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Abstract. For integral representations of associated Legendre functions in terms of mo-
dified Bessel functions, we establish justification for differentiation under the integral sign
with respect to parameters. With this justification, derivatives for associated Legendre
functions of the first and second kind with respect to the degree are evaluated at odd-half-
integer degrees, for general complex-orders, and derivatives with respect to the order are
evaluated at integer-orders, for general complex-degrees. We also discuss the properties of
the complex function f : C \ {−1, 1} → C given by f(z) = z/(

√
z + 1

√
z − 1).
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1 Introduction

This paper is a continuation of work which is presented in [5]. In [5], formulae were presented for
derivatives of associated Legendre functions of the first kind Pµν and the second kind Qµν with
respect to their parameters, namely the degree ν and the order µ, valid on the complex z-plane
cut along the real axis from −∞ to 1 (see discussion at the end of Section 3.2). The strategy
applied in [5] was to differentiate integral representations of associated Legendre functions, which
were given in terms of modified Bessel functions of the first and second kind, with respect to
their parameters. The derivatives of the integrands, for the integral representations of associated
Legendre functions given in [5], which include the derivatives with respect to the order evaluated
at integer-orders for modified Bessel functions of the first and second kind, are well known (see
for instance [12, § 3.2.3]).

Unfortunately, in [5], no justification for differentiation under the integral sign of the chosen
integral representations of associated Legendre functions is given. In this paper, we give jus-
tification for differentiation under the integral sign for the integral representations of associated
Legendre functions given in [5] and hence complete our proof for the validity of the parameter
differentiation formulae given therein. The parameter differentiation formulae given in [5] are
derivatives for associated Legendre functions of the first and second kind with respect to the
degree, evaluated at odd-half-integer degrees, for general complex-orders, and for derivatives
with respect to the order evaluated at integer-orders, for general complex-degrees.

There has been recent interest in the literature for tabulating closed-form expressions of
derivatives with respect to parameters for special functions (see for instance [3]). Concerning
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derivatives with respect to parameters for associated Legendre functions, some formulae relating
to these derivatives have been previously noted (see [12, § 4.4.3]), and there has been recent
activity for solving open problems in this area [3, 4, 5, 17, 18, 19, 20, 21, 22]. For an extensive list
of physical applications for derivatives with respect to parameters for associated Legendre func-
tions with integer-order and integer-degree see [21]. For an interesting application for derivatives
of associated Legendre functions evaluated at odd-half-integer degrees see [22].

This paper is organized as follows. In Section 2 we present a description of a map on a subset
of the complex plane which leads to the Whipple formulae for associated Legendre functions.
In Section 3 we give justification for differentiation under the integral sign for the integral
representations of associated Legendre functions given in [5]. In Appendix A, we investigate
properties of the complex function z 7→ z√

z2−1 .

Throughout this paper we use the following conventions. First
j∑
n=i

an = 0 for all a1, a2, . . . ∈ C,

and i, j ∈ Z with j < i. Secondly, for any expression of the form (z2 − 1)α, read this as

(z2 − 1)α := (z + 1)α(z − 1)α,

for any fixed α ∈ C and z ∈ C \ {−1, 1}, and principal branches are chosen (see for instance [14,
§ 4.2(iv)]).

2 The Whipple formulae for associated Legendre functions

There is a transformation over an open subset of the complex plane which is particularly useful
in studying associated Legendre functions (see [1] and [10]). This transformation, which is valid
on a certain domain of the complex numbers, accomplishes the following

cosh z ↔ cothw, coth z ↔ coshw, sinh z ↔ (sinhw)−1. (1)

This transformation is accomplished using the map w : D→ C, with

D := C \
{
z ∈ C : Re z ≤ 0 and Im z = 2πn, n ∈ Z

}
,

and w defined by

w(z) := log coth
z

2
. (2)

The map w is periodic with period 2πi and is locally injective. The map w restricted to D∩{z ∈
C : −π < Im z < π} is verified to be an involution. The transformation (1) is the restriction of
the mapping w to this restricted domain.

This transformation is particularly useful for certain associated Legendre functions such as
toroidal harmonics (see [6, 7]), associated Legendre functions of the first and second kind with
odd-half-integer degree and integer-order, and for other associated Legendre functions which one
might encounter in potential theory. The real argument of toroidal harmonics naturally occur in
(1,∞), and these are the simultaneous ranges of both the real hyperbolic cosine and cotangent
functions. One application of this map occurs with the Whipple formulae for associated Legendre
functions [8, 24] under index (degree and order) interchange. See for instance [1, (8.2.7) and
(8.2.8)], namely

P
−ν−1/2
−µ−1/2

(
z√

z2 − 1

)
=

√
2

π

(z2 − 1)1/4e−iµπ

Γ(ν + µ+ 1)
Qµν (z), (3a)
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and

Q
−ν−1/2
−µ−1/2

(
z√

z2 − 1

)
= −i(π/2)1/2Γ(−ν − µ)

(
z2 − 1

)1/4
e−iνπPµν (z), (3b)

which are valid for Re z > 0 and for all complex ν and µ, except where the functions are not
defined.

