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1 Introduction

In [1] and [2] we derived the integral formulae for correlation functions and form factors, respec-
tively, of Belavin’s (Z/nZ)-symmetric model [3, 4] on the basis of vertex operator approach [5].
Belavin’s (Z/nZ)-symmetric model is an n-state generalization of Baxter’s eight-vertex model [6],
which has (Z/2Z)-symmetries. As for the eight-vertex model, the integral formulae for correla-
tion functions and form factors were derived by Lashkevich and Pugai [7] and by Lashkevich [8],
respectively.

It was found in [7] that the correlation functions of the eight-vertex model can be obtained
by using the free field realization of the vertex operators in the eight-vertex SOS model [9], with
insertion of the nonlocal operator Λ, called ‘the tail operator’. The vertex operator approach for
higher spin generalization of the eight-vertex model was presented in [10]. The vertex operator
approach for higher rank generalization was presented in [1]. The expression of the spontaneous
polarization of the (Z/nZ)-symmetric model [11] was also reproduced in [1], on the basis of
vertex operator approach. Concerning form factors, the bosonization scheme for the eight-vertex
model was constructed in [8]. The higher rank generalization of [8] was presented in [2]. It was
shown in [12, 13] that the elliptic algebra Uq,p(ŝlN ) relevant to the (Z/nZ)-symmetric model

provides the Drinfeld realization of the face type elliptic quantum group Bq,λ(ŝlN ) tensored by
a Heisenberg algebra.

The present paper is organized as follows. In Section 2 we review the basic definitions of

the (Z/nZ)-symmetric model [3], the corresponding dual face model A
(1)
n−1 model [14], and the

vertex-face correspondence. In Section 3 we summarize the vertex operator algebras relevant to

the (Z/nZ)-symmetric model and the A
(1)
n−1 model [1, 2]. In Section 4 we construct the free field

representations of the tail operators, in terms of those of the basic operators for the type I [15]
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and the type II [16] vertex operators in the A
(1)
n−1 model. Note that in the present paper we

use a different convention from the one used in [1, 2]. In Section 5 we calculate 2m-point form
factors of the σz-operator and σx-operator in the eight-vertex model, as simple application for
n = 2. In Section 6 we give some concluding remarks. Useful operator product expansion (OPE)
formulae and commutation relations for basic bosons are given in Appendix A.

2 Basic definitions

The present section aims to formulate the problem, thereby fixing the notation.

2.1 Theta functions

The Jacobi theta function with two pseudo-periods 1 and τ (Im τ > 0) are defined as follows:

ϑ

[
a
b

]
(v; τ) :=

∑
m∈Z

exp
{
π
√
−1(m+ a) [(m+ a)τ + 2(v + b)]

}
,

for a, b ∈ R. Let n ∈ Z>2 and r ∈ R>1, and also fix the parameter x such that 0 < x < 1. We
will use the abbreviations,

[v] := x
v2

r
−vΘx2r(x

2v), [v]′ := [v]|r 7→r−1, [v]1 := [v]|r 7→1,

{v} := x
v2

r
−vΘx2r(−x2v), {v}′ := {v}|r 7→r−1, {v}1 := {v}|r 7→1,

where

Θq(z) = (z; q)∞
(
qz−1; q

)
∞(q; q)∞ =

∑
m∈Z

qm(m−1)/2(−z)m,

(z; q1, . . . , qm)∞ =
∏

i1,...,im>0

(
1− zqi11 · · · q

im
m

)
.

Note that

ϑ

[
1/2
−1/2

](
v

r
,
π
√
−1

εr

)
=

√
εr

π
exp

(
−εr

4

)
[v],

ϑ

[
0

1/2

](
v

r
,
π
√
−1

εr

)
=

√
εr

π
exp

(
−εr

4

)
{v},

where x = e−ε (ε > 0).
For later conveniences we also introduce the following symbols:

rj(v) = z
r−1
r

n−j
n
gj(z

−1)

gj(z)
, gj(z) =

{x2n+2r−j−1z}{xj+1z}
{x2n−j+1z}{x2r+j−1z}

, (2.1)

r∗j (v) = z
r
r−1

n−j
n
g∗j (z

−1)

g∗j (z)
, g∗j (z) =

{x2n+2r−j−1z}′{xj−1z}′

{x2n−j−1z}′{x2r+j−1z}′
, (2.2)

χj(v) = (−z)−
j(n−j)
n

ρj(z
−1)

ρj(z)
, ρj(z) =

(x2j+1z;x2, x2n)∞(x2n−2j+1z;x2, x2n)∞
(xz;x2, x2n)∞(x2n+1z;x2, x2n)∞

, (2.3)

where z = x2v, 1 6 j 6 n and

{z} = (z;x2r, x2n)∞, {z}′ = (z;x2r−2, x2n)∞.



Form Factors of Belavin’s (Z/nZ)-Symmetric Model and Its Application 3

In particular we denote χ(v) = χ1(v). These factors will appear in the commutation relations
among the type I and type II vertex operators.

The integral kernel for the type I and the type II vertex operators will be given as the products
of the following elliptic functions:

f(v, w) =
[v + 1

2 − w]

[v − 1
2 ]

, h(v) =
[v − 1]

[v + 1]
,

f∗(v, w) =
[v − 1

2 + w]′

[v + 1
2 ]′

, h∗(v) =
[v + 1]′

[v − 1]′
.

