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Abstract. The perspective of Kac–Schwarz operators is introduced to the authors’ previous
work on the quantum mirror curves of topological string theory in strip geometry and closed
topological vertex. Open string amplitudes on each leg of the web diagram of such geometry
can be packed into a multi-variate generating function. This generating function turns out
to be a tau function of the KP hierarchy. The tau function has a fermionic expression,
from which one finds a vector |W 〉 in the fermionic Fock space that represents a point W
of the Sato Grassmannian. |W 〉 is generated from the vacuum vector |0〉 by an operator g
on the Fock space. g determines an operator G on the space V = C((x)) of Laurent series
in which W is realized as a linear subspace. G generates an admissible basis {Φj(x)}∞j=0

of W . q-difference analogues A, B of Kac–Schwarz operators are defined with the aid of G.
Φj(x)’s satisfy the linear equations AΦj(x) = qjΦj(x), BΦj(x) = Φj+1(x). The lowest
equation AΦ0(x) = Φ0(x) reproduces the quantum mirror curve in the authors’ previous
work.
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1 Introduction

It is argued [1, 11, 10, 31] that a “quantum mirror curve” emerges on the B-model (Kodaira–
Spencer theory) side of A-model topological string theory when a brane is inserted as a probe.
This quantum curve is represented by a quantum mechanical equation of the form

Ĥ(x̂, ŷ)Ψ = 0. (1.1)

Ĥ(x̂, ŷ) is quantization of a function H(x, y) on a 2D phase space, and the curve

H(x, y) = 0

is called the mirror curve. In the case of local toric Calabi–Yau threefolds, H(x, y) is the function
with which the mirror manifold is defined by the equation

zw = H(x, y).

This paper is a contribution to the Special Issue on Combinatorics of Moduli Spaces: Integrability, Cohomo-
logy, Quantisation, and Beyond. The full collection is available at http://www.emis.de/journals/SIGMA/moduli-
spaces-2016.html
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The phase space therein has the logarithmic symplectic form d log x∧d log y, and one can choose x̂
and ŷ as

x̂ = x, ŷ = qD,

where

q = e−~, D = x
d

dx
.

(1.1) thereby becomes a q-difference equation for the wave function Ψ = Ψ(x) of the probe.
It is also pointed out [26] that quantum curves are closely related to the Eynard–Orantin

topological recursion [18]. The notion of topological recursion was introduced to topological
string theory through a matrix model description [12, 41]. This new computational tool led to
the BKMS remodeling conjecture [7] as well as a new conjectural recursion formula for simple
Hurwitz numbers [8] (both of which were solved by mathematicians [17, 21, 45]). The mirror
curve and a 2-point kernel B(p, q) on this curve are the inputs of topological recursion. The
outputs are a set of multi-point kernels Wg,n, g ≥ 0, n ≥ 1, that amount to multi-point resolvents
of a matrix model. Amplitudes (or partition functions) of strings are constructed from these
multi-point kernels. Gukov and Su lkowski’s observation [26] (based on Eynard and Orantin’s
interpretation of the notion of Baker–Akhiezer functions [18]) is that a WKB expansion of the
wave function Ψ(x), too, can be constructed from Wg,n’s. Gukov and Su lkowski show, along
with many other examples, a partial result on computation of the WKB expansion in the case
of C3 and the resolved conifold. A complete derivation of the quantum mirror curve for these
two cases is achieved by Zhou [66].

We are interested in deriving the quantum mirror curve from the A-model side, namely,
in the topological vertex formalism [2]. The wave function Ψ(x) is defined as a generating
function of open string amplitudes. Topological vertex offers a combinatorial description of
these amplitudes. If one can compute this generating function explicitly, one should be able
to verify the equation (1.1) of the quantum mirror curve by any means. This is indeed done
for C3 [1, 2] and the resolved conifold [32, 35, 36]. The wave functions for these cases are quantum
dilogarithmic functions [19, 20] and q-hypergeometric (or basic hypergeometric) functions [23],
hence satisfy equations of the form (1.1). Some other examples of computations, all falling
into “strip geometry” [33], can be found in the literature on different subjects [6, 14, 39, 62].
A unified expression of the quantum mirror curves for general strip geometry is presented in our
previous work [60]. Moreover, we extended these results to the simplest example of “off-strip
geometry” called closed topological vertex [61].

The aim of this paper is to re-examine our previous results [60, 61] in the perspective of
“Kac–Schwarz operators”. This enables us to highlight a role of the Sato Grassmannian and the
KP hierarchy [53, 56] that was hidden in the previous derivation of quantum mirror curves of
topological string theory. Moreover, Kac–Schwarz operators for topological string theory exhibit
some new features, which are significant in the context of integrable hierarchies.

The notion of Kac–Schwarz operators [34, 54] originates in the string equations of 2D quantum
gravity [13, 15, 22, 43] (see also the recent paper [55] focused on quantum curves). The Kac–
Schwarz operators for the (a, b) minimal model of 2D quantum gravity are a pair of ordinary
differential operators A, B of the form

A =
1

bzb−1

d

dz
+ za + terms of lower degrees, B = zb

that satisfy the canonical commutation relation

[A,B] = 1.
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They characterize a point W of the Sato Grassmannian as a linear subspace of the space
V = C((z−1)) of formal Laurent series by the condition

AW ⊂W, BW ⊂W.

The Witten–Kontsevich theory of intersection numbers on a moduli space of curves [38, 63],
which amounts to the special case where (a, b) = (1, 2), can be treated in the same way.

A variant of this conventional formulation of Kac–Schwarz operators is used to derive quan-
tum spectral curves of various Hurwitz numbers [3, 4] and quantum mirror curves of a few cases
of topological string theory [67]. The Kac–Schwarz operators therein are differential operators
of infinite order (in the Hurwitz case) or q-difference operators (in the topological string case),
and satisfy the modified commutation relation

[A,B] = A

in the Hurwitz case and

AB = qBA (1.2)

in the topological string case. Moreover, it is pointed out that a particular element Ψ of W
(more precisely, the first element of an admissible basis of W ) satisfies the equation

AΨ = 0

in the Hurwitz case and

AΨ = Ψ

in the topological string case. These equations are interpreted as quantum spectral/mirror
curves.

To capture the quantum mirror curves of general strip geometry and closed topological vertex
along these lines, we borrow the idea of generating operator developed by Alexandrov et al. [3, 4].
This is an invertible operator G on V = C((x)), x = z−1, that generates an admissible basis
{Φj(x)}∞j=0 of the relevant point W of the Sato Grassmannian. The Kac–Schwarz operators in
this case are q-difference operators, and defined as

A = G · q−D ·G−1, B = G · x−1 ·G−1. (1.3)

The basis functions Φj(x) satisfy the linear equations

AΦj(x) = qjΦj(x), BΦj(x) = Φj+1(x). (1.4)

Since Φ0(x) turns out to be the generating function of open string amplitudes, the lowest equa-
tion AΦ0(x) = Φ0(x) of (1.4) can be identified with the quantum mirror curve of topological
string theory. As the algebraic relation (1.2) implies, the other equations AΦj(x) = qjΦj(x)
can be derived from the lowest equation by applying B iteratively. Thus B plays the role of
a “ladder operator” connecting these equations, though we do not know what physical meaning
this tower of extra linear equations have.

We derive the generating operator G from a fermionic expression of the KP tau function that
is defined as a multi-variate generating function of open string amplitudes. Our computational
technique developed in the previous work [60, 61] yield a fermionic expression of the tau function
almost automatically. This expression contains the vector |W 〉 of the fermionic Fock space
representing W . |W 〉 is generated from the vacuum vector |0〉 by an operator g on the Fock
space. In the case of topological string theory of strip geometry and closed topological vertex,
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g is made from building blocks that are familiar in the operator formalism of topological vertex
[50, 64]. We can thereby find an explicit expression of G. This enables us to find the admissible
basis and the q-difference Kac–Schwarz operators as well.