3 Justification for differentiation under the integral sign

In this section, we present and derive formulae for parameter derivatives of associated Legendre
functions of the first kind Pµν and the second kind Qµν , with respect to their parameters, namely
the degree ν and the order µ. We cover parameter derivatives of associated Legendre functions
for argument z ∈ C \ (−∞, 1].

We incorporate derivatives with respect to order evaluated at integer-orders for modified
Bessel functions (see [12, § 3.1.3, § 3.2.3, and § 3.3.3]) to compute derivatives with respect to the
degree and the order of associated Legendre functions. Below we apply these results through
certain integral representations of associated Legendre functions in terms of modified Bessel
functions. Modified Bessel functions of the first and second kind respectively can be defined for
all ν ∈ C (see for instance [23, § 3.7]) by

Iν(z) :=

∞∑
m=0

(z/2)ν+2m

m!Γ(ν +m+ 1)
,

and

Kν(z) :=
π

2

I−ν(z)− Iν(z)

sinπν
.

For ν = n ∈ N0 := {0, 1, 2, . . .}, the first definition yields

In(z) = I−n(z).

It may be verified that

Kn(z) = lim
ν→n

Kν(z)

is well defined. The modified Bessel function of the second kind is commonly referred to as
a Macdonald function.

The strategy applied in this section is to use integral representations of associated Legendre
functions, expressed in terms of modified Bessel functions, and justify differentiation under the
integral sign with respect to the relevant parameters.

3.1 Parameter derivative formulas from Kν(t)

It follows from [9, (6.628.7)] (see also [15, (2.16.6.3)]) that∫ ∞
0

e−ztKν(t)tµ−1/2dt =

√
π

2
Γ

(
µ− ν +

1

2

)
Γ

(
µ+ ν +

1

2

)(
z2 − 1

)−µ/2
P−µν−1/2(z)

= Γ

(
µ− ν +

1

2

)(
z2 − 1

)−µ/2−1/4
e−iπνQνµ−1/2

(
z√

z2 − 1

)
, (4)

where we used the Whipple formulae (3a), for Re z > −1 and Reµ > |Re ν|−1/2, and the second
line follows from (3b) with the identity Pµν (z) = Pµ−ν−1(z) (see [1, (8.2.1)]). We would like to
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generate an analytical expression for the derivative of the associated Legendre function of the
second kind with respect to its order, evaluated at integer-orders. In order to do this our strategy
is to solve the above integral expression for the associated Legendre function of the second kind,
differentiate with respect to the order, evaluate at integer-orders, and take advantage of the
corresponding formula for differentiation with respect to the order for modified Bessel functions
of the second kind (see [12, § 3.2.3]). Using the expression for the associated Legendre function
of the second kind in (4), we solve for Qµν−1/2(z) and re-express using the map in (2). This gives
us the expression

Qµν−1/2(z) =

(
z2 − 1

)−ν/2−1/4
eiπµ

Γ
(
ν − µ+ 1

2

) ∫ ∞
0

exp

(
−zt√
z2 − 1

)
Kµ(t)tν−1/2dt. (5)

By (4) and (3b), the integral on the right-hand side of (5) is convergent for Re z√
z+1
√
z−1 > −1.

By Proposition 2 in Appendix A, we have for all z ∈ C \ [−1, 1], this is true. Hence the above
integral representation (5) for the associated Legendre function of the second kind is valid for
all z ∈ C \ [−1, 1] and Reµ > |Re ν| − 1/2.

In order to justify differentiation under the integral sign we use the following well-known
corollary of the bounded convergence theorem (cf. [11, § 8.2]).

Proposition 1. Let (X,µ) be a measure space, U ⊂ R open and f : X × U → R a function.
Suppose

1) for all y ∈ U the function x 7→ f(x, y) is measurable,

2) ∂f
∂y (x, y) exists for all (x, y) ∈ X × U ,

3) there exists g ∈ L1(X) such that
∣∣∣∂f∂y (x, y)

∣∣∣ ≤ g(x) for all (x, y) ∈ X × U .

Then the function y 7→
∫
X f(x, y)dµ(x) is differentiable on U and

d

dy

(∫
X
f(x, y)dµ(x)

)
=

∫
X

∂f

∂y
(x, y)dµ(x).

We call g a L1-majorant.
We wish to differentiate (5) with respect to the order µ and evaluate at µ0 = ±m, where

m ∈ N0. The derivative of the modified Bessel function of the second kind with respect to its
order (see [12, § 3.2.3]) is given by[

∂

∂µ
Kµ(t)

]
µ=±m

= ±m!

m−1∑
k=0

2m−1−k

k!(m− k)
tk−mKk(t) (6)

(see for instance [3, (1.14.2.2)]). For a fixed t, Kµ(t) is an even function of µ ∈ R (see [14,
(10.27.3)]), i.e.

