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Abstract. We study the partial sum operator for a Sobolev-type inner product related
to the classical Gegenbauer polynomials. A complete characterization of the partial sum
operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of
the partial sum operators.
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1 Introduction

Let the Sobolev-type inner product be

〈f, g〉S =

∫ 1

−1
f(x)g(x)dµα(x) +M(f(1)g(1) + f(−1)g(−1))

+N(f ′(1)g′(1) + f ′(−1)g′(−1)), (1.1)

where M ≥ 0, N ≥ 0, and

dµα(x) =
Γ(2α+ 2)

22α+1Γ2(α+ 1)

(
1− x2

)α
dx, α > −1/2,

is the probability measure corresponding to the Gegenbauer polynomials.
Let {Qαn(x)}n≥0 be the sequence of normalized Gegenbauer–Sobolev orthonormal polynomials

with respect to the inner product (1.1). For each appropriate function f , we define its sequence
of Fourier–Gegenbauer–Sobolev coefficients by

f̂(k) = 〈f,Qαk 〉S , k = 0, 1, . . . ,

and the n-th partial sum operator as

Gnf(x) =

n∑
k=0

f̂(k)Qαk (x), n = 0, 1, . . . .

Given 1 < p <∞, we say that f ∈ Lp(dµα) if f is a measurable function in [−1, 1] and

‖f‖Lp(dµα) =

(∫ 1

−1
|f(x)|pdµα(x)

)1/p

<∞.

Let us define the measure µα,M := µα+M(δ1+δ−1). We consider the space Wα
p , with 1 < p <∞,

as the set of equivalence classes, with respect to the (semi)norm in Lp(µα,M ), of measurable
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functions defined on [−1, 1] such that there exists an element in the class f for which f ′(1)
and f ′(−1) are defined, and

‖f‖pWα
p

:= ‖f‖pLp(dµα) +M
(
|f(1)|p + |f(−1)|p

)
+N

(
|f ′(1)|p + |f ′(−1)|p

)
<∞.

The main target of this paper is the study of the uniform boundedness of the operators Gn.
In fact, we will prove the following characterization.

Theorem 1.1. Let α > −1/2, 1 < p <∞, and f ∈Wα
p . There exists a constant C, independent

of n and f , such that

‖Gnf‖Wα
p
≤ C‖f‖Wα

p

if and only if

4(α+ 1)

2α+ 3
< p <

4(α+ 1)

2α+ 1
. (1.2)

The uniform boundedness of the partial sum operators for Gegenbauer polynomials in Lp(dµα)
was given by Pollard [11] who extended it to the Jacobi setting in [12]. A general result including
weights for Jacobi expansions can be seen in [9]. In [3], by applying the boundedness with weights
of the Hilbert transform, the authors did a complete study of the boundedness of the partial
sum operators related to generalized Jacobi weights. The same authors studied the generalized
Jacobi weights with mass points on the interval [−1, 1] (see [4]). The uniform boundedness with
weights of the partial sum operator for the generalized Jacobi polynomials has been used to
proved, using an idea dating back to J. Marcinkiewicz, some results related to interpolating
polynomials (see [15, 16] and the references in [10]).

It would be natural to consider our problem for the Jacobi weight instead of the Gegenbauer
one. This extension requires some results about the corresponding Jacobi–Sobolev polyno-
mials that are unavailable in the literature at this moment. We hope to develop these tools in
a forthcoming paper to obtain a complete characterization in that case as well.

As far as we know, a complete characterization of the uniform boundedness of the partial
sums in the Sobolev setting is completely new. In [6], the authors observed that the main ob-
stacle to analyze this problem is the lack of Christoffel–Darboux formula for Sobolev orthogonal
polynomials. As a consequence of this fact, except for certain particular cases, the convergence
of Fourier expansions in Sobolev orthogonal polynomials has not been resolved. For example,
the particular case of the Fourier series associated to the Jacobi–Sobolev polynomials defined
by the inner product∫ 1

−1
f(x)g(x)(1− x)α(1 + x)βdx+

∫ 1

−1
f ′(x)g′(x)(1− x)α+1(1 + x)β+1dx

was treated in [5] but, unfortunately, the given results are not completely satisfactory.
Our proof of Theorem 1.1 relies on some results about multipliers and transplantation ope-

rators for Jacobi expansions proved by Muckenhoupt and other authors in the eighties of the
last century (see [8] and the references therein).

