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Abstract. Using the multiple scales method, the interaction between two bright and one
dark solitons is studied. Provided that a long wave-short wave resonance condition is sa-
tisfied, the two-component Zakharov–Yajima–Oikawa (ZYO) completely integrable system
is obtained. By using a Madelung fluid description, the one-soliton solutions of the corre-
sponding ZYO system are determined. Furthermore, a discussion on the interaction between
one bright and two dark solitons is presented. In particular, this problem is reduced to solve
a one-component ZYO system in the resonance conditions.
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1 Introduction

In many physical applications more than one single wave is propagating in a nonlinear medium,
and the interaction of several waves has to be taken into account. In particular, to describe the
propagation of three nonlinear pulses in some dispersive material one has to solve simultaneously
a set of coupled nonlinear Schrödinger (NLS) equations. For instance, it occurs in: (i) the
propagation of solitonlike pulses in birefringent optical fibers [1, 2, 3, 4]; (ii) the nonlinear wave
dynamics of Bose–Einstein condensates [5, 6]; (iii) the soliton propagation through optical fiber
array [1, 7, 8, 9]; (iv) the nonlinear dynamics of gravity waves in crossing sea states [10].

In this paper, a theoretical investigation on the interaction between two bright solitons (short
waves) and a dark soliton (long wave) is carried out on the basis of previous investigations that
have reduced, under suitable conditions, the study of bright-dark soliton interaction to the
study of the existence of a “long wave-short wave resonance” (LW-SW resonance) [11]. This
resonance phenomena has quite a large universality. For instance, in plasma physics it describes
Langmuir solitons moving near the speed of sound [12, 13, 14], in hydrodynamics it appears
in the study of internal gravity waves [15] and a general study of LW-SW resonance [16, 17],
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in quasi-one-dimensional molecular crystals it describes the resonance between the exciton and
phonon fields in Davydov’s model [18, 19, 20, 21]. Recent extensions of the LW-SW resonance
to two dimensions and more components have been discussed and solved by several authors
[22, 23, 24].

In the resonance condition, we try to reduce our problem to the study of the completely inte-
grable system of two-component Zakharov–Yajima–Oikawa [12, 13] (see equations (9) and (10)
of [11]). Besides its relevance in nonlinear optics, the same system describes the Davydov model
with two excitonic components [25]. It is interesting to mention that a vector-like generalization
of Zakharov–Benney’s equations for long-short wave interaction were obtained 25 years ago in
the study of magnon-phonon interaction in a many sublattice XY chain [26], which in the case
of one-sublattice XY chain reduces to the Yajima–Oikawa system. In the next section, the basic
equations describing the three wave interaction will be presented and, using a multiple scales
analysis, the Zakharov–Yajima–Oikawa system is obtained. In Section 3, the Madelung fluid de-
scription is used to discuss analytically the above system. In particular, several solitary solutions
in the form of traveling waves are presented. In Section 4, the interaction between one-bright
and two-dark solitons is discussed, and a simple one-component Zakharov–Yajima–Oikawa sys-
tem is obtained in resonance condition. In particular, one soliton solution is presented. Finally,
remarks and conclusion are presented in Section 5.

2 Basic equations and multiple scales analysis

We consider three nonlinear dispersive waves propagating in an optical fiber. We assume that
these waves are associated with weakly nonlinear dispersion relations, here denoted by ωj =
ωj(kj : |A1|2, |A2|2, |A3|2), j = 1, 2, 3, respectively. Each Aj stands for a complex amplitude
that, due to the weakly nonlinear dynamics of the medium, is affected by a modulation in both
space and time. As it is well known [27], due to this dynamics, each mode of the system can
be represented by a wave packet where a carrier wave is amplitude modulated. In order to
obtain the evolution equation for each mode, we apply the well-known method of Karpman and
Kruskal [28] (see also [27, 29]). To this end, let us denote by ei(k0x−ω0t) the basic carrier wave.
Then a Taylor expansion around (k0, ω0) and |Ai| = 0 of each ωi will give

ωi − ω0 =

(
∂ωi
∂ki

)
0

(ki − k0) +
1

2

(
∂2ωi
∂k2

i

)
0

(ki − k0)2 +

(
∂ωi
∂|A1|2

)
0

|A1|2

+

(
∂ωi
∂|A2|2

)
0

|A2|2 +

(
∂ωi
∂|A3|2

)
0

|A3|2 + · · · .