K−µ(t) = Kµ(t),

and for µ ∈ [0,∞), Kµ(t) is a strictly increasing function of µ. For a fixed t, ∂Kµ(t)/∂µ is an
odd function of µ ∈ R and for µ ∈ [0,∞), and ∂Kµ(t)/∂µ is also a strictly increasing function
of µ. Using (6) we can make the following estimate∣∣∣∣ ∂∂µKµ(t)

∣∣∣∣ < ∂Kτ (t)

∂τ

∣∣∣∣
τ=±(m+1)

,

for all µ ∈ (µ0 − 1, µ0 + 1).
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To justify differentiation under the integral sign in (5), with respect to µ, evaluated at µ0,
we use Proposition 1. If we fix z and ν, the integrand of (5) can be given by the function
f : R× (0,∞)→ C defined by

f(µ, t) := exp

(
−zt√
z2 − 1

)
tν−1/2Kµ(t).

Since ∂Kµ(t)/∂µ is a strictly increasing function of µ ∈ [0,∞), we have for all µ ∈ (µ0−1, µ0+1)∣∣∣∣∂f∂µ(µ, t)

∣∣∣∣ = exp

[
Re

(
−zt√
z2 − 1

)]
tRe ν−1/2

∣∣∣∣ ∂∂µKµ(t)

∣∣∣∣
< exp

[
Re

(
−zt√
z2 − 1

)]
tRe ν−1/2

∣∣∣∣∣
[
∂

∂τ
Kτ (t)

]
τ=±(m+1)

∣∣∣∣∣
= exp

[
Re

(
−zt√
z2 − 1

)]
tRe ν−1/2

∣∣∣∣[ ∂∂τ Kτ (t)

]
τ=m+1

∣∣∣∣
≤ exp

[
Re

(
−zt√
z2 − 1

)]
tRe ν−1/2(m+ 1)!

m∑
k=0

2m−k

k!(m+ 1− k)
tk−m−1Kk(t)

≤ exp

[
Re

(
−zt√
z2 − 1

)]
tRe ν−1/2(m+ 1)!2mt−1Km(t) =: g(t),

where we used (6) and the fact that Kk(t) ≤ Km(t) for all k ∈ {0, . . . ,m− 1}. Then g is a L1-
majorant for the derivative of the integrand, since the integral (5) converges for Re (z/

√
z2 − 1) >

−1 and Re ν > m− 1/2.

The conditions for differentiating under the integral sign have been satisfied and we can
re-write (5) as[

∂

∂µ
Qµν−1/2(z)

]
µ=±m

=
(
z2 − 1

)−ν/2−1/4 [ ∂
∂µ

eiπµ

Γ
(
ν − µ+ 1

2

)]
µ=±m

×
∫ ∞
0

exp

(
−zt√
z2 − 1

)
K±m(t)tν−1/2dt

+

(
z2 − 1

)−ν/2−1/4
(−1)m

Γ
(
ν ∓m+ 1

2

)
×
∫ ∞
0

exp

(
−zt√
z2 − 1

)
tν−1/2

[
∂

∂µ
Kµ(t)

]
µ=±m

dt.

The derivative from the first term is given as[
∂

∂µ

eiπµ

Γ
(
ν − µ+ 1

2

)]
µ=±m

=
(−1)m

Γ
(
ν ∓m+ 1

2

) [iπ + ψ

(
ν ∓m+

1

2

)]
,

where the ψ is the digamma function defined in terms of the derivative of the gamma function,

d

dz
Γ(z) := ψ(z)Γ(z),

for z ∈ C \ (−N0).

Substituting these expressions for the derivatives into the two integrals and using the map
in (2) to re-evaluate these integrals in terms of associated Legendre functions gives the following
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general expression for the derivative of the associated Legendre function of the second kind with
respect to its order evaluated at integer-orders as

Γ(ν ∓m+ 1
2)

Γ(ν −m+ 1
2)

[
∂

∂µ
Qµν−1/2(z)

]
µ=±m

=

[
iπ + ψ

(
ν ∓m+

1

2

)]
Qmν−1/2(z) (7)

±m!
m−1∑
k=0

(−1)k−m
(
z2 − 1

)(k−m)/2

k!(m− k)2k−m+1
Qkν+k−m−1/2(z).

If we start with the expression for the associated Legendre function of the first kind in (4)
and solve for P−µν−1/2(z) we have

P−µν−1/2(z) =

√
2

π

(
z2 − 1

)µ/2
Γ
(
µ− ν + 1

2

)
Γ
(
µ+ ν + 1

2

) ∫ ∞
0

e−ztKν(t)tµ−1/2dt. (8)

To justify differentiation under the integral sign in (8), with respect to ν, evaluated at
ν = ±n, where n ∈ N0, we use as similar argument as in (5) only with modification µ 7→ ν and
m 7→ n. The same modified L1-majorant will work for the derivative of this integrand, since
the integral (8) converges for Re z > −1 and Re ν > |Reµ| − 1/2.

