12], in our case an N = 1 superspace extension of 3D Minkowski spacetime for
which the anticommuting coordinates2 are the two components of a Majorana spinor Θ. The
infinitesimal action of supersymmetry on the superspace coordinates is

δεXµ = iΘ̄Γµε, δεΘ
α = εα,

where ε is a constant anticommuting Majorana spinor parameter. The vector space of super-
translation-invariant differential 1-forms on superspace is spanned by

Πµ ≡ dXµ + iΘ̄ΓµdΘ, dΘα.

The pullback of these 1-forms to the particle worldline yields manifestly super-translation in-
variant worldline 1-forms that may be used to construct a super-Poincaré invariant action. The
standard massive superparticle action is

I[X,P,Θ; `] =

∫
dτ

{
Ẋ · P + iΘ̄P/Θ̇− 1

2
`
(
P2 +m2

)}
, (1.1)

1Semions are particles of spin 1
4

+ n
2

for integer n; they were initially called “quartions” [6]; see also [7].
2The extension of classical dynamics to include anticommuting variables was first analysed systematically as

long ago as 1959 [13].
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where m is the (non-negative) mass and the overdot indicates a derivative with respect to the
arbitrary worldline time parameter τ . The constraint imposed by ` is the mass-shell condition.
The constraint function generates the infinitesimal gauge transformation

δαXµ = α(τ)Pµ, δαPµ = 0, δα` = α̇, (1.2)

with arbitrary parameter α(τ). This is equivalent to time-reparametrization invariance (the
difference is a “trivial” gauge transformation that vanishes as a consequence of the equations of
motion).

The action (1.1) is manifestly super-Poincaré invariant if we take Pµ (and `) to be inert
under supersymmetry. Noether’s theorem then guarantees the existence of τ -independent super-
Poincaré charges. The Poincaré Noether charges are

Pµ = Pµ, J µ = [X ∧ P]µ +
i

2
Θ̄ΘPµ. (1.3)

The supersymmetry Noether charges are

Qα =
√

2 (P/Θ)α . (1.4)

The action (1.1) is also invariant under the Z2 parity transformation

P : X2 → −X2, P2 → −P2, Θ→ Γ2Θ. (1.5)

For the massive superparticle, the superhelicity S is zero classically, so one might expect quan-
tization to yield the semion supermultiplet with helicities (−1/4, 1/4). We confirm this intuition
in the following section, first by means of a manifestly covariant quantization, but since the co-
ordinates X are non-commuting in this approach we also present details of a variant procedure
in which the supersymplectic 2-form on the phase superspace is brought to “super-Darboux”
form prior to quantization. We then go on to show how the more general anyon supermultiplet
with S 6= 0 is found by adding a parity-violating Lorentz–Wess–Zumino (LWZ) term to the
action, as described for the ‘bosonic’ particle by Shonfeld [14] (see also [15]). Quantization for
m = 0 is complicated by a fermionic gauge invariance of the massless superparticle [16], now
called “κ-symmetry”. To circumvent this complication, we quantize in the light cone gauge,
thereby demonstrating that the massless 3D superparticle describes two states, one bosonic and
one fermionic.

Many aspects of the results presented here are similar to those that we found in an analysis
of a κ-symmetric N = 2 3D superparticle that describes, upon quantization, a centrally charged
‘BPS’ semion supermultiplet of spins (−1/4,−1/4, 1/4, 1/4) [17]. That case, which we showed
to have an application to Bogomolnyi vortices in the 3D Abelian-Higgs model, is similar in
some respects to the N = 1 massive superparticle, and in other respects to the N = 1 massless
superparticle. We promised in that work a future paper detailing results for the general N = 1
superparticle, and this is it. In the conclusions we summarize how these N = 1 results generalize
to N > 1.

2 Massive superparticle: covariant quantization

Provided that m 6= 0, the 3D superparticle action (1.1) is in Hamiltonian form with supersym-
plectic 2-form

F = dPµΠµ + idΘ̄P/dΘ = d
[
−XµdPµ + iΘ̄P/dΘ

]
.
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The inverse of F gives us the following non-zero equal-time (anti)commutation relations:

[Xµ,Pν ] = iδµν ,
{

Θα,Θβ
}

=
1

2m2

(
P/Γ0

)αβ
,

[Xµ,Θα] =
i

2m2
(P/ΓµΘ)α , [Xµ,Xν ] =

1

2m2
Θ̄ΘεµνρPρ. (2.1)

Using these relations, one may verify that the super-Poincaré Noether charges have the expected
(anti)commutation relations. One may also verify the quantum identities

−2m2Θ̄ΓµΘ = Pµ,
(
2imΘ̄Θ

)2
= 1. (2.2)

In both cases, the right hand side is zero classically because of the classical anticommutativity
of the components of Θ. Using the first of these quantum identities, one may show that

[J µ,Xν ] = iεµνρXρ,

so that X is a 3-vector, as expected.
The second of the quantum identities (2.2) may be used to compute the relativistic helicities

of the propagated modes. From (1.3) we see that

m−1P · J = −1

4

(
2imΘ̄Θ

)
.