Viewing this machinery on the whole, one may say that the KP hierarchy plays the role of
a “mirror map”. The inputs of this map are open string amplitudes in the topological vertex
formalism. They are manufactured into a KP tau function. This tau function determines
a point W of the Sato Grassmannian, hence a vector |W 〉 of the fermionic Fock space. From
an admissible basis of W and associated Kac–Schwarz operators, one obtains a quantum curve
as the output. Such a mapping from the A-model side to the B-model side is commonly called
a mirror map.

This paper is organized as follows. In Section 2, the notion of generating operators and
Kac–Schwarz operators are introduced and illustrated for topological string theory on C3 and
the resolved conifold. These two cases are presented as a prototype of the subsequent case
studies. Relation to “hypergeometric tau functions” is briefly mentioned in the end of this
section. Section 3 deals the case of general strip geometry. A multi-variate generating function
of open string amplitudes is constructed for each external line, or “leg”, of the web diagram,
and shown to be a KP tau function with a fermionic expression. Actually, the tau functions on
the vertical legs and those on the non-vertical legs turn out to have distinct structures. This
difference is reflected in the types of functions forming the admissible bases. The generating
operator G and the q-difference operators A, B are computed explicitly. Results of the previous
work [60] are reproduced successfully. Section 4 presents similar results in the case of closed
topological vertex. The relevant tau functions are shown to have a slightly more complicated
structure. This characteristic is inherited by the functions forming the associated admissible
basis. Nevertheless, computations are mostly parallel to the case of strip geometry. Actually,
the previous work [61] can be reproduced in a more systematic way in the language of the
operators G, A, B.

2 q-difference Kac–Schwarz operators

2.1 Generating operator of admissible basis

A point W of the big cell of the Sato Grassmannian is realized by a linear subspace

W = Span{Φj(x)}∞j=0

of the space V = C((x)) of formal Laurent series with an admissible basis

Φj(x) =
∞∑

i=−j
φijx

i, φ−j,j 6= 0, j = 0, 1, . . . .

For convenience, we allow the leading coefficients φ−j,j to be unnormalized, though they can be
normalized to 1. The variable x amounts to the inverse of the usual spectral parameter z of the
KP hierarchy:

x = z−1.

If the admissible basis is generated by a single invertible q-difference operator G = G(x, qD)
as

Φj(x) = Gx−j , j = 0, 1, . . . , (2.1)
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Figure 1. Web diagram of C3 (left) and resolved conifold (right).

the basis elements satisfy the linear q-difference equations (1.4) with respect to the opera-
tors A, B defined by (1.3). In particular, the first basis element Φ0(x) satisfies the equation

AΦ0(x) = Φ0(x), (2.2)

which we identify with the quantum mirror curve of topological string theory.
(1.3) are q-difference analogues of the Kac–Schwarz operators for Hurwitz numbers of various

types [3, 4, 67]. In those cases, G is a differential operator of infinite order, G = G(x,D). The
Kac–Schwarz operators A, B are defined as

A = −G ·D ·G−1, B = G · x−1 ·G−1

and satisfy the twisted canonical commutation relation (1.2). The admissible basis generated
by G, in turn, satisfies the linear differential equations

AΦj(x) = jΦj(x), BΦj(x) = Φj+1(x).

The lowest equation

AΦ0(x) = 0

gives the quantum spectral curve for Hurwitz numbers.
q-difference Kac–Schwarz operators are presented by Zhou [67] for open string amplitudes

of C3 and the resolved conifold with a general framing parameter f . We review these results (in
the case where f = 0) as prototypes of our subsequent consideration. Unlike Zhou’s formulation,
we make full use of the theory of Schur functions [40] and the fermionic formalism of integrable
hierarchies [42].

2.2 Example: C3

The open string amplitudes Zβ, β = (β1, β2, . . .) ∈ P (the set of all partitions), of topological
string theory on C3 in the presence of a stack of branes (Fig. 1, left) are given by special values
of the infinite-variate Schur functions sλ as

Zβ = s tβ

(
q−ρ
)
, q−ρ =

(
q1/2, q3/2, . . . , qi−1/2, . . .

)
,

where tβ denotes the conjugate partition of β. Zβ is nothing but the special case C∅∅β of the
topological vertex.

We use the Schur functions s tβ(x) of auxiliary variables x = (x1, x2, . . .) to define a generating
function τ(x) of Zβ’s:

τ(x) =
∑
β∈P

s tβ(x)Zβ.
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This sum can be readily computed by the Cauchy identity of Schur functions:

τ(x) =
∑
β∈P

s tβ(x)s tβ

(
q−ρ
)

=

∞∏
i,j=1

(
1− qi−1/2xj

)−1
.

By the so called Miwa transformation

tk =
1

k

∞∑
i=1

xki (2.3)

to the time variables t = (t1, t2, . . .) of the KP hierarchy, this infinite product turns into an
exponential function:

τ(x) = exp

( ∞∑
k=1

qk/2

1− qk
tk

)
.

This is an exponential tau function of the KP hierarchy.
To find an associated generating operator G, it is convenient to start from the fermionic

expression

τ(x) =
〈
0|Γ+(x)Γ−

(
q−ρ
)
|0
〉

(2.4)

of τ(x). 〈0| and |0〉 are the vacuum vectors of the fermionic Fock spaces on which the creation-
annihilation operators ψn, ψ∗n, n ∈ Z, of a 2D charged free fermions act. Γ±(x) are multi-variate
extensions

Γ±(x) =

∞∏
i=1

Γ±(xi)

of the vertex operators [50, 64]

Γ±(z) = exp

( ∞∑
k=1

zk

k
J±k

)
,

where Jk’s are basis elements of the U(1) current algebra:

Jk =
∑
n∈Z

:ψk−nψ
∗
n:.

Note that the Schur functions can be expressed as

sλ(x) = 〈0|Γ+(x)|λ〉 = 〈λ|Γ−(x)|0〉.

Assembling these building blocks, one obtains the fermionic expression (2.4) of τ(x). Moreover,
by the Miwa transformation (2.3), Γ+(x) turns into the generator

γ+(t) = exp

( ∞∑
k=1

tkJk

)

of time evolutions of the KP hierarchy. (2.4) thereby becomes the standard expression

τ(x) =
〈
0|γ+(t)Γ−

(
q−ρ
)
|0
〉
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of a KP tau function. The vector

|W 〉 = Γ−
(
q−ρ
)
|0〉

in the Fock space represents the associated point W of the Sato Grassmannian. This vector is
generated from |0〉 by the operator g = Γ−(q−ρ).

The generating operator G can be obtained by translating the operator g on the fermionic
Fock space to an operator on the space V of Laurent series. The rule of translation is based on
the following well known correspondences [42, 53, 56] (see also Alexandrov’s detailed account [3]):

1. The correspondence

Â =
∑
i,j∈Z

aij :ψ−iψ
∗
j :←→ A = (ai,j)i,j∈Z

between fermion bilinears and Z× Z matrices based on the commutation relations

[Â, B̂] = [̂A,B] + c-number term.

2. The correspondence

D ←→ ∆ = (iδij)i,j∈Z,

qD ←→ q∆ = (qiδij)i,j∈Z,

x−k ←→ Λk = (δi+k,j)i,j∈Z

between differential/difference operators and Z× Z matrices based on the relations

D
∑
i∈Z

φix
i =

∑
i∈Z

iφix
i,

qD
∑
i∈Z

φix
i =

∑
i∈Z

qiφix
i,

x−k
∑
i∈Z

φix
i =

∑
i∈Z

φi+kx
i.

By this rule, the operator

g = Γ−(q−ρ) = exp

 ∞∑
i,k=1

qk(i−1/2)

k
J−k


on the fermionic Fock space turns into the multiplication operator

G = exp

 ∞∑
i,k=1

qk(i−1/2)

k
xk

 =

∞∏
i=1

(
1− qi−1/2x

)−1
(2.5)

on V . The multiplier is a quantum dilogarithmic function. The admissible basis (2.1) consists
of the functions

Φj(x) = x−j
∞∏
i=1

(
1− qi−1/2x

)−1
=
∞∑
k=0

qk/2

(q; q)k
xk−j , (2.6)
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where we have used the q-Pochhammer symbol

(a; q)k =

{
(1− a)(1− aq) · · ·

(
1− aqk−1

)
if k > 0,

1 if k = 0.