From a standard argument, the uniform boundedness of the operator Gn will imply the
convergence for functions in the class Wα

p if the polynomials form a dense class. However,
the reverse implication is not true because the space Wα

p is not complete. The density of the
polynomials is contained in the next result.

Theorem 1.2. The set of polynomials is dense in the space Wα
p . That is, given f ∈ Wα

p , for
all ε > 0 there exists a polynomial qn of degree n such that

‖f − qn‖Wα
p
< ε.
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Now, from Theorems 1.1 and 1.2, we deduce the convergence for functions in the class Wα
p

of the partial sums Gn.

Corollary 1.3. Let f ∈Wα
p with α > −1/2 and 1 < p <∞. If

4(α+ 1)

2α+ 3
< p <

4(α+ 1)

2α+ 1
,

then

lim
n→∞

‖Gnf − f‖Wα
p

= 0.

In Section 2 we present the necessary definitions and results concerning to the Gegenbauer
and Gegenbauer–Sobolev polynomials. Section 3 and Section 4 are devoted to prove Theorem 1.1
and Theorem 1.2, respectively.

2 Definitions and auxiliary results

Let {Rαn}n≥0 be the sequence of Gegenbauer polynomials given by the Rodrigues formula

Rαn(x) =
(−1)n

Γ(α+ 1)
2nΓ(n+ α+ 1)

(
1− x2

)−α dn

dxn
((

1− x2
)n+α)

.

If we call {Bα
n}n≥0 the sequence of orthogonal polynomials with respect to (1.1), the following

relation between Rαn and Bα
n was proved in [1]

Bα
n (x) =

an(n+ 2α+ 1)4(−n)4

26(α+ 2)(α+ 3)(α+ 1)4

(
1− x2

)2
Rα+4
n−4(x)

+
bn(n+ 2α+ 1)2(−n)2

22(α+ 1)2

(
1− x2

)
Rα+2
n−2(x) + cnR

α
n(x), (2.1)

where (a)n is the shifted factorial (or Pochhammer symbol), defined by (a)n = Γ(a+n)
Γ(a) , and

an = MN
4(2α+ 3)n(2α+ 3)n−2

(α+ 1)(α+ 2)n!(n− 2)!
+N

2(2α+ 3)n−1

(α+ 1)(n− 1)!
,

bn = −N
2

(2α+ 3)n−1(n− 2)(n+ 2α+ 3)

(α+ 1)(α+ 3)(n− 1)!
− 2M

(2α+ 3)n−2

n!
,

cn = 1− N

2

(2α+ 3)n+1

(α+ 1)(α+ 2)(α+ 3)(n− 3)!
.

Here and elsewhere we use the convention that Rγn ≡ 0 if n < 0.
In [7] it was proved the identity

‖Bα
n‖2Wα

2
= 2Mc2

n + 2N

(
n(n+ 2α+ 1)

2(α+ 1)
+

M(2α+ 3)n
(α+ 1)(α+ 2)(n− 1)!

)2

+
Γ(2α+ 2)n!

(2n+ 2α+ 1)Γ(n+ 2α+ 1)

(
n(n− 1)(n− 2)(n− 3)(n+ 2α+ 1)4a

2
n

16(α+ 2)2(α+ 3)2

× n(n− 1)(n+ 2α+ 1)2b
2
n −

n(n− 1)(n− 2)(n− 3)(n+ 2α+ 1)2anbn
2(α+ 2)2

+ c2
n − 2n(n− 1)bncn +

n(n− 1)(n− 2)(n− 3)ancn
2(α+ 2)(α+ 3)

)
.
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Then Qαn(x) = λn,αB
α
n (x), where λ−2

n,α = ‖Bα
n‖2Wα

2
. Now, denoting by {Pαn }n≥0 the sequence of

orthonormal Gegenbauer polynomials, given by Pαn = βn,αR
α
n with

β−2
n,α = ‖Rαn‖2L2(dµα) =

Γ(2α+ 2)n!