Replacing ωi − ω0 ' −i ∂∂t , ki − k0 ' i ∂∂x , after a translation of coordinate
(
x → x −

(
∂ω3
∂k3

)
0
t
)
,

the following nonlinear system of three interacting waves is obtained

i
∂A1

∂t
+ iV1

∂A1

∂x
+
α1

2

∂2A1

∂x2
+ α2|A1|2A1 + α3|A2|2A1 + α4|A3|2A1 = 0,

i
∂A2

∂t
+ iV2

∂A2

∂x
+
β1

2

∂2A2

∂x2
+ β2|A1|2A2 + β3|A2|2A2 + β4|A3|2A2 = 0,

i
∂A3

∂t
+
γ1

2

∂2A3

∂x2
+ γ2|A1|2A3 + γ3|A2|2A3 + γ4|A3|2A3 = 0. (1)

Here we denoted Vi =
(
∂ωi
∂ki

)
0
−
(
∂ω3
∂k3

)
0
, i = 1, 2 and the constants α1, β1, γ1 are related to

derivatives of ωi with respect to ki (ex. α1 = −
(
∂2ω1

∂k21

)
0
, ·) while α2, . . . , γ4 to the derivatives

with respect to |Ai|2 (ex. α2 =
(

∂ω1
∂|A1|2

)
· · · ).
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Further on we shall consider channel 3 with normal dispersion and 1 and 2 with the anomalous
one [1]. Then following Kivshar [11] it is convenient to introduce new field variables

A1 = Ψ1e
iδ1t, A2 = Ψ2e

iδ2t, A3 = (u0 + a(x, t))ei(Γt+φ(x,t)),

δi =

(
∂ωi
∂|A3|2

)
0

u2
0, Γ =

(
∂ω3

∂|A3|2

)
0

u2
0

(u0, a(x, t), φ(x, t) being real quantities). Note that for solitary wave solutions the additional
conditions of vanishing of a at the infinity has to be imposed. Then the equations of A1 and A2

become, respectively

i
∂Ψ1

∂t
+ iV1

∂Ψ1

∂x
+
α1

2

∂2Ψ1

∂x2
+
(
α2|Ψ1|2 + α3|Ψ2|2

)
Ψ1 + 2α4u0aΨ1 + α4a

2Ψ1 = 0,

i
∂Ψ2

∂t
+ iV2

∂Ψ2

∂x
+
β1

2

∂2Ψ2

∂x2
+
(
β2|Ψ1|2 + β3|Ψ2|2

)
Ψ2 + 2β4u0aΨ2 + β4a

2Ψ2 = 0. (2)

As concerns the A3-equation, separating the real and the imaginary part, the following system
of coupled equations is obtained

∂a

∂t
+
γ1

2
u0
∂2φ

∂x2
+ (nonlinear terms) = 0,

−∂φ
∂t

+ 2γ4u0a+
γ1

2u0

∂2a

∂x2
+
(
γ2|Ψ1|2 + γ3|Ψ2|2

)
+ (nonlinear terms) = 0.

In both these equations the parenthesis (· · · ) contains all the other nonlinear terms which will
be irrelevant in a multiple scales analysis. From these last two equations the following equation
satisfied by a(x, t) is easily obtained

∂2a

∂t2
+ γ1γ4u

2
0

∂2a

∂x2
+
γ2

1

4

∂4a

∂x4
+ u0

γ1

2

∂2

∂x2

(
γ2|Ψ1|2 + γ3|Ψ2|2

)
(3)

+ (higher order nonlinear terms in (a, φ) and their derivatives) = 0.

The linear part of the a equation corresponds to an acoustic field with dispersion relation
(γ1 < 0, γ4 > 0)

ω = ck

√
1 +

γ2
1

4c2
k2 ' ck

(
1 +

γ2
1

8c2
k2

)
and phase velocity c = ω/k, where c2 = |γ1|γ4u

2
0.

We shall perform a multiple scales analysis of the system (2) + (3) [11]. We introduce new
scaled variables

t⇒ εt, x⇒
√
ε(x− ct)

and new functions

a⇒ εa, φ⇒ εφ, Ψ1 ⇒ ε
3
4 Ψ1, Ψ2 ⇒ ε

3
4 Ψ2.