2.2 Belavin’s (Z/nZ)-symmetric model

Let V = Cn and {εµ}06µ6n−1 be the standard orthonormal basis with the inner product
〈εµ, εν〉 = δµν . Belavin’s (Z/nZ)-symmetric model [3] is a vertex model on a two-dimensional
square lattice L such that the state variables take the values of (Z/nZ)-spin. The model is
(Z/nZ)-symmetric in a sense that the R-matrix satisfies the following conditions:

(i) R(v)ikjl = 0, unless i+ k = j + l, mod n,

(ii) R(v)i+pk+p
j+pl+p = R(v)ikjl , ∀ i, j, k, l, p ∈ Z/nZ.

The definition of the R-matrix in the principal regime can be found in [2]. The present R-matrix
has three parameters v, ε and r, which lie in the following region:

ε > 0, r > 1, 0 < v < 1.

2.3 The A
(1)
n−1 model

The dual face model of the (Z/nZ)-symmetric model is called the A
(1)
n−1 model. This is a face

model on a two-dimensional square lattice L∗, the dual lattice of L, such that the state variables

take the values of the dual space of Cartan subalgebra h∗ of A
(1)
n−1:

h∗ =

n−1⊕
µ=0

Cωµ,

where

ωµ :=

µ−1∑
ν=0

ε̄ν , ε̄µ = εµ −
1

n

n−1∑
µ=0

εµ.

The weight lattice P and the root lattice Q of A
(1)
n−1 are usually defined. For a ∈ h∗, we set

aµν = āµ − āν , āµ = 〈a+ ρ, εµ〉 = 〈a+ ρ, ε̄µ〉, ρ =
n−1∑
µ=1

ωµ.

An ordered pair (a, b) ∈ h∗2 is called admissible if b = a+ ε̄µ, for a certain µ (0 6 µ 6 n− 1).

For (a, b, c, d) ∈ h∗4, let W

[
c d
b a

∣∣∣∣ v] be the Boltzmann weight of the A
(1)
n−1 model for the state

configuration

[
c d
b a

]
round a face. Here the four states a, b, c and d are ordered clockwise
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from the SE corner. In this model W

[
c d
b a

∣∣∣∣ v] = 0 unless the four pairs (a, b), (a, d), (b, c)

and (d, c) are admissible. Non-zero Boltzmann weights are parametrized in terms of the elliptic
theta function of the spectral parameter v. The explicit expressions of W can be found in [2].
We consider the so-called Regime III in the model, i.e., 0 < v < 1.

2.4 Vertex-face correspondence

Let t(v)aa−ε̄µ be the intertwining vectors in Cn, whose elements are expressed in terms of theta
functions. As for the definitions see [2]. Then t(v)aa−ε̄µ ’s relate the R-matrix of the (Z/nZ)-

symmetric model in the principal regime and Boltzmann weights W of the A
(1)
n−1 model in the

regime III

R(v1 − v2)t(v1)da ⊗ t(v2)cd =
∑
b

t(v1)cb ⊗ t(v2)baW

[
c d
b a

∣∣∣∣ v1 − v2

]
. (2.4)

Let us introduce the dual intertwining vectors satisfying

n−1∑
µ=0

t∗µ(v)a
′
a t

µ(v)aa′′ = δa
′
a′′ ,

n−1∑
ν=0

tµ(v)aa−ε̄ν t
∗
µ′(v)a−ε̄νa = δµµ′ . (2.5)

From (2.4) and (2.5), we have

t∗(v1)bc ⊗ t∗(v2)abR(v1 − v2) =
∑
d

W

[
c d
b a

∣∣∣∣ v1 − v2

]
t∗(v1)ad ⊗ t∗(v2)dc .

For fixed r > 1, let

S(v) = −R(v)|r 7→r−1, W ′
[
c d
b a

∣∣∣∣ v] = −W
[
c d
b a

∣∣∣∣ v]
∣∣∣∣∣
r 7→r−1

,

and t′∗(v)ba is the dual intertwining vector of t′(v)ab . Here,

t′(v)ab := f ′(v)t(v; ε, r − 1)ab ,

with

f ′(v) =
x
− v2

n(r−1)−
(r+n−2)v
n(r−1) −

(n−1)(3r+n−5)
6n(r−1)

n
√
−(x2r−2;x2r−2)∞

× (x2z−1;x2n, x2r−2)∞(x2r+2n−2z;x2n, x2r−2)∞
(z−1;x2n, x2r−2)∞(x2r+2n−4z;x2n, x2r−2)∞

, (2.6)

and z = x2v. Then we have

t′∗(v1)bc ⊗ t′∗(v2)abS(v1 − v2) =
∑
d

W ′
[
c d
b a

∣∣∣∣ v1 − v2

]
t′∗(v1)ad ⊗ t′∗(v2)dc .
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3 Vertex operator algebra

3.1 Vertex operators for the (Z/nZ)-symmetric model

Let H(i) be the C-vector space spanned by the half-infinite pure tensor vectors of the forms

εµ1 ⊗ εµ2 ⊗ εµ3 ⊗ · · · with µj ∈ Z/nZ, µj = i+ 1− j (mod n) for j � 0.

The type I vertex operator Φµ(v) can be defined as a half-infinite transfer matrix. The opera-
tor Φµ(v) is an intertwiner from H(i) to H(i+1), satisfying the following commutation relation:

Φµ(v1)Φν(v2) =
∑
µ′,ν′

R(v1 − v2)µνµ′ν′Φ
ν′(v2)Φµ′(v1).

