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Abstract. Quadratic algebras are generalizations of Lie algebras which include the symme-
try algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The
superintegrable systems are exactly solvable physical systems in classical and quantum
mechanics. Distinct superintegrable systems and their quadratic algebras can be related
by geometric contractions, induced by Bôcher contractions of the conformal Lie algebra
so(4,C) to itself. In 2 dimensions there are two kinds of quadratic algebras, nondegenerate
and degenerate. In the geometric case these correspond to 3 parameter and 1 parameter
potentials, respectively. In a previous paper we classified all abstract parameter-free non-
degenerate quadratic algebras in terms of canonical forms and determined which of these
can be realized as quadratic algebras of 2D nondegenerate superintegrable systems on con-
stant curvature spaces and Darboux spaces, and studied the relationship between Bôcher
contractions of these systems and abstract contractions of the free quadratic algebras. Here
we carry out an analogous study of abstract parameter-free degenerate quadratic algebras
and their possible geometric realizations. We show that the only free degenerate quadratic
algebras that can be constructed in phase space are those that arise from superintegrability.
We classify all Bôcher contractions relating degenerate superintegrable systems and, sepa-
rately, all abstract contractions relating free degenerate quadratic algebras. We point out
the few exceptions where abstract contractions cannot be realized by the geometric Bôcher
contractions.
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superintegrability; Poisson structures
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1 Introduction

An abstract degenerate (quantum) quadratic algebra Q is a noncommutative multiparameter as-
sociative algebra generated by linearly independent operators X, H, L1, L2, with parameters ai,
such that H is in the center and the following commutation relations hold [17]:

[X,Lj ] =
∑

0≤e1+e2+e3+e4≤1
P (j)
e1,e2,e3,e4L

e1
1 L

e2
2 H

e3X2e4 , j = 1, 2, (1.1)
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[L1, L2] =
∑

0≤e1+e2+e3+e4≤1
Te1,e2,e3,e4{L

e1
1 , L

e2
2 , X}H

e3X2e4 . (1.2)

Finally, there is the relation:

G ≡
∑

0≤e1+e2+e3+e4≤2
Se1,e2,e3,e4

{
Le11 , L

e2
2 , X

2e4
}
He3 + c1XL1X + c2XL2X = 0, (1.3)

X0 = H0 = I,

where {Le11 , L
e2
2 , X

2e4} is the 6-term symmetrizer of three operators. The constants P
(j)
e1,e2,e3,e4 ,

Te1,e2,e3,e4 and Se1,e2,e3,e4 are polynomials in the parameters ai of degrees 1− e1 − e2 − e3 − e4,
1 − e1 − e2 − e3 − e4 and 2 − e1 − e2 − e3 − e4, respectively, while c1, c2 are of degree 0. If all
parameters aj = 0 the algebra is free. For these quantum quadratic algebras there is a natural
grading such that the operators H, Lj are 2nd order and X is 1st order. The field of scalars
can be either R or C.

An abstract degenerate (classical) quadratic algebra Q is a Poisson algebra with linearly inde-
pendent generators X , H, L1, L2, and parameters ai, satisfying relations (1.1), (1.2), (1.3) with
the commutator replaced by the Poisson bracket, H, Lj , X by H, Lj , X , and the symmetrizer
{Le11 , L

e2
2 , X

e3} by the product Le11 L
e2
2 X e3/3!.

These structures arise naturally in the study of classical and quantum superintegrable systems
in two dimensions, e.g., [23, 22], and, in the case of zero potential systems, they are examples
of Poisson structures, on which there is a considerable literature [4, 6, 20]. A quantum 2D
superintegrable system is an integrable Hamiltonian system on a 2-dimensional real or complex
Riemannian manifold with potential: H = ∆2 + V , that admits 3 algebraically independent
partial differential operators commuting with H, the maximum possible:

[H,Lj ] = 0, L3 = H, j = 1, 2, 3.

Here ∆2 is the Laplace operator on the manifold. (We call this a Helmholtz superintegrable system
with eigenvalue equation HΨ = EΨ to distinguish it from a Laplace conformally superintegrable
system, HΨ = (∆2 + V )Ψ = 0 [18].) A system is of order K if the maximum order of the
symmetry operators Lj (other than H) is K; all such systems are known for K = 1, 2 [3,
11, 14, 15]. Superintegrability captures the properties of quantum Hamiltonian systems that
allow the Schrödinger eigenvalue problem HΨ = EΨ to be solved exactly, analytically and
algebraically. A classical 2D superintegrable system is an integrable Hamiltonian system on a real

or complex 2-dimensional Riemannian manifold with potential: H =
2∑

j,k=1

gjk(x)pjpk + V (x) in

local coordinates x1, x2, p1, p2 that admit 3 functionally independent phase space functions H,
L1, L2 in involution with H, the maximum possible.

{H,Lj} = 0, L3 = H, j = 1, 2, 3.

A system is of order K if the maximum order of the constants of the motion Lj , j 6= 3, as
polynomials in p1, p2 is K. Again all such systems are known for K = 1, 2, and, for them, there
is a 1-1 relationship between classical and quantum 2nd order 2D superintegrable systems [13],
i.e., the quantum system can be computed from the classical system, and vice versa.

The possible superintegrable systems divide into six classes:

1. First order systems. These are the (zero-potential) Laplace–Beltrami eigenvalue equations
on constant curvature spaces. The symmetry algebras close under commutation to form
the Lie algebras e(2,R), e(1, 1), o(3,R) or o(2, 1). Such systems have been studied in detail,
using group theory methods.
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2. Free triplets. These are superintegrable systems with zero potential and all generators
of 2nd order. The possible spaces for which these systems can occur were classified by
Koenigs (1896). They are: constant curvature spaces, the four Darboux spaces, and eleven
4-parameter Koenigs spaces [19]. In most cases the symmetry operators will not generate a
quadratic algebra, i.e., the algebra will not close. If the system generates a nondegenerate
quadratic algebra we call it a free quadratic triplet.

3. Nondegenerate systems. These are superintegrable systems with a non-zero potential and
the generating symmetries are all of 2nd order. The space of potentials is 4-dimensional:

V (x) = a1V(1)(x) + a2V(2)(x) + a3V(3)(x) + a4.

The symmetry operators generate a nondegenerate quadratic algebra with parameters aj .

4. Degenerate systems. There are 4 generators: one 1st order X and 3 second order H,
L1, L2. Here, X2 is not contained in the span of H, L1, L2. The space of potentials is
2-dimensional: V (x) = a1V(1)(x) + a2. The symmetry operators generate a degenerate
quadratic algebra with parameters aj . Relation (1.3) is an expression of the fact that 4
symmetry operators cannot be algebraically independent. The possible degenerate sys-
tems, classified up to conjugacy with respect to the symmetry groups of their underlying
spaces, are listed in Appendix A.

5. Exceptional system. E15: V = f(x− iy), f an arbitrary function.

The exceptional case is characterized by the fact that the symmetry generators are func-
tionally linearly dependent [10, 12, 13, 15]. This is the only 2nd order functionally linearly
dependent 2D system but there are many such systems in 3D, including the Calogero
3-body system on the line. In 3D such systems have not yet been classified.

Every degenerate superintegrable system occurs as a restriction of the 3-parameter potentials to
1-parameter ones, such that one of the symmetries becomes a perfect square: L = X2. Here X
is a first order symmetry and a new 2nd order symmetry appears so that this restriction admits
more symmetries than the original system, see Remark A.1. Basic results that relate these
superintegrable systems are the closure theorems:

Theorem 1.1. A free triplet, classical or quantum, extends to a superintegrable system with
potential if and only if it generates a free quadratic algebra Q̃, degenerate or nondegenerate.

Theorem 1.2. A superintegrable system, degenerate or nondegenerate, classical or quantum,
with quadratic algebra Q, is uniquely determined by its free quadratic algebra Q̃.

These theorems were proved for systems in [16]. The proofs are constructive: Given a free
quadratic algebra Q̃ one can compute the potential V and the symmetries of the quadratic
algebra Q. Thus as far as superintegrable systems are concerned, all information about the
systems is contained in the free classical quadratic algebras.

Remark 1.3. This paper is a companion to [5] where we studied nondegenerate quadratic
algebras, and we assume that the reader has some familiarity with this prior work. In particular,
Bôcher contractions, their properties and associated notation, are treated there and we use them
in this paper without detailed comment.

The layout of this paper is as follows: In Section 2 we show how degenerate Helmholtz
superintegrable systems can be split into Stäckel equivalence classes of Laplace conformally
superintegrable systems and we determine how each Helmholtz system can be characterized in
its equivalence class. In Section 3 we determine all Bôcher, i.e., geometrical, contractions of the
Laplace systems and obtain complete lists of the possible Helmholtz contractions. In Section 4
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we classify all abstract free quadratic algebras and determine which of these can be realized as
the quadratic algebra of a Helmholtz degenerate superintegrable system. In Section 5 we classify
all abstract contractions of abstract free quadratic algebras and determine which of these can be
realized as Bôcher and Heisenberg contractions of the quadratic algebras of Helmholtz degenerate
superintegrable systems. In Fig. 2 we describe how restrictions of nondegenerate superintegrable
systems to degenerate ones, and contractions of degenerate superintegrable systems account
for the lower half of the Askey scheme. The upper half of the Askey scheme is described by
contractions of nondegenerate systems [5]. In Section 6 we assess our results. A list of all
Helmholtz degenerate superintegrable systems can be found in Appendix A.

2 Stäckel transforms and Laplace equations

Distinct degenerate classical or quantum superintegrable systems can be mapped to one another
by Stäckel transforms, invertible transforms that preserve the structure of the quadratic algebra.
This divides the 15 systems into 6 Stäckel equivalence classes [22]. The most convenient way
to understand the equivalence classes is in terms of Laplace-like equations [18]. Since every
2D space is conformally flat there always exist “Cartesian-like” coordinates x, y such that the

Hamilton–Jacobi equation can be expressed in the form H = E where H =
p2x+p

2
y

λ(x,y) + αV and α

is a parameter. This is equivalent to the Laplace-like equation p2x + p2y + a1V1 + a2V2 = 0 where
V1 = λV , V2 = λ, a1 = α, a2 = −E, now with 2 parameters. Symmetries (constants of the mo-
tion) for the Helmholtz equation correspond to conformal symmetries of the Laplace equation.
The Hamilton–Jacobi equation is defined on one of a variety of conformally flat spaces but the
Laplace equation is always defined on flat space with conformal symmetry algebra so(4,C) [18].
An important observation is that the Laplace equations are Stäckel equivalence classes: two
Helmholtz systems are Stäckel equivalent if and only if they correspond to the same Laplace
equation.