Then in order 5
2 in ε from a equation we obtain

−2c
∂a

∂t
+ u0

γ1

2

∂

∂x

(
γ2|Ψ1|2 + γ3|Ψ2|2

)
= 0. (4)

All the other terms in a equation contribute to higher order in ε. In the order 5
4 from Ψi

equations we obtain V1 = V2 = c. This is the well known long wave-short wave (LW-SW)
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resonance condition: “the group velocity V of the SW is equal to the phase velocity of the
LW” [16]. In the next order

(
7
4

)
in ε from the Ψ equations we get

i
∂Ψ1

∂t
+
α1

2

∂2Ψ1

∂x2
+ 2α4u0aΨ1 = 0,

i
∂Ψ2

∂t
+
β1

2

∂2Ψ2

∂x2
+ 2β4u0aΨ2 = 0. (5)

The equations (4) + (5) represent an 1-dimensional 2-components Zakharov [12], Yajima–
Oikawa [13] system. As mentioned in the Introduction the same system in the same LW-SW
resonance condition was obtained in a Davydov model with two excitonic modes coupled with
a phonon field [25]. The same line of reasoning was used in [24] for three interacting waves in
2-dimensions.

3 Madelung fluid description

The special case (αi = βi, γ2 = γ3) is completely integrable [24] and will be considered in the
following. In this case, simplifying the notations, the system (4) + (5) is written in the following
form (γ > 0, β > 0)

∂a

∂t
− γ ∂

∂x

(
|Ψ1|2 + |Ψ2|2

)
= 0,

i
∂Ψi

∂t
+

1

2

∂2Ψi

∂x2
− βΨia = 0, i = 1, 2.

The Ψi equations will be transformed using a Madelung fluid description [30, 31]. We write

Ψi =
√
ρie

iθi ,

where ρi, θi are real functions of (x, t) and moreover ρi are positive quantities. Introducing this
expression into a-equation this becomes

∂a

∂t
− γ ∂

∂x
(ρ1 + ρ2) = 0, (6)

while from the Ψi equations, after the separation of real and imaginary parts, we obtain

∂ρi
∂t

+
∂

∂x
(viρi) = 0,

which is a continuity equation for the fluid densities ρi = |Ψi|2 with vi(x, t) = ∂θi(x,t)
∂x the fluid

velocities components and

−∂θi
∂t

+
1

2

1
√
ρi

∂2√ρi
∂x2

− 1

2

(
∂θi
∂x

)2

− βa = 0. (7)

Differentiating this last expression with respect to x the following equations of motion for the
fluid velocities vi are obtained(

∂

∂t
+ vi

∂

∂x

)
vi =

1

2

∂

∂x

(
1
√
ρi

∂2√ρi
∂x2

)
− β ∂a

∂x
. (8)

In the right hand side of (8) a(x, t) plays the role of external potential, and the first term is the

derivative of the so called Bohm potential, 1
2

1√
ρi

∂2
√
ρi

∂x2
, and contains all the diffraction effects
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(quantum effects in quantum problems). By a series of transformations the equation (8) is
written as [31]

−ρi
∂vi
∂t

+ vi
∂ρi
∂t

+ 2

[
ci(t)−

∫
∂vi
∂t

dx

]
∂ρi
∂x

+
1

4

∂3ρi
∂x3

− βρi
∂

∂x
a− 2βa

∂ρi
∂x

= 0, (9)

where ci are arbitrary integration constants with respect to x, eventually time dependent. Al-
though (9) seems to be more complicated then the initial equation (7), it can be solved in two
special situations, namely

• motion with constant velocities v1 = v2 = v0,

• motion with stationary profile current velocity, when all the quantities ρi(x, t), vi(x, t),
a(x, t) are depending on x and t through the combination ξ = x− u0t.

Both cases will be analyzed in the following.

3.1 Motion with constant velocity (v1 = v2 = v0)

In this case from the continuity equations (6) one sees that both ρ1(x, t) and ρ2(x, t) depend on
ξ = x− v0t. We assume that also a(x, t) depends only on ξ. Then the a equation gives

a = −µ(ρ1 + ρ2), µ =
γ

v0
(10)

and the equations (9) write

1

4

d3ρi
dξ3
− Ei

dρi
dξ

+ 2µ (ρ1 + ρ2)
dρi
dξ

+ µρi
d

dξ
(ρ1 + ρ2) = 0, (11)

where by Ei we denoted −(2ci − v2
0), βµ → µ. We shall discuss firstly the situation E1 = E2,

the discussion of the more general case E1 6= E2 being postponed for the next subsection. Then
the equations (11) becomes

1

4

d3ρi
dξ3
− Edρi

dξ
+ µρi

d

dξ
(ρ1 + ρ2) + 2µ(ρ1 + ρ2)

dρi
dξ

= 0. (12)

These are exactly the equations obtained in the case of Manakov’s model [32] and extensively
discussed by us in [33, 34]. In the following we shall present several periodic and traveling wave
solutions of (12).