When we consider an operator related to ‘creation-annihilation’ process, we need another
type of vertex operators, the type II vertex operators that satisfy the following commutation
relations:

Ψ∗ν(v2)Ψ∗µ(v1) =
∑
µ′,ν′

Ψ∗µ′(v1)Ψ∗ν′(v2)S(v1 − v2)µ
′ν′
µν ,

Φµ(v1)Ψ∗ν(v2) = χ(v1 − v2)Ψ∗ν(v2)Φµ(v1).

Let

ρ(i) = x2nHCTM : H(i) → H(i),

where HCTM is the CTM Hamiltonian defined as follows:

HCTM(µ1, µ2, µ3, . . . ) =
1

n

∞∑
j=1

jHv(µj , µj+1),

Hv(µ, ν) =

{
µ− ν − 1 if 0 6 ν < µ 6 n− 1,
n− 1 + µ− ν if 0 6 µ 6 ν 6 n− 1.

(3.1)

Then we have the homogeneity relations

Φµ(v)ρ(i) = ρ(i+1)Φµ(v − n), Ψ∗µ(v)ρ(i) = ρ(i+1)Ψ∗µ(v − n).

3.2 Vertex operators for the A
(1)
n−1 model

For k = a+ρ, l = ξ+ρ and 0 6 i 6 n−1, let H(i)
l,k be the space of admissible paths (a0, a1, a2, . . . )

such that

a0 = a, aj − aj+1 ∈ {ε̄0, ε̄1, . . . , ε̄n−1} for j = 0, 1, 2, 3, . . . ,

aj = ξ + ωi+1−j for j � 0.

The type I vertex operator Φ(v)
a+ε̄µ
a can be defined as a half-infinite transfer matrix. The

operator Φ(v)
a+ε̄µ
a is an intertwiner from H(i)

l,k to H(i+1)
l,k+ε̄µ

, satisfying the following commutation
relation:

Φ(v1)cbΦ(v2)ba =
∑
d

W

[
c d
b a

∣∣∣∣ v1 − v2

]
Φ(v2)cdΦ(v1)da.

The free field realization of Φ(v2)ba was constructed in [15]. See Section 4.2.



6 Y.-H. Quano

The type II vertex operators should satisfy the following commutation relations:

Ψ∗(v2)ξcξdΨ
∗(v1)ξdξa =

∑
ξb

Ψ∗(v1)ξcξbΨ
∗(v2)ξbξaW

′
[
ξc ξd
ξb ξa

∣∣∣∣ v1 − v2

]
,

Φ(v1)a
′
a Ψ∗(v2)ξ

′

ξ = χ(v1 − v2)Ψ∗(v2)ξ
′

ξ Φ(v1)a
′
a .

Let

ρ
(i)
l,k = Gax

2nH
(i)
l,k , Ga =

∏
06µ<ν6n−1

[aµν ],

where H
(i)
l,k is the CTM Hamiltonian of A

(1)
n−1 model in regime III is given as follows:

H
(i)
l,k (a0, a1, a2, . . . ) =

1

n

∞∑
j=1

jHf (aj−1, aj , aj+1),

Hf (a+ ε̄µ + ε̄ν , a+ ε̄µ, a) = Hv(ν, µ),

and Hv(ν, µ) is the same one as (3.1). Then we have the homogeneity relations

Φ(v)a
′
a

ρ
(i)
a+ρ,l

Ga
=
ρ

(i+1)
a′+ρ,l

Ga′
Φ(v − n)a

′
a , Ψ∗(v)ξ

′

ξ ρ
(i)
k,ξ+ρ = ρ

(i+1)
k,ξ′+ρΨ

∗(v − n)ξ
′

ξ .

The free field realization of Ψ∗(v)ξ
′

ξ was constructed in [16]. See Section 4.3.

3.3 Tail operators and commutation relations

In [1] we introduced the intertwining operators between H(i) and H(i)
l,k (k = l + ωi (mod Q)):

T (u)ξa0 =

∞∏
j=0

tµj (−u)
aj
aj+1 : H(i) → H(i)

l,k,

T (u)ξa0 =
∞∏
j=0

t∗µj (−u)
aj+1
aj : H(i)

l,k → H
(i),

which satisfy

ρ(i) =

(
(x2r−2;x2r−2)∞

(x2r;x2r)∞

)(n−1)(n−2)/2
1

G′ξ

∑
k≡l+ωi

(mod Q)

T (u)aξρ
(i)
l,kT (u)aξ. (3.2)

In order to obtain the form factors of the (Z/nZ)-symmetric model, we need the free field
representations of the tail operator which is offdiagonal with respect to the boundary conditions:

Λ(u)ξ
′a′

ξ a = T (u)ξ
′a′T (u)ξ a : H(i)

l,k → H
(i)
l′k′ , (3.3)

where k = a+ ρ, l = ξ + ρ, k′ = a′ + ρ, and l′ = ξ′ + ρ. Let

L

[
a′0 a′1
a0 a1

∣∣∣∣u] :=

n−1∑
µ=0

t∗µ(−u)a1a0t
µ(−u)

a′0
a′1
.
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Then we have

Λ(u)
ξ′a′0
ξ a0

=
∞∏
j=0

L

[
a′j a′j+1

aj aj+1

∣∣∣∣u] .
From the invertibility of the intertwining vector and its dual vector, we have

Λ(u0)ξ
′ a
ξ a = δξ

′

ξ . (3.4)

Note that the tail operator (3.3) satisfies the following intertwining relations [1, 2]:

Λ(u)ξ
′c
ξ bΦ(v)ba =

∑
d

L

[
c d
b a

∣∣∣∣u− v]Φ(v)cdΛ(u)ξ
′d
ξ a , (3.5)

Ψ∗(v)ξcξdΛ(u)ξd a
′

ξa a
=
∑
ξb

L′
[
ξc ξd
ξb ξa

∣∣∣∣u+ ∆u− v
]

Λ(u)ξc a
′

ξb a
Ψ∗(v)ξbξa , (3.6)

where

L′
[
ξc ξd
ξb ξa

∣∣∣∣u] = L

[
ξc ξd
ξb ξa

∣∣∣∣u]∣∣∣∣
r 7→r−1

.