Remark 2.1. Indeed, If the Laplace conformally superintegrable equation can be split in the
form p2x + p2y + V0 − ẼW = 0, where Ẽ is an arbitrary parameter, W is a nonconstant function,
and V0, W are independent of E, then W , by division, defines a conformal Stäckel transform to
the superintegrable Helmholtz system H̃ = 1

W (p2x + p2y + V0) = Ẽ. If the Laplace system admits

another splitting p2x + p2y + V ′0 − Ẽ′W ′ = 0, it determines another superintegrable Helmholtz

system H̃ ′ = 1
W ′ (p2x + p2y + V ′0) = Ẽ′ and H̃ ′ can be obtained from H̃ by an invertible Stäckel

transform W ′

W . Thus all Helmholtz systems that can be obtained from the Laplace equation by
splitting the potential are Stäckel equivalent to one another.

The Laplace equations for nondegenerate systems were derived in [18], see Table 1. The
Laplace equations for degenerate systems are listed in Table 2. The notation ai in Table 2
describes how these systems can be obtained as restrictions of systems in Table 1, but with
added symmetry.

The Helmholtz systems corresponding to each Laplace system are:
Stäckel equivalence classes: Here the notation refers to the Helmholtz superintegrable

systems listed in the Appendix.

1. Class A (a3, a4): System S3 corresponds to (1, 0) and (0, 1). System S6 corresponds to
(1, 1). System D4(b)D corresponds to (a3, a4) with a3a4(a3 − a4) 6= 0.

2. Class B (a1, a4): System S5 corresponds to (1, 0). System E6 corresponds to (0, 1). System
D2D corresponds to (a1, a4) with a1a4 6= 0.

3. Class C (a3, a4): System E3 corresponds to (1, 0). System E18 corresponds to (0, 1).
System D3E corresponds to (a3, a4) with a3a4 6= 0.
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System Non-degenerate potentials V (x, y)

[1, 1, 1, 1] a1
x2

+ a2
y2

+ 4a3
(x2+y2−1)2 −

4a4
(x2+y2+1)2

[2, 1, 1] a1
x2

+ a2
y2
− a3(x2 + y2) + a4

[2, 2] a1
(x+iy)2

+ a2(x−iy)
(x+iy)3

+ a3 − a4(x2 + y2)

[3, 1] a1 − a2x+ a3(4x
2 + y2) + a4

y2

[4] a1 − a2(x+ iy) + a3(3(x+ iy)2 + 2(x− iy))− a4(4(x2 + y2) + 2(x+ iy)3)

[0] a1 − (a2x+ a3y) + a4(x
2 + y2)

(1) a1
(x+iy)2

+ a2 − a3
(x+iy)3

+ a4
(x+iy)4

(2) a1 + a2(x+ iy) + a3(x+ iy)2 + a4(x+ iy)3

Table 1. Four parameter Laplace systems.

System Degenerate potentials V (x, y)

A 4 a3
(x2+y2−1)2 −

4a4
(x2+y2+1)2

B a1
x2

+ a4

C a3 − a4(x2 + y2)

D a1 − a2x
E a1

(x+iy)2
+ a3

F a1 − a2(x+ iy)

Table 2. Two-parameter Laplace systems.

4. Class D (a1, a2): System E5 corresponds to (1, 0). System D1D corresponds to (a1, a2)
with a1a2 6= 0.

5. Class E (a1, a3): System E14 corresponds to (0, 1). System E12 corresponds to (a1, a3)
with a1a3 6= 0.

6. Class F (a1, a2): System E13 corresponds to (a1, a2) with a2 6= 0. System E4 corresponds
to (1, 0).

Here, for example, system D3E belongs to class C and is obtained from the Laplace equation
by dividing it by a3−a4(x2 + y2) where a3a4 6= 0, whereas E18 is obtained by the same division
with a3 = 0, a4 = 1.

The conformal symmetry of these Laplace equations is best exploited by using tetraspherical
coordinates to linearize the action of the conformal symmetry group [1, 18]. These are projective
coordinates x1, x2, x3, x4 on the null cone x21 + x22 + x23 + x24 = 0, related to flat space coordina-
tes x, y by

x1 = 2XT, x2 = 2Y T, x3 = X2 + Y 2 − T 2, x4 = i
(
X2 + Y 2 + T 2

)
,

x =
X

T
= − x1

x3 + ix4
, y =

Y

T
= − x2

x3 + ix4
, x =

s1
1 + s3

, y =
s2

1 + s3
,

H ≡ p2x + p2y + V = (x3 + ix4)
2

(
4∑

k=1

p2xk + VB

)
= (1 + s3)

2

 3∑
j=1

p2sj + VS

 ,

V = (x3 + ix4)
2VB, (1 + s3) = −i(x3 + ix4)

x4
, s1 =

ix1
x4
, s2 =

ix2
x4
, s3 =

−ix3
x4

.
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Thus the Laplace equation H ≡ p2x + p2y + V = 0 in Cartesian coordinates becomes
4∑

k=1

p2xk +

VB = 0 in tetraspherical coordinates. Here, the sj refer to coordinates on the unit 2-sphere:
s21 + s22 + s23 = 1,

The possible limits of one superintegrable system to another can be derived and classified
by using tetraspherical coordinates and special Bôcher contractions of so(4,C) to itself. The
method is described in detail in [5, 18]. Here we just recall the basic definition of a Bôcher
contraction, Let x = A(ε)y, and x = (x1, . . . , x4), y = (y1, . . . , y4) be column vectors, and
A = (Ajk(ε)) be a 4× 4 matrix with matrix elements

Akj(ε) =

N∑
`=−N

a`kjε
`,

where N is a nonnegative integer and the a`kj are complex constants. (Here, N can be arbitrarily
large, but it must be finite in any particular case.) We say that the matrix A defines a Bôcher
contraction of the conformal algebra so(4,C) to itself provided

1) det(A) = ±1, constant for all ε 6= 0,

2) x · x ≡
4∑
j=1

xi(ε)
2 = y · y +O(ε).

If, in addition, A ∈ O(4,C) for all ε 6= 0 the matrix A defines a special Böcher contraction. For
a special Böcher contraction x ·x = y ·y, with no error term. (These contractions correspond to
limit relations introduced by Bôcher to obtain all orthogonal separable coordinates for Laplace
and wave equations as limits of cyclidic coordinates. There is an infinite family of such contrac-
tions, but they can be generated by 4 basic contractions.) Related contraction methods that
don’t make use of tetraspherical coordinates directly can be found in references such as [8, 9].

Bôcher contractions take a Laplace system to itself. The contraction process has already been
described in [5, 18] and references therein, but we discuss, briefly, the main ideas. Suppose we
have a degenerate Laplace superintegrable system with potential V (x,a) = a1V1(x) + a2V2(x)
and generating conformal symmetriesX = X+W0, L1 = L1+W1, L2 = L2+W2, where X , L1, L2
are free 2nd order conformal symmetries and W0, W1, W2 are functions of the tetraspherical
coordinates xi. Applying a Bôcher contraction A(ε) to the free symmetries we obtain

X (ε) = εα0X ′ +O(ε), Lj(ε) = εαjL′j +O(ε), j = 1, 2,

where X ′ ∈ so(4,C) and the L′j are quadratic in so(4,C). By a change of basis {L1, L2} if
necessary, one can verify that X ′, L′j , j = 1, 2 generate a free conformal quadratic algebra, The
action of the Bôcher contraction on the 2-dimensional potential space preserves its dimension
and maps it smoothly as a function of ε, as follows from an examination of the Bertrand-Darboux
equations. Thus we get a 2-dimensional potential space in the limit. To find an explicit basis for

the contracted potential V ′(b,y) = b1V
′
1(y)′+ b2V2(y)′ we put a1 =

∞∑
k=−∞

ckε
k, a2 =

∞∑
k=−∞

dkε
k,

where only a finite number of the coefficients ck, dk can be nonzero. Then it is a linear algebra
problem to determine the ck, dk such that lim

ε→0
V (x(ε),a(ε)) = V ′(b,y) exists for independent

potential functions V ′1(y)′, V ′2(y)′, where the nonzero ck, dk are linear in b1, b2. The limit
is guaranteed to exist and is unique up to a change of basis {V ′1(y)′, V ′2(y)′} for the target
potential. Only the last limit and the linear algebra problem need to be solved to identify the
contraction. This work was carried out with the assistance of the symbol manipulation programs
Maple and Mathematica. There is one additional complication; the results of the contraction
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are not invariant under a permutation of the indices of the hyperspherical coordinates defining
the contraction matrix Aij . Thus one Bôcher contraction applied to a source system can yield
a multiplicity of target results, and all permutations need to be examined.

The results are rather complicated. Fig. 1 provides a clearer idea of what is happening.
There are 4 basic Böcher contractions of 2D Laplace systems and each one when applied to
a Laplace system, and each permutation treated, yields another Laplace superintegrable system.
A system in class K1 can be obtained from a system in class K2 via contraction provided there
is a directed arrow path from K2 to K1. All systems follow from A for degenerate potentials,
and A is a restriction of [1111] with increased symmetry. Fig. 1 describes only the existence or
nonexistence of contractions, not the multiplicity of distinct contractions.

Figure 1. Contraction relations for degenerate Laplace systems.

