
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 14 (2018), 029, 12 pages

On the Symplectic Structures in Frame Bundles

and the Finite Dimension of Basic Symplectic

Cohomologies

Andrzej CZARNECKI

Jagiellonian University,  Lojasiewicza 6, 30-348 Krakow, Poland
E-mail: andrzejczarnecki01@gmail.com

Received February 16, 2018, in final form March 24, 2018; Published online March 30, 2018

https://doi.org/10.3842/SIGMA.2018.029

Abstract. We present a construction (and classification) of certain invariant 2-forms on
the real symplectic group. They are used to define a symplectic form on the quotient by
a maximal torus and to “lift” a symplectic structure from a symplectic manifold to the bundle
of frames. This is a by-product of a failed attempt to prove certain finiteness theorems for
basic symplectic cohomologies. In the last part of the paper we include a valid proof.
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1 Introduction

The first part of this paper focuses on the obstacles arising in the proof of a foliated version of
the main results on symplectic cohomology from [21]. This should be viewed as a contribution
to the discussion about the “correct” symplectic Hodge theory, a well established field of study,
cf. [3, 4, 10, 22, 24]. The foliated analogues (cf. [2, 6, 11, 16]) help to better understand the
limitations of the theories. For example, there is always a compatible metric for a symplectic
structure on a manifold, whereas there need not be one for a transverse symplectic structure of
a foliation, and in the present paper we highlight some consequences it has for the symplectic
cohomologies defined in [21].

It is well known that the basic cohomology of a Riemannian foliation is finite dimensional.
There are in principle two ways of proving that: one is the Kamber–Tondeur groupoid-invariant
version of elliptic analysis, cf. [8]; the other is the Molino’s structure theorems and relations
between different cohomologies in appropriate spectral sequences of certain fiber bundles, cf. [9].

In the second part of this paper we show that the Kamber–Tondeur analysis applies to the
proof of the following theorem.

Theorem 1.1 (finiteness theorem). Basic symplectic cohomology of a transversally symplectic
Riemannian foliation is finite dimensional.

The relevant cohomologies are due to Tseng and Yau and will be defined later. Our initial
feeling had been that the metric condition is superfluous. In the proof presented in Section 4,
the Riemannian structure is indeed used to establish elliptic theory and to give some compact-
ness constraints on the objects considered, but the symplectic cohomologies seem to be more
involved with the algebraic structure of a certain sl(2,R)-representation that does not depend
on compactness of the space (cf. [24] and [21, Section 3.2.1]). However, in [6] we recently gave an
example of a very simple non-Riemannian transversally symplectic foliation, which shows that
there is no possibility to extend Theorem 1.1 to all transversally symplectic foliations, or indeed
to any other interesting broad class. We include it in the last section, in Example 5.1.
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Having never developed a taste for elliptic theory, we initially tried to apply Molino’s construc-
tion to the symplectic case. As will be explained in Section 3, it turns out that the appropriate
spectral sequence comparison needs not work for the symplectic cohomologies but the relevant
fiber bundle can be (somewhat surprisingly) defined. Thus we stumbled upon a construction that
seems to be of independent interest. We will define a 2-form on the symplectic group as close to
an invariant symplectic form as it can possibly get, and proceed to define a “lifting” similar to the
canonical lifting of Molino. The need to use inverted commas will be explained in Remarks 3.9
and 3.10. We hope that the algebraic discussion of sp(2n,R) will be appealing as well.

We also hope that the reader will accept (or forgive us) our exposition: we will describe
withouth details the Riemannian prototype before stating our results in the symplectic setting.
We feel it is appropriate to highlight in this way the differences in the mechanisms behind the
metric and symplectic canonical lifts and Hodge theories.

The paper ends with the proof of Theorem 1.1 and several remarks and examples.

2 Preliminaries

We fix notation and recall some of the results about transverse structures and symplectic coho-
mologies.

First of all, in this paper we often switch between “foliated” and “non-foliated” cases. Much
of the foliated constructions and examples is treated briefly as we try to focus on the topics
interesting to the broader audience. At the same time, we include all the relevant foliated
definitions and properties for the convenience of a non-foliated reader.

While we mostly work with a compact symplectic manifold (M,ω), we also distinguish “non-
compact” and “compact” cases. The former pertains to the frame bundles with the non-compact
fiber Sp(2n,R), the latter – to the U(n)- or SO(2n)-frame bundles. Throughout we write SpM ,
UM , and SOM for these bundles, respectively. Only in Example 3.13 the initial symplectic
manifold will be non-compact.