It is convenient to introduce the quantities z+ = ρ1 + ρ2, and z− = ρ1 − ρ2; they satisfy the
following equations

1

4

d3z+

dξ3
− Edz+

dξ
+

3

2
µ
dz2

+

dξ
= 0,

1

4

d3z−
dξ3

− Edz−
dξ

+ µz−
dz+

dξ
+ 2µz+

dz−
dξ

= 0. (13)

The second equation is a linear differential equation for z− once z+ is known. A special solution
is

z− = (p2
1 − p2

2)z+, p2
1 + p2

2 = 1,

which together with the definition of z+ gives

ρ1 = p2
1z+, ρ2 = p2

2z+
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and the problem is reduced in this simple case to find a solution of z+-equation. This integrated
twice gives

1

4

(
dz+

dξ

)2

= −µz3
+ + Ez2

+ +Az+ +B = P3(z+), (14)

where P3(z+) is a third order polynomial in z+. The periodic solution of this equation are easily
expressed through Jacobi elliptic functions.

For constant velocities, as it is easily seen from (8), the densities ρi have to satisfy the
additional conditions

1

2

1
√
ρi

∂2√ρi
∂x2

+ µz+(ξ) = λi,

which for the previous solutions are satisfied if λ = E/2 and B = 0.

Now let us assume that the third order polynomial P3(z+) has three distinct roots

P3(z+) = −µ(z+ − z1)(z+ − z2)(z+ − z3).

The restriction B = 0 means that one of the roots z2 or z3 is zero. We are interested in positive
solutions of (13) for which P3(z+) is also positive. The periodic solutions of (14) can be expressed
through Jacobi elliptic functions and taking into account the positivity requirement mentioned
before we identify two acceptable situations [35]

z1 > 0, z2 = 0, z3 < 0, z+ = z1 cn2u, (15)

u =
2
√
µ

g
ξ, k2 =

z1

z1 + |z3|
, g =

2√
z1 + |z3|

and

z3 = 0, 0 < z2 < z1, z+ = z1 − (z1 − z2)sn2u, (16)

u =
2
√
µ

g
ξ, k2 =

z1 − z2

z1
, g =

2
√
z1
.

Solitary wave solutions are obtained in the limiting case k = 1 when cnu → sechu, snu →
tanhu, and both solutions (15) and (16) become a bright soliton

z+ → z1
1

cosh2 u
, u =

2
√
µ

g
, g =

2
√
z1
.

It is clear that in this case no energy transfer between the two components takes place.

The phase θ(x, t) is easily calculated writing θi(x, t) = v0x+ γi(t); then using (7) we get

θi = v0x−
(

1

2
v2

0 −
E

2

)
t+ δi.

As far as the field a is concerned, the solitary wave solution is

a(u) = − µz1

cosh2 u

and, for µz1 ≤ u0, the field Ψ3 describes a grey solution (the inequality gives the dark solution).
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3.2 Motion with stationary-profile current velocity

In the case when all the functions depend only on ξ = x− u0t integrating the continuity equa-
tion (6) we get

vi(x, t) = u0 +
Ai
ρi
,

with Ai some integration constants. It is easily seen that the equations of motion keep the same
form as (11) with Ei = −(2ci + u2

0).
For E1 = E2, the results are almost the same as those of the previous subsection.
However, for E1 6= E2, the system (11) will be solved by using a direct method. To this end,

we look for solutions of the form

ρi = Ai +Bi snu, u = 2λξ,

with Ai, Bi, λ constants to be determined. Introducing into (11) we get [33]

B1 +B2 = −4λ2k2

µ
, (17)

−[4λ2(1 + k2) + Ei]Bi + µ(B1 +B2)Ai + 2µ(A1 + a2)Bi = 0.