(2n+ 2α+ 1)Γ(n+ 2α+ 1)
,

from (2.1) we can write

Qαn(x) = An,4
(
1− x2

)2
Pα+4
n−4 (x) +An,2

(
1− x2

)
Pα+2
n−2 (x) +An,0P

α
n (x), (2.2)

where

An,4 =
an(n+ 2α+ 1)4(−n)4

26(α+ 2)(α+ 3)(α+ 1)4

λn,α
βn−4,α+4

, An,2 =
bn(n+ 2α+ 1)2(−n)2

22(α+ 1)2

λn,α
βn−2,α+2

,

and An,0 = cn
λn,α
βn,α

.
We consider the notations

g(n, J) =

J−1∑
j=0

dj
(n+ 1)j

+O

(
1

(n+ 1)J

)
, J ∈ N,

h(n, α) =

b2α+2c∑
j=0

Dj

(n+ 1)j
+O

(
1

(n+ 1)2α+2

)
, α > −1/2,

for some constants dj and Dj that will be different in each occurrence of the g(n, J) and h(n, α),
respectively. With the previous notation, by using that

Γ(n+ a)

Γ(n+ b)
= na−bg(n, J), (2.3)

for any J ∈ N, we deduce in an easy way that

λn,α =


(n+ 1)−α−

11
2 g(n, J), M = 0, N > 0,

(n+ 1)−3α− 15
2 h(n, α), M > 0, N > 0,

(n+ 1)−α−
3
2h(n, α), M > 0, N = 0,

(2.4)

for any J ∈ N.

Lemma 2.1. Let α > −1/2. Then the constants An,4, An,2, and An,0 in (2.2) satisfy the
following:

i) If M = 0 and N > 0,

An,4 = g(n, J), An,2 = g(n, J), An,0 = g(n, J),

for any J ∈ N.

ii) If M > 0 and N > 0,

An,4 = h(n, α), An,2 =
h(n, α)

(n+ 1)2α+2
, An,0 =

h(n, α)

(n+ 1)2α+2
.

iii) If M > 0 and N = 0,

An,4 = 0, An,2 = h(n, α), An,0 =
h(n, α)

(n+ 1)2α+2
.
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Proof. From (2.3) we have

an =


(n+ 1)2α+2g(n, J), M = 0, N > 0,

(n+ 1)4α+4h(n, α), M > 0, N > 0,

0, M > 0, N = 0,

bn =


(n+ 1)2α+4g(n, J), M = 0, N > 0,

(n+ 1)2α+4g(n, J), M > 0, N > 0,

(n+ 1)2αg(n, J), M > 0, N = 0,

cn =


(n+ 1)2α+6g(n, J), M = 0, N > 0,

(n+ 1)2α+6g(n, J), M > 0, N > 0,

1, M > 0, N = 0,

and βn,α = (n+ 1)α+1/2g(n, J), for any j ∈ N. Then, using that (2.4), the result follows. �

The following results, that we will use in the proof of Theorem 1.1, can be found in [7]. The
notation appearing in Lemma 2.3, f(n) ≈ g(n), indicates the existence of positive constants C
and D such that Cf(n) ≤ g(n) ≤ Df(n) for n large enough.

Lemma 2.2. Let {Qαn}n be the sequence of orthonormal polynomials with respect to the inner
product (1.1), then

max
−1≤x≤1

(
1− x2

)α
2

+ 1
4 |Qαn(x)| ≤ C.

Lemma 2.3. Let {Qαn}n be the sequence of orthonormal polynomials with respect to the inner
product (1.1), then

|Qαn(1)| = |Qαn(−1)| ≈

{
(n+ 1)−α−3/2, M > 0, N ≥ 0,

(n+ 1)α+1/2, M = 0, N > 0,

|(Qαn)′(1)| = |(Qαn)′(−1)| ≈

{
(n+ 1)−α−7/2, M ≥ 0, N > 0,

(n+ 1)α+5/2, M > 0, N = 0.