The conditions for differentiating under the integral sign have been satisfied and we can
re-write (8) as[

∂

∂ν
P−µν−1/2(z)

]
ν=±n

=

√
2

π

(
z2 − 1

)µ/2 [ ∂
∂ν

1

Γ
(
µ− ν + 1

2

)
Γ
(
µ+ ν + 1

2

)]
ν=±n

(9)

×
∫ ∞
0

e−ztK±n(t)tµ−1/2dt+

√
2

π

(
z2 − 1

)µ/2
Γ
(
µ∓ n+ 1

2

)
Γ
(
µ± n+ 1

2

)
×
∫ ∞
0

e−zttµ−1/2
[
∂

∂ν
Kν(t)

]
ν=±n

dt.

The derivative from the first term in (9) is given as[
∂

∂ν

1

Γ
(
µ− ν + 1

2

)
Γ
(
µ+ ν + 1

2

)]
ν=±n

=
ψ
(
µ∓ n+ 1

2

)
− ψ

(
µ± n+ 1

2

)
Γ
(
µ± n+ 1

2

)
Γ
(
µ∓ n+ 1

2

) .

Substituting this expression for the derivative and that given in (6) yields the following general
expression for the derivative of the associated Legendre function of the first kind with respect
to its degree evaluated at odd-half-integer degrees as

±
[
∂

∂ν
P−µν−1/2(z)

]
ν=±n

=

[
ψ

(
µ− n+

1

2

)
− ψ

(
µ+ n+

1

2

)]
P−µn−1/2(z)

+
n!

Γ
(
µ+ n+ 1

2

) n−1∑
k=0

Γ
(
µ− n+ 2k + 1

2

) (
z2 − 1

)(n−k)/2
k!(n− k)2k−n+1

P−µ+n−kk−1/2 (z).

If one makes a global replacement −µ 7→ µ, using the properties of gamma and digamma
functions, this result reduces to

±
[
∂

∂ν
Pµν−1/2(z)

]
ν=±n

=

[
ψ

(
µ+ n+

1

2

)
− ψ

(
µ− n+

1

2

)]
Pµn−1/2(z)

+ n!Γ

(
µ− n+

1

2

) n−1∑
k=0

(
z2 − 1

)(n−k)/2
Γ
(
µ+ n− 2k + 1

2

)
k!(n− k)2k−n+1

Pµ+n−kk−1/2 (z). (10)
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3.2 Parameter derivative formulas from Iν(t)

Starting this time with [9, (6.624.5)] (see also [15, (2.15.3.2)]), we have for Re z > 1 and Reµ >
−Re ν − 1/2,∫ ∞

0
e−ztIν(t)tµ−1/2dt =

√
2

π
e−iπµ

(
z2 − 1

)−µ/2
Qµν−1/2(z)

= Γ

(
µ+ ν +

1

2

)(
z2 − 1

)−µ/2−1/4
P−νµ−1/2

(
z√

z2 − 1

)
, (11)

where we used again the Whipple formulae (3a).

We will use this particular integral representation of associated Legendre functions to compute
certain derivatives of the associated Legendre functions with respect to the degree and the order.
We start with the integral representation of the associated Legendre function of the second
kind (11), namely

Qµν−1/2(z) =

√
π

2
eiπµ

(
z2 − 1

)µ/2 ∫ ∞
0

e−zttµ−1/2Iν(t)dt. (12)

To justify differentiation under the integral sign in (12), with respect to ν, evaluated at
ν0 = ±n, where n ∈ N := {1, 2, 3, . . .}, we use again Proposition 1. If we fix z and µ, the
integrand of (12) can be given by the function f : R× (0,∞)→ C defined by

f(ν, t) := e−zttµ−1/2Iν(t).

We use the following integral representation for the derivative with respect to the order of the
modified Bessel function of the first kind (see [2, (75)])

∂Iν(t)

∂ν
= −ν

∫ t

0
K0(t− x)Iν(x)x−1dx. (13)

Let δ ∈ (0, 1) and M > 2. Consider g : (0,∞)→ [0,∞) defined by

g(t) := Me−tRe ztReµ−1/2
∫ t

0
K0(t− x)Iδ(x)x−1dx.

Using (13) we have for all ν ∈ (δ,M)∣∣∣∣∂f(ν, t)

∂ν

∣∣∣∣ = e−tRe ztReµ−1/2
∣∣∣∣∂Iν(t)

∂ν

∣∣∣∣ = νe−tRe ztReµ−1/2
∫ t

0
K0(t− x)Iν(x)x−1dx

≤Me−tRe ztReµ−1/2
∫ t

0
K0(t− x)Iδ(x)x−1dx = g(t),

since for fixed t, ν 7→ Iν(t) is strictly decreasing. Now we show that g ∈ L1. The integral of g
over its domain is∫ ∞

0
g(t)dt = M

∫ ∞
0

e−tRe ztReµ−1/2
∫ t

0
K0(t− x)Iδ(x)x−1dxdt.

Making a change of variables in the integral, (x, t) 7→ (x, y) with y = t− x, yields∫ ∞
0

g(t)dt = M

∫ ∞
0

e−yRe zK0(y)

∫ ∞
0

e−xRe z(x+ y)Reµ−1/2x−1Iδ(x)dxdy.
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First we show that g is integrable in a neighborhood of zero. Suppose Reµ−1/2 < 0, x, y ∈ (0, 1]
and a ∈ (0, 1). Then

(x+ y)Reµ−1/2 = (x+ y)−a(x+ y)Reµ−1/2+a ≤ y−a max
(

2Reµ−1/2+a, xReµ−1/2+a
)
.