We should find a representation of Λ(u)ξ
′a′

ξ a and fix the constant ∆u that solves (3.5) and (3.6).

4 Free filed realization

4.1 Bosons

In [17, 18] the bosons Bj
m (1 6 j 6 n−1,m ∈ Z\{0}) relevant to elliptic algebra were introduced.

For α, β ∈ h∗ we denote the zero mode operators by Pα, Qβ. Concerning commutation relations
among these operators see [17, 18, 2].

We will deal with the bosonic Fock spaces Fl,k, (l, k ∈ h∗) generated by Bj
−m(m > 0) over

the vacuum vectors |l, k〉 :

Fl,k = C[{Bj
−1, B

j
−2, . . . }16j6n]|l, k〉,

where

|l, k〉 = exp
(√
−1(β1Qk + β2Ql)

)
|0, 0〉,

and

t2 − β0t− 1 = (t− β1)(t− β2), β0 =
1√

r(r − 1)
, β1 < β2.

4.2 Type I vertex operators

Let us define the basic operators for j = 1, . . . , n− 1

U−αj (v) = z
r−1
r : exp

−β1

(√
−1Qαj + Pαj log z)

)
+
∑
m6=0

Bj
m −Bj+1

m

m
(xjz)−m

 :,

Uωj (v) = z
r−1
2r

j(n−j)
n : exp

β1

(√
−1Qωj + Pωj log z)

)
−
∑
m 6=0

1

m

j∑
k=1

x(j−2k+1)mBk
mz
−m

 :,
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where β1 = −
√

r−1
r and z = x2v as usual. The normal product operation places Pα’s to the

right of Qβ’s, as well as Bm’s (m > 0) to the right of B−m’s. For some useful OPE formulae
and commutation relations, see Appendix A.

In what follows we set

πµ =
√
r(r − 1)Pε̄µ , πµν = πµ − πν = rLµν − (r − 1)Kµν .

The operators Kµν , Lµν and πµν act on Fl,k as scalars 〈εµ− εν , k〉, 〈εµ− εν , l〉 and 〈εµ− εν , rl−
(r − 1)k〉, respectively. In what follows we often use the symbols

GK =
∏

06µ<ν6n−1

[Kµν ], G′L =
∏

06µ<ν6n−1

[Lµν ]′.

For 0 6 µ 6 n − 1 the type I vertex operator Φ(v)
a+ε̄µ
a can be expressed in terms of Uωj (v)

and U−αj (v) on the bosonic Fock space Fl,a+ρ. The explicit expression of Φ(v)
a+ε̄µ
a can found

in [15].

4.3 Type II vertex operators

Let us define the basic operators for j = 1, . . . , n− 1

V−αj (v) = (−z)
r
r−1 : exp

−β2

(√
−1Qαj + Pαj log(−z)

)
−
∑
m6=0

Ajm −Aj+1
m

m
(xjz)−m

 :,

Vωj (v) = (−z)
r

2(r−1)
j(n−j)
n

× : exp

β2

(√
−1Qωj + Pωj log(−z)

)
+
∑
m6=0

1

m

j∑
k=1

x(j−2k+1)mAkmz
−m

 :,

where β2 =
√

r
r−1 and z = x2v, and Ajm = [rm]x

[(r−1)m]x
Bj
m. For some useful OPE formulae and

commutation relations, see Appendix A.

For 0 6 µ 6 n− 1 the type II vertex operator Ψ∗(v)
ξ+ε̄µ
ξ can be expressed in terms of Vωj (v)

and V−αj (v) on the bosonic Fock space Fξ+ρ,k. The explicit expression of Ψ∗(v)
ξ+ε̄µ
ξ can found

in [16].

4.4 Free field realization of tail operators

In order to construct free field realization of the tail operators, we also need another type of
basic operators:

W−αj (v) = ((−1)rz)
1

r(r−1)

× : exp

−β0

(√
−1Qαj + Pαj log(−1)rz)

)
−
∑
m6=0

Ojm −Oj+1
m

m
(xjz)−m

 :,

where β0 = β1 + β2 = 1√
r(r−1)

, (−1)r := exp(π
√
−1r) and Ojm = [m]x

[(r−1)m]x
Bj
m. Concerning

useful OPE formulae and commutation relations, see Appendix A.
We cite the results on the free field realization of tail operators. In [1] we obtained the free

field representation of Λ(u)ξ a
′

ξ a satisfying (3.5) for ξ′ = ξ:

Λ(u)
ξa−ε̄µ
ξa−ε̄ν = GK

∮ ν∏
j=µ+1

dzj

2π
√
−1zj

U−αµ+1(vµ+1) · · ·U−αν (vν)
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×
ν−1∏
j=µ

(−1)Ljν−Kjνf(vj+1 − vj , πjν)G−1
K , (4.1)

where vµ = u and µ < ν. In [2] we obtained the free field representation of Λ(v)
ξ+ε̄n−1a+ε̄n−1

ξ+ε̄µa+ε̄n−2

satisfying (3.6) as follows:

Λ(u)
ξ+ε̄n−1a+ε̄n−1

ξ+ε̄µa+ε̄n−2
=

(−1)n−µ[an−2n−1]

(x−1 − x)(x2r;x2r)3
∞

[ξµn−1 − 1]′

[1]′
GKG

′
L
−1

×
∮
C′

n−2∏
j=µ+1

dzj

2π
√
−1zj

W−αn−1

(
u− r−1

2

)
V−αn−2(vn−2) · · ·V−αµ+1(vµ+1)

×
n−2∏
j=µ+1

(−1)Lµj−Kµjf∗(vj − vj+1, πµj)G
−1
K G′L, (4.2)

for 0 6 µ 6 n − 2 with ∆u = −n−1
2 and vn−1 = u. Concerning other types of tail operators

Λ(u)ξa
′

ξa , the expressions of the free field representation can be found in [1, 2].

4.5 Free field realization of CTM Hamiltonian

Let

HF =
∞∑
m=1

[rm]x
[(r − 1)m]x

n−1∑
j=1

j∑
k=1

x(2k−2j−1)mBk
−m(Bj

m −Bj+1
m ) +

1

2

n−1∑
j=1

PωjPαj

=
∞∑
m=1

[rm]x
[(r − 1)m]x

n−1∑
j=1

j∑
k=1

x(2j−2k−1)m(Bj
−m −B

j+1
−m )Bk

m +
1

2

n−1∑
j=1

PωjPαj (4.3)

be the CTM Hamiltonian on the Fock space Fl,k [19]. Then we have the homogeneity relation

φµ(z)qHF = qHF φµ
(
q−1z

)
,

and the trace formula

trFl,k
(
x2nHFGa

)
=

xn|β1k+β2l|2

(x2n;x2n)n−1
∞

Ga.

Let ρ
(i)
l,k = Gax

2nHF . Then the relation (3.2) holds. We thus indentify HF with free field

representations of H
(i)
l,k , the CTM Hamiltonian of A

(1)
n−1 model in regime III.

5 Form factors for n = 2

In this section we would like to find explicit expressions of form factors for n = 2 case, i.e., the
eight-vertex model form factors. Here, we adopt the convention that the components 0 and 1
for n = 2 are denoted by + and −. Form factors of the eight-vertex model are defined as matrix
elements of some local operators. For simplicity, we choose σz as a local operator:

σz = E
(1)
++ − E

(1)
−−,

where E
(j)
µµ′ is the matrix unit on the j-th site. The free field representation of σz is given by

σ̂z =
∑
ε=±

εΦ∗ε(u)Φε(u).
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Here, Φ∗ε(u) is the dual type I vertex operator, whose free filed representation can be found
in [1, 2].

The corresponding form factors with 2m ‘charged’ particles are given by

F (i)
m (σz;u1, . . . , u2m)ν1···ν2m =

1

χ(i)
TrH(i)

(
Ψ∗ν1(u1) · · ·Ψ∗ν2m(u2m)σ̂zρ(i)

)
, (5.1)

where

χ(i) = TrH(i)ρ(i) =
(x4;x4)∞
(x2;x2)∞

.

In this section we denote the spectral parameters by zj = x2uj , and denote integral variables by
wa = x2va .

By using the vertex-face transformation, we can rewrite (5.1) as follows:

F (i)
m (σz;u1, . . . , u2m)ν1···ν2m =

1

χ(i)

∑
l1,...,l2m

t′∗ν1
(
u1 − u0 + 1

2

) l1
l · · · t

′∗
ν2m

(
u2m − u0 + 1

2

) l2m
l2m−1

×
∑

k≡l+i(mod 2)

∑
ε=±

ε
∑

k1=k±1

∑
k2=k1±1

t∗ε(u− u0)kk1t
ε(u− u0)k1k2

× TrH(i)
l,k

(
Ψ∗(u1)ll1 · · ·Ψ

∗(u2m)
l2m−1

l2m
Φ∗(u)kk1Φ(u)k1k2Λ(u0)l2mk2l k

[k]x4HF

[l]′

)
,

where HF is the CTM Hamiltonian defined by (4.3).

Let

F (i)
m (σz;u1, . . . , u2m)ll1···l2m =

1

χ(i)

∑
k≡l+i (mod 2)

∑
ε=±

ε
∑

k1=k±1

∑
k2=k1±1

t∗ε(u− u0)kk1t
ε(u− u0)k1k2

× TrH(i)
l,k

(
Ψ∗(u1)ll1 · · ·Ψ

∗(u2m)
l2m−1

l2m
Φ∗(u)kk1Φ(u)k1k2Λ(u0)l2mk2l k

[k]x4HF

[l]′

)
. (5.2)

Then we have

F (i)
m (σz;u1, . . . , u2m)ll1···l2m =

∑
ν1,...,ν2m

F (i)
m (σz;u1, . . . , u2m)ν1···ν2m

× t′ν1
(
u1 − u0 + 1

2

)
l
l1 · · · t

′ν2m (u2m − u0 + 1
2

) l2m−1

l2m
.

For simplicity, let lj = l−j for 1 6 j 6 2m. Then from the relation (3.4), Λ(u0)l2mk2l k vanishes
unless k2 = k − 2. Thus, the sum over k1 and k2 on (5.2) reduces to only one non-vanishing
term. Furthermore, we note the formula∑

ε=±
εt∗ε(u− u0)kk−1t

ε(u− u0)k−1
k−2 = (−1)1−i {0}{u− u0 − 1 + k}

[u− u0][k − 1]
.