Let Sγnf be the n-th partial sum of Fourier expansion in terms of orthonormal Gegenbauer
polynomials,

Sγnf(x) =
n∑
k=0

dγk(f)P γk (x), dγk(f) =

∫ 1

−1
f(x)P γk (x)dµγ(x).

From the main result in [8] we can deduce the following result

Lemma 2.4. Let γ > −1 and 1 < p <∞. There exists a constant C, independent of n and f ,
such that∥∥(1− (·)2

)a
Sγnf

∥∥
Lp(dµγ)

≤ C
∥∥(1− (·)2

)a
f
∥∥
Lp(dµγ)

if and only if∣∣∣∣a+ (γ + 1)

(
1

p
− 1

2

)∣∣∣∣ < 1

4
.
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Let d be an integer number. We define the transplantation operator

T β,γd f(x) =
∞∑
k=0

dγk(f)P βk+d(x).

The operator T β,γd is well defined, for example, for functions f having a finite expansion in terms
of the Gegenbauer polynomials P γn . The following result plays a crucial role in our work. It is
essentially a special case of a general weighted transplantation theorem due to Muckenhoupt,
see [9, Theorem 1.6].

Lemma 2.5. Let γ > −1, β > −1, and 1 < p <∞. If 2(b+ 1) > −p(β + 1/2) then(∫ 1

−1
|T β,γd f(x)|p

(
1− x2

) p
2

(β+1/2)+b
dx

)1/p

≤ C
(∫ 1

−1
|f(x)|p

(
1− x2

) p
2

(γ+1/2)+b
dx

)1/p

.

The last tool that we will need for the proof of Theorem 1.1 is related to the boundedness of
a specific multiplier for Gegenbauer expansions. We define the operator

Rγf(x) =

∞∑
k=0

dγk(f)

k + 1
P γk (x).

Lemma 2.6. Let γ > −1 and 1 < p <∞. If |2b+ 1| < p and∣∣∣∣2(b+ 1)

p
− 1

2

∣∣∣∣ < min{γ + 1, 1/2},

then (∫ 1

−1
|Rγf(x)|p

(
1− x2

) p
2

(γ+1/2)+b
dx

)1/p

≤ C
(∫ 1

−1
|f(x)|p

(
1− x2

) p
2

(γ+1/2)+b
dx

)1/p

.

This lemma is a particular case of [9, Theorem 1.10] because the multiplier 1/(k+ 1) belongs
to the class M(1, 1) there defined.

3 Proof of Theorem 1.1

Taking the kernel

Ln(x, y) =

n∑
k=0

Qαk (x)Qαk (y),

it is easy to see that

Gnf(x) = 〈Ln(x, y), f〉S .

Recall that

‖Gnf‖pWα
p

= ‖Gnf‖pLp(dµα) +M
(
|Gnf(1)|p + |Gnf(−1)|p

)
+N

(
|(Gnf)′(1)|p + (Gnf)′(−1)|p

)
.

The necessity of the condition (1.2) is a consequence of [2, Theorem 1] and its sufficiency will
be obtained from two following propositions.
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Proposition 3.1. Let α > −1/2 and 1 < p <∞. If (1.2) holds, then

‖Gnf(x)‖Lp(dµα) ≤ C‖f‖Wα
p
, (3.1)

where C is a constant independent of n and f .

Proposition 3.2. Let α > −1/2 and 1 < p <∞. If (1.2) holds, then

M
(
|Gnf(1)|p + |Gnf(−1)|p

)
+N

(
|(Gnf)′(1)|p + |(Gnf)′(−1)|p

)
≤ C‖f‖Wα

p
,

where C is a constant independent of n and f .