Since K0(y) ∼ − log(y) [14, (10.30.3)] it follows that∫ 1

0
K0(y)y−ady <∞.

Furthermore since Iδ(x) ∼ (x/2)δ/Γ(δ + 1) [14, (10.30.1)] it follows that∫ 1

0
Iδ(x)x−1dx <∞.

Now we show that∫ 1

0
Iδ(x)xReµ−1/2+a−1dx, (14)

is convergent if Reµ− 1/2 + a+ δ > 0. If we define

ε :=
Reµ+ ν0 + 1

2

3
> 0,

then Reµ = −ν0 − 1/2 + 3ε. Therefore if we take a := 1− ε and δ := ν0 − ε < ν0 then

Reµ− 1

2
+ a+ δ = ε > 0,

and hence (14) is convergent and thus g is integrable near the origin. If Reµ − 1/2 ≥ 0 then
similarly g is integrable near the origin.

Now we show that g is integrable. Suppose Reµ− 1/2 > 0. Then

(x+ y)Reµ−1/2 ≤ [2 max(x, y))]Reµ−1/2 = 2Reµ−1/2 max(xReµ−1/2, yReµ−1/2)

for all x, y ≥ 0. For y →∞ one has Kν(y) ∼
√
π/(2y)e−y [13, p. 250]. Hence it follows that∫ ∞

1
K0(y)e−yRe zyReµ−1/2dy <∞,

and ∫ ∞
1

K0(y)e−yRe zdy <∞.

Furthermore since for x→∞, Iδ(x) ∼ ex/
√

2πx [13, p. 251] it follows that∫ ∞
1

e−xRe zIδ(x)xReµ−3/2dx <∞,

and ∫ ∞
1

e−xRe zIδ(x)x−1dx <∞.

If Reµ− 1/2 ≤ 0 then similarly g is integrable.
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Therefore g is a L1-majorant for the derivative with respect to ν of the integrand in (12). It
is unclear whether differentiation under the integral sign is also possible for ν0 = 0. However,
we show below that our derived results for derivatives with respect to the degree for associated
Legendre functions match up with the to be derived results for degree ν = 0. Relatively little
is known about the properties of Bessel functions in relation to operations (differentiation and
integration) with respect to their order (cf. [2]).

Differentiating with respect to the degree ν and evaluating at ν = ±n, where n ∈ N, one
obtains[

∂

∂ν
Qµν−1/2(z)

]
ν=±n

=

√
π

2
eiπµ

(
z2 − 1

)µ/2 ∫ ∞
0

e−zttµ−1/2
[
∂

∂ν
Iν(t)

]
ν=±n

dt. (15)

The derivative of the modified Bessel function of the first kind with respect to the order evaluated
at integer-orders (15) (see [12, § 3.2.3]) is given by[

∂

∂ν
Iν(t)

]
ν=±n

= (−1)n+1Kn(t)± n!
n−1∑
k=0

(−1)k−n

k!(n− k)

tk−n

2k−n+1
Ik(t) (16)

(see for instance [3, (1.13.2.1)]).
Inserting (16) into (15) and using (4) and (11), we obtain the following general expression for

the derivative of the associated Legendre function of the second kind with respect to its degree
evaluated at odd-half-integer degrees as[

∂

∂ν
Qµν−1/2(z)

]
ν=±n

= −
√
π

2
eiπµΓ

(
µ− n+

1

2

)(
z2 − 1

)−1/4
Qnµ−1/2

(
z√

z2 − 1

)

± n!
n−1∑
k=0

(
z2 − 1

)(n−k)/2
2k−n+1k!(n− k)

Qµ+k−nk−1/2 (z). (17)

Note that[
∂

∂ν
Qµν−1/2(z)

]
ν=0

= −
√
π

2
eiπµΓ

(
µ+

1

2

)(
z2 − 1

)−1/4
Qµ−1/2

(
z√

z2 − 1

)
,

by [12]. Therefore (17) is also valid if ν = 0.
Finally, we obtain a formula for the derivative with respect to the order for the associated

Legendre function of the first kind evaluated at integer-orders. In order to do this we use the
integral expression for the associated Legendre function of the first kind given by (11) and the
map given in (2) to convert to the appropriate argument. Now use the negative-order condition
for associated Legendre functions of the first kind (see for example [8, (22)]) to convert to
a positive order, namely

Pµν−1/2(z) =
2

π
e−iµπ sin(µπ)Qµν−1/2(z)

+
(z2 − 1)−ν/2−1/4

Γ(ν − µ+ 1
2)

∫ ∞
0

exp

(
−zt√
z2 − 1

)
Iµ(t)tν−1/2dt. (18)

By (11) and (3b), the integral on the right-hand side of (18) converges for Re z√
z+1
√
z−1 > 1.