Next, noting that

2imΘ̄Θ = im
[
Θα,Θβ

] (
Γ0
)
αβ
,

and that the minimal realization of the Θ anti-commutation relation is in terms of 2×2 hermitian
matrices, we see that 2imΘ̄Θ is a traceless hermitian 2× 2 matrix in this realization; as it also
squares to the identity, its eigenvalues are 1 and −1, giving us a supermultiplet of helicities
(−1/4, 1/4).

The only difficulty3 with this covariant quantization is that there is no realization of the
commutation relations for which the components of X are “c-numbers”. This is a consequence
of the fact that the supersymplectic 2-form F is not in super-Darboux form, so we now show
how it can brought to this form by a change of coordinates on the phase superspace. This breaks
manifest Lorentz invariance but simplifies the quantization procedure, which we will show to be
physically equivalent to covariant quantization.

2.1 Quantization in super-Darboux coordinates

We begin by writing

Θ =
(
Γ0P/

)− 1
2 χ, (2.3)

which defines χ, a new 2-component anticommuting variable (we do not say “spinor” because
the equation defining χ is not covariant and hence χ does not have the Lorentz transformation
properties expected of a spinor4). This implies that

dΘ =
(
Γ0P/

)− 1
2

[
dχ− 1

2m
AµχdPµ

]
,

3The “difficulty” referred to here applies equally to the massive superparticle, without WZ term, in any
spacetime dimension, so it is not a ‘3D peculiarity’.

4This breaking of manifest Lorentz invariance is unavoidable: the covariant redefinition Θ ∝ P/− 1
2 χ̃ just leads

back to the initial Lagrangian but with χ̃ replacing Θ.
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where Aµ is a vector valued 2× 2 matrix, and this gives

iΘ̄P/dΘ = iχTdχ− i

2m
χTAµχdPµ.

Using the identities(
Γ0P/

) 1
2 ≡ 1√

2
(
P0 +m

) (Γ0P/+m
)
,

(
Γ0P/

)− 1
2 ≡ 1

m
√

2
(
P0 +m

) (P/Γ0 +m
)
,

one finds that

A0 =
1(

P0 +m
)Γ0ΓiPi, Ai = Γ0

(
Γi +

εijPj(
P0 +m

)) ,
but only the antisymmetric part of Aµ contributes. We thus find that

−XµdPµ + iΘ̄P/dΘ = −X0dP0 −

(
Xi +

iχ̄χ

2m
(
P0 +m

)εijPj) dPi + iχTdχ.

Let us also observe here that

imΘ̄Θ = iχ̄χ.

If we now define

Y0 = X0, Yi = Xi +
iχ̄χ

2m
(
P0 +m

)εijPj ,
then we find that the supersymplectic 2-form F takes the super-Darboux form:

F = dPµdYµ + idχTdχ.

Equivalently, the superparticle action is now

I[Y,P, χ; `] =

∫
dτ
{
ẎµPµ + iχT χ̇− `

(
P2 +m2

)}
, (2.4)

from which we read off the new canonical (anti)commutation relations5:

[Yµ,Pν ] = iδµν ,
{
χα, χβ

}
=

1

2
δαβ. (2.5)

When written in terms of the new variables, the super-Poincaré Noether charges become

J 0 = εijYiPj +
i

2
χ̄χ,

J i = εij (YjP0 −Y0Pj) +
iχ̄χ

2
(
P0 +m

)Pi,
5The factor of 1/2 in the χ anticommutator arises because each real component of χ is its own conjugate

momentum. This is a second-class constraint, in Dirac’s terminology, so the Poisson bracket should be replaced
by a Dirac bracket prior to quantization, and this gives the factor of 1/2.
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and

Pµ = Pµ, Q =
1√(

P0 +m
) (P/−mΓ0

)
χ.