Our basic interest, however, is in Helmholtz contractions, i.e., contractions of a Helmholtz
superintegrable system to another such system. The key is to start with a Laplace system, take
a conformal Stäckel transform to a Helmholtz system (which we initially interpret as another
Laplace system) and then take a Bôcher contraction of the new system, which as described
below gives a new Helmholtz system. The result is the contraction of one Helmholtz system to
another This can be done in such a way the “diagrams commute”, i.e., a Helmholtz contraction
is induced by a Bôcher contraction and a Stäckel transform [18]. For example, let H be the
Hamiltonian for class A. In terms of tetraspherical coordinates a general conformal Stäckel
transformed potential will take the form

V =

a3
x23

+ a4
x24

b3
x23

+ b4
x24

=
VA

F (x,b)
,

where F (x,b) = b3
x23

+ b4
x24

, and the transformed Hamiltonian will be Ĥ = 1
F (x,b)H, where the

transform is determined by the fixed vector (b3, b4). Now we apply the Bôcher contraction
[1, 1, 1, 1] → [2, 1, 1] to this system. Depending on the permutation of the indices xj , in the
limit as ε → 0 the potential VA → VB, or VA → VC , and H → H′, the B or C system. Now
consider F (x(ε),b) = V ′(x′, b)εα + O

(
εα+1

)
, where the integer exponent α depends upon our

choice of b. From our theory, the system defined by Hamiltonian Ĥ′ = lim
ε→0

εαĤ(ε) = 1
V ′(x′,b)H

′

is a superintegrable system that arises from the system A by a conformal Stäckel transform
induced by the potential V ′(x′,b). Thus the Helmholtz superintegrable system with potential
V = VA/F contracts to the Helmholtz superintegrable system with potential VS/V

′, where S =
B or S = C. The contraction is induced by a generalized Inönü–Wigner Lie algebra contraction
of the conformal algebra so(4,C). Always the V ′ can be identified with a specialization of the S
potential. Thus a conformal Stäckel transform of A has been contracted to a conformal Stäckel
transform of S.



8 M.A. Escobar Ruiz, W. Miller, Jr. and E. Subag

3 Degenerate Helmholtz contractions

The superscript for each targeted Helmholtz system is the value of the exponent α associated
with the contraction. In each table below, corresponding to a single Laplace equation equivalence
class, the top line is a list of the Helmholtz systems in the class, and the lower lines are the
target systems under the Bôcher contraction.

A equivalence class contractions

contraction S3 S6 D4D

[1111] ↓ [211] E32 E184 E32

S50, E62 S50 S50

[1111] ↓ [22] E32 E184 E32

E142 E122 E122

[1111] ↓ [31] E52 E52 E52, D1D3

E62, S50 S50 S50

[1111] ↓ [4] E46 E46 E46, E138

B equivalence class contractions

contraction S5 E6 D2D

[1111] ↓ [211] E142 E140 E140

S50 E62 S50

[1111] ↓ [22] E142 E142 E122

[1111] ↓ [31] E52 E52 E52, D1D3

S50 E62 S50, E62

[1111] ↓ [4] E46 E46 E46, E138

C equivalence class contractions

contraction E3 E18 D3E

[1111] ↓ [211] E52 E52 E52,3

E32 E184 E32

[1111] ↓ [22] E32 E182,4 E32, D3E2

[1111] ↓ [31] E52 E52 E52, D1D3

[1111] ↓ [4] E46 E46 E46, E138

D equivalence class contractions

contraction E5 D1D

[1111] ↓ [211] E40 E13−1, E40

E52 E52, D1D3

[1111] ↓ [22] E42 E42, E132

[1111] ↓ [31] E52 E52, D1D2

[1111] ↓ [4] E46 E46, E138

E equivalence class contractions

contraction E14 E12

[1111] ↓ [211] E42 E42, E133

E140 E140

[1111] ↓ [22] E42 E42, E134

E142 E122

[1111] ↓ [31] E42 E42, E133

[1111] ↓ [4] E46 E46, E138
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F equivalence class contractions

contraction E4 E13

[1111] ↓ [211] E40,2 E13−1,3, E42

[1111] ↓ [22] E42 E132

[1111] ↓ [31] E42 E42

[1111] ↓ [4] E46 E46

4 Classif ication of free abstract degenerate
classical quadratic algebras

4.1 Abstract quadratic algebras

The special case of a 2D degenerate classical superintegrable system on a constant curvature
space or a Darboux space with all parameters equal to zero (no potential) gives rise to a special
kind of quadratic algebra which we call a free abstract quadratic algebra. Below is a precise
definition.

Definition 4.1. An abstract 2D free degenerate (classical) quadratic algebra is a complex Pois-
son algebra possessing a linearly independent generating set {L1,L2,L3 = H,X} that satisfy:

1. The associative product is abelian.

2. A is graded: A = ⊕∞k=0Ak where each Ak is a complex vector space, the associative
product takes Ak ×Al into Ak+l, and the Poisson brackets { , } goes from Ak ×Al into
Ak+l−1.

3. A0 = C.

4. A1 = CX .

5. A2 = span{L1,L2,L3,X 2}.

6. The elements {L1,L2,L3,L4 := X 2} satisfy a relation given by a homogeneous polynomial
of degree 2, G(L1,L2,L3,L4) = 0.

7. Any nonzero polynomial F of minimal degree such that F (L1,L2,L3,L4) = 0 is a multiple
of G.

8. The center of A contains no elements of order 1 and any element of order two in the center
is a multiple of L3 = H.

9. The polynomial G depends non-trivially on at least one of the non-central 2nd order
generators L1, L2.

We shall simply refer to such an algebra as a free abstract quadratic algebra.

Remark 4.2. A free abstract quadratic algebra is a special case of a three-dimensional affine
Poisson variety, see, e.g., [4, 20]. Description of some of the properties of such Poisson varieties,
along with classification of such Poisson structures on the affine space C3 can be found in [20,
Section 9.2]. Poisson structures on the manifold R3 were classified at [6]. It should be noted that
the Poisson algebras considered in this paper, are not quadratic Poisson structures in the sense
of [20, Section 8.2]. In addition our classification scheme is different from the above mentioned
classifications.
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Theorem 4.3. Keeping the same notations as of Definition 4.1, let A be a free abstract quadratic
algebra. Then there exists a non zero K ∈ C such that:

{L1,L2} = K
∂G

∂X
, {X ,L1} = K

∂G

∂L2
, {X ,L2} = −K ∂G

∂L1
. (4.1)

(We shall refer to equations (4.1) as the structure equations of A).

Proof. Note that G(L1,L2,L3,L4) = 0 implies that

0 = {X , G} =
∂G

∂L1
{X ,L1}+

∂G

∂L2
{X ,L2}.

The above equation is a polynomial expression in χ2,L1, L2, H. Any one of the terms ∂G
∂L1 ,

{X ,L1}, ∂G
∂L2 , {X ,L2} is either zero or a polynomial of degree one in the variables χ2, L1,

L2, H. Since at least one of the terms ∂G
∂L1 , ∂G

∂L2 is non-zero then we must have

{X ,L1} = K
∂G

∂L2
, {X ,L2} = −K ∂G

∂L1
,

for some K. If K = 0 then the first order element X must be in the center of A which is
impossible. Hence K 6= 0. Similarly G(L1,L2,L3,L4) = 0 implies

0 = {L1, G} =
∂G

∂X
{L1,X}+

∂G

∂L2
{L1,L2},

0 = {L2, G} =
∂G

∂X
{L2,X}+

∂G

∂L1
{L2,L1},

and along with our assumption that at least one of the terms ∂G
∂L1 , ∂G

∂L2 is non-zero we see that

{L1,L2} = K ∂G
∂X . �

Corollary 4.4. Keeping the same notations as of Definition 4.1, let A be a free abstract
quadratic algebra. Then G(L1,L2,L3,L4) depends non-trivially in at least two of the three
generators L1, L2, L4.

Proof. It easily follows from the structure equations (4.1) that if G(L1,L2,L3,L4) depends on
at most one of the generators L1, L2, L4 then the center of A contains a second order generator
which is not a multiple of H. �

Free abstract quadratic algebras appear as symmetry algebras of 2D degenerate free su-
perintegrable systems. That is the main motivation for their study. For a given G there is
a 1-parameter family of quadratic algebras, parametrized by K. However, these algebras are
isomorphic. It follows that the particular choice of nonzero K in the classification theory to
follow is immaterial.

Note 4.5. If phase space generators L1, L2, H, X satisfy a 4th order (in the momentum
variables) relation G = 0 but the closure relations for {X ,L1}, {X ,L2}, {L1,L2}, are not
satisfied, then K is rational in the generators.

For quantum degenerate systems, knowledge of the Casimir relation G(L1, L2, H,X, α) = 0
is sufficient to determine the quadratic algebra, subject to the same conditions as the classical
case. Details can be found in [7].
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4.2 The symmetry group of a free abstract quadratic algebra

In this section we determine the symmetry group of a free abstract quadratic algebra. Note that
once we fixed a generating set {L1,L2,L3,X}, the Casimir G is given by a symmetric 4 × 4
matrix B(G) defined by

G(L1,L2,L3,L4) =
4∑

i,j=1

B(G)ijLiLj ,

The pair (B(G),K) (consisting of the Casimir and the multiplicative constant in the structure
equations) is defined only up to a constant. That is, the pair

(
zB(G), z−1K

)
for any nonzero z

can also serve as a Casimir and a structure constant for the same quadratic algebra and the
same basis. A free abstract quadratic algebra is completely determined by a generating set
{L1,L2,L3,X} (satisfying the conditions of Definition 4.1) together with the pair (B(G),K).
As noted previously, the constant K can always be normalized to 1. Given two sets of generators
{L1,L2,L3,X},

{
L̃1, L̃2, L̃3, X̃

}
of the same algebra A such that:

1. 2 = deg(L1) = deg
(
L̃1
)

= deg(L2) = deg(L̃2) = deg(L3) = deg
(
L̃3
)
.

2. 1 = deg(X ) = deg
(
X̃
)
.

3. L3 and L̃3 are in the center of A.

Then there is a ’change of basis matrix’ A of the form

A :=


A1,1 A1,2 A1,3 A1,4 0
A2,1 A2,2 A2,3 A2,4 0

0 0 A3,3 0 0
0 0 0 A4,4 0
0 0 0 0 A5,5

 ∈ GL(5,C), (4.2)

with A4,4 = A2
5,5 such that for L := (L1,L2,L3,L4,X )t, L̃ :=

(
L̃1, L̃2, L̃3, L̃4, X̃

)t
L = AL̃. (4.3)

For A as above we define

Â =


A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

0 0 A3,3 0
0 0 0 A4,4

 .