Defining the following new quantities ai, bi, e0 and δ, i.e.,

Bi = −4λ2k2

µ
bi, Ai =

4λ2k2

µ
ai,

E1 = 4λ2k2(e0 + δ), E2 = 4λ2k2(e0 − δ), δ > 0

the first equation (17) gives

b1 + b2 = 1,

while from the second, after a little algebra, we get

a1 =
1

3

(
e0 +

1 + k2

k2
+ δ + 4δ(1− b1)

)
b1,

a2 =
1

3

(
e0 +

1 + k2

k2
− δ − 4δ(1− b2)

)
b2. (18)

As it is expected this result verify the symmetry condition 1↔ 2 if δ ↔ −δ.
Several restrictions result from the positiveness of ρi. If both bi are positive quantities smaller

than unity this requirement implies

ai > bi > 0. (19)

Introducing the notation

p =
1

3

(
e+

1 + k2

k2
− 5δ

)
the condition (19) is satisfied if p > 1. In the limiting case k2 = 1 the solutions are

ρ1 =
4λ2

µ

(
a1 − b1 tanh2 u

)
, ρ2 =

4λ2

µ

(
a2 − b2 tanh2 u

)
representing shifted bright solitons.

We can now calculate the field a from (10) and using the limit a(u) → 0 as u → ∞, we get
a1 + a2 = 1. Furthermore, making use of (18), this condition becomes

b1 − b2 =
1

δ

(
2− e0 −

1

k2

)
,

where we have used the condition b1 + b2 = 1.
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4 One bright-two dark solitons interaction

The previous discussion is easily extended to the situation when two waves have normal dis-
persion and one is anomalous, corresponding to one bright-two dark solitons interaction. Such
vector solitons of mixed bright-dark types are of interest in quasi-one-dimensional Bose–Einstein
condensates (see [6] and references therein). We are interested in a SW-LW resonance regime,
so several restrictions on the model of three interacting waves will be imposed. With the nota-

tions of section 2 we shall assume
(
∂ω2
∂k2

)
0

=
(
∂ω3
∂k3

)
0

and after the corresponding translation of

coordinates instead of system (1) we get

i
∂A1

∂t
+ iv

∂A1

∂x
+
α1

2

∂2A1

∂x2
+ α2|A1|2A1 + α3|A2|2A1 + α4|A3|2A1 = 0,

i
∂A2

∂t
+
β1

2

∂2A2

∂x2
+ β2|A1|2A2 + β3|A2|2A2 + β4|A3|2A3 = 0,

i
∂A3

∂t
+
γ1

2

∂2A3

∂x2
+ γ2|A1|2A3 + γ3|A2|2A3 + γ4|A3|2A3 = 0,

where v =
(
∂ω1
∂k1

)
0
−
(
∂ω2
∂k2

)
0

and the rest of the notations are the same as in Section 2.

Further on we shall consider the channels 2 and 3 with normal dispersion and the channel 1
with anomalous one and introduce new field variables by

A1 = Ψeiδt, A2 = (u2 + a2(x, t))ei(Γ2t+φ2(x,t)), A3 = (u3 + a3(x, t))ei(Γ3t+φ3(x,t))

with u2, u3, a2(x, t), a3(x, t), φ2(x, t), φ3(x, t) real quantities, and

δ = α3u
2
2 + α4u

2
3, Γ2 = β3u

2
2 + β4u

2
3, Γ3 = γ3u

2
2 + γ4u

2
3.

The A1-equation transforms into

i
∂Ψ

∂t
+ iv

∂Ψ

∂x
+
α1

2

∂2Ψ

∂x2
+ α2|Ψ|2Ψ + 2(α3u2a2 + α4u3a3)Ψ +

(
α3a

2
2 + α4a

2
3

)
Ψ = 0. (20)

To get the relevant equations for a2, a3 we have proceed like in Section 2, obtaining the following
equations for the amplitudes a2, a3, i.e.,