The transformations of the new variables that these charges generate, using the canonical rela-
tions (2.5), are precisely such that the super-Poincaré transformations of the original variables
(X,Θ), now viewed as functions of (Y, χ), are gauge equivalent to the standard vector and spinor
transformations generated by the Noether charges using the original relations (2.1). It follows
that the Noether charges satisfy exactly the same (anti)commutation relations whether these
are computed using the covariant (anti)commutation relations (2.1) or with the new canonical
relations (2.5), and it is easily verified that this is indeed the case.

We have laboured the point because of the following puzzle. The ‘new’ canonical rela-
tions (2.5) do not imply that the ‘old’ phase-space variables satisfy the ‘old’ relations (2.1). This
means that the transformation that takes the 2-form F to super-Darboux form is not canonical,
and this might lead one to suspect that quantization in the new variables is inequivalent to the
earlier covariant quantization. However, the spacetime coordinates X are not physical observ-
ables because they do not commute with the constraint function P2 +m2, and the same applies
to Y after the redefinition of coordinates. If we restrict our attention to physical variables, i.e.
those that commute “weakly” with the constraint function, then we get the same results whether
we use the ‘old’ or the ‘new’ (anti)commutation relations. In other words, the transformation
of phase superspace coordinates to super-Darboux form is canonical when restricted to physical
variables, and hence quantization in the new variables, using the ‘new’ canonical relations, is
physically equivalent to the covariant quantization using the ‘old’, covariant, relations.

We have still to determine the number of modes propagated by the superparticle, and their
spins. For this purpose it is useful to define the complex anticommuting variable

ξ = χ1 + iχ2 ⇒
{
ξ, ξ†

}
= 1,

where χ1 and χ2 are, respectively, the upper and lower components of χ. The minimal matrix
realization is in terms of 2×2 matrices, and the two component wave-functions may be chosen to
be the eigenstates of the fermion number operator, which has eigenvalues 0 and 1. This operator
is

N = ξ†ξ ⇒ iχ̄χ→ N − 1

2
,

where the arrow indicates quantization using the standard operator ordering prescription for
a fermi oscillator. We have seen how the action (2.4) is super-Poincaré invariant, despite appear-
ances; it is also still invariant under parity. Using (2.3) and (1.5), we deduce that P : Y2 → −Y2

and P : P2 → −P2, and

P : χ→ Γ2χ ⇒ P : iχ̄χ→ −iχ̄χ,

and hence

P : N → 1−N.

In other words, parity exchanges the two possible eigenstates states of N , and hence the two
states of the supermultiplet. This can be a symmetry only if these two states have the same
spin, and we shall now see that this is indeed the case.

We have observed that the superhelicity S is zero classically. This remains true after quan-
tization since

P · J = −m
2

(
N − 1

2

)
,

i

4
Q̄Q =

m

2

(
N − 1

2

)
.
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The relativistic helicity operator is

s = m−1P · J =
1

4
− N

2
.

For N = 0 this gives a state of s = 1/4 and for N = 1 it gives a state of s = −1/4. We thus
find the semion supermultiplet of helicities (−1/4, 1/4), and hence superhelicity S = 0. This
result depended implicitly on the standard operator ordering prescription for a fermi oscillator
but a different choice would shift the super-helicity S away from zero and hence break parity
(since this takes S to −S). As the classical action preserves parity, it is natural to quantize
preserving this symmetry, and it is satisfying to see that this is an automatic consequence of
the usual operator ordering prescription.

2.2 The LWZ term

As mentioned in the introduction, it is possible to add to the massive superparticle action
a parity-violating Lorentz–Wess–Zumino term [14]. This is achieved by choosing as supersym-
plectic 2-form 2-form

Fβ = F +
β

2

(
−P2)−3

2 εµνρPµdPνdPρ

for arbitrary constant β. The β-dependent term in Fβ is manifestly super-Poincaré invariant
and closed, but cannot be written as the exterior derivative of a manifestly Lorentz invariant
1-form. Its effect is to modify the Lorentz charges to

J µ = [X ∧ P]µ +

(
i

2
Θ̄Θ− β

m

)
Pµ,

so all helicities are shifted by β, which implies that the superhelicity is now S = β. This
effect becomes particularly transparent in the light-cone gauge; the details are very similar to
those presented in [17] for the N = 2 centrally charged superparticle. To summarize: the
3D massive superparticle with LWZ term describes a supermultiplet of relativistic helicities
(β − 1/4, β + 1/4) for arbitrary β.

A final point worth noting, before we move on to consider the massless 3D superparticle, is
that the LWZ term is not defined on mass-shell for m = 0. This was to be expected because
there are only two positive energy massless UIRs of the Poincaré group (excluding continuous
spin irreps) and these cannot be organized into a one-parameter family of massless UIRs of the
super-Poincaré group.