Here, we use k − l ≡ i (mod 2). The sum with respect to k for the trace over the zero-modes
parts can be calculated as follows:

∑
k≡l+i (mod 2)

{u− u0 − 1 + k}
2m∏
j=1

(−zj)
rl

2(r−1)
− k

2 (x−1z)−l+
(r−1)k
r

m−1∏
a=1

(−wa)−
rl
r−1

+k

×
(
(−1)rx−r+1z0

)− l
r−1

+ k
r x

rl2

r−1
−2kl+

(r−1)k2

r
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= x

l2

r−1
+l

(
2+ r

r−1

2n∑
j=1

uj−2u− 2r
r−1

m−1∑
a=1

va− 2u0
r−1

)
x

1
r

(u−u0−1)2−(u−u0−1)
∑

k≡l+i (mod 2)

x(k−l)2

×
∑
n∈Z

xrn(n−1)x2(u−u0−1+k)nx
k

(
2
m−1∑
a=1

va+2u−
2m∑
j=1

uj−3

)

=
(−1)1−i

2
x

1
r

(u−u0−1)2− 1
r−1

(
u0+

m−1∑
a=1

va− 1
2

2m∑
j=1

uj

)2

−
(
m−1∑
a=1

va+u− 1
2

2m∑
j=1

uj−1

)2

× Z(i)
m (l, u, u0, uj , va),

where

Z(i)
m (l, u, u0, uj , va) =

l − u0 −
m−1∑
a=1

va + 1
2

2m∑
j=1

uj

′ m−1∑
a=1

va + u− 1
2

2m∑
j=1

uj


1

+ (−1)1−i

l − u0 −
m−1∑
a=1

va + 1
2

2m∑
j=1

uj


′

m−1∑
a=1

va + u− 1
2

2m∑
j=1

uj


1

.

Thus, F
(i)
m (σz;u1, . . . , u2m)ll−1···l−2m can be obtained as follows:

(−1)m−1β−1
m F (i)

m (σz;u1, . . . , u2m)ll−1···l−2m

=
∏
j<j′

(−zj)
r

2(r−1)Fψ∗ψ∗(zj′/zj)

2m∏
j=1

(−zj)−
1
r−1x

(uj−u0+1/2)2

4(r−1)
+
r(uj−u0+1/2)

2(r−1)
+ 1

4

x−1z(xzj/z;x4)∞(x3z/zj ;x4)∞
f ′(uj − u0 + 1

2)

×
∮
C

m−1∏
a=1

dwa

2π
√
−1wa

Z(i)
m (l, u, u0, uj , va)

∏
a<b

(−wb)
2r
r−1 [va − vb]′[va − vb]1x−

r
r−1

(va−vb−1)2

×
m−1∏
a=1

x−2z2x−(va−u)2+va−u[va − u]1(−wa)
2
r−1x−

1
r−1

(u0−va−1)2+u0−va−1[va − u0 + l −m]′

×
m−1∏
a=1

2m∏
j=1

(−zj)−
r
r−1

(x2r−1wa/zj ;x
4, x2r−2)∞(x2r+3zj/wa;x

4, x2r−2)∞
(x−1wa/zj ;x4, x2r−2)∞(x3zj/wa;x4, x2r−2)∞

×(x−1z)
2
r

2
x
− r+2

r
(u0−u)− 1

r
− 1
r−1

(
u0+

m−1∑
a=1

va− 1
2

2m∑
j=1

uj

)2

−
(
m−1∑
a=1

va+u− 1
2

2m∑
j=1

uj−1

)2

, (5.3)

where f ′(v) is defined by (2.6) for n = 2, a scalar function Fψ∗ψ∗(z) and a scalar βm are

Fψ∗ψ∗(z) =
(z;x4, x4, x2r−2)∞(x4z−1;x4, x4, x2r−2)∞

(x2z;x4, x4, x2r−2)∞(x6z−1;x4, x4, x2r−2)∞

× (x2r+2z;x4, x4, x2r−2)∞(x2r+6z−1;x4, x4, x2r−2)∞
(x2rz;x4, x4, x2r−2)∞(x2r+4z−1;x4, x4, x2r−2)∞

,

and

βm =
x−

r−1
4r {0}[m− 1]′!(x−2z)

r−1
2r (x2, x4)2

∞(x2;x2r)∞(x2r+1;x2r−2)∞
(m− 1)![1]′m(x−1 − x)g1(x2)(x2r;x2r)2

∞(x2r+1;x2r)∞

× (x2;x2)m−1
∞ (x2r;x2r−2)m−1

∞
(x4;x4, x4, x2r−2)m∞(x2r+6;x4, x4, x2r−2)m∞
(x6;x4, x4, x2r−2)m∞(x2r+4;x4, x4, x2r−2)m∞

,
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with

[m]′! =

m∏
p=1

[p]′.

On (5.3), the integral contour C should be chosen such that all integral variables wa lie in the
convergence domain x3|zj | < |wa| < x|zj |.