It is straightforward to compute the q-difference Kac–Schwarz operators (1.3) from (2.5).
The operator A = G · q−D ·G−1 can be computed with the aid of the operator identity

qDf(x)q−D = f(qx) (2.7)

as

A = q−D
∞∏
i=1

(
1− qi+1/2x

)−1 ·
∞∏
i=1

(
1− qi−1/2x

)
= q−D

(
1− q1/2x

)
. (2.8)

The operator B = G · x−1 ·G−1 becomes a trivial one:

B = x−1.

The q-difference equation (2.2) for Φ0(x) reads

q−D
(
1− q1/2x

)
Φ0(x) = Φ0(x)

or, equivalently,(
1− q1/2x− qD

)
Φ0(x) = 0,

which agrees with the well known equation of the quantum mirror curve of C3 [1, 2].

2.3 Example: Resolved conifold

The foregoing construction of the operators G, A, B can be extended to the resolved conifold.
The unnormalized open string amplitudes Zβ with a stack of branes on one of the external lines
of the web diagram (Fig. 1, right) can be expressed as

Zβ = s tβ

(
q−ρ
) ∞∏
i,j=1

(
1−Qq−βi+i+j−1

)
,

where Q is the Kähler parameter of the internal line of the web diagram. We consider the
generating function

τ(x) =
∑
β∈P

s tβ(x)Zβ/Z∅ =
∑
β∈P

s tβ(x)s tβ

(
q−ρ
) ∞∏
i,j=1

1−Qq−βi+i+j−1

1−Qqi+j−1

of the normalized amplitudes Zβ/Z∅.
To derive a fermionic expression of τ(x), we recall the following formula, λ = (λ1, λ2, . . .) ∈ P,

from the previous work [61]:

∞∏
i,j=1

1−Qq−λi+i+j−1

1−Qqi+j−1
=

〈
tλ | exp

( ∞∑
k=1

Qk

k(1− qk)
V

(k)
0

)
| tλ

〉
. (2.9)

〈λ| and |λ〉 denote the excited states

〈λ| = 〈−∞ | · · ·ψ∗λi−i+1 · · ·ψ∗λ2−1ψ
∗
λ1 , |λ〉 = ψ−λ1ψ−λ2+1 · · ·ψ−λi+i−1 · · · | −∞〉
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in the charge-0 sector of the Fock spaces. The ground states 〈∅|, |∅〉 labeled by the zero partition

are nothing but the vacuum vectors 〈0|, |0〉. V (k)
0 ’s are the m = 0 part of the basis

V (k)
m = q−km/2

∑
n∈Z

qkn:ψm−nψ
∗
n:, k,m ∈ Z,

of the quantum torus algebra [47, 49]. Since V
(k)

0 ’s do not mix the excited states, the fermionic
expression (2.9) of the Q-dependent factor in the definition of τ(x) can be merged to the
fermionic expression

s tβ(q−ρ) =
〈

tβ |Γ−(q−ρ) | 0
〉

of s tβ(q−ρ) as

∞∏
i,j=1

1−Qq−βi+i+j−1

1−Qqi+j−1
s tβ

(
q−ρ
)

=

〈
tβ | exp

( ∞∑
k=1

Qk

k(1− qk)
V

(k)
0

)
Γ−
(
q−ρ
)
| 0

〉
.

Thus τ(x) can be expressed in the fermionic form

τ(x) =

〈
0 |Γ+(x) exp

( ∞∑
k=1

Qk

k(1− qk)
V

(k)
0

)
Γ−
(
q−ρ
)
| 0

〉
. (2.10)

The associated point W of the Sato Grassmannian is determined by the vector

|W 〉 = exp

( ∞∑
k=1

Qk

k(1− qk)
V

(k)
0

)
Γ−
(
q−ρ
)
|0〉

in the fermionic Fock space.

The generating operator G of an admissible basis of W can be obtained by translating the
generating operator

g = exp

( ∞∑
k=1

Qk

k(1− qk)
V

(k)
0

)
Γ−
(
q−ρ
)

to an operator on V . We have seen that Γ−(q−ρ) amounts to the multiplicative operator (2.5).
As regard the first factor, since

V
(k)

0 =
∑
n∈Z

qkn:ψ−nψ
∗
n:

corresponds to the q-shift operator qkD, one can compute its avatar on V as

exp

( ∞∑
k=1

Qk

k(1− qk)
qkD

)
= exp

 ∞∑
i,k=1

(Qqi−1+D)k

k

 =
∞∏
i=1

(
1−Qqi−1+D

)−1
.

G is a product of these two operators:

G =
∞∏
i=1

(
1−Qqi−1+D

)−1 ·
∞∏
i=1

(
1− qi−1/2x

)−1
. (2.11)
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To compute the admissible basis (2.1), one can partly make use of the results for C3. Namely,

applying G to x−j ’s amount to applying
∞∏
i=1

(1−Qqi−1+D)−1 to the admissible basis (2.6) of C3.

Thus the admissible basis in this case can be computed as

Φj(x) =

∞∏
i=1

(
1−Qqi−1+D

)−1

(
x−j

∞∏
i=1

(
1− qi−1/2x

)−1

)

=
∞∏
i=1

(
1−Qqi−1+D

)−1

( ∞∑
k=0

qk/2

(q; q)k
xk−j

)
=

∞∑
k=0

qk/2

(q; q)k
xk−j

∞∏
i=1

(
1−Qqi−1+k−j)−1

.

Rewriting this expression slightly, one finds that

Φj(x) =
1

∞∏
i=1

(1− qi−j−1)

∞∑
k=0

(Qq−j ; q)kq
k/2

(q; q)k
xk−j . (2.12)

Thus the essential part of Φj(x)’s turn out to be q-hypergeometric functions.
One can similarly cut unnecessary computation for the q-difference Kac–Schwarz opera-

tors (1.3). Namely, one can use (2.8) to rewrite A = G · q−D ·G−1 as

A =
∞∏
i=1

(
1−Qqi−1+D

)−1 · q−D
(
1− q1/2x

)
·
∞∏
i=1

(
1−Qqi−1+D

)
= q−D − q−Dq1/2

∞∏
i=1

(
1−Qqi−1+D

)−1 · x ·
∞∏
i=1

(
1−Qqi−1+D

)
.

By the operator identity

x−1f(D)x = f(D + 1), (2.13)

the main part of the second term on the right side can be computed as

∞∏
i=1

(
1−Qqi−1+D

)−1 · x ·
∞∏
i=1

(
1−Qqi−1+D

)
= x

∞∏
i=1

(
1−Qqi+D

)−1 ·
∞∏
i=1

(
1−Qqi−1+D

)
= x

(
1−QqD

)
.

Thus A can be expressed as

A = q−D
(
1− q1/2x

(
1−QqD

))
. (2.14)

Moreover, this computation shows that B can be obtained as an inverse of x(1−QqD):

B =
(
1−QqD

)−1
x−1. (2.15)

The q-difference equation (2.2) for Φ0(x) reads

q−D
(
1− q1/2x

(
1−QqD

))
Φ0(x) = Φ0(x).

This equation can be converted to the equation(
1− q1/2x

)
Φ0(x) =

(
1−Qq1/2x

)
Φ0(qx), (2.16)

known in the literature [26, 32, 35, 36, 66].



q-Difference Kac–Schwarz Operators in Topological String Theory 11

2.4 Relation to hypergeometric tau functions

(2.4) and (2.10) belong to a class of KP tau functions that can be expressed in the x-variables
as

τ(x) =
〈
0 |Γ+(x)hΓ−

(
q−ρ
)
| 0
〉
, (2.17)

where h is an operator of the form

h = exp

(∑
n∈Z

log hn:ψ−nψ
∗
n:

)
. (2.18)

In the correspondence with Z × Z matrices, h amounts to a diagonal matrix, and the parame-
ters hn are nothing but the diagonal matrix elements. The generating operator G on V corre-
sponds to the generating operator g = hΓ−(q−ρ) on the fermionic Fock space.