Besides linear change of basis we can also rescale the invariants (B(G),K). The full symmetry
group of a free abstract quadratic algebra is given by the collection of pairs (A, z), A as in
equation (4.2) and z ∈ C∗. We shall denote this group by Gdegn. The action of such (A, z) ∈
Gdegn on the generators is given by equation (4.3) and on (G,K) by

B(G′) = zÂtB(G)Â,

K ′ = z−1K(A1,1A2,2 −A1,2A2,1)
−1A−15,5,

where B(G) is the symmetric matrix representing G with respect to {L1,L2,L3,L4}, and B(G′)
is the symmetric matrix representing G′ := (A, z) · G with respect to

{
L̃1, L̃2, L̃3, L̃4

}
. We

shall call the subgroup of Gdegn of all pairs of the form (A, 1) as the group of linear change of
bases,we denote it by Glin

degn. In the following we shall determine a canonical form for the pair
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(B(G),K) of each abstract quadratic algebra. This means that we shall decide upon a unique
representative from each orbit of Gdegn in the space of all possible pairs (B(G),K) that arise
from an abstract quadratic algebra. Without loss of generality we can assume that K = 1 and
determine representative from each orbit of the subgroup of Gdegn that fixes the value of K.
Explicitly this group is given by

GKdegn :=
{

(A, z) ∈ Gdegn | z = (A1,1A2,2 −A1,2A2,1)
−1A−15,5

}
.

4.3 The canonical form

In this section after we identify some invariants of orbits of (B(G),K) under the action of GK
degn

we consider the reduction to a canonical form. That is, for each orbit we choose a representative
which we call the canonical form (B(G),K). For a given Casimir (B(G),K) of a free abstract
quadratic algebra A and a given (A, z) ∈ GK

degn we introduce the following notations:

Â =


A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

0 0 A3,3 0
0 0 0 A4,4

 =

(
r s
0 t

)
,

B(G) =


b1,1 b1,2 b1,3 b1,4
b1,2 b2,2 b2,3 b2,4
b1,3 b2,3 b3,3 b3,4
b1,4 b2,4 b3,4 b4,4

 =

(
b c
ct d

)
.

Direct calculation shows that

ÂtB(G)Â =

(
rtbr rt(bs+ ct)

stbr + tctr st(bs+ ct) + t(cts+ dt)

)
.

Hence under the action GK
degn the rank of B(G) and the rank of its upper left 2 by 2 block

(which we denote by b) are preserved. We use the theory of symmetric bilinear forms and find
(A, z) ∈ GK

degn that cast B(G) into exactly one of the following forms depending on rank(b).

1. B(G) =


1 0 0 0
0 1 0 0
0 0 b3,3 b3,4
0 0 b3,4 b4,4

 if rank(b) = 2,

2. B(G) =


1 0 0 0
0 0 b2,3 b2,4
0 b2,3 b3,3 b3,4
0 b2,4 b3,4 b4,4

 if rank(b) = 1,

3. B(G) =


0 0 b1,3 b1,4
0 0 b2,3 b2,4
b1,3 b2,3 b3,3 b3,4
b1,4 b2,4 b3,4 b4,4

 if rank(b) = 0.

Below we analyze the different cases according to rank(b) we summarize the results of all cases
in Table 3.
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4.4 The rank 2 case

If

B(G) =


1 0 0 0
0 1 0 0
0 0 b3,3 b3,4
0 0 b4,3 b4,4

 and (A, z) ·B(G) =


1 0 0 0
0 1 0 0

0 0 b̃3,3 b̃3,4
0 0 b̃4,3 b̃4,4

 ,

for some (A, z) ∈ GK
degn then

Â =


A1,1 A1,2 0 0
A2,1 A2,2 0 0

0 0 A3,3 0
0 0 0 A4,4

 , z = (A1,1A2,2 −A1,2A2,1)
−1A−15,5,

with

√
z

(
A1,1 A1,2

A2,1 A2,2

)
∈ O2(C), A−15,5 = ±1,

(
b̃3,3 b̃3,4
b̃3,4 b̃4,4

)
=

(
zA2

3,3b3,3 zA3,3b3,4
zA3,3b3,4 zb4,4

)
.

So if b3,3 6= 0 we define the canonical form of B(G) to be

B(G)21(b3,4, b4,4) =


1 0 0 0
0 1 0 0
0 0 1 b3,4
0 0 b3,4 b4,4

 ,

with b3,4 ∈ {0, 1}, b4,4 ∈ C. If b3,3 = 0 we define the canonical form of B(G) to be

B(G)22(b3,4, b4,4) =


1 0 0 0
0 1 0 0
0 0 0 b3,4
0 0 b3,4 b4,4

 ,

with b3,4, b4,4 ∈ {0, 1}.

4.5 The rank 1 case

If

B(G) =


1 0 0 0
0 0 b2,3 b2,4
0 b2,3 b3,3 b3,4
0 b2,4 b3,4 b4,4

 and (A, z) ·B(G) =


1 0 0 0

0 0 b̃2,3 b̃2,4
0 b̃2,3 b̃3,3 b̃3,4
0 b̃2,4 b̃3,4 b̃4,4

 ,

for some (A, z) ∈ GK
degn then

Â =


±z−1/2 0 ∓z1/2b2,3A3,3A2,1 ∓z−1/2b2,4A4,4A2,1

A2,1 A2,2 A2,3 A2,4

0 0 A3,3 0
0 0 0 A4,4

 , z = A−22,2A
−1
4,4,
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and

b̃2,3 = b2,3A
−1
2,2A3,3A

−1
4,4, (4.4)

b̃2,4 = b2,4A
−1
2,2, (4.5)

b̃3,3 = b22,3A
2
2,1A

−4
2,2A

2
3,3A

−2
4,4 + 2b2,3A2,3A

−2
2,2A3,3A

−1
4,4 + b3,3A

−2
2,2A

2
3,3A

−1
4,4,

b̃3,4 = b2,3b2,4A
2
2,1A

−4
2,2A3,3A

−1
4,4 + b2,3A2,4A

−2
2,2A3,3A

−1
4,4 + b2,4A2,3A

−2
2,2 + b3,4A

−2
2,2A3,3,

b̃4,4 = b22,4A
2
2,1A

−4
2,2 + 2b2,4A2,4A

−2
2,2 + b4,4A

−2
2,2A4,4.

From (4.4) we see that b̃2,3 = 0 if and only if b2,3 = 0, similarly from (4.5) we see that b̃2,4 = 0 if
and only if b2,4 = 0. Hence we continue our analysis according to the vanishing of b2,3 and b2,4.

4.5.1 rank(b) = 1, b2,3 = 0 and b2,4 = 0

If

B(G) =


1 0 0 0
0 0 0 0
0 0 b3,3 b3,4
0 0 b3,4 b4,4

 and (A, z) ·B(G) =


1 0 0 0
0 0 0 0

0 0 b̃3,3 b̃3,4
0 0 b̃3,4 b̃4,4

 ,

for some (A, z) ∈ GK
degn then

Â =


±z−1/2 0 0 0
A2,1 A2,2 A2,3 A2,4

0 0 A3,3 0
0 0 0 A4,4

 , z = A−22,2A
−1
4,4,

and (
b̃3,3 b̃3,4
b̃3,4 b̃4,4

)
=

(
A−22,2A

−1
4,4A

2
3,3b3,3 A−22,2A

−1
4,4A3,3A4,4b3,4

A−22,2A
−1
4,4A3,3A4,4b3,4 A−22,2A4,4b4,4

)
.

We define the canonical form to be

B(G)11(b3,3, b3,4, b4,4) =


1 0 0 0
0 0 0 0
0 0 b3,3 b3,4
0 0 b3,4 b4,4

 ,

with b3,3, b3,4, b4,4 ∈ {0, 1}.

4.5.2 rank(b) = 1, b2,3 6= 0 and b2,4 6= 0

In this case we can act with (A, z) ∈ GK
degn to obtain

B(G)15(b3,4) =


1 0 0 0
0 0 1 1
0 1 0 b3,4
0 1 b3,4 0

 ,

for a unique b3,4 ∈ {0, 1}. We define this form to be the canonical form in this case.
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4.5.3 rank(b) = 1, b2,3 6= 0 and b2,4 = 0

In this case we can act with (A, z) ∈ GK
degn to obtain

B(G)16(b4,4) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 b4,4

 ,

with unique b4,4 ∈ {0, 1} which is defined to be the canonical form in this case.

4.5.4 rank(b) = 1, b2,3 = 0 and b2,4 6= 0

In this case we can act with (A, z) ∈ GK
degn to obtain

B(G)17(b3,3) =


1 0 0 0
0 0 0 1
0 0 b3,3 0
0 1 0 0

 ,

with unique b3,3 ∈ {0, 1} which is defined to be the canonical form in this case.

4.6 The rank 0 case

If

B(G) =


0 0 b1,3 b1,4
0 0 b2,3 b2,4
b1,3 b2,3 b3,3 b3,4
b1,4 b2,4 b3,4 b4,4

 and (A, z) ·B(G) =


0 0 b̃1,3 b̃1,4
0 0 b̃2,3 b̃2,4
b̃1,3 b̃2,3 b̃3,3 b̃3,4
b̃1,4 b̃2,4 b̃3,4 b̃4,4

 ,

for some (A, z) ∈ GK
degn then

(
b̃1,3 b̃1,4
b̃2,4 b̃2,4

)
= z

(
A1,1 A2,1

A1,2 A2,2

)(
b1,3 b1,4
b2,3 b2,4

)(
A3,3 0

0 A4,4

)
,

and (
b̃3,3 b̃3,4
b̃4,3 b̃4,4

)
= z

(
A1,3 A2,3

A1,4 A2,4

)(
b1,3 b1,4
b2,3 b2,4

)(
A3,3 0

0 A4,4

)
+ z

(
A3,3 0

0 A4,4

)(
b1,3 b2,3
b1,4 b2,4

)(
A1,3 A1,4

A2,3 A2,4

)
+ z

(
A3,3 0

0 A4,4

)(
b3,3 b3,4
b3,4 b4,4

)(
A3,3 0

0 A4,4

)
.

Hence in the case of b = 0, the rank of c =
(
b1,3 b1,4
b2,3 b2,4

)
is invariant under the action of GK

degn. We

continue our analysis according to the value of this rank. By Corollary 4.4 c 6= 0.



16 M.A. Escobar Ruiz, W. Miller, Jr. and E. Subag

4.6.1 rank(b) = 0, rank(c) = 1

In this case we have the following forms
0 0 0 0
0 0 1 1
0 1 b3,3 b3,4
0 1 b3,4 b4,4

 ,


0 0 0 0
0 0 1 0
0 1 b3,3 b3,4
0 0 b3,4 b4,4

 ,


0 0 0 0
0 0 0 1
0 0 b3,3 b3,4
0 1 b3,4 b4,4

 .