By Proposition 2 in Appendix A, we only have Re z√
z+1
√
z−1 > 0 for z ∈ C \ [−1, 1]. Therefore

the above integral representation (18) for the associated Legendre function of the first kind will
not be valid for the full region z ∈ C \ [−1, 1], but only for a doubly-connected open subset
of C which is symmetric about the real and imaginary axes which includes the real segment
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z ∈ (1,∞) and has boundary in quadrant I, given by the curve Re z√
z+1
√
z−1 = 1. For a detailed

discussion of this curve, see the end of Appendix A.

To justify differentiation under the integral sign in (18), with respect to µ, evaluated at
µ = ±m, where m ∈ N, we use as similar argument as in (12), only with modification ν 7→ µ
and n 7→ m. The same modified L1-majorant will work for the derivative of this integrand,
since the integral (18) converges for Re (z/

√
z2 − 1) > 1 and Reµ > −Re ν−1/2. Since we were

unable to justify differentiation under the integral for ν = 0 before, the case for differentiation
under the integral (18) with respect to µ evaluated at µ = 0 remains open. However, below we
show that our derived results for derivatives with respect to the order for associated Legendre
functions match up to previously established results in the literature for order µ = 0.

Differentiating both sides of the resulting expression with respect to the order µ and eva-
luating at µ = ±m, where m ∈ N yields[

∂

∂µ
Pµν−1/2(z)

]
µ=±m

= 2Q±mν−1/2(z) +
(
z2 − 1

)−ν/2−1/4
×

{
∂

∂µ

[
Γ

(
ν − µ+

1

2

)]−1}
µ=±m

∫ ∞
0

exp

(
−zt√
z2 − 1

)
I±m(t)tν−1/2dt

+

(
z2 − 1

)−ν/2−1/4
Γ
(
ν ∓m+ 1

2

) ∫ ∞
0

exp

(
−zt√
z2 − 1

)
tν−1/2

[
∂

∂µ
Iµ(t)

]
µ=±m

dt.

The derivative of the reciprocal of the gamma function reduces to{
∂

∂µ

[
Γ

(
ν − µ+

1

2

)]−1}
µ=±m

=
ψ
(
ν ∓m+ 1

2

)
Γ
(
ν ∓m+ 1

2

) .
The derivative with respect to order for the modified Bessel function of the first kind is given
in (16). The integrals are easily obtained by applying the map given by (2) as necessary to (4)
and (11). Hence by also using standard properties of associated Legendre, gamma, and digamma
functions we obtain the following compact form

Γ(ν ∓m+ 1
2)

Γ(ν −m+ 1
2)

[
∂

∂µ
Pµν−1/2(z)

]
µ=±m

= Qmν−1/2(z) + ψ

(
ν ∓m+

1

2

)
Pmν−1/2(z) (19)

±m!
m−1∑
k=0

(−1)k−m
(
z2 − 1

)(k−m)/2

2k−m+1k!(m− k)
P kν+k−m−1/2(z).

Note that[
∂

∂µ
Pµν−1/2(z)

]
µ=0

= Qν−1/2(z) + ψ

(
ν +

1

2

)
Pν−1/2(z),

by [12, § 4.4.3]. So (19) is also valid if µ = 0.

The integral representations (5), (8), (12), and (18), which are used to obtain the parameter
derivative formulae for associated Legendre functions of the first and second kind presented in
this paper (7), (10), (17), and (19), are each convergent, in terms of the argument z, in their
own specific regions of the complex plane. The presented parameter derivative formulae are
given in terms of finite sums over associated Legendre functions which are analytic functions
on the domain C \ (−∞, 1]. Therefore, these formulae provide an analytic continuation for the
parameter derivatives to the domain given by the cut plane with argument z ∈ C \ (−∞, 1].
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A Properties of the function z 7→ z/
√
z2 − 1

In this paper we make use of integral representations of associated Legendre functions, namely (4)
and (11), and frequently take advantage of the Whipple formulae (3a) and (3b). The Whipple
formulae directly relate Legendre functions of the first and second kind evaluated at arguments z
and z/

√
z2 − 1 respectively. Hence it is useful in conjunction with the Whipple formulae, to

understand the mapping properties of z 7→ z/
√
z2 − 1. In particular one would like to know the

behavior of the real part of this function in regard to domains of convergence for the integral
representations of associated Legendre functions which are used.

Proposition 2. Define the function f : C \ {−1, 1} → C by

f(z) =
z√

z2 − 1
:=

z√
z + 1

√
z − 1

,

where the principal branch of the square roots are chosen. This function f has the following
properties.

1. f
∣∣
C\[−1,1] is even and f

∣∣
(−1,1)±i0 is odd, where ±i0 := i lim

x→0±
x.

2. The sets (0, 1) ± i0 and (−1, 0) ± i0 are mapped onto i

{
(−∞, 0)

(0,∞)

}
and i

{
(0,∞)

(−∞, 0)

}
re-

spectively, where ±i∞ := i lim
x→±∞

x.