These KP tau functions can be derived from tau functions of the 2D Toda hierarchy of the
form

τ(s, t, t̃) =
〈
s | γ+(t)hγ−(t̃) | s

〉
, (2.19)

where

γ−(t̃) = exp

( ∞∑
k=1

t̃kJ−k

)
,

by specialization to

s = 0, tk =
1

k

∞∑
i=1

xki , t̃k =
qk/2

k(1− qk)
.

Toda tau functions of the form (2.19), called “hypergeometric tau functions”, were introduced
by Orlov and Scherbin in their study on multi-variate hypergeometric functions [51, 52]. As
pointed out therein (see also the work of Kharchev, Marshakov, Mironov and Morozov [37] in
a different context), h is diagonal with respect to the basis {|λ〉}λ∈P of the charge-0 sector, and
the diagonal matrix elements have the contents-product form

〈λ |h |λ〉 =
∏

(i,j)∈λ

rj−i+1,

where

rn =
hn
hn−1

.

Since the work Okounkov [48], hypergeometric tau functions have played a significant role as
generating functions of Hurwitz numbers and many other combinatorial notions [5, 24, 25, 27,
28, 30, 44, 59, 65] (see also Harnad’s comprehensive review [29]).

In the case of the resolved conifold, see (2.10), the operator h can be expressed as

h = exp

( ∞∑
k=1

Qk

k(1− qk)
V

(k)
0

)
.

Since

∞∑
k=1

Qk

k(1− qk)
V

(k)
0 =

∑
n∈Z

∞∑
k=1

Qkqkn

k(1− qk)
:ψ−nψ

∗
n:,
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Figure 2. Web diagram (solid) and toric diagram (gray) of strip geometry.

the parameters hn, rn can be computed as

hn = exp

( ∞∑
k=1

Qkqkn

k(1− qk)

)
=

∞∏
i=1

(
1−Qqi−1+n

)−1

and

rn = 1−Qqn−1.

This belongs to a case considered by Orlov and Scherbin in the context of q-hypergeometric
functions. As we show in the next section, tau functions in more general strip geometry, too,
have a similar interpretation.

3 Strip geometry

3.1 Generalities

The toric diagram of strip geometry (Fig. 2) is a strip of height 1 divided to triangles of area 1/2.
If the toric diagram consists of N triangles, the associated web diagram is acyclic and has N
vertices, N−1 internal lines and N+2 external lines (called “legs” for short). The legs other than
the leftmost and rightmost ones are vertical. Let Q1, . . . , QN−1 denote the Kähler parameters
assigned to the internal lines.

Let Zα0αN
β1···βN denote the open string amplitudes of this geometry. α0, αN are partitions on the

leftmost and rightmost legs, and β1, . . . , βN are partitions on the vertical legs. The method of
topological vertex is known to work particularly well for these amplitudes.

In the case where α0 = αN = ∅, these amplitudes are computed by Iqbal and Kashani-
Poor [33] in a closed form. To state their result, we define the sign σn = ±1 of the n-th vertex
in accordance with the direction of the vertical leg emanating from the vertex:

(a) σn = +1 if the vertical leg points up,

(b) σn = −1 if the vertical leg points down.

We further introduce the auxiliary notations

β(n) =

{
βn if σn = +1,
tβn if σn = −1,

Qmn = QmQm+1 · · ·Qn−1.

The result of Iqbal and Kashani-Poor thereby reads

Z∅∅
β1···βN = s tβ1

(
q−ρ
)
· · · s tβN

(
q−ρ
) ∏

1≤m<n≤N

∞∏
i,j=1

(
1−Qmnq−

tβ
(m)
i −β(n)

j +i+j−1)−σmσn , (3.1)

where tβ
(n)
i and β

(n)
i denote the i-th parts of tβ(n) and β(n).
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The amplitudes not restricted to α0 = αN = ∅ are known to have the following fermionic
expression [16, 46, 58]:

Zα0αN
β1···βN = q(1−σ1)κ(α0)/4q(1+σN )κ(αN )/4s tβ1

(
q−ρ
)
· · · s tβN

(
q−ρ
)

×
〈

tα0 |Γσ1−
(
q−β

(1)−ρ)Γσ1+

(
q−

tβ(1)−ρ)(σ1Q1σ2)L0 · · ·

× Γ
σN−1
−

(
q−β

(N−1)−ρ)ΓσN−1
+

(
q−

tβ(N−1)−ρ)(σN−1QN−1σN
)L0

× ΓσN−
(
q−β

(N)−ρ)ΓσN+

(
q−

tβ(N)−ρ) |αN〉, (3.2)

where we have used the common notations

κ(λ) =

∞∑
i=1

λi(λi − 2i+ 1), L0 =
∑
n∈Z

n:ψ−nψ
∗
n:,

and Γσ±(x) denote either Γ±(x) or the vertex operators

Γ′±(x) =

∞∏
i=1

Γ′±(xi), Γ′±(z) = exp

(
−
∞∑
k=1

(−z)k

k
J±k

)
of another type [64] as

Γσ±(x) =

{
Γ±(x) if σ = +1,

Γ′±(x) if σ = −1.

The amplitude for N = 1 (with σ1 = 1) agrees with the single topological vertex Cλµν :

Zλµν = Cλµν = qκ(µ)/2s tν

(
q−ρ
)∑
η∈P

s tλ/η

(
q−ν−ρ

)
sµ/η

(
q−

tν−ρ).
The formula (3.1) of Iqbal and Kashani-Poor can be recovered from (3.2) as well. If α0 =

αN = ∅, (3.2) simplifies as

Z∅∅
β1···βN = s tβ1

(
q−ρ
)
· · · s tβN

(
q−ρ
)〈

0 |Γσ1−
(
q−β

(1)−ρ)Γσ1+

(
q−

tβ(1)−ρ)(σ1Q1σ2)L0 · · ·

× Γ
σN−1
−

(
q−β

(N−1)−ρ)ΓσN−1
+

(
q−

tβ(N−1)−ρ)(σN−1QN−1σN )L0

× ΓσN−
(
q−β

(N)−ρ)ΓσN+

(
q−

tβ(N)−ρ) | 0〉.
One can use the commutation relations [50, 64]

Γ+(x)Γ−(y) =

∞∏
i,j=1

(1− xiyj)−1 · Γ−(y)Γ+(x),

Γ′+(x)Γ′−(y) =

∞∏
i,j=1

(1− xiyj)−1 · Γ′−(y)Γ′+(x),

Γ+(x)Γ′−(y) =

∞∏
i,j=1

(1 + xiyj) · Γ′−(y)Γ+(x),

Γ′+(x)Γ−(y) =
∞∏

i,j=1

(1 + xiyj) · Γ−(y)Γ′+(x) (3.3)

to move Γσ+’s to the right until they hit |0〉 and disappears. What remains are Γσ−’s, which hit 〈0|
and disappear. Contributions of c-number factors in (3.3) give rise to the infinite products
in (3.1).
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3.2 Generating functions for vertical legs

Let us consider the generating function

τn(x) =
∑
βn∈P

s tβn
(x)Zn,βn/Z,

where

Zn,βn = Z∅∅
···∅βn∅···, Z = Z∅∅

∅···∅,

of the normalized open string amplitudes with respect to the partition βn on the n-th vertical
leg. As we show below, τn(x) has a fermionic expression that implies that τn(x) is a special KP
tau function of the type shown in (2.17).