Gathering phase factors on (5.3), we have e
−π
√
−1 3mr

2(r−1) . Redefining f ′(v) by a scalar factor,
we thus obtain the equality:

∑
ν1,...,ν2m

F (i)
m (σz;u1, . . . , u2m)ν1···ν2m

2m∏
j=1

ϑ

[
0
bνj

](
uj−u0+ 1

2
+l−j+1

2(r−1) ; π
√
−1

2ε(r−1)

)

= βm
∏
j<j′

z
r

2(r−1)

j Fψ∗ψ∗(zj′/zj)

2m∏
j=1

z
− 1
r−1

j

x−1z(xzj/z;x4)∞(x3z/zj ;x4)∞

×
∮
C

m−1∏
a=1

dwa

2π
√
−1wa

Z(i)
m (l, u, u0, uj , va)

∏
a<b

w
2r
r−1

b [va − vb]′[va − vb]1x−
r
r−1

(va−vb−1)2

×
m−1∏
a=1

x−2z2x−(va−u)2+va−u[va − u]1w
2
r−1
a x−

1
r−1

(u0−va−1)2+u0−va−1[va − u0 + l −m]′

×
m−1∏
a=1

2m∏
j=1

z
− r
r−1

j

(x2r−1wa/zj ;x
4, x2r−2)∞(x2r+3zj/wa;x

4, x2r−2)∞
(x−1wa/zj ;x4, x2r−2)∞(x3zj/wa;x4, x2r−2)∞

×(x−1z)
2
r

2
x
− r+2

r
(u0−u)− 1

r
− 1
r−1

(
u0+

m−1∑
a=1

va− 1
2

2m∑
j=1

uj

)2

−
(
m−1∑
a=1

va+u− 1
2

2m∑
j=1

uj−1

)2

, (5.4)

where

bν =

{
0 (ν = +),
1
2 (ν = −).

By comparing the transformation properties with respect to l for both sides on (5.4), we conclude

that F
(i)
m (σz;u1, . . . , u2m)ν1···ν2m are independent of l, and also that

F
(i)
m (σz;u1, . . . , u2m)ν1···ν2m = 0 unless

1

2

2m∑
j=1

νj ≡ 0 (mod 2),

as expected.

When m = 1, we have

F (i)(σz;u1, u2)ν1ν2 = δν1+ν2,0C
(z)z

r
2(r−1)

1

2∏
j=1

z
− 1
r−1

j

x−1z(xzj/z;x4)∞(x3z/zj ;x4)∞

× (x−1z)
2
r

4
x−

r+2
r

(u0−u)− 1
r
− 1
r−1

(u0−(u1+u2)/2)2−(u−(u1+u2)/2−1)2

× Fψ∗ψ∗(z2/z1)

(
ν1

[u− u1+u2
2 ]1

[u2−u1−1
2 ]′

+ (−1)1−i {u−
u1+u2

2 }1
{u2−u1−1

2 }′

)
, (5.5)
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where C(z) is a constant. This is a same result obtained by Lashkevich in [8], up to a scalar
factor1.

Next, let us choose σx as a local operator:

σz = E
(1)
+− + E

(1)
−+.

Then the relation for F
(i)
m (σx;u1, . . . , u2m)ν1···ν2m reduces to (5.4) with Z

(i)
m (l, u, u0, uj , va) re-

placed by

X(i)
m (l, u, u0, uj , va) =

l − u0 −
m−1∑
a=1

va + 1
2

2m∑
j=1

uj

′

m−1∑
a=1

va + u− 1
2

2m∑
j=1

uj




1

+ (−1)1−i


l − u0 −

m−1∑
a=1

va + 1
2

2m∑
j=1

uj



′ m−1∑

a=1

va + u− 1
2

2m∑
j=1

uj


1

,

and with {0} in βm replaced by [[0]], respectively. Here,

[[v]] := x
v2

r Θx2r(x
2v+r), [[v]]′ := [[v]]|r 7→r−1, [[v]]1 := [[v]]|r 7→1,

{{v}} := x
v2

r Θx2r(−x2v+r), {{v}}′ := {{v}}|r 7→r−1, {{v}}1 := {{v}}|r 7→1.

The transformation properties with respect to l implies that F
(i)
m (σx;u1, . . . , u2m)ν1···ν2m are

independent of l, and also that

F
(i)
m (σx;u1, . . . , u2m)ν1···ν2m = 0 unless

1

2

2m∑
j=1

νj ≡ 1 (mod 2),

as expected. Furthermore, 2-point form factors for σx-operator can be obtained as follows:

F (i)(σx;u1, u2)ν1ν2 = δν1 ν2C
(x)z

r
2(r−1)

1

2∏
j=1

z
− 1
r−1

j

x−1z(xzj/z;x4)∞(x3z/zj ;x4)∞

× (x−1z)
2
r

4
x−

r+2
r

(u0−u)− 1
r
− 1
r−1

(u0−(u1+u2)/2)2−(u−(u1+u2)/2−1)2

× Fψ∗ψ∗(z2/z1)

(
ν1
{{u− u1+u2

2 }}1
[[u2−u1−1

2 ]]′
+ (−1)1−i [[u−

u1+u2
2 ]]1

{{u2−u1−1
2 }}′

)
, (5.6)

where C(x) is a constant. The expressions (5.5) and (5.6) are essentially same as the results
obtained by Lukyanov and Terras [20]2.

6 Concluding remarks

In this paper we present a vertex operator approach for form factors of the (Z/nZ)-symmetric

model. For that purpose we constructed the free field representations of the tail operators Λξ
′a′

ξ a ,

1This scalar factor results from the difference between the present normalization of the type II vertex operators
and that used in [8].

2Strictly speaking, we consider the parameterization of the coupling constants |Jz| > Jx > Jy while Lukyanov
and Terras [20] considered that of Jx > Jy > |Jz|. Thus, the present results (5.5) and (5.6) correspond to their
results of the 2-point form factors for σx-operator and σy-operator, respectively. Furthermore, we note that their
rapidity θj can be obtained from our spectral parameter uj by a constant shift. After such substitution, we claim
that our results (5.5) and (5.6) agree with their corresponding results in [20].
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the nonlocal operators which relate the physical quantities of the (Z/nZ)-symmetric model and

the A
(1)
n−1 model. As a result, we can obtain the integral formulae for form factors of the (Z/nZ)-

symmetric model, in principle.