The first case can be reduced to the canonical form

B(G)05 =


0 0 0 0
0 0 1 1
0 1 0 b3,4
0 1 b3,4 0

 ,

for a unique b3,4 ∈ {0, 1}. The second case can be reduced to the canonical form

B(G)06 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 b4,4

 ,

for a unique b4,4 ∈ {0, 1}. The case with b4,4 = 0 is not possible due to Corollary 4.4. The third
case can be reduced to the following canonical form

B(G)07(b3,3) =


0 0 0 0
0 0 0 1
0 0 b3,3 0
0 1 0 0

 ,

for a unique b3,3 ∈ {0, 1}.

4.6.2 rank(b) = 0, rank(c) = 2

In this case we only have the form
0 0 1 0
0 0 0 1
1 0 b3,3 b3,4
0 1 b3,4 b4,4

 , (4.6)

which can be reduced to the canonical form

B(G)08 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

4.7 Comparison of geometric and abstract free degenerate quadratic algebras

We examine the entries in Table 3 to determine which can be realized as a classical 2D degenerate
superintegrable system or a classical Lie algebra with linearly independent generators. There is
a close relationship between the canonical forms of free abstract degenerate quadratic algebras
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degenerate quadratic algebras

# rank(b) invariant form canonical form

1 2 B(G)21(b34, b44) L21 + L22 + H2 + b44X 4 + 2b34HX 2, b34 ∈ {0, 1},
b44 ∈ C

2 2 B(G)22(b34, b44) L21 + L22 + b44X 4 + 2b34HX 2, b3,4, b44 ∈ {0, 1}
3 1 B(G)11(b33, b34, b44) L21+b33H2+b44X 4+2b34HX 2, b33, b34, b44 ∈ {0, 1},

b34 + b44 6= 0

4 1 B(G)15(b34) L21 + 2L2H+ 2L2X 2 + 2b34HX 2, b34 ∈ {0, 1}
5 1 B(G)16(b44) L21 + 2L2H+ b44X 4, b44 ∈ {0, 1}
6 1 B(G)17(b33) L21 + 2L2X 2 + b33H2, b33 ∈ {0, 1}
7 0 B(G)05(b34) 2L2H+ 2L2X 2 + 2b34HX 2, b34 ∈ {0, 1}
8 0 B(G)06 2L2H+ X 4

9 0 B(G)07(b33) 2L2X 2 + b33H2, b33 ∈ {0, 1}
10 0 B(G)08 2L1H+ 2L2X 2

Table 3. List of canonical forms of free abstract degenerate quadratic algebras. The canonical forms

B(G)ab are given explicitly in Sections 4.4, 4.5, 4.6 above.

and Stäckel equivalence classes of degenerate superintegrable systems. We demonstrate this by
treating one example in detail. The superintegrable system S3, with degenerate potential, can
be defined by

G = L21 + L22 − L1H+ L1X 2 + a1X 2 + (a1 + a2)L1 = 0,

where the aj are the parameters in the potential. To perform a general Stäckel transform of this

system with nonsingular transform matrix C = (cjk): 1) we set aj =
2∑

k=1

cjkbk, k = 1, 2 where

the bk are the new parameters, 2) we make the replacements H → −b2, b2 → −H and 3) we
then set all parameters bj = 0 to determine the free degenerate quadratic algebra. The result is

[A] : G = L21 + L22 + L1X 2 − c12HX 2 − (c12 + c22)HL1 = 0,

where |c12|+ |c22| > 0. The canonical forms in Table 3 associated with the equivalence class [A]
are 1: b44 = 1 and 2: b44 = 1.

The superintegrable system E6, with degenerate potential, can be defined by

G = L21 − L2H+ L2X 2 + a1X 2 + a2L2 = 0.

Going through the same procedure as above, we obtain the equivalence class

[B] : G = L21 + L2X 2 − c12HX 2 − c22HL2 = 0,

where |c12|+ |c22| > 0. The canonical form associated with this equivalence class is 4: all cases.
The superintegrable system E3, with degenerate potential, can be defined by

G = L21 + L22 − L1H+ a2
(
X 2 + a2

)
L1.

The equivalence class is

[C] : G = L21 + L22 − c12HX 2 − c22HL1 = 0,
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rank canonical form

2 1: all cases 2: all cases

1 3: all cases except 4: all cases

(b44, b34 = 1, b33 = 0, 1), (b44 = 0, b34, b33 = 1)

1 5: all cases 6: all cases

0 7: no 8: missing 2L2H+ X 4 = 0

0 9: missing L2X 2 = 0 10: all cases

Table 4. Matching of geometric with abstract quadratic algebras.

where |c12|+ |c22| > 0. The canonical forms associated with this equivalence class are 1: b44 = 0,
and 2: b44 = 0.

The superintegrable system E5 can be defined by

G = L21 + X 4 −HX 2 + a1L2 + a2X 2 = 0.

The equivalence class is

[D] : G = L21 + X 4 − c22HX 2 − c12HL2 = 0,

where |c12|+ |c22| > 0. The canonical forms associated with this equivalence class are 3: b44 = 1,
b34 = 0 and 5: b44 = 1.

The superintegrable system E14 can be defined by

G = −L21 − L2X 2 + a1H− a1a2 = 0.

The equivalence class is

[E] : G2 = −L21 − L2X 2 − c12c22H2 = 0,

where |c12|+ |c22| > 0. The canonical forms associated with [E] are 6: all cases.
The superintegrable system E4 can be defined by

G = H2 + X 4 + 2HX 2 − 4L2X 2 − 4ia1L1 − 2a2X 2 − 2a2H+ a22 = 0.

The equivalence class is

[F ] : G = X 4 − 4L2X 2 − 4ic12HL1 + 2c22HX 2 + c222H2 = 0,

where |c12|+ |c22| > 0. The canonical forms associated with [F ] are 9: b33 = 1 and 10: all cases.
Heisenberg systems: In addition there are systems that can be obtained from the degen-

erate geometric systems above by contractions from so(4,C) to e(3,C). These are not Bôcher
contractions and the contracted systems are not superintegrable, because the Hamiltonians be-
come singular. However, they do form quadratic algebras and several have the interpretation
of time-dependent Schrödinger equations in 2D spacetime, so we also consider them geometri-
cal. Some of these were classified in [16] where they were called Heisenberg systems since they
appeared in quadratic algebras formed from 2nd order elements in the Heisenberg algebra with
generators M1 = px, M2 = xpy, E = py, where E2 = H. The systems are all of type 4. We will
devote a future paper to their study. The possible canonical forms are 3: b33 = b44 = 0, b34 = 1
and 5: b44 = 0.

All these results relating geometric systems to abstract systems are summarized in Table 4.
We see that every abstract quadratic algebra is isomorphic to a quadratic algebra corresponding
to a superintegrable system, with just 5 exceptions.
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Theorem 4.6. Every free quadratic algebra realizable by functions on 4-dimensional phase space
with grading the order of polynomials in the momenta is isomorphic to a free quadratic algebra
of a superintegrable system.

Proof: We show that the 5 exceptional free quadratic algebras cannot be realized in phase
space. We assume in each case that the algebra is realizable in terms of functions on phase space
and obtain a contradiction.

1. Case 3: L21 +
(
H+X 2

)2
= 0. We can factor G as (H+X 2 + iL1)(H+X 2− iL1) = 0. This

is possible only if one of the factors vanishes; hence the generators are linearly dependent.
Impossible!

2. Case 3: L21 + 2HX 2 + X 4 = 0. Here, L21 = −X 2(2H + X 2) so L1 = XY where Y is a 1st
order constant of the motion. Thus Y must be a multiple of X and the generators are
linearly dependent. Impossible!

3. Case 3: L21 + H2 + 2HX 2 = 0. Here, L21 = −H(H + 2X 2). If L1 doesn’t factor then it
must be a multiple of H and of H + 2X 2 simultaneously. Impossible! Suppose then that
L1 = YZ, a product of two 1st order factors. If Z is a multiple of Y then Y is a constant
of the motion, hence proportional to X . Impossible! Thus Y,Z must be distinct linear
factors. If H is divisible by each factor then L1, H are linearly dependent. Impossible!
So H must be divisible by the square of a single factor. By renormalizing Y and Z we can
assume H = Y2. Thus Y is a 1st order constant of the motion, necessarily proportional
to X . We conclude that H ∼ X 2. Impossible!

4. Case 8: 2L2H+ X 4 = 0. Since X is 1st order, and 2L2H = −X 4 both H and L2 must be
divisible by X 2. Thus each is a perfect square of a 1st order symmetry, necessarily a scalar
multiple of X . Hence the 2nd order generators are linearly dependent. Impossible!

5. Case 9: L2X = 0. Here at least one of the generators must vanish. Impossible.!

Thus we have shown that the only free degenerate quadratic algebras that can be constructed
in phase space are those that arise from superintegrability. The remaining 5 abstract systems
must lie in different graded Poisson algebras.

5 Classif ication of contractions of free abstract quadratic
degenerate 2D superintegrable systems on constant
curvature spaces and Darboux spaces

In this section we define contractions between free abstract quadratic algebras. Then we list the
canonical forms of the Casimirs of free abstract quadratic algebras that arises as the symmetry
algebras of degenerate 2D free superintegrable systems on constant curvature spaces or Darboux
spaces. Finally using the canonical forms, we classify all possible contractions relating free
abstract quadratic algebras of degenerate 2D superintegrable systems on constant curvature
spaces or Darboux spaces.

5.1 Contraction of a free abstract quadratic algebra

Definition 5.1. Let A, B be free abstract quadratic algebras with Casimirs (B(GA),KA) and
(B(GB),KB), respectively. Suppose that there is a continuous map ε 7−→ (Aε, zε) from some
punctured neighborhood of 0 in C∗, the nonzero complex numbers, into Gdegn and such that
lim
ε−→0

(Aε, zε) · (b(GA),KA) = (B(GB),KB). Then we say that B is a contraction of A.
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The meaning of the definition is that in any generating set {L1,L2,L3,L4} of A (satisfying
the same assumptions as before) the corresponding matrix B(GA) and KA satisfy

lim
ε−→0

zεÂε
t
B(GA)Âε = B(GB), (5.1)

lim
ε−→0

z−1ε KA ((Aε)1,1(Aε)2,2 − (Aε)1,2(Aε)2,1)
−1 (Aε)

−1
5,5 = KB, (5.2)

where (B(GB),KB) is a realization of the Casimir of B in some generating set. In the clas-
sification below we are using a more refined class of contractions. We shall call these contrac-
tions algebraic. By definition an algebraic contraction is a contraction that can be realized via
a map ε 7−→ (Aε, zε) from some punctured neighborhood of 0 in C∗ into Gdegn such that zε as
well as the entries of Aε are rational functions in ε.