The unnormalized amplitudes are a specialization of (3.1):

Zn,βn = s tβn

(
q−ρ
) ∏
m<n

∞∏
i,j=1

(
1−Qmnq−β

(n)
i +i+j−1

)−σmσn
×
∏
m>n

∞∏
i,j=1

(
1−Qnmq−

tβ
(n)
i +i+j−1

)−σnσm .
The normalized amplitudes Zn,βn/Z can be cast into a fermionic expression with the aid of (2.9)
and its variant [61]

∞∏
i,j=1

1−Qq− tλi+i+j−1

1−Qqi+j−1
=

〈
tλ | exp

(
−
∞∑
k=1

Qkqk

k(1− qk)
V

(−k)
0

)
| tλ

〉
(3.4)

as follows.

Lemma 3.1. The normalized amplitudes can be expressed as

Zn,βn/Z =
〈

tβn |hΓ−(q−ρ) | 0
〉
, (3.5)

where

h = exp

(
−
∑
m<n

σm

∞∑
k=1

Qkmn
k(1− qk)

V
(k)

0 +
∑
m>n

σm

∞∑
k=1

Qknmq
k

k(1− qk)
V

(−k)
0

)
(3.6)

in the case where σn = +1, and

h = exp

(
−
∑
m<n

σm

∞∑
k=1

Qkmnq
k

k(1− qk)
V

(−k)
0 +

∑
m>n

σm

∞∑
k=1

Qknm
k(1− qk)

V
(k)

0

)
(3.7)

in the case where σn = −1.

Proof. First consider the case where σn = +1. The normalized amplitudes in this case can be
expressed as

Zn,βn/Z = s tβn
(q−ρ)

∏
m<n

∞∏
i,j=1

(1−Qmnq−βn,i+i+j−1)−σm

(1−Qmnqi+j−1)−σm

×
∏
m>n

∞∏
i,j=1

(1−Qnmq−
tβn,i+i+j−1)−σm

(1−Qnmqi+j−1)−σm
.
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One can apply (2.9) to the quotients in the product over m < n and (3.4) to the quotient in the
product over m > n. This yields an expression of the form (3.5) with h defined as (3.6). Next
examine the case where σn = −1. The normalized amplitudes changes as

Zn,βn/Z = s tβn
(q−ρ)

∏
m<n

∞∏
i,j=1

(1−Qmnq−
tβn,i+i+j−1)σm

(1−Qmnqi+j−1)σm

×
∏
m>n

∞∏
i,j=1

(1−Qnmq−βn,i+i+j−1)σm

(1−Qnmqi+j−1)σm
.

One can derive an expression of the form (3.5) in the same way with the operator h defined
as (3.7). �

The fermionic expression (3.5) of the normalized amplitudes imply the following conclusion.

Theorem 3.2. τn(x) is a tau function of the KP hierarchy with the fermionic expression

τn(x) =
〈
0 |Γ+(x)hΓ−(q−ρ) | 0〉, (3.8)

where h is the operator shown in (3.6) and (3.7).

Remark 3.3. h is an operator of the form (2.18). The parameters hj , rj can be computed as
follows:

(a) In the case where σn = +1,

hj = exp

(
−
∑
m<n

σm

∞∑
k=1

Qkmn
k(1− qk)

qkj +
∑
m>n

σm

∞∑
k=1

Qknmq
k

k(1− qk)
q−kj

)

=
∏
m<n

exp

−σm ∑
i,k=1

(Qmnq
i−1+j)k

k

 · ∏
m>n

exp

σm ∞∑
i,k=1

(Qnmq
i−j)k

k


=
∏
m<n

∞∏
i=1

(
1−Qmnqi−1+j

)σm · ∏
m>n

∞∏
i=1

(
1−Qnmqi−j

)−σm (3.9)

and

rj =
∏
m<n

(
1−Qmnqj−1

)−σm · ∏
m>n

(
1−Qnmq1−j)−σm .

(b) In the case where σn = −1,

hj = exp

(
−
∑
m<n

σm

∞∑
k=1

Qkmnq
k

k(1− qk)
q−kj +

∑
m>n

σm

∞∑
k=1

Qknm
k(1− qk)

qkj

)

=
∏
m<n

exp

−σm ∑
i,k=1

(Qmnq
i−j)k

k

 · ∏
m>n

exp

σm ∞∑
i,k=1

(Qnmq
i−1+j)k

k


=
∏
m<n

∞∏
i=1

(
1−Qmnqi−j

)σm · ∏
m>n

∞∏
i=1

(
1−Qnmqi−1+j

)−σm (3.10)

and

rj =
∏
m<n

(
1−Qmnq1−j)σm · ∏

m>n

(
1−Qnmqj−1

)σm .
This result shows that the tau functions τn(x) are examples of Orlov and Scherbin’s q-hypergeo-
metric tau functions [51, 52].
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3.3 Admissible basis and Kac–Schwarz operators

(3.8) is a somewhat complicated, but rather straightforward generalization of the tau func-
tion (2.10) for the resolved conifold. One can obtain the generating operator G of an admissible
basis of W and the associated q-difference Kac–Schwarz operators A, B in much the same way
as the case of the resolved conifold.

One can derive the generating operator G from g = hΓ−(q−ρ) by replacing

V
(k)

0 → qkD, Γ−(q−ρ)→
∞∏
i=1

(
1− qi−1/2x

)−1
.

Thus the generating operator G, like (2.11), takes the factorized form

G = H ·
∞∏
i=1

(
1− qi−1/2x

)−1
, (3.11)

where H is the following avatar of h:

(a) In the case where σn = +1,

H =
∏
m<n

∞∏
i=1

(
1−Qmnqi−1+D

)σm · ∏
m>n

∞∏
i=1

(
1−Qnmqi−D

)−σm . (3.12)

(b) In the case where σn = −1,

H =
∏
m<n

∞∏
i=1

(
1−Qmnqi−D

)σm · ∏
m>n

∞∏
i=1

(
1−Qnmqi−1+D

)−σm . (3.13)

Note that (3.12) and (3.13) have the same structure as the expressions (3.9) and (3.10) of the
parameters hj of the operator h.

Let {Φj(x)}∞j=0 denote the admissible basis generated by G:

Φj(x) = H

(
x−j

∞∏
i=1

(
1− qi−1/2x

)−1

)
=
∞∑
k=1

qk/2

(q; q)k
Hxk−j .

Rewriting this expression further, we obtain the following result.

Theorem 3.4. The basis elements Φj(x) are functions of the following form:

(a) In the case where σn = +1,

Φj(x) =
∏
m<n

∞∏
i=1

(
1−Qmnqi−1−j)σm · ∏

m>n

∞∏
i=1

(
1−Qnmqi+j

)−σm
×
∞∑
k=0

∏
m<n

(Qmnq
−j ; q)−σmk

∏
m>n

(Qnmq
j ; q−1)−σmk qk/2

(q; q)k
xk−j .

(b) In the case where σn = −1,

Φj(x) =
∏
m<n

∞∏
i=1

(
1−Qmnqi+j

)σm · ∏
m>n

∞∏
i=1

(
1−Qnmqi−1−j)−σm

×
∞∑
k=0

∏
m<n

(Qmnq
j ; q−1)σmk

∏
m>n

(Qnmq
−j ; q)σmk qk/2

(q; q)k
xk−j .



q-Difference Kac–Schwarz Operators in Topological String Theory 17

As remarked in the case of the resolved conifold, see (2.12), the essential part of Φj(x)’s are
q-hypergeometric functions. In particular, Φ0(x) agrees, up to a constant multiplier, with the
generating function

Ψ(x) =
∞∑
k=0

xkZn,(1k)/Z (3.14)

of the normalized open string amplitudes considered in our previous work [60].

Let us proceed to computation of the q-difference Kac–Schwarz operators A, B. Since G has
the partially factorized form (3.11) and the second factor has the property

∞∏
i=1

(
1− qi−1/x

)−1 · q−D ·
∞∏
i=1

(
1− qi−1/2x

)
= q−D

(
1− q1/2x

)
,

see (2.8), we have the following preliminary expressions of A and B:

A = q−DH ·
(
1− q1/2x

)
·H−1, B = H · x−1 ·H−1.

Thus our main task is to compute H · x±1 ·H−1.

Lemma 3.5.