Definition 2.1. A codimension n foliation F on a smooth manifold M is given by the following
data:

• an open cover U := {Ui}i∈I of M ;

• a n-dimensional smooth manifold T0;

• for each Ui ∈ U a submersion fi : Ui −→ T0 with connected fibers called plaques;

• for each intersection Ui ∩ Uj 6= ∅ a local diffeomorphism γij of T0 such that fj = γij ◦ fi.

The last condition ensures that the plaques glue nicely to form a partition of M by submanifolds
of codimension n called the leaves of F . The dimension of these submanifolds is called the
dimension of the foliation.

We call T =
∐
Ui∈U

fi(Ui) the transverse manifold of F . The local diffeomorphisms γij generate

a pseudogroup Γ of transformations of T (called the holonomy pseudogroup). The space of leaves
M
/
F of the foliation F can be identified with T

/
Γ. We note that neither T nor T

/
Γ need to

be compact, even if M is.

Definition 2.2. A smooth form ω on M is called basic if for any vector field X tangent to the
leaves of F we have

iXω = iXdω = 0.

Basic forms are in one-to-one correspondence with Γ-invariant smooth forms on T .
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It is clear that dω is basic for any basic form ω. Hence the set of basic forms of F , Ω•(M/F),
is a subcomplex of the de Rham complex of M . We define the basic cohomology (or sometimes
basic de Rham cohomology if other cohomologies of basic forms will be in play) of F to be the
cohomology of this subcomplex and denote it by H•(M/F).

We note that every manifold is foliated by points (with codimension equal to the dimension
of the manifold) and then all forms are basic and the basic cohomology becomes ordinary
cohomology. This remark applies to any structure below, thus any non-foliated case can be
viewed as the special instance of foliated case.

We will adapt the usual Hodge star operator to the foliated situation. We will define it to
preserve the basic forms. Consider a Riemannian foliation (M,F , g), i.e., a manifold endowed
with a Riemannian metric g for which LXg|TF⊥ = 0 if X is tangent to the foliation F . Clearly,
this defines a Γ-invariant metric on the transverse manifold. The volume form associated with g
is of the form dvol = θ∧χ, where θ is a basic non-degenerate n-form (a Γ-invariant volume form
on T ). We can define the (metric) star pointwise: locally, for a non-vanishing basic k-form A,
?mA is the unique basic (n− k)-form such that in each point x

(A ∧ ?mA)x = ||A||2xθx

(with the usual norm || · || induced pointwise by g) and we extend this definition invoking
C∞(M/F)-linearity. We can then define a scalar product on Ω•(M/F) by

〈A,B〉 =

∫
M
A ∧ ?mB ∧ χ

using again the associated volume to integrate.

From now on, we will assume that our foliation admits a closed basic 2-form of maximal
rank, ω. It corresponds to a Γ-invariant symplectic structure on T and we call it a transverse
symplectic structure on F . Observe that the codimension must be even, 2n. In parallel with
the Riemmanian structure ω defines a Hodge star operator, but (due to its antisymmetry) in
a slightly different manner. Following [3, Section 2.1], there is a non-degenerate pairing of vector
fields

X,Y 7→ ω(X,Y )

that induces a non-degenerate pairing of k-forms

α, β 7→ G(α, β)

that in turn enables us to define an isomorphism

?s : Ωk(T ) −→ Ω2n−k(T )

by the following condition: if α and β are k-forms, then

α ∧ ?sβ = G(α, β)ωn.

It can be easily seen that Γ-invariance of ω implies that ?s preserves Γ-invariant forms, and so
do the operators described in the following definition.

Definition 2.3. The operators

dΛ := ?sd?s, d + dΛ, ddΛ
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preserve the basic forms. It is well known that ddΛ + dΛd = 0 and thus we can define the basic
symplectic cohomologies

H•d+dΛ(M/F) :=
Ker(d + dΛ) ∩ Ω•(M/F)

Im(ddΛ) ∩ Ω•(M/F)
,

H•ddΛ(M/F) :=
Ker(ddΛ) ∩ Ω•(M/F)

Im(d) + Im(dΛ) ∩ Ω•(M/F)
.

We call dΛ a codifferential and sometimes refer to H•
d+dΛ(M/F) as to (d + dΛ)-cohomology. We

note that the codifferential is of degree −1.

We refer the interested reader to [21, 24], and [2, 6] for a more in-depth treatment of the
topic in the non-foliated and foliated cases, respectively.