Proof of Proposition 3.1. From Minkowski’s inequality, we know that

‖Gnf(x)‖Lp(dµα) ≤
(∫ 1

−1

∣∣∣∣∫ 1

−1
f(y)Ln(x, y)dµα(y)

∣∣∣∣p dµα(x)

)1/p

+

(∫ 1

−1
|M(f(1)Ln(x, 1) + f(−1)Ln(x,−1)|pdµα(x)

)1/p

+

(∫ 1

−1

∣∣∣∣N(f ′(1)
∂Ln
∂y

(x, 1) + f ′(−1)
∂Ln
∂y

(x,−1))

∣∣∣∣p dµα(x)

)1/p

.

First, it will be proved that(∫ 1

−1

∣∣∣∣∫ 1

−1
f(x)Ln(x, y)dµα(y)

∣∣∣∣p dµα(x)

)1/p

≤ C‖f‖Lp(dµα). (3.2)

Using (2.2), we have∫ 1

−1
f(y)Ln(x, y)dµα(y) =

∑
j,m∈{4,2,0}

M j,m
n f(x),

where

M j,m
n f(x) =

∫ 1

−1
f(y)Kj,m

n (x, y)dµα(y),

Kj,m
n (x, y) =

(
1− x2

)j/2(
1− y2

)m/2 n∑
k=0

Ak,jAk,mP
α+j
k−j (x)Pα+m

k−m (y).

By using a standard duality argument, to deduce (3.2) it is enough to prove

‖M j,m
n f‖Lp(dµα) ≤ C‖f‖Lp(dµα)

for m ≤ j.
By Lemma 2.1, each operator M j,m

n can be decomposed as

M j,m
n f(x) = S0M

j,m,0
n f(x) + S1M

j,m,1
n f(x) + S2M

j,m,2
n f(x),

for some nonnegative constants S0, S1 and S2, with

M j,m,s
n f(x) =

∫ 1

−1
f(y)Kj,m,s

n (x, y)dµα(y), s = 0, 1, 2,

Kj,m,s
n (x, y) =

(
1− x2

)j/2(
1− y2

)m/2 n∑
k=0

(k + 1)−sPα+j
k−j (x)Pα+m

k−m (y), s = 0, 1,
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and

∣∣Kj,m,2
n (x, y)

∣∣ ≤ C(1− x2
)j/2(

1− y2
)m/2 n∑

k=0

k−θ
∣∣Pα+j
k−j (x)

∣∣∣∣Pα+m
k−m (y)

∣∣,
where θ > 1.

From the well-known estimate (it follows from [14, Theorem 7.32.2, p. 169])

|Pαn (x)| ≤ C
(
1− x2

)−(α/2+1/4)
, x ∈ [−1, 1],

with C a constant independent of n, we deduce∥∥(1− (·)2
)j/2

Pα+j
n−j

∥∥
Lp(dµα)

≤ C

for p < 4(α+ 1)/(2α+ 1). In this way, applying Hölder inequality,∥∥M j,m,2
n f

∥∥
Lp(dµα)

≤ C‖f‖Lp(dµα),

for each p verifying (1.2).
It is easy to check that

M j,j,0
n f(x) = Kα

(
1− x2

)j/2
Sα+j
n−j g(x),

for a constant Kα, with j = 4, 2, 0 and g(x) =
(
1− x2

)−j/2
f(x). Then, if p satisfies (1.2), from

Lemma 2.4, with a = j(1/2− 1/p) and γ = α+ j, we deduce∥∥M j,j,0
n f

∥∥
Lp(dµα)

= Kα

∥∥(1− (·)2
)j(1/2−1/p)

Sα+j
n−j g

∥∥
Lp(dµα+j)

≤ C
∥∥(1− (·)2

)j(1/2−1/p)
g
∥∥
Lp(dµα+j)

≤ C‖f‖Lp(dµα).