3 Massless superparticle

Starting from the action (1.1), we set m = 0 to get the action for a massless 3D point particle:

I[X,P] =

∫
dτ
[
Ẋ · P + iΘ̄P/Θ− `P2].

This action is still invariant under the “α-symmetry” gauge transformations of (1.2). As men-
tioned in the introduction, it also has a fermionic gauge invariance: the non-zero infinitesimal
“κ-symmetry” transformations are

δκΘ = P/κ, δκXµ = −iΘ̄ΓµδκΘ, δκ` = −4iκ̄Θ̇.

Although κ has two real components, only one is relevant because detP/ = −P2, which is zero
on the constraint surface; this means that κ-symmetry allows one of the two real components
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of Θ to be set to zero by a gauge choice, leaving one physical component. One may verify that
not only is the action invariant under κ-symmetry but so also are the super-Poincaré Noether
charges of (1.3) and (1.4) in the sense that their variation is zero when P2 = 0.

When m = 0 the two-form F is not invertible so the action is not in canonical form; this can
also be seen from the fact that there is no constraint function associated with the κ-symmetry.
This makes covariant quantization problematic. Here we shall quantize in the light-cone gauge.
We first introduce ‘light-cone’ coordinates and their conjugate momenta by

x± =
1√
2

(
X1 ±X0), x = X2; p± =

1√
2

(P1 ± P0) , p = P2,

so that, for example, P2 = 2p−p+ + p2. We also introduce the ‘light-cone’ Dirac matrices

Γ± =
1√
2

(
Γ1 ± Γ0

)
,

so that, for example, PµΓµ = p+Γ+ +p−Γ−+pΓ2. We now fix the α-symmetry and κ-symmetry
invariances by setting

x+ = τ, Γ+Θ = 0.

This implies that

Θ =

√
1

2
√

2 p−

(
ϑ
0

)
for some anticommuting variable ϑ; the prefactor is included for later convenience. We then
find that

Π+
τ = 1, Π−τ = ẋ− +

i

2p−
ϑϑ̇, Π2

τ = ẋ,

and also that Θ̄Θ = 0. The action (1.1) now becomes, on solving the constraint imposed by `,

I[x, p, ϑ] =

∫
dτ

{
ẋp+ ẋ−p− +

i

2
ϑϑ̇−H

}
, H =

p2

2p−
. (3.1)

The Poincaré charges in light-cone gauge are

P = p, P− = p−, P+ = −H,
J = x−p− + τH, J + = τp− xp−, J − = −x−p− xH.

Observe that these charges are all ϑ-independent. The supersymmetry charges are

Q1 =
p√√
2p−

ϑ, Q2 =

√√
2p− ϑ.

Finally, parity acts as

P : x→ −x, p→ −p,

with all other variables, including ϑ, being parity even. This is obviously a symmetry of the
light-cone gauge action (3.1).
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To quantize we promote the variables to operators satisfying the canonical equal-time (anti)-
commutation relations

[x−, p−] = i, [x, p] = i, {ϑ, ϑ} = 1.

Using these relations, one may show that, as expected,

{
Qα,Qβ

}
=

( √
2H p

p
√

2p−

)
=
(
P/Γ0

)αβ
,

and similarly that [J µ,Q] = − i
2ΓµQ.

The massive bosonic 3D particle was quantized in the light-cone gauge in [17] and it was
shown there how the commutation relations leads to a wave-function satisfying the 3D Klein–
Gordon equation. The analysis goes through for m = 0, leading to a wave-function satisfying
the wave equation, and this result carries over to the massless superparticle. The only difference
is that we now have to take into account the fermionic variable ϑ. The anticommutation relation
for ϑ is equivalent to ϑ2 = 1/2, which could be trivially realized by setting ϑ = 1/

√
2. However,

this realization would be inconsistent with the existence of an operator (−1)F that anticommutes
with all fermionic operators. In particular, we could not conclude that Q is a fermionic operator.
If we insist on the existence of the (−1)F operator then the minimal realization of the fermion
anticommutation relations is in terms of 2× 2 (hermitian) matrices, e.g.

ϑ = σ1/
√

2, (−1)F = σ3.

This gives a multiplet of two states, one a boson and the other a fermion, which is what we
anticipated on the basis of the available UIRs of the Poincaré group.