∂2a2

∂t2
+
β1

2
u2
∂2|Ψ|2

∂x2
+ β1u2

(
β3u2

∂2a1

∂x2
+ β4u3

∂2a3

∂x2

)
+
β2

1

4

∂4a2

∂x4
+ (nl. terms) = 0,

∂2a3

∂t2
+
γ1

2
u3
∂2|Ψ|2

∂x2
+ γ1u3

(
γ3u2

∂2a2

∂x2
+ γ4u3

∂2a3

∂x2

)
+
γ2

1

4

∂4a3

∂x4
+ (nl. terms) = 0, (21)

where, as mentioned before the parenthesis (· · · ) of each equation group all the nonlinear terms
which will be irrelevant in a multiple scales analysis. Furthermore we shall consider only the
special case u2 = u3 = u0, α2 = α3, β2 = β3, γ2 = γ3 and neglect the last nonlinear terms in (20)
and all the parenthesis in (21), remaining with the following system of coupled equations

i
∂Ψ

∂t
+ iv

∂Ψ

∂x
+
α1

2

∂2Ψ

∂x2
+ α2|Ψ|2Ψ + 2u0α3(a2 + a3)Ψ = 0,

∂2a2

∂t2
+
β1

2
u0
∂2|Ψ|2

∂x2
+ β1β3u

2
0

∂2

∂x2
(a2 + a3) +

β2
1

4

∂4a2

∂x2
= 0, (22)

∂2a2

∂t2
+
γ1

2
u0
∂2|Ψ|2

∂x2
+ γ1γ3u

2
0

∂2

∂x2
(a2 + a3) +

γ2
1

4

∂4a3

∂x2
= 0.
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As in Ψ-equation appears the combination a+ = a2 + a3 it is convenient to add the a2- and
a3-equations. In a multiple scales analysis the fourth order derivatives will contribute to higher
order so we can drop them at the present stage. Then the system (22) reduces to

i
∂Ψ

∂t
+ iv

∂Ψ

∂x
+
α1

2

∂2Ψ

∂x2
+ α2|Ψ|2Ψ + 2u0α3a+Ψ = 0,

∂2a+

∂t2
+
u0

2
(β1 + γ1)

∂2|Ψ|2

∂x2
+ u2

0(β1β3 + γ1γ3)
∂2a+

∂x2
= 0. (23)

In the resonance condition (β1 < 0, γ1 < 0)

v = c, c2 = u2
0(|β1|β3 + |γ1|γ3)

and by using the multiple scales analysis

x→
√
ε(x− ct), t→ εt, a+ → εa+, Ψ→ ε

3
4 Ψ

the system (23) becomes the well known one-component ZYO system

i
∂Ψ

∂t
+
α1

2

∂2Ψ

∂x2
+ 2u0α3a+Ψ = 0,

∂a+

∂t
+
u0

4c
(|β1|+ |γ1|)

∂|Ψ|2

∂x
= 0. (24)

The one-soliton solution of (24) is given by

a+ = Msech2θ, Ψ = Neiφsech θ, θ = µ(x− x0)− νt, φ = ξx− ηt,

where

M =
α

β
µ2, N2 =

α

βγ
µν, ν = αξµ, η =

α

2

(
ξ2 − µ2

)
.

The integration of the equation for a− is straightforward, and it gives

a− = M−sech2θ, M− =
µ2

ν2

[u0

2
(|β1| − |γ1|)N + u2

0 (|β1|β3 − |γ1|γ3)M
]
.

5 Conclusions and remarks

In this paper, an investigation on the interaction between two bright solitons (anomalous dis-
persion) and one dark soliton (normal dispersion) has been carried out. The problem has been
reduced to study a two-component one-dimensional Zakharov–Yajima–Oikawa system in the
case of long wave-short wave resonance, by using the multiple scales analysis. The system cor-
responding to the bright solitons has been discussed further using a Madelung fluid description.
In particular, periodic solutions expressed through Jacobi elliptic functions and stationary so-
lutions obtained when k2 = 1 have been presented in two simplifying conditions, namely for
constant velocity and for motion with stationary profile.

Remarkably, the above two-component Zakharov–Yajima–Oikawa system is completely in-
tegrable and multi-solitons solutions can be found using different methods, as the bi-linear
method of Hirota [24]. However, the Madelung fluid description seems to be useful to find
various solutions of a generalized ZYO system, containing additional nonlinear terms.

Additionally, the case of two dark and one bright solitons has been also discussed. Here,
the use of the multiple scales analysis has allowed us to reduced our problem to a simple one-
component Zakharov–Yajima–Oikawa system in the resonance condition. In particular, the
one-soliton solution has been found.
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Finally, we would like to point out that the discussion for arbitrary values of the parameters
is still open and investigations in this direction are in progress. Also numerical solutions of the
dynamical model of three interacting waves, discussed in the present paper, could reveal several
new aspects of the nonlinearity influence on the system behavior.
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