3. The sets i(−∞, 0) and i(0,∞) are both mapped to (0, 1).

4. f(0± i0) = 0.

5. If z ∈ C \ [−1, 1] then Re f(z) > 0.

Proof. When z 6= 0 and the exponent w is any complex number, then zw is defined by the
equation

zw := exp(w log z),

where the exponential function can be defined over the entire complex plane using the power
series definition

exp(z) :=

∞∑
n=0

zn

n!
,

and the logarithmic function is defined for points z = rei arg z, with r > 0, as

log z := log r + i arg z.

Recall that if z ∈ C \ {0}, then arg z (often referred to as the argument, amplitude or phase) is
given by the angle measured from the positive real axis to the vector representing z. The angle
is positive if measured anticlockwise and we choose the arg z ∈ (−π, π). The principal branch of
the square root

√
z (with branch cut along (−∞, 0]) is given by that unique branch of the square

root which is non-negative for z ∈ (0,∞). Using this branch of the square root, the product√
z + 1

√
z − 1 is well-defined and continuous in z ∈ (−∞,−1). A branch cut along [−1, 1] is

chosen for f which is analytic in C \ [−1, 1]. Note that

arg(
√
w) =

1

2
argw.
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If z ∈ C and Im z > 0 then

arg(−(z ± 1)) = −π + arg(z ± 1),

so

arg
(√
−(z ± 1)

)
= −π

2
+ arg

(√
z ± 1

)
,

and we have√
−(z ± 1) = −i

√
z ± 1.

Hence

f(−z) =
−z

i2
√
z + 1

√
z − 1

= f(z).

Similarly if Im z < 0 then√
−(z ± 1) = i

√
z ± 1,

and we have the same result.
Let x > 1. Then

arg
√
−(x± 1) =

π

2
,

so

f(−x) =
−x√

−(x− 1)
√
−(x+ 1)

=
x√

x+ 1
√
x− 1

= f(x).

Therefore f
∣∣
C\[−1,1] is even.

Let arg z ∈ (−π, π). For arg z ≷ 0,

f(z) =
∓iz√

1 + z
√

1− z
,

since z − 1 = e±iπ(1− z). If x ∈ (0, 1), then

f(x± i0) =
∓ix√

1 + x
√

1− x
,

and

f(−x± i0) =
±ix√

1 + x
√

1− x
= −f(x± i0).

Moreover, f(0±i0) = 0. Therefore f
∣∣
(−1,1)±i0 maps to the imaginary axis and is an odd function

of x.
If x ∈ (0,∞) then

f(ix) =
ix√

ix+ 1
√
ix− 1

=
x√

1 + x2
,

and

f(−ix) =
−ix√

−ix+ 1
√
−ix− 1

=
x√

1 + x2
,
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f

z-plane______ w-plane_______

D
E

F

BC A
0 1

C

D
E F A B

0 1

Figure 1. This figure shows how the function f : C\{−1, 1} → C defined by f(z) := z/(
√
z + 1

√
z − 1)

conformally maps quadrant I into quadrant IV.

so f maps both the positive and negative imaginary axes to the real interval (0, 1). Clearly
f(0) = 0. This completes the proof of 1, 2, 3 and 4.

Before we prove 5 we first show that f maps quadrant I into quadrant IV. The derivative
f ′(z) = −(z + 1)−3/2(z − 1)−3/2 is nowhere zero, and therefore w = f(z) represents a conformal
map of C \ {−1, 1} (see for instance [14, § 1.9(iv)]). Consider the closed contour represented in
the z-plane of Fig. 1. In order to study the mapping properties of quadrant I by the map f , we
look at the behavior of the map within and on a closed contour in quadrant I through a limiting
process: Take the radii of the semi-circular segment BC and the quarter-circular segment DE
tending towards zero, the radius of the quarter-circular segment FA tending towards infinity,
and match these segments to the straight line segments AB, CD, and EF continuously.

The straight line segments are treated first, followed by the treatment of the circular segments.
For AB, z ∈ (1,∞) and therefore w(z) = 1/

√
1− (1/z2) ∈ (1,∞). Therefore as z → A,

w(z) → 1+ and as z → B, w(z) → +∞. On CD, z ∈ (0, 1) so w(z) = −i/
√

(1/z2)− 1 ∈
−i(0,∞). So as z → C, w(z) → −i∞ and as z → D, w(z) → −i0. On EF , z ∈ i(0,∞) thus
w(z) = z/

√
1 + z2 ∈ (0, 1) and as z → E, w(z) → 0+ and as z → F , w(z) → 1−. For the

semi-circular segment BC, z is near 1 and we write z = 1 + ζ. Consider ζ = εeiφ with φ ∈ [0, π].
Through the binomial expansion we can see that

w(ζ) =
1√
2ζ

+O
(√

ζ
)

=
1√
2ε
e−iφ/2 +O

(√
ε
)
. (20)