H · x ·H−1 = xR,

where

R =
∏
m<n

(
1−QmnqσnD

)−σmσn · ∏
m>n

(
1−Qnmq−σnD

)−σnσm . (3.15)

Proof. By the identity (2.13), one can move x to the left. In the case where σn = +1, this
computation proceeds as follows:

H · x ·H−1 = x
∏
m<n

∞∏
i=1

(
1−Qmnqi+D

)σm · ∏
m>n

∞∏
i=1

(
1−Qnmqi−1−D)−σm

×
∏
m>n

∞∏
i=1

(
1−Qnmqi−D

)σm · ∏
m<n

∞∏
i=1

(
1−Qmnqi−1+D

)−σm
= x

∏
m<n

(
1−QmnqD

)−σm · ∏
m>n

(
1−Qnmq−D

)−σm .
The case where σn = −1 can be treated in the same way:

H · x ·H−1 = x
∏
m<n

∞∏
i=1

(
1−Qmnqi−1−D)σm · ∏

m>n

∞∏
i=1

(
1−Qnmqi+D

)−σm
×
∏
m>n

∞∏
i=1

(
1−Qnmqi−1+D

)σm · ∏
m<n

∞∏
i=1

(
1−Qmnqi−D

)−σm
= x

∏
m<n

(
1−Qmnq−D

)σm · ∏
m>n

(
1−QnmqD

)σm . �

By this lemma applied to the preliminary expression, we find the following explicit form of A
and B.
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Theorem 3.6. The q-difference Kac–Schwarz operators can be expressed as

A = q−D
(
1− q1/2xR

)
, B = (xR)−1 = R−1 · x−1,

where R is the operator defined in (3.15).

This is a generalization of the result for the resolved conifold, see (2.14) and (2.15), for which
R = 1−QqD. The q-difference equation (2.16) for Φ0(x) is generalized as(

1− q1/2xR
)
Φ0(x) = Φ0(qx). (3.16)

R can be expressed as

R =
Q(qD)

P (qD)
,

where P (qD) and Q(qD) are Laurent polynomials qD:

P (qD) =
∏

m<n,σmσn>0

(
1−QmnqσnD

)
·

∏
m>n,σmσn>0

(
1−Qnmq−σnD

)
,

Q(qD) =
∏

m<n,σmσn<0

(
1−QmnqσnD

)
·

∏
m>n,σmσn<0

(
1−Qnmq−σnD

)
.

(3.16) agrees with the q-difference equation derived for the generating function (3.14) in our
previous work [60].

3.4 Generating functions for non-vertical legs

Let us now consider the generating functions

τ0(x) =
∑
α0∈P

s tα0
(x)Z0,α0/Z, Z0,α0 = Zα0∅

∅···∅,

τN+1(x) =
∑
αN∈P

s tαN
(x)ZN+1,αN

/Z, ZN+1,αN
= Z∅αN

∅···∅,

of the normalized open string amplitudes for the leftmost and rightmost legs. As it turns out,
their structure is quite distinct from the foregoing generating functions τ1(x), . . . , τN (x).

The unnormalized amplitudes are a specialization of (3.2):

Z0,α0 = q(1−σ1)κ(α0)/4
〈

tα0 |Γσ1−
(
q−ρ
)
Γσ1+

(
q−ρ
)
(σ1Q1σ2)L0 · · ·

× (σN−1QN−1σN )L0ΓσN−
(
q−ρ
)
ΓσN+

(
q−ρ
)
| 0
〉
, (3.17)

ZN+1,αN
= q(1+σN )κ(αN )/4

〈
0 |Γσ1−

(
q−ρ
)
Γσ1+

(
q−ρ
)
(σ1Q1σ2)L0 · · ·

× (σN−1QN−1σN )L0ΓσN−
(
q−ρ
)
ΓσN+ (q−ρ)|αN 〉. (3.18)

These amplitudes can be converted to a reduced form by the following procedure:

1. κ(λ) is the matrix elements of the diagonal operator

K =
∑
n∈Z

(n− 1/2)2:ψ−nψ
∗
n:

on the fermionic Fock space in the sense that

κ(λ) = 〈λ|K|λ〉.

Consequently, the c-number prefactors q(1−σ1)κ(α0)/4 and q(1+σN )κ(αN )/4 can be moved
inside 〈 tα0| and |αN 〉 as the operators q−(1−σ1)K/4 and q(1+σN )K/4. Note that the sign of
the exponent of the first factor is flipped because of the identity κ( tα0) = −κ(α0).
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2. Operators of the form QL0 in (3.17) can be moved to the right until they hit the vacuum
vector and disappear. Those in (3.18) can be eliminated in the same way. In the course
of this procedure, the vertex operators are modified as

QL0Γσ−(x) = Γσ−(Qx)QL0 , Γσ+(x)QL0 = QL0Γσ+(Qx).

3. Γσ−’s in (3.17) and Γσ+’s in (3.18) can be moved until they hit the vacuum vectors and
disappear. Exchanging the order of vertex operators yields c-number factors as the com-
mutation relations (3.3) show. These c-number factors do not depend on α,αN and cancel
out in the normalized amplitudes.

Thus the following reduced expressions of the normalized amplitudes are obtained:

Z0,α0/Z =

〈
tα0 | q−(1−σ1)K/4Γσ1−

(
q−ρ
) N∏
n=2

Γσn−
(
σ1Q1nσnq

−ρ) | 0〉 ,
ZN+1,αN

/Z =

〈
0 |

N−1∏
n=1

Γσn+

(
σnQnNσNq

−ρ) · ΓσN+

(
q−ρ
)
q(1+σN )K/4 |αN

〉
.

This implies that the generating functions τ0(x), τN+1(x) of these normalized amplitudes are
tau functions of the KP hierarchy:

Theorem 3.7. τ0(x) and τN+1(x) are tau functions of the KP hierarchy with the following
fermionic expression:

τ0(x) =

〈
0 |Γ+(x)q−(1−σ1)K/4Γσ1−

(
q−ρ
) N∏
n=2

Γσn−
(
σ1Q1nσnq

−ρ) | 0〉 , (3.19)

τN+1(x) =

〈
0 |

N−1∏
n=1

Γσn+

(
σnQnNσNq

−ρ) · ΓσN+

(
q−ρ
)
q(1+σN )K/4Γ′−(x) | 0

〉
. (3.20)

Remark 3.8. One can rewrite the fermionic expression of τN+1(x) as

τN+1(x) =

〈
0 |Γ+(x)q−(1+σN )K/4Γ−σN−

(
q−ρ
)N−1∏
n=1

Γ−σn−
(
σNQNnσnq

−ρ) | 0〉 , (3.21)

where Qnm for n > m denotes QnQn−1 · · ·Qm−1. This shows that τN+1(x) may be thought of
as the generating function for the leftmost leg of the web diagram rotated 180 degrees.

Although the structure of (3.19), (3.20) and (3.21) are distinct from the tau functions (3.8)
for the vertical legs, q-difference Kac–Schwarz operators can be derived in much the same way.
We here present the result for τ0(x) only. τN+1(x) can be treated in the same way.

The generating operator G for τ0(x) can be obtained as an avatar of the operator

g = q−(1−σ1)K/4Γσ1−
(
q−ρ
) N∏
n=2

Γσn−
(
σ1Q1nσnq

−ρ)
on the fermionic Fock space. In view of the correspondence

K ←→ (∆− 1/2)2 ←→ (D − 1/2)2,
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the first factor q−(1−σ1)K/4 corresponds to the operator q−(1−σ1)(D−1/2)2/4 on V . On the other
hand, just as Γ−(q−ρ) is translated to (2.5), vertex operators of the form Γσ−(Qq−ρ) corresponds
to the multiplication operators

exp

(
σ
∞∑
k=1

(σQq1/2)k

k(1− qk)
xk

)
=
∞∏
i=1

(
1− σQqi−1/2

)−σ
.

Thus G turns out to take the following form:

G = q−(1−σ1)(D−1/2)2/4
∞∏
i=1

(
1− σ1q

i−1/2x
)−σ1 · N∏

n=2

∞∏
i=1

(
1− σ1Q1nq

i−1/2x
)−σn .