Our approach is based on some assumptions. We assumed that the vertex operator al-
gebra defined by (3.2) and (3.5), (3.6) correctly describes the intertwining relation between the

(Z/nZ)-symmetric model and the A
(1)
n−1 model. We also assumed that the free field representa-

tions (4.1), (4.2) provide relevant representations of the vertex operator algebra.

As a consistency check of our bosonization scheme, we presented the integral formulae for form
factors which are related to the σz-operator and σx-operator in the eight-vertex model, i.e., the
(Z/2Z)-symmetric model. The expressions (5.3) and (5.4) for σz form factors and σx analogues
remind us of the determinant structure of sine-Gordon form factors found by Smirnov [21].
In Smirnov’s approach form factors in integrable models can be obtained by solving matrix
Riemann-Hilbert problems. We wish to find form factors formulae in the eight-vertex model on
the basis of Smirnov’s approach in a separate paper.

A OPE formulae and commutation relations

In this paper we use some different definitions of the basic bosons from the one used in [2].
Accordingly, some formulae listed in Appendix B of [2] should be changed. Here we list such
formulae. Concerning unchanged formulae see [2]. In what follows we denote z = x2v, z′ = x2v′ .

First, useful OPE formulae are:

Vω1(v)Vωj (v
′) = (−z)

r
r−1

n−j
n g∗j (z

′/z) : Vω1(v)Vωj (v
′) :,

Vωj (v)Vω1(v′) = (−z)
r
r−1

n−j
n g∗j (z

′/z) : Vωj (v)Vω1(v′) :,

Vωj (v)V−αj (v
′) = (−z)−

r
r−1

(x2r−1z′/z;x2r−2)∞
(x−1z′/z;x2r−2)∞

: Vωj (v)V−αj (v
′) :,

V−αj (v)Vωj (v
′) = (−z)−

r
r−1

(x2r−1z′/z;x2r−2)∞
(x−1z′/z;x2r−2)∞

: V−αj (v)Vωj (v
′) :,

V−αj (v)V−αj±1(v′) = (−z)−
r
r−1

(x2r−1z′/z;x2r−2)∞
(x−1z′/z;x2r−2)∞

: V−αj (v)V−αj±1(v′) :,

V−αj (v)V−αj (v
′) = (−z)

2r
r−1

(
1− z′

z

)
(x−2z′/z;x2r−2)∞
(x2rz′/z;x2r−2)∞

: V−αj (v)V−αj (v
′) :,

Vωj (v)Uωj (v
′) = (−z)−

j(n−j)
n ρj(z

′/z) : Vω1(v)Uωj (v
′) :,

Uωj (v)Vωj (v
′) = z−

j(n−j)
n ρj(z

′/z) : Uωj (v)Vωj (v
′) :,

Vωj (v)U−αj (v
′) = −z

(
1− z′

z

)
: Vωj (v)U−αj (v

′) := U−αj (v
′)Vωj (v),

Uωj (v)V−αj (v
′) = z

(
1− z′

z

)
: Uωj (v)V−αj (v

′) := V−αj (v
′)Uωj (v),

V−αj (v)U−αj±1(v′) = −z
(

1− z′

z

)
: V−αj (v)U−αj±1(v′) := U−αj±1(v′)V−αj (v),

V−αj (v)U−αj (v
′) =

: V−αj (v)U−αj (v
′) :

z2(1− xz′

z )(1− x−1z′

z )
, (A.1)

U−αj (v)V−αj (v
′) =

: U−αj (v)V−αj (v
′) :

z2(1− xz′

z )(1− x−1z′

z )
, (A.2)
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where g∗j (z) and ρj(z) are defined by (2.2) and (2.3), respectively. From (A.1) and (A.2), we
obtain the following commutation relations:

[V−αj (v), U−αj (v
′)] =

δ( z
xz′ )− δ(

z′

xz )

(x− x−1)zz′
: V−αj (v)U−αj (v

′) :,

where the δ-function is defined by the following formal power series

δ(z) =
∑
n∈Z

zn.

Finally, we list the OPE formulae for W−αj (v) and other basic operators:

W−αj (v)V−αj±1(v′) = −(−z)−
1
r−1

(xrz′/z;x2r−2)∞
(xr−2z′/z;x2r−2)∞

: W−αj (v)V−αj±1(v′) :,

V−αj±1(v)W−αj (v
′) = (−z)−

1
r−1

(xrz′/z;x2r−2)∞
(xr−2z′/z;x2r−2)∞

: V−αj±1(v)W−αj (v
′) :,

Vωj (v)W−αj (v
′) = (−z)−

1
r−1

(xrz′/z;x2r−2)∞
(xr−2z′/z;x2r−2)∞

: Vωj (v)W−αj (v
′) :,

W−αj (v)Vωj (v
′) = −(−z)−

1
r−1

(xrz′/z;x2r−2)∞
(xr−2z′/z;x2r−2)∞

: W−αj (v)Vωj (v
′) :,

From these, we obtain

W−αj
(
v + r

2

)
V−αj±1(v) = 0 = V−αj±1(v)W−αj

(
v − r

2

)
,

W−αj
(
v + r

2

)
Vωj (v) = 0 = Vωj (v)W−αj

(
v − r

2

)
.
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