Proposition 5.2. B is a contraction of A if and only if there is a continuous map ε 7−→ (Aε, zε)
from some punctured neighborhood of 0 in C∗ into Gdegn such that

lim
ε−→0

zεÂε
t
B(GA)canÂε = B(GB)can, (5.3)

lim
ε−→0

z−1ε ((Aε)1,1(Aε)2,2 − (Aε)1,2(Aε)2,1, )
−1 (Aε)

−1
5,5 = 1, (5.4)

where (B(GA)can, 1) and (B(GB)can, 1) are the canonical forms of the Casimirs of A and B
respectively.

Proof. Obviously if equations (5.3)–(5.4) hold then B is a contraction of A. For the other
direction assume that equations (5.1)–(5.2) hold. We can further assume that (B(GA),KA)
is in its canonical form (B(GA)can, 1). Let (A, z) ∈ Gdegn such that (B(GB),KB) = (A, z) ·
(B(GB)can, 1), then the continuity of the action of Gdegn implies that lim

ε−→0

(
(A, z)−1(Aε, zε)

)
·

(B(GA)can, 1) = (B(GB)can, 1). �

Proposition 5.3. Let A, B be free abstract quadratic algebras and ε 7−→ (Aε, 1) a continuous
map from C∗ into Gdegn such that

lim
ε−→0

Âε
t
B(GA)canÂε = B(GB)can.

Then there is another continuous map ε 7−→ (Cε, zε) from C∗ into Gdegn such that lim
ε−→0

(Cε, zε) ·
(B(GA)can, 1) = (B(GB)can, 1).

Proof. Define

zε := ((Aε)1,1(Aε)2,2 − (Aε)1,2(Aε)2,1)
4 (Aε)

4
5,5,

Cε = ((Aε)1,1(Aε)2,2 − (Aε)1,2(Aε)2,1)
−1 (Aε)

−1
5,5Aε. �

Note that Propositions 5.2 and 5.3 also hold for algebraic contractions. The conclusion
from the last two proposition is that for the purpose of classifying contractions of free abstract
quadratic algebras it is enough to take the Casimirs B(G)A and B(G)B in their canonical forms
and to consider only the action of the group of invertible matrices of the form

Â =


A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

0 0 A3,3 0
0 0 0 A4,4

 , (5.5)
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on symmetric matrices B by B 7−→ ÂtBÂ. We shall denote the space of 4 by 4 complex sym-
metric matrices by Sym(4,C) and the group of matrices of the form (5.5) by Ĝdegn. The group

Ĝdegn is a complex algebraic group and the space Sym(4,C) is a complex algebraic variety on

which Ĝdegn acts algebraically. As was explained in [5, Section 7.1.2] this implies that if B is
a contraction of a quadratic algebra A then A is not a contraction of B (unless A and B are
isomorphic). In addition if B is a contraction of A then the rank of any matrix that repre-
sents B(G)B and the rank of its upper left 2 by 2 block can not exceed the corresponding ranks
for any matrix that represents B(G)A. Hence there is certain hierarchy for contractions that is
governed by the rank. By a rank of a free abstract quadratic algebra we mean (rank(B), rank(b))
of the corresponding matrices B and b in any bases. We shall make this more precise below.

5.2 Classif ication of abstract algebraic contractions
of superintegrable systems

Organized according to their rank, the canonical forms of the free abstract quadratic algebras
of free triplets of 2D constant curvature spaces and Darboux spaces are given in Table 5 below.
We shall classify all possible algebraic contractions between any two free abstract quadratic

canonical forms for the Casimirs of free degenerate 2D 2nd order
superintegrable systems on constant curvature and Darboux spaces

# system rank(B) rank(b) canonical form

1 S6 4 2 B22(1, 1), L21 + L22 + 2HX 2 + X 4

2 E18 4 2 B22(0, 1), L21 + L22 + 2HX 2

3 D3E 4 2 B21(1, 0), L21 + L22 +H2 + 2HX 2

4 D4(b)D 4 2 B21(1,−2), L21 + L22 +H2 + 2HX 2 − 2X 4

5 S3 4 2 B21(
√

2ei
3π
4 ,−2i), L21 +L22 +H2 + 2

√
2ei

3π
4 HX 2− 2iX 4

6 E3 3 2 B21(0, 0), L21 + L22 +H2

7 E12 4 1 B17(1), L21 + 2L2X 2 +H2

8 D1D 4 1 B16(1), L21 + 2L2H+H2

9 D2D 4 1 B15(1), L21 + 2L2H+ 2L2X 2 + 2HX 2

10 E6 3 1 B15(0), L21 + 2L2H+ 2L2X 2

11 E5 3 1 B11(0, 0, 1), L21 + 2HX 2 + X 4

12 E14 3 1 B17(0), L21 + 2L2X 2

13 S5 3 1 B17(0), L21 + 2L2X 2

14 E13 4 0 B08, 2L1H+ 2L2X 2

15 E4 3 0 B07(1), H2 + 2L2X 2

Table 5. List of canonical forms of free abstract degenerate quadratic algebras.

algebras that appear in Table 5. More precisely for any two such algebras we determine if such
a contraction is possible or not. If it does we give one realization of it, unless it is a contraction
from a free abstract quadratic algebra to itself. We shall start with some general observa-
tions. We note that the quadratic algebras of E14 and S5 coincide so we only keep E14 in our
notation. We divide the free abstract quadratic algebras of the second order free degenerate
superintegrable systems on 2D constant curvature spaces and 2D Darboux spaces according to
their ranks: R4,2 := {S6, E18, D3E,D4(b)D,S3}, R3,2 := {E3}, R4,1 := {E12, D1D,D2D},
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S6 E18 D3E D4(b)D S3 E3 E12 D1D D2D E6 E5 E14 E13 E4

S6 + + – – – – + – – – + + + +

E18 – + – – – – – – – – + – + +

D3E – + + – – + – + – – + – + +

D4(b)D – – – + – + + + – – + + + +

S3 – – – – + + – + – + + + + +

E3 – – – – – + – – – – + – – +

E12 – – – – – – + – – – + + + +

D1D – – – – – – – + – – + – + +

D2D – – – – – – + + + + + + + +

E6 – – – – – – – – – + + + – +

E5 – – – – – – – – – – + – – +

E14 – – – – – – – – – – + + – +

E13 – – – – – – – – – – – – + +

E4 – – – – – – – – – – – – – +

Table 6. List of algebraic contractions between free abstract quadratic algebras of 2D free degenerate

superintegrable systems on constant curvature spaces and Darboux spaces. A plus in the rubric placed

in the i-th row and j-th column indicates that there is a contraction from the system listed in the i-th

row of the first column to the system listed in the j-th column of the first row. A minus indicates that

there is no such contraction.

R3,1 := {E6, E5, E14}, R4,0 := {E13}, R3,0 := {E4}. By the discussion above, besides con-
tractions between two algebras in the same class Ri,j we can potentially find a contraction only
according to the following diagram:

R4,2

""||
R3,2

""

R4,1

��||
R3,1

��

R4,0

||
R3,0.

The classification is summarized in Table 6. Detailed analysis is presented below. Representa-
tives for all possible contractions are given in Section 5.3.7.

5.2.1 Contractions between rank two free abstract quadratic algebras

Note that for any of the Bcan matrices for the systems R4,2∪R3,2 = {S6, E18, D3E,D4(b)D,S3}
∪{E3} we have

ÂtBÂ =

(
rt 0
st t

)(
1 0
0 d

)(
r s
0 t

)
=

(
rtr rts
str sts+ tdt

)
. (5.6)

Consider A = A(ε) in equation (5.6) such that

lim
ε−→0

Â(ε)
t
BÂ(ε) = B0, (5.7)

where B0 ∈ R4,2 ∪R3,2. Below we prove that without loss of generality we can assume that rtεrε
is diagonal and sε is the zero two by two matrix.
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Proposition 5.4. Suppose that {Bε}ε∈R+ is a family of 4× 4 symmetric matrices with entries
in C[ε] and such that

lim
ε−→0+


(Bε)11 (Bε)12 (Bε)13 (Bε)14
(Bε)12 (Bε)22 (Bε)23 (Bε)24
(Bε)13 (Bε)23 (Bε)33 (Bε)34
(Bε)14 (Bε)24 (Bε)34 (Bε)44

 =


1 0 0 0
0 1 0 0
0 0 l33 l34
0 0 l34 l44

 .

Then there exists a continuous function ε 7→ Aε from C∗ to Ĝdegn with each entry polynomial in

ε such that Ât
εBεÂε is of the form

(B̃ε)11 0 0 0

0 (B̃ε)22 0 0

0 0 (B̃ε)33 (B̃ε)34
0 0 (B̃ε)34 (B̃ε)44

 ,

and

lim
ε−→0

Ât
εBεÂε = lim

ε−→0
Bε.

Proof. Note that for Ât
ε =

(
1 0 0 0

−(Bε)12 (Bε)11 0 0
−(Bε)13 0 (Bε)11 0
−(Bε)14 0 0 (Bε)11

)
lim
ε−→0

Ât
ε is the identity matrix and

Ât
εBεÂε is a symmetric matrix with all entries in the first row and first column besides the (1, 1)

entry equal to zero. Similar matrix take care of the second row and second column. �

Now suppose that equation (5.7) holds. Using the last proposition this means that we can

assume that Â(ε) =
(
rε 0
0 tε

)
with rε ∈ GL(2,C) and, as always, tε a diagonal invertible matrix.

From this we easily see that the only possible contractions between two algebras in R4,2 ∪ R3,2

are S6 −→ E18, D3E −→ E18, D3E −→ E3, D4(b)D −→ E3, S3 −→ E3.