The associated admissible basis of W consists of the following functions:

(a) In the case where σ1 = +1,

Φj(x) = x−j
∞∏
i=1

(
1− qi−1/2x

)−1 ·
N∏
n=2

∞∏
i=1

(
1−Q1nq

i−1/2x
)−σn ,

(b) in the case where σ1 = −1,

Φj(x) = q−(D−1/2)2/2

(
x−j

∞∏
i=1

(
1 + qi−1/2x

)
·
N∏
n=2

∞∏
i=1

(
1 +Q1nq

i−1/2x
)−σn) .

These results show that the structure of the generating operator and the admissible basis,
too, is entirely different from the case of vertical legs shown in (3.11). In particular, the essential
part of Φj(x)’s are composite quantum dilogarithmic functions. In this sense, the situation is
rather similar to the case of C3, see (2.6).

Computation of the q-difference Kac–Schwarz operators is more or less parallel to the case
of C3 except that the avatar q(D−1/2)2/2 of qK/2 joins the game.

Theorem 3.9. The q-difference Kac–Schwarz operators A, B for τ0(x) can be expressed as

A = q−D
(
1− q1/2x

) N∏
n=2

(
1−Q1nq

1/2x
)σn , B = x−1

in the case where σ1 = +1, and

A = q−D
(
1 + q1/2xq−D

)−1
N∏
n=2

(
1 +Q1nq

1/2xq−D
)σn , B =

(
xq−D

)−1
= qDx−1

in the case where σ1 = −1.

Proof. Since the case where σ1 = +1 is simpler, let us explain the case where σ1 = −1. In this
case, G is a product of two operators as

G = q−(D−1/2)2/2G′,

where

G′ =

∞∏
i=1

(
1 + qi−1/2x

)
·
N∏
n=2

∞∏
i=1

(
1 +Q1nq

i−1/2x
)−σn .
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Figure 3. Closed topological vertex with two stacks of branes.

As an intermediate step, one can compute A′ = G′ · q−D ·G′−1 with the aid of (2.7) as

A′ = q−D
∞∏
i=1

(
1 + qi+1/2x

)
·
N∏
n=2

∞∏
i=1

(
1 +Q1nq

i+1/2x
)−σn

×
N∏
n=2

∞∏
i=1

(
1 +Q1nq

i−1/2x
)σn · ∞∏

i=1

(
1 + qi−1/2x

)−1

= q−D
(
1 + q1/2x

)−1
N∏
n=2

(
1 +Q1nq

1/2x
)σn .

Thus A = G · q−D ·G−1 can be expressed as

A = q−(D−1/2)2/2 ·
(
1 + q1/2x

)−1
N∏
n=2

(
1 +Q1nq

1/2x
)σn · q(D−1/2)2/2.

This turns into the final form by the operator identity

q−(D−1/2)2/2f(x)q(D−1/2)2/2 = f
(
xq−D

)
. �

4 Closed topological vertex

Let Zβ1β2 denote the open string amplitude of closed topological vertex with two stacks of branes
as shown in Fig. 3. Q1, Q2, Q3 are the Kähler parameters assigned to the internal lines. The
amplitude Z∅∅ in the closed sector was computed by Bryan and Karp [9] and Su lkowski [57].
In our previous work [61], we computed Zβ1,β2 and obtained the following fermionic expression:

Zβ1β2 = qκ(β2)/2
∞∏

i,j=1

(
1−Q1Q2q

−β1,i− tβ2,j+i+j−1
)−1

×
〈

tβ1 |Γ−
(
q−ρ
)
Γ+

(
q−ρ
)
(−Q1)L0Γ′−

(
q−ρ
)
Γ′+
(
q−ρ
)
(−Q3)L0

× Γ−
(
q−ρ
)
Γ+

(
q−ρ
)
(−Q2)L0Γ′−

(
q−ρ)Γ′+

(
q−ρ
)
| tβ2

〉
. (4.1)

The main part 〈 tβ1| · · · | tβ2〉 of (4.1) happens to be essentially the same as the open string
amplitude of strip geometry shown in Fig. 4. This part is corrected by the first two factors. In
the previous work, we made use of this particular structure to derive q-difference equations for
the generating functions

Ψ1(x) =

∞∑
k=0

xkZ(1k)∅/Z, Ψ2(x) =

∞∑
k=0

xkZ∅(1k)/Z, Z = Z∅∅, (4.2)

of normalized open string amplitudes.
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Figure 4. New strip geometry emerging from Zβ1β2
.

4.1 Generating functions as tau functions

We can construct two multi-variate generating functions:

τ1(x) =
∑
β∈P

s tβ(x)Z1,β/Z, Z1,β = Zβ∅,

τ2(x) =
∑
β∈P

s tβ(x)Z2,β/Z, Z2,β = Z∅β.

As we show below, both τ1(x) and τ2(x) are tau functions of the KP hierarchy, and the asso-
ciated points of the Sato Grassmannian have admissible bases that are generated by q-difference
operators. The reasoning is similar to the case the of generating functions of Z0,α0/Z and
ZN+1,αN

/Z in the last section.
Let us examine Z1,β/Z in detail. As explained in the case of strip geometry, one can eliminate

the operators of the form (−Q)L0 and Γσ− from the unnormalized amplitude

Z1,β =
∞∏

i,j=1

(
1−Q1Q2q

−βi+i+j−1
)−1〈 tβ |Γ−

(
q−ρ
)
Γ+

(
q−ρ
)
(−Q1)L0Γ′−

(
q−ρ
)

× Γ′+
(
q−ρ
)
(−Q3)L0Γ−

(
q−ρ
)
Γ+

(
q−ρ
)
(−Q2)L0Γ′−

(
q−ρ
)
Γ′+
(
q−ρ
)
| 0
〉

as

Z1,β = (constant independent of β) ·
∞∏

i,j=1

(
1−Q1Q2q

−βi+i+j−1
)−1

×
〈

tβ |Γ−
(
q−ρ
)
Γ′−
(
−Q1q

−ρ)Γ−(Q1Q3q
−ρ)Γ′−(−Q1Q2Q3q

−ρ) | 0〉,
The first constant factor disappears in the normalized amplitude. The contribution of the
infinite product can be computed by the formula (2.9). Thus the normalized amplitude can be
expressed as

Z1,β/Z =
〈

tβ | g1 | 0
〉
,

where

g1 = exp

(
−
∞∑
k=1

(Q1Q2)k

k(1− qk)
V

(k)
0

)
× Γ−

(
q−ρ
)
Γ′−
(
−Q1q

−ρ)Γ−(Q1Q3q
−ρ)Γ′−(−Q1Q2Q3q

−ρ). (4.3)

In much the same way, Z2,β/Z turns out to be expressed as

Z2,β/Z =
〈
0 | g2 | tβ

〉
,
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where

g2 = Γ+

(
−Q1Q2Q3q

−ρ)Γ′+(Q2Q3q
−ρ)Γ+

(
−Q2q

−ρ)Γ′+(q−ρ)
× exp

( ∞∑
k=1

(Q1Q2q)
k

k(1− qk)
V

(−k)
0

)
q−K/2. (4.4)

These expressions of the normalized amplitudes lead us to the following conclusion.

Theorem 4.1. τ1(x) and τ2(x) are tau functions of the KP hierarchy with the fermionic ex-
pression

τ1(x) =
〈
0 |Γ+(x)g1 | 0

〉
, τ2(x) =

〈
0 | g2Γ−(x) | 0

〉
,

where g1 and g2 are the operators defined in (4.3) and (4.4).