We point out that H•
d+dΛ(M/F) and H•

ddΛ(M/F) are both isomorphic to the basic de Rham
cohomology for transversally Kähler foliations by the arguments of [18] or [2]. Thus, as in
the non-foliated case, these symplectic cohomologies measure how far from being Kähler the
symplectic structure is.

We want to establish Theorem 1.1 for these symplectic cohomologies and we will do so in the
last chapter, combining [21] with the elliptic methods from [8]. First, however, we will focus on
the Molino’s construction mentioned above.

3 “Canonical lift” of a transversally symplectic foliation

We would like to try to repeat the following construction due to El Kacimi-Alaoui, Hector, and
Sergiescu.

Theorem 3.1 ([9]). If (M,F , g) is a Riemannian foliation, then

• there exists a canonical lifting (cf. [15, Proposition 2.4]) to a foliation
(
SOFM,FSO

)
of

the same dimension, where SOFM is the bundle of orthonormal frames transverse to F
over M ; its projection becomes a foliated map; the foliation FSO is again Riemannian;

• closures of leaves of FSO are the fibers of a submersion from SOFM to a compact mani-
fold W ;

• the basic cohomology of
(
SOFM,FSO

)
is isomorphic to the tensor product of de Rham

cohomology of W and a certain Lie algebra, hence it is finite dimensional;

• the basic cohomology of (M,F) sits naturally on a second page of a spectral sequence
converging to SO(n)-invariant basic cohomology of

(
SOFM,FSO

)
; since SO(n) is compact

and connected, this is isomorphic to H•
(
SOFM,FSO

)
, hence finite dimensional; it can be

then shown that the second page of the sequence is finite dimensional as well, establishing
the finite dimension of H•(M/F).

There are several problems to be encountered in the transversally symplectic case, the first of
which is to construct the canonical lifting. In the Riemannian case, it is locally a product Rie-
mannian foliation

(
U,F|U , g|U

)
×
(
SO(n), ∗,mSO(n)

)
with mSO(n) being the unique bi-invariant

metric on SO(n). In the symplectic case, we need to find an appropriate structure on the fiber
Sp(2n,R) and before that, to refer the reader again to Remarks 3.9 and 3.10 to emphasise that
our structure will not be a local product in the same way.

We now turn to the symplectic geometry of Sp(2n,R).
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3.1 2-forms on sp(2n,R)

We promptly make some points. First of all, for even n the symplectic group Sp(2n,R) admits
a symplectic structure as a non-compact almost complex manifold by a well-known theorem
of Gromov. We are however interested in left-invariant symplectic structures. Second, neither
Sp(2n,R) admits such a structure (by linear algebra below) nor do the two other groups of
interest to us, U(n) and SO(2n) (by their compactness and cohomology). We need to get rid of
the inevitable degeneracies of a left-invariant 2-form by taking appropriate quotients. This also
solves the problem of possible odd dimension of any of these groups.

Third, we need to stress that the considerations below apply to any semi-simple Lie group,
but we refrain from expressing the construction in its maximal generality, instead keeping to the
groups arising naturally in the context of symplectic manifolds and foliations.

We fix the notation. Consider the (2n2 + n)-dimensional matrix group

Sp(2n,R) =
{
X ∈M(2n× 2n,R) |XtJX = J

}
(where J is the standard complex multiplication matrix

[
0 −I
I 0

]
), and its algebra

sp(2n,R) =
{
X ∈M(2n× 2n,R) | JX = −XtJ

}
and note that the last condition is equivalent to{

X =

[
A B
C −At

]
|A,B,C,D ∈M(n× n,R), B = Bt, C = Ct

}
, (3.1)

where Lt is the transpose of L. We begin with the description of the left-invariant closed 2-forms
on Sp(2n,R) or, equivalently, closed forms on its Lie algebra.

Theorem 3.2. A closed 2-form on sp(2n,R) has generically rank 2n2, i.e., its kernel is of
dimension n. Moreover, this kernel is generically a commutative Lie algebra.

In particular, there are no forms of higher rank.