4 Conclusions

In this paper we have quantized the general 3D N = 1 superparticle. We have shown that
all physical irreducible 3D supermultiplets, which combine the known UIRs of the 3D Poincaré
group (excluding continuous spin irreps), can be found in this way.

For zero mass, covariant quantization is problematic and we used light-cone gauge quantiza-
tion to show that the superparticle describes a supermultiplet of two states, one bosonic and the
other fermionic. Although spin is not defined for a massless 3D particle, there is still a distinction
between a boson and a fermion, which correspond to distinct unitary irreducible representations
of the 3D Poincaré group. It is satisfying to see that they are paired by supersymmetry.

In the case of non-zero mass, covariant quantization is mathematically straightforward but
the interpretation of results is complicated by a non-commutativity of the spacetime coordinates.
This feature (which is not peculiar to 3D) is a direct result of the fact that the manifestly super-
Poincaré supersymplectic 2-form F on phase superspace is not in super-Darboux form, and
cannot be brought to this form by any covariant change of phase superspace coordinates. We
have shown how a non-covariant change of coordinates can bring it to super-Darboux form,
and although this change of coordinates is non-canonical in the context of arbitrary functions
on the phase superspace, it is canonical if we restrict to functions that commute with the
mass-shell constraint, and it therefore yields an equivalent quantum theory. The final result is
that the massive 3D superparticle describes the semion supermultiplet of relativistic helicities
(−1/4, 1/4). This is the unique irreducible N = 1 supermultiplet that preserves parity, the two
states of the supermultiplet being exchanged by parity. It is also an example of a supermultiplet
in which all particles have the same spin.
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For non-zero mass, it is possible to add to the action, consistent with all symmetries except
parity, a Lorentz–Wess–Zumino (LWZ) term. If this term has coefficient β then the superparticle
describes the supermultiplet of relativistic helicities (β − 1/4, β + 1/4).

In the absence of a central charge, most of the results of this paper generalize quite easily to
any N . In the massless case, the single anticommuting variable ϑ that survives in the light-cone
gauge will become a set ϑa (a = 1, . . . ,N ) of N such variables subject to the anticommutation
relation

{ϑa, ϑb} = δab.

This will give supermultiplets with an equal number of bosons and fermions, in some representa-
tions of the universal cover of SO(N ). For N = 2, for example, we a get a supermultiplet of two
bosons and two fermions, both doublets of SO(2). For N = 3 and N = 4 we get a supermultiplet
of 4 bosons and 4 fermions. For N = 8 we get a supermultiplet of 8 bosons and 8 fermions. All
these supermultiplets arise from linearization of the 11-dimensional supermembrane in various
backgrounds; see e.g. [18].

For non-zero mass, the anticommuting spinor χ that results from the field redefinition to
super-Darboux coordinates on superspace will become a set χa (a = 1, . . . ,N ) of N such spinors.
Equivalently, the one complex anticommuting variable ξ will become a set ξa of N such variables,
subject to the anticommutation relations

{
ξa, ξ

†
a

}
= δab.

In this case we get a supermultiplet of 2N states, with (helicity, multiplicity):



−N4 1

−N4 + 1
2 N

−N4 + 1 1
2N (N − 1)

...
...

N
4 1

 .

The helicities increase by 1/2 in each step and the multiplicities are the binomial coefficients,
exactly as for massless 4D supermultiplets. For even N all states are bosons or fermions.
As an example, we get a spin-2 supermultiplet for N = 8 that is realized by the (linearized)
maximally-supersymmetric “new massive supergravity” [19]. For odd N all states are semions
(i.e. all helicities are 1/4+n/2 for some integer n). Adding a LWZ term will shift all the helicities
by an arbitrary amount. In particular, we can choose the coefficient of the LWZ term such that
all states are bosons or fermions for odd N . For N = 7, for example, we can arrange to get the
spin-2 supermultiplet of the maximally supersymmetric linearized topologically massive gravity
constructed in [19].

If central charges are allowed for then there are many other possibilities. In particular, for
N = 2 there is the ‘BPS’ massive semion supermultiplet of helicities (−1

4 ,−
1
4 ,

1
4 ,

1
4) that we

found in [17] from quantization of an N = 2 superparticle. It is interesting to observe that
the classical superparticle model of that paper could be viewed as a massless superparticle in
a compactified 4D spacetime. In this context, it is puzzling that quantization should yield
semions since this is not a possibility in 4D Minkowski spacetime. It may be that this puzzle
is resolved by earlier work in which it was observed how semions are ‘almost’ permitted by 4D
Lorentz invariance [20, 21].
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