5.3 Contractions of rank two free abstract quadratic algebras
to rank one algebras

Proposition 5.5. Suppose that {Bε}ε∈R+ is a family of 4× 4 symmetric matrices with entries
in C[ε] such that

lim
ε−→0+

Bε = L =


1 0 l13 l14
0 0 l23 l24
l13 l23 l33 l34
l14 l24 l34 l44

 .

Then there exists a continuous function ε 7→ Aε from C∗ to Ĝdegn with each entry polynomial

in ε such that Ât
εBεÂε is of the form

(B̃ε)11 0 0 0

0 (B̃ε)22 (B̃ε)23 (B̃ε)24
0 (B̃ε)23 (B̃ε)33 (B̃ε)34
0 (B̃ε)24 (B̃ε)34 (B̃ε)44

 ,

and

lim
ε−→0

Ât
εBεÂε = lim

ε−→0
Bε.

If in addition l13 = 0 then (B̃ε)13 = 0 and similarly if l14 = 0 then (B̃ε)14 = 0.
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The proof is similar to the proof of Proposition 5.4.

Corollary 5.6. In any contraction from a rank two systems R4,2 ∪ R3,2 = {S6, E18, D3E,
D4(b)D,S3, E3} to of one of the rank one systems R4,1∪R3,1 = {E12, D1D,D2D,E6, E5, E14}
we can assume that

Â(ε)
t
BÂ(ε) =


(Bε)11 0 0 0

0 (Bε)22 (Bε)23 (Bε)24
0 (Bε)23 (Bε)33 (Bε)34
0 (Bε)24 (Bε)34 (Bε)44

 . (5.8)

5.3.1 Contractions of D3E to rank one algebras

For A(ε) ∈ Ĝdegn the matrix Â(ε)
t
B(G)21(1, 0)Â(ε) is given by A2

11+A
2
21 A11A12+A21A22 A11A13+A21A23 A11A14+A21A24

A12A11+A22A21 A2
12+A

2
22 A12A13+A22A23 A12A14+A22A24

A11A13+A21A23 A12A13+A22A23 A2
13+A

2
23+A

2
33 A13A14+A23A24+A33A44

A11A14+A21A24 A12A14+A22A24 A13A14+A23A24+A33A44 A2
14+A

2
24

 .

Assuming that this matrix is in the form of (5.8) then this implies that exist β, γ, δ complex
valued functions of ε define on C∗ such that

(A12, A22) = β(A21,−A11), (A13, A23) = γ(A21,−A11), (A14, A24) = δ(A21,−A11).

Hence Â(ε)
t
B(G)21(1, 0)Â(ε) takes the form

A2
11 +A2

21 0 0 0
0 β2(A2

11 +A2
21) βγ(A2

11 +A2
21) βδ(A2

11 +A2
21)

0 βγ(A2
11 +A2

21) γ2(A2
11 +A2

21) +A2
33 γδ(A2

11 +A2
21) +A33A44

0 βδ(A2
11 +A2

21) γδ(A2
11 +A2

21) +A33A44 δ2(A2
11 +A2

21)

 .

We are going to consider the limit of ε goes to zero of such a matrix and check if it can be equal
to one of the matrices of the canonical forms of the systems in R4,1 ∪ R3,1. This means that

lim
ε−→0+

(A2
11 +A2

21) = 1 and we can replace Â(ε)
t
B(G)21(1, 0)Â(ε) by

1 0 0 0
0 β2 βγ βδ
0 βγ γ2 +A2

33 γδ +A33A44

0 βδ γδ +A33A44 δ2

 ,

with lim
ε−→0+

β = 0. From this we can show that D3E can not be contracted to E6, E12, E14,

D2D.

5.3.2 Contractions of E18 to rank one algebras

Following the same steps as in the case of D3E we can replace Â(ε)
t
B(G)22(0, 1)Â(ε) by

1 0 0 0
0 β2 βγ βδ
0 βγ γ2 γδ +A33A44

0 βδ γδ +A33A44 δ2

 ,

with lim
ε−→0+

β = 0. From this we can show that E18 can not be contracted to E6, E12, D1D,

D2D.
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5.3.3 Contractions of S6 to rank one algebras

Following the same steps as in the case of D3E we can replace Â(ε)
t
B(G)22(1, 1)Â(ε) by

1 0 0 0
0 β2 βγ βδ
0 βγ γ2 γδ +A33A44

0 βδ γδ +A33A44 δ2 +A2
44

 ,

with lim
ε−→0+

β = 0. From this we can show that S6 can not be contracted to E6, D1D, D2D.

5.3.4 Contractions of D4(b)D to rank one algebras

Following the same steps as in the case of D3E we can replace Â(ε)
t
B(G)21(1,−2)Â(ε) by

1 0 0 0
0 β2 βγ βδ
0 βγ γ2 +A2

33 γδ +A33A44

0 βδ γδ +A33A44 δ2 − 2A2
44

 ,

with lim
ε−→0+

β = 0. From this we can show that D4(b)D can not be contracted to D2D, E6.

5.3.5 Contractions of S3 to rank one algebras

Following the same steps as in the case of D3E we can replace Â(ε)
t
B(G)21(

√
2ei

3π
4 ,−2i)Â(ε)

by 
1 0 0 0
0 β2 βγ βδ

0 βγ γ2 +A2
33 γδ +

√
2ei

3π
4 A33A44

0 βδ γδ +
√

2ei
3π
4 A33A44 δ2 − 2iA2

44

 ,

with lim
ε−→0+

β = 0. From this we can show that S3 can not be contracted to D2D, E12.

5.3.6 Contractions of E3 to rank one algebras

Following the same steps as in the case of D3E we can replace Â(ε)
t
B(G)21(0, 0)Â(ε) by

1 0 0 0
0 β2 βγ βδ
0 βγ γ2 γδ
0 βδ γδ δ2

 ,

with lim
ε−→0+

β = 0. From this we can show that E3 can not be contracted to E6 and E14.

5.3.7 Explicit contractions

E13:

E13 −→ E4
ε 0 1

2 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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E14:

E14 −→ E4 E14 −→ E5
ε 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 ε 1 1

2
0 0 1 0
0 0 0 1

 .

E5:

E5 −→ E4
ε2 ε 1 ε−1

0 1 0 0
0 0 i 0
0 0 0 iε−1

 .

D2D:

D2D −→ E6 D2D −→ E12 D2D −→ D1D
1 0 1 0
0 ε−1 0 0
0 0 ε 0
0 0 0 ε

 ,


1 0 0 0
0 ε − i√

2
0

0 0 i√
2

0

0 0 0 ε−1

 ,


1 0 0 0
0 ε ε

2 0
0 0 ε−1 0
0 0 0 ε2

 ,

D2D −→ E5 D2D −→ E14 D2D −→ E4 D2D −→ E13
1 0 0 0
0 ε 0 1

2ε
0 0 2ε 0
0 0 0 ε

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε

 ,


ε 0 1 1
0 ε 0 0
0 0 ε 0
0 0 0 ε

 ,


0 ε 0 ε−1

1 0 0 0
0 0 1 0
0 0 0 iε−1

 .

E6:

E6 −→ E14 E6 −→ E5 E6 −→ E4
1 0 0 0
0 1 0 0
0 0 ε 0
0 0 0 1

 ,


1 0 0 0
0 ε ε ε−1

0 0 ε 0
0 0 0 1

2ε

 ,


ε 0 1 0
0 1 0 0
0 0 ε 0
0 0 0 1

 .

E12:

E12 −→ E14 E12 −→ E5 E12 −→ E4 E12 −→ E13
1 0 0 0
0 1 0 0
0 0 ε 0
0 0 0 1

 ,


1 0 0 1
−1 ε 1 0
0 0 ε 0
0 0 0 1

 ,


ε 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


ε 0 ε−1 0
0 1 0 0
0 0 iε−1 0
0 0 0 1

 .

The non-contraction of E12 to D1D, E6, D2D: Demanding that lim
ε−→0

Â(ε)
t
B17(1)Â(ε) converge

to the Canonical form of one of the systems D1D, E6, D2D, and observing the entries on places
(1, 1), (2, 2), (3, 1), and (3, 2) in the matrix equation we obtain the equations:

lim
ε−→0

A2
1,1 = 1, lim

ε−→0
A2

1,2 = 0, lim
ε−→0

A1,3A1,1 = 0, lim
ε−→0

A1,2A1,3 = 1,

which obviously can not hold simultaneously.
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D1D:

D1D −→ E5 D1D −→ E13 D1D −→ E4
1 0 0 0
0 ε 0 1
0 0 1 0
0 0 0 1

 ,


ε2 ε 0 ε−1

ε−1 ε 0 0
0 0 ε 0
0 0 0 iε−1

 ,


ε2 ε 0 ε−1

0 ε 1/2 0
0 0 1 0
0 0 0 iε−1

 .

The non-contraction of D1D to E6, E12, S5: Demanding that lim
ε−→0

Â(ε)
t
B16(1)Â(ε) converge

to the canonical form of one of the systems E6, E12, S5, and observing the entries on places
(1, 1), (1, 2), (4, 1), and (4, 2) in the matrix equation we obtain the equations:

lim
ε−→0

A1,1 = ±1, lim
ε−→0

A1,2 = 0, lim
ε−→0

A1,2A1,4 = 1, lim
ε−→0

A1,1A1,4 = 0,

which obviously can not hold simultaneously.
E3:

E3 −→ E5 E3 −→ E4
1 0 0 0
0 ε 1 1
0 0 i 0
0 0 0 1

 ,


ε 0 1 −iε−1
iε ε i ε−1

0 0 1 0
0 0 0 1

 .

D4(b)D:

D4(b)D −→ E4 D4(b)D −→ E14 D4(b)D −→ E5
ε 0 1 0
0 ε 0 ε−1

0 0 ε2 0
0 0 0 1√

2ε

 ,


1 0 0 0
0 ε 0 ε−1

0 0 ε2 0
0 0 0 1√

2ε

 ,


1 0 0 0
0 ε 1 1
0 0 i 0
0 0 0 ε

 ,

D4(b)D −→ D1D D4(b)D −→ E12 D4(b)D −→ E13
1 0 0 0
0 −ε −ε−1 0
0 0 iε−1 0
0 0 0 ε2

 ,


1 0 0 0
0 −ε 1√

3
−ε−1

0 0
√

2
3 0

0 0 0 1√
2ε

 ,


ε ε 1

2ε
−1 1

2ε
−1

iε −iε − i
2ε
−1 i

2ε
−1

0 0 ε 0
0 0 0 ε

 ,

D4(b)D −→ E3
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε

 .