Now, for m < j, we can check that

M j,m,0
n f(x) = Cα

(
1− x2

)j/2
Tα+j,α+m
m−j

(
Sα+m
n−mh

)
(x),

for a constant Cα, whith h(x) =
(
1 − x2

)−m/2
f(x). So, using Lemma 2.5 with β = α + j,

γ = α+m, and b = α− p(α+ 1/2)/2, we have∥∥M j,m,0
n f

∥∥
Lp(dµα)

= Cα
∥∥(1− (·)2

)j/2
Tα+j,α+m
m−j

(
Sα+m
n−mh

)∥∥
Lp(dµα)

≤ C
∥∥(1− (·)2

)m/2
Sα+m
n−mh

∥∥
Lp(dµα)

≤ C‖f‖Lp(dµα),

where in the last step we have used Lemma 2.4 as we have done for M j,j,0
n .

To analyze the operators M j,m,1
n we observe the identities

M j,j,1
n f(x) = Kα

(
1− x2

)j/2
Rα+j

(
Sα+j
n−j g

)
(x), j = 4, 2, 0,

M j,m,1
n f(x) = Cα

(
1− x2

)j/2
Tα+j,α+m
m−j

(
Rα+m

(
Sα+m
n−mh

))
(x), m < j,

with g(x) =
(
1 − x2

)−j/2
f(x) and h(x) =

(
1 − x2

)−m/2
f(x). Then the boundedness of these

operators follows as in the previous cases but using moreover the estimate∥∥(1− (·)2
)j/2

Rα+jf
∥∥
Lp(dµα)

≤ C
∥∥(1− (·)2

)j/2
f
∥∥
Lp(dµα)

,
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which can be deduced from Lemma 2.6 taking b = α − p(α + 1/2)/2 and γ = α + j under the
assumption (1.2). In this way the proof of (3.2) is completed.

To finish the proof of (3.1), we are going to prove the estimates∫ 1

−1
|M(f(1)Ln(x, 1) + f(−1)Ln(x,−1)|p

(
1− x2

)α
dx ≤ CMp

(
|f(1)|p + |f(−1)|p

)
, (3.3)∫ 1

−1

∣∣∣∣N (f ′(1)
∂Ln
∂y

(x, 1) + f ′(−1)
∂Ln
∂y

(x,−1)

)∣∣∣∣p (1− x2
)α

dx

≤ CNp
(
|f ′(1)|p + |f ′(−1)|p

)
. (3.4)

For (3.3) we suppose M > 0, because in other case this element does not appear in the norm.
From Lemmas 2.2 and 2.3, for x ∈ [−1, 1], we have

|Ln(x, 1)| ≤ C
(
1− x2

)−α
2
− 1

4 , |Ln(x,−1)| ≤ C
(
1− x2

)−α
2
− 1

4 .

Then (3.3) is deduced immediately because the integral∫ 1

−1

(
1− x2

)− p
2

(α+1/2)+α
dx (3.5)

is finite for p < 4(α+ 1)/(2α+ 1).
To prove (3.4) we suppose N > 0, because if N = 0 the inequality is trivially true. Again,

by Lemmas 2.2 and 2.3, for x ∈ [−1, 1], we obtain the bounds∣∣∣∣∂Ln∂y (x, 1)

∣∣∣∣ ≤ C(1− x2
)−α

2
− 1

4 ,

∣∣∣∣∂Ln∂y (x,−1)

∣∣∣∣ ≤ C(1− x2
)−α

2
− 1

4 .

Then, as in the previous case, (3.4) is a consequence of the finiteness of the integral (3.5). �

Proof of Proposition 3.2. We are going to show the estimates

|Gnf(1)| ≤ C‖f‖Wα
p
, for M > 0, (3.6)

and

|(Gnf)′(1)| ≤ C‖f‖Wα
p
, for N > 0. (3.7)

The analysis of |Gnf(−1)|, for M > 0, and |(Gnf)′(−1)|, for N > 0, are completely similar and
the details will be omitted.

It is clear that

Gnf(1) =

∫ 1

−1
f(y)Ln(1, y)dµα(y) +M(f(1)Ln(1, 1) + f(−1)Ln(1,−1))

+N

(
f ′(1)

∂Ln
∂y

(1, 1) + f ′(−1)
∂Ln
∂y

(1,−1)

)
.

If M > 0, from Lemmas 2.2 and 2.3 it is obtained that

|Ln(1, y)| ≤ C
(
1− y2

)−α
2
− 1

4 , y ∈ [−1, 1].