Remark 4.2. The fermionic expression of τ2(x) can be rewritten as

τ2(x) =
〈
0 |Γ+(x) tg2 | 0

〉
,

where

tg2 = q−K/2 exp

( ∞∑
k=1

(Q1Q2q)
k

k(1− qk)
V

(−k)
0

)
× Γ′−

(
q−ρ
)
Γ−
(
−Q2q

−ρ)Γ′−(Q2Q3q
−ρ)Γ−(−Q1Q2Q3q

−ρ).
4.2 Admissible basis and Kac–Schwarz operators

Since all building blocks of τ1(x) and τ2(x) are now familiar, one can derive the associated
admissible bases and q-difference Kac–Schwarz operators in almost the same way as we have
done in the preceding sections. Actually, the computations are partly more complicated, and
exhibit a new aspect that is characteristic of this case. Let us consider τ1(x) to illustrate the
computations.

The generating operator G of an admissible basis {Φj(x)}∞j=0 for τ1(x) takes such a form as

G =
∞∏
i=1

(
1−Q1Q2q

i−1+D
)
· Φ(x),

where Φ(x) is the composite dilogarithmic function

Φ(x) =

∞∏
i=1

(1−Q1q
i−1/2x)(1−Q1Q2Q3q

i−1/2x)

(1− qi−1/2x)(1−Q1q3qi−1/2x)
.

The admissible basis is generated from Φ(x) as

Φj(x) =
∞∏
i=1

(
1−Q1Q2q

i−1+D
)(
x−jΦ(x)

)
.

Φj(x)’s are neither quantum dilogarithmic nor q-hypergeometric. Power series expansion of
these functions take such a form as

Φj(x) =
∞∏
i=1

(
1−Q1Q2q

i−1−j) · ∞∑
k=0

bk
(Q1Q2q−j ; q)k

xk−j , (4.5)
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where bk’s are coefficients of the power series expansion

Φ(x) =

∞∑
k=0

bkx
k

of Φ(x). Comparing the expansion of Φ0(x) with the expansion of the generating function Ψ1(x)
presented in our previous work [61], one can confirm that Φ0(x) agrees with Ψ1(x) except for

the constant multiplier
∞∏
i=1

(1−Q1Q2q
i−1).

In the previous work, we derived a q-difference equation for Ψ1(x) from the q-difference
equation

Φ(qx) =
(1− q1/2x)(1−Q1Q3q

1/2x)

(1−Q1q1/2x)(1−Q1Q2Q3q1/2x)
Φ(x) (4.6)

for Φ(x) by a quite primitive method. The notion of Kac–Schwarz operators leads us to a more
systematic derivation of the q-difference equation.

Let us proceed to the q-difference Kac–Schwarz operators. It is easy to compute B = G ·
x−1 ·G−1:

B =

∞∏
i=1

(
1−Q1Q2q

i−1+D
)
· x−1 ·

∞∏
i=1

(
1−Q1Q2q

i−1+D
)−1

=

∞∏
i=1

(
1−Q1Q2q

i−1+D
)
·
∞∏
i=1

(
1−Q1Q2q

i+D
)−1 · x−1 =

(
1−Q1Q2q

D
)
· x−1. (4.7)

To compute A = G · q−D ·G−1, one can start from the algebraic relation

Φ(x) · q−D · Φ(x)−1 = q−D
(1− q1/2x)(1−Q1Q3q

1/2x)

(1−Q1q1/2x)(1−Q1Q2Q3q1/2x)
,

which is the q-difference equation (4.6) in disguise. This relation yields the following intermediate
expression of A:

A = q−D
∞∏
i=1

(
1−Q1Q2q

i−1+D
)
· (1− q1/2x)(1−Q1Q3q

1/2x)

(1−Q1q1/2x)(1−Q1Q2Q3q1/2x)

×
∞∏
i=1

(
1−Q1Q2q

i−1+D
)−1

.

Since (4.7) implies that

∞∏
i=1

(
1−Q1Q2q

i−1+D
)
· x ·

∞∏
i=1

(
1−Q1Q2q

i−1+D
)−1

= x
(
1−Q1Q2q

D
)−1

,

one can rewrite the foregoing intermediate expression of A as

A = q−D
(
1− q1/2x(1−Q1Q2q

D)−1
) (

1−Q1Q3q
1/2x(1−Q1Q2q

D)−1
)(

1−Q1q1/2x(1−Q1Q2qD)−1
) (

1−Q1Q2Q3q1/2x(1−Q1Q2qD)−1
) . (4.8)

Let us summarize these computations. Although we omit details, similar results hold for τ2(x)
as well.

Theorem 4.3. (4.7) and (4.8) are q-difference Kac–Schwarz operators for τ1(x). (4.5) give an
admissible basis of the associated point of the Sato Grassmannian.
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4.3 Remarks on q-difference equations

Let us rewrite the equation AΦ0(x) = Φ0(x) for Φ0(x) as(
1− q1/2x

(
1−Q1Q2q

D
)−1)(

1−Q1Q3q
1/2x

(
1−Q1Q2q

D
)−1)

Φ0(x)

=
(
1−Q1q

1/2x
(
1−Q1Q2q

D
)−1)(

1−Q1Q2Q3q
1/2x

(
1−Q1Q2q

D
)−1)

qDΦ0(x). (4.9)

Although this equation looks considerably different from the q-difference equation presented in
our previous work [61], they are equivalent as we show below.

Lemma 4.4. For any constants P1, P2 and Q,(
1− P1x

(
1−QqD

)−1)(
1− P2x

(
1−QqD

)−1)
=
(
1−QqD−1

)−1(
1−QqD−2

)−1(
1−QqD−2 − P1x

)(
1−QqD−1 − P2x

)
.

Proof. Do straightforward computations using (2.13) as follows:(
1− P1x

(
1−QqD

)−1)(
1− P2x

(
1−QqD

)−1)
=
(
1− P1

(
1−QqD−1

)−1
x
)(

1− P2

(
1−QqD−1

)−1
x
)

=
(
1−QqD−1

)−1(
1−QqD−1 − P1x

)(
1−QqD−1

)−1(
1−QqD−1 − P2x

)
=
(
1−QqD−1

)−1(
1− P1x

(
1−QqD−1

)−1)(
1−QqD−1 − P2x

)
=
(
1−QqD−1

)−1(
1− P1

(
1−QqD−2x

)−1
x
)(

1−QqD−1 − P2x
)

=
(
1−QqD−1

)−1(
1−QqD−2x

)−1(
1−QqD−2 − P1x

)(
1−QqD−1 − P2x

)
. �

One can use this lemma to rewrite both sides of (4.9) and collect terms to the left side. The
outcome reads(

1−Q1Q2q
D−1

)−1(
1−Q1Q2q

D−2
)−1

ĤΦ0(x) = 0, (4.10)

where

Ĥ =
(
1−Q1Q2q

D−2 − q1/2x
)(

1−Q1Q2q
D−1 −Q1Q3q

1/2x
)

−
(
1−Q1Q2q

D−2 −Q1q
1/2x

)(
1−Q1Q2q

D−1 −Q1Q2Q3q
1/2x

)
qD.

We are thus substantially in the same situation as encountered in the previous work. Namely,
as far as Q1Q2 is not equal to integral powers of q (and this condition is assumed implicitly in the
foregoing consideration), the two operators in front of Ĥ in (4.10) are invertible on V = C((x)).
Therefore one can remove these operators and obtain the equation

ĤΦ0(x) = 0, (4.11)

which is one of the equivalent forms of the q-difference equations derived in the previous work.
Moreover, as pointed out therein, Ĥ itself can be factorized as

Ĥ =
(
1−Q1Q2q

D−2
)
K̂,

where K̂ is another q-difference operator. Therefore (4.11) can be further reduced to

K̂Φ0(x) = 0. (4.12)

It is this equation (4.12) that is proposed in our previous work as a candidate of the quantum
mirror curve of close topological vertex. Actually, the foregoing computations show that K̂ is
related to the operators on both sides of (4.9) as(

1− q1/2x
(
1−Q1Q2q

D
)−1)(

1−Q1Q3q
1/2x

(
1−Q1Q2q

D
)−1)

−
(
1−Q1q

1/2x
(
1−Q1Q2q

D
)−1)(

1−Q1Q2Q3q
1/2x

(
1−Q1Q2q

D
)−1)

qD

=
(
1−Q1Q2q

D−1
)−1

K̂.
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