S3:

S3 −→ E5 S3 −→ E14 S3 −→ E4
1 0 0 0
0 ε i 0
0 0 1 0

0 0 0 1√
2
e−i

3π
4

 ,


1 0 ε −ε
0 ε ε3 ε−1

0 0 ε2 0

0 0 0 i
ε
√
2
e−i

3π
4

 ,


ε 0 1 0
0 ε 0 ε−1

0 0 ε2 0

0 0 0 i 1
ε
√
2
e−iπ/4

 ,

S3 −→ D1D S3 −→ E13 S3 −→ E6
1 0 0 0
0 −ε −ε−1 0
0 0 iε−1 0
0 0 0 ε2

 ,


ε ε 1

2ε
−1 1

2ε
−1

iε −iε − i
2ε
−1 i

2ε
−1

0 0 ε 0
0 0 0 ε

 ,


1 0 0 0
0 −ε −ε−1 −ε−1
0 0 −iε−1 0

0 0 0 ei3π/4√
2ε

 ,
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S3 −→ E3
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε

 .

S6:

S6 −→ E12 S6 −→ E14 S6 −→ E5
1 0 0 0
0 ε 1 ε−1

0 0 i 0
0 0 0 iε−1

 ,


1 0 0 0
0 ε 0 ε−1

0 0 ε2 0
0 0 0 iε−1

 ,


1 0 0 0
0 ε 0 0
0 0 1 0
0 0 0 1

 ,

S6 −→ E4 S6 −→ E13 S6 −→ E18
ε2 ε 1 ε−1

0 ε 0 0
0 0 i 0
0 0 0 iε−1

 ,


ε −iε ε−1 0
0 ε iε−1 ε−1

0 0 −ε−1 0
0 0 0 iε−1

 ,


1 0 0 0
0 1 0 0
0 0 ε−1 0
0 0 0 ε

 .

E18:

E18 −→ E5 E18 −→ E13 E18 −→ E4
1 0 0 0
0 ε 0 1
0 0 1 0
0 0 0 1

 ,


ε ε 1

2ε
−1 1

2ε
−1

±iε ∓iε ∓ i
2ε
−1 ± i

2ε
−1

0 0 i√
2
ε−1 0

0 0 0 i√
2
ε−1

 ,


ε2 ε 1 (1− i)(2ε)−1
0 ε 0 (1 + i)(2ε)−1

0 0 i 0
0 0 0 (1 + i)(2ε)−1

 .

D3E:

D3E −→ E5 D3E −→ D1D D3E −→ E13
1 0 0 0
0 ε 1 1
0 0 i 0
0 0 0 ε

 ,


1 0 0 0
0 −ε −ε−1 −1
0 0 iε−1 0
0 0 0 i

 ,


ε−1 ε2 ε

1−i
1

ε2(1+i)

iε−1 ε2 − ε
1−i

1
ε2(1−i)

0 0 −
√
2ε

1+i 0

0 0 0 1√
2ε2

 ,

D3E −→ E4 D3E −→ E3 D3E −→ E18
ε 0 1 0
0 ε 0 ε−1

0 0 ε2 −1+i√
2ε

0 0 0 1√
2ε

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε

 ,


1 0 0 0
0 1 0 0
0 0 ε 0
0 0 0 ε−1

 .

5.4 Contractions of the degenerate quadratic algebras
and the lower half of the Askey scheme

The bottom half of the contraction Askey scheme relating orthogonal polynomials via contrac-
tions to degenerate, singular and free superintegrable systems is presented in Fig. 2. The top
half of the Scheme, relating to contractions of nondegenerate superintegrable systems can be
found in [5] and the full scheme in [17]. On the left side are the orthogonal polynomials that
realize finite-dimensional representations of the quadratic algebras via difference or differential
operators and on the right those that realize infinite-dimensional bounded below representations.
The arrows from the nondegenerate superintegrable system S9, E1, E8 and E3′ correspond to
restriction/contractions to degenerate systems, i.e., the parameters in the 3-parameter poten-
tials are restricted to the case of only 1 parameter and such that one of the symmetry operators
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Figure 2. Contractions of degenerate systems and the bottom half of the Askey scheme.

becomes a perfect square. This increases the symmetry algebra of the resulting degenerate
system.

Remark 5.7. For reference, the corresponding potentials are

• E1: V = α(x2 + y2) + β
x2

+ γ
y2

,

• E3′: V = α(x2 + y2) + βx+ γy,

• E8: V = α(x−iy)
(x+iy)3

+ β
(x+iy)2

+ γ
(
x2 + y2

)
,

on flat space and

• S9: V = α
s21

+ β
s22

+ γ
s23

, s21 + s22 + s23 = 1,

on the 2-sphere.

The arrows from one degenerate superintegrable system to another are the standard con-
tractions studied above. The singular Laguerre and oscillator superintegrable systems have
singular Hamiltonians, and for these systems knowledge of the free quadratic algebra does not
necessarily determine the full superintegrable system. The singular Laguerre system is a restric-
tion/contraction of E1. The resulting quadratic algebra is isomorphic to {H} ⊕ sl(2,R) [17], in
the same sense that the quadratic algebra of the 2D Kepler system is said to be so(3,R). This is
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true only if the system is restricted to an eigenspace of H. The Oscillator system is a contraction
of E6 and its quadratic algebra is isomorphic to the 4-dimensional oscillator algebra [17]. The
plane and sphere systems are restriction/contractions of degenerate superintegrable systems to
free superintegrable systems on the plane and the 2-sphere, respectively.

6 Conclusions and discussion

This paper is devoted to the study of the geometric quadratic algebras that correspond to 2D
degenerate 2nd order superintegrable systems and general abstract degenerate quadratic alge-
bras. Since the geometric quadratic algebras are uniquely determined by their free restrictions
we studied only parameter-free geometric and abstract algebras. The geometric algebras were
already known; in this paper we classified all abstract algebras in Table 3. We related the geo-
metric and free quadratic algebras in Table 4. We showed that there were 5 abstract algebras
with no geometric counterpart, but that it was impossible to represent them in phase space.

In Section 3 we derived and classified all Bôcher contractions of 2D degenerate 2nd order
superintegrable systems. In Fig. 2 we showed the relationship between our results and the
bottom half of the Askey scheme. We derived and classified all abstract contractions of the
geometric quadratic algebras, presenting the results in Table 6. Comparing the Bôcher and
abstract contractions and taking into account the isomorphism of the E14 and S5 algebras, we
see that there is a match except for 6 abstract contractions with no geometric realization:

paren algebra abstract contracted algebra

S6 D1D

S3 D1

S3 E13

D3E E18

E12 E5

E14 E5

In two cases the failure of geometric realization is obvious: It is not possible to contract a constant
curvature space to a Darboux space [7]. This paper is a partial warm-up for an analogous study
of quadratics algebras for 3D superintegrable systems, e.g., [2] and for cubic algebras, e.g., [21].

A Summary of degenerate Laplace and Helmholtz systems

The degenerate superintegrable systems can occur only on the 2-sphere, 2D flat space, or one
of the 4 Darboux spaces. The notation for these systems is taken from [14, 15]. (We write
the systems in classical form; the quantum analogs have the same potentials and the obvious
replacements of classical momenta by quantum derivatives.) We assume all variables to be
complex.

Degenerate complex Euclidean systems H = p2x + p2y + αV (x, y):

1. E18: V = 1√
x2+y2

, Kepler potential,

2. E3: V = x2 + y2, harmonic oscillator,

3. E6: V = 1
x2

, radial potential,

4. E5: V = x, linear potential,

5. E12: V = x+iy√
(x+iy)2+c2

,

6. E14: V = 1
(x+iy)2

,
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7. E4: V = x+ iy,

8. E13: V = 1√
x+iy

.

The last 4 systems are real in Minkowski space.
Degenerate systems on the complex sphere: We use the classical realization for o(3, C)

with basis J1 = s2ps3 − s3ps2 , J2 = s3ps1 − s1ps3 , J3 = s1ps2 − s2ps1 , and Hamiltonian H =
J2
1 + J2

2 + J2
3 + αV . Here s21 + s22 + s23 = 1.

1. S6: V = s3√
s21+s

2
2

, Kepler analog,

2. S3: V = 1
s23

, Higg’s oscillator,

3. S5: V = 1
(s1+is2)2

.

The last system is real on the 2-sheet hyperboloid.
Degenerate systems on Darboux spaces:

1. D1D: H = 1
4x(p2x + p2y) + α

x ,

2. D2D: H = x2

x2+1
(p2x + p2y) + α

x2+1
,

3. D3E: H = 1
2
e2x

ex+1(p2x + p2y) + α
ex+1 ,

4. D4(b)D: H = − sin2 2x
2 cos 2x+b(p

2
x + p2y) + α

2 cos 2x+b .

Remark A.1. Every degenerate system occurs as a “restriction” of at least one nondegenerate
system, although the symmetry algebra grows. For example the classical nondegenerate S9
system has the Hamiltonian

H = J2
1 + J2

2 + J2
3 +

a1
s21

+
a2
s22

+
a3
s23

and a basis of symmetries

L1 = J2
3 + a1

s22
s21

+ a2
s21
s22
, L2 = J2

1 + a2
s23
s22

+ a3
s22
s23
, L3 = J2

2 + a3
s21
s23

+ a1
s23
s21
,

where H = L1 + L2 + L3 + a1 + a2 + a3. If we let a1 → 0, a2 → 0 we obtain the Hamiltonian
for S3: H ′ = J2

1 + J2
2 + J2

3 + a3
s23

. However, now

L1 → L′1 = J2
3 , L2 → L′2 = J2

1 + a3
s22
s23
, L3 → L′3 = J2

2 + a3
s21
s23
,

and the restricted system now admits the 1st order symmetry J3 as well as a new 2nd order
symmetry {J3, L′2}. These 4 symmetries are related by the Casimir. A table with all of the
restrictions of nondegenerate systems on constant curvature spaces to degenerate systems can
be found in [16] and a table with all restrictions of nondegenerate systems on Darboux spaces
can be found in [7].
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