Then, applying Hölder inequality, we have∣∣∣∣∫ 1

−1
f(y)Ln(1, y)dµα(y)

∣∣∣∣ ≤ C‖f‖Lp(dµα)

(∫ 1

−1

(
1− y2

)− q
2

(α+1/2)+α
dy

)p/q
≤ C‖f‖Lp(dµα)
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because the last integral converges if q < 4(α + 1)/(2α + 1), which is equivalent to p > 4(α +
1)/(2α+ 3). On the other hand, using again Lemma 2.3 we deduce the bounds

|Ln(1, 1)| ≤ C, |Ln(1,−1)| ≤ C, for N ≥ 0

and ∣∣∣∣∂Ln∂y (1, 1)

∣∣∣∣ ≤ C, ∣∣∣∣∂Ln∂y (1,−1)

∣∣∣∣ ≤ C, for N > 0,

which imply, analyzing separately the cases N > 0 and N = 0,∣∣∣∣M(f(1)Ln(1, 1) + f(−1)Ln(1,−1)) +N

(
f ′(1)

∂Ln
∂y

(1, 1) + f ′(−1)
∂Ln
∂y

(1,−1)

)∣∣∣∣
≤ C

(
M(|f(1)|+ |f(−1)|) +N(|f ′(1)|+ |f ′(−1)|)

)
,

and (3.6) is proved.
From the identity

(Gnf)′(1) =

∫ 1

−1
f(y)

∂Ln
∂x

(1, y)dµα(y) +M

(
f(1)

∂Ln
∂x

(1, 1) + f(−1)
∂Ln
∂x

(1,−1)

)
+N

(
f ′(1)

∂2Ln
∂x∂y

(1, 1) + f ′(−1)
∂2Ln
∂x∂y

(1,−1)

)
,

and the estimates for N > 0, deduced from Lemmas 2.2 and 2.3,∣∣∣∣∂Ln∂x
(1, y)

∣∣∣∣ ≤ C(1− y2
)−α

2
− 1

4 , y ∈ [−1, 1],∣∣∣∣∂Ln∂x
(1, 1)

∣∣∣∣ ≤ C, ∣∣∣∣∂Ln∂x
(1,−1)

∣∣∣∣ ≤ C,
and ∣∣∣∣∂2Ln

∂x∂y
(1, 1)

∣∣∣∣ ≤ C, ∣∣∣∣∂2Ln
∂x∂y

(1,−1)

∣∣∣∣ ≤ C,
the proof of (3.7) is obtained in the same way as (3.6). �

4 Proof of Theorem 1.2

Proof. Let f ∈Wα
p and ε > 0. From [13, Theorem 4.1], we have that the space C∞c ([−1, 1]) is

dense in Lp(dµα). Then, there exists a function g ∈ C∞c ([−1, 1]) such that

‖f − g‖Lp(dµα) <
ε̃

4
,

with ε̃ = ε/(1 +M +N). We take now a function h ∈ C∞c ([−1, 1]) that satisfies

‖h‖Lp(dµα) <
ε̃

4
,

and

h(1) = f(1)− g(1), h(−1) = f(−1)− g(−1),

h′(1) = f ′(1)− g′(1), h′(−1) = f ′(−1)− g′(−1).
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Then

‖f − (g + h)‖pWα
p

= ‖f − (g + h)‖pLp(dµα)

+M
(
|f(1)− (g + h)(1)|p + |f(−1)− (g + h)(−1)|p

)
+N

(
|f ′(1)− (g + h)′(1)|p + |f ′(−1)− (g + h)′(−1)|p

)
and

‖f − (g + h)‖Wα
p
≤ ‖f − g‖Lp(dµα) + ‖h‖Lp(dµα) <

ε̃

2
.

On the other hand, given ε̃ there exists a polynomial qn of degree n such that

‖g + h− qn‖∞ <
ε̃

2
, ‖(g + h)′ − q′n‖∞ <

ε̃

2
.

Then, ‖f − qn‖pWp
< ε and the proof is completed. �
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