Proof. Choose a closed 2-form ω ∈
∧2 sp(2n,R)∗. The cohomology of the algebra sp(2n,R)

is well known, H2(sp(2n,R)) = H1(sp(2n,R)) = 0, therefore there exists a unique 1-form θ
such that for all vectors x and y, ω(x, y) = dθ(x, y) = −θ([x, y]). The Killing form B is non-
degenerate, and so θ(x) = B(a, x) for some a ∈ sp(2n,R). The Killing form is invariant, thus
ω(x, y) = −θ([x, y]) = −B(a, [x, y]) = −B([a, x], y). We see that the kernel of ω, {x |ω(x, ·) ≡ 0}
turns out to be the centralizer of a, {x | [a, x] = 0} =: za. We proceed to compute the generic
dimension. The set of regular elements (of minimal centralizers) in sp(2n,R) consists of matrices
diagonalizable over C with 2n distinct complex eigenvalues. A centralizer zA of such an A is
a n-dimensional Cartan algebra of matrices diagonalizable in the same basis. Regularity itself
is generic in the Zariski sense, thus also in the usual topology of R2n2+n. �

For a regular element A, we can now define a “pre-symplectic” form ωA by

ωA(x, y) := B(A, [x, y]).

Observe that the centralizer of A above is a maximal abelian subalgebra of sp(2n,R), therefore
a subgroup it is tangent to, ZA = exp zA, is closed. We will content ourselves with the following
theorem as a substitute for the existence of a symplectic structure on Sp(2n,R).

Theorem 3.3. For a regular element A ∈ sp(2n,R), the homogeneous space Sp(2n,R)
/
ZA is

a symplectic non-compact manifold with the symplectic form ωZA descending from ωA described
above.
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The notation is meant to indicate that the form ωGA is defined by element A on the quotient
by its centralizer G. We now discuss the choices made along the construction.

Remark 3.4. First of all we note that the Cartan algebra in the non-compact case is not
unique up to conjugation (cf. [19]). There are however at least two natural choices of the Cartan
subgroup, a conjugate copy of a compact torus Tn ⊂ U(n) ⊂ Sp(2n,R), or the group of the
diagonal matrices in Sp(2n,R). The latter would carry over more of the algebraic topology of
Sp(2n,R) to the quotient (since we divide out a contractible group), but we will actually use
below the fact that the former kills off the fundamental group. We recall that the maximal torus
in a non-compact Lie groups is still unique up to conjugation.

Remark 3.5. We note that contrary to the compact case, Cartan algebras of Sp(2n,R) need
not even have the minimal dimension among maximal abelian subalgebras. The example of
Courter from [5] can be fitted into the A-part of matrices in (3.1) giving a maximal abelian
subalgebra of Sp(28,R) of dimension 12, not 14 (the classification from [17] is needed to see
that it is indeed maximal). One would be tempted to use such an algebra to retain as much
geometry of Sp(2n,R) as possible, by keeping the dimension of the quotient high. We prefer
Cartan subalgebras for the reason explained above and also for their clear structure (worked
out in [19], for example), which these smaller algebras lack. We refer the interested reader to
the series of papers by Zassenhaus et al. [7, 12, 13, 17] for a glimpse of the surprising amount of
problems in the study of maximal abelian subalgebras.

Remark 3.6. Theorem 3.3 paints a slightly more general picture than that of usual compact
flag manifolds, well-known to be Kähler. In the construction applied to the groups SO(n)
and U(n) (with the inconsequential adjustment that θ in the proof is now not unique) ZA is
always a maximal torus and any two choices of this torus (of the subalgebra, of the regular
element) therefore give diffeomorphic quotients. In the non-compact case we have less rigidity:
consider the example of Sp(2,R) = SL(2,R). It can be divided by either of its (conjugacy classes
of) one-dimensional Cartan subgroups: the compact (elliptic) 1-torus to get R2 or non-compact
(hyperbolic) 1-parameter subgroup to get S1 × R. We note that the third type of 1-parameter
subgroup, non-Cartan and parabolic, would work in this case as well.

Remark 3.7. Observe however that even for two maximal tori ZA and ZA′ the diffeomor-
phic quotients

(
Sp(2n,R)

/
ZA, ω

Z
A

)
and

(
Sp(2n,R)

/
ZA′ , ω

Z
A′
)

may not be symplectomorphic if
A 6= A′, since the Killing form is non-degenerate. There does not seem to be a preferred choice
of the element A even in the presence of additional structure, e.g., Riemannian metric.

3.2 Symplectic structures in the frame bundle

We can now define a “lifting” of a symplectic structure to the symplectic frame bundle. We
restrict our attention to a compact non-foliated symplectic manifold (M,ω), we will return to
the foliated case in Remark 3.12. We construct the principal Sp(2n,R)-bundle of symplectic
frames

Sp(2n,R)→ SpM →M

with a chosen connection ∇, understood as a choice of the horizontal direction. This bundle
is acted upon fiberwise by a maximal torus Tn = ZA, for some regular A ∈ sl(2n,R) that we
choose and fix. The quotient by this action, the total space of the bundle

Sp(2n,R)
/
Tn → SpM