Therefore as z → B, w(z)→ +∞ and as z → C, w(z)→ −i∞. For the quarter-circular segment
DE, z is near 0 and we write z = ζ = εeiφ with φ ∈ [0, π/2]. Through the binomial expansion
we have

w(ζ) = −iζ +O
(
ζ2
)

= εei(φ−π/2) +O
(
ε2
)
,

and therefore as z → D, w(z) → −i0 and as z → E, w(z) → 0+. For the quarter-circular
segment FA, we write z = ζ and consider ζ = Reiφ with φ ∈ [0, π/2] with R chosen sufficiently
large. Through the binomial expansion we have

w(ζ) = 1 +
1

2ζ2
+O

(
ζ−4
)

= 1 +
1

2R2
e−2iφ +O

(
R−4

)
, (21)

and therefore as z → F , w(z)→ 1−.
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Hence the closed contour and its interior region in the z-plane are conformally mapped into
the closed contour and its interior region in the w-plane shown in Fig. 1. Through by the limiting
process described above, we see that f maps quadrant I into quadrant IV.

Due to the evenness of f , quadrants I & III are mapped to quadrants IV, and quadrants II
& IV are mapped to quadrant I. Therefore if z ∈ C \ [−1, 1] then Re f(z) > 0. This completes
the proof of 5. �

Note. An anonymous referee has suggested an alternate proof that Re f(z) > 0 for all C\[−1, 1]
using the minimum modulus principle.

Proof. Consider the function g : C \ {−1, 1} → C defined by g(z) := exp f(z). A simple
computation gives the modulus |g(z)| = exp Re f(z). By (21), |g(z)| → e as |z| → ∞. Let
x ∈ (−1, 1) and consider z = x+ iε as ε→ 0±, then

f(z) =
∓ix√

1 + x
√

1− x
+O(ε),

so |g(z)| → 1 in (−1, 1) (clearly g is non-constant). In a small neighborhood E of z = 1, and
by property 1, in a small neighborhood E′ of z = −1, we have through (20) that |g(z)| > 1
in E and E′. The minimum modulus principle states (see for instance [16, p. 147]) that if f
is analytic, non-constant, and non-vanishing in an open connected subset G of C then |f(z)|
cannot have a minimum in G. Let G := C \ [−1, 1], an open connected subset of C. Since f
(and hence g) is analytic in G, and the exponential function is non-vanishing in C, from the
minimum modulus principle we have that |g(z)| > 1 in C \ [−1, 1] and therefore Re f(z) > 0 in
C \ [−1, 1]. This completes the proof. �

The range of f is {z ∈ C : Re z ≥ 0 and z 6= 1}. Every complex number in the range of the
function is taken twice except for elements in (0, 1) and on the imaginary axis. These complex
numbers are taken only once.

Consider the curve f(z) when Re z = 1. In order to illustrate the behavior of this curve, take
z = 1 − it, where t ∈ (0,∞). By the above discussion, we know this line segment is mapped
conformally from quadrant IV to quadrant I. This smooth curve asymptotically approaches the
line Rew = Imw from below and approaches the singularity at unity from the left side (i.e.
from Re f(z) < 1). This can be seen through the asymptotics (cf. (20) and (21)), namely
φ(ε) = π − 2

√
2ε for the angle of approach to the singularity at unity as the distance ε → 0

and φ(R) = π/4 − 11
√

2/(64R2) (where terms up to fourth order have been included) as the
radius R tends towards infinity. If f(1− it) = x(t) + iy(t), then using elementary trigonometry
one can show

x(t) =
1

2
√
t(4 + t2)

[
(1 + t)

√√
4 + t2 + 2 + (t− 1)

√√
4 + t2 − 2

]
,

y(t) =
1

2
√
t(4 + t2)

[
(1− t)

√√
4 + t2 + 2 + (t+ 1)

√√
4 + t2 − 2

]
,

and therefore

x2(t) =
1

2t(4 + t2)

[
(1 + t2)

√
4 + t2 + 3t+ t3

]
,

y2(t) =
1

2t(4 + t2)

[
(1 + t2)

√
4 + t2 − 3t− t3

]
.
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A
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f (1-it)

Figure 2. This figure shows the curve in the complex w-plane given by f(1− it) for t ∈ (0,∞). There

are three lines indicated. One represents the line Rew = Imw. The other two represent the vertical lines

passing through the points B and C respectively.

The distance squared from the origin is given by (1 + t2)/(t
√

4 + t2), whose minimum occurs at
t =
√

2 for

(x, y)(
√

2) =

1

2

√
3
√

3 + 5

3
,
1

2

√
3
√

3− 5

3

 ,

portrayed by the point A in Fig. 2. Due to the asymptotics of the curve near the singularity
at unity, there exists a point at which the real part of this curve reaches a minimum value.
By finding the minimum of x2(t), this point can be easily obtained and is shown in Fig. 2 by
point B and is given at t = 2/

√
3 by the point

(x, y)

(
2√
3

)
=

(
3

4

√
3

2
,

1

4
√

2

)
.

Similarly one can find the point C in Fig. 2 where Re f(z) = 1 to be given at t =
√√

5− 2 at
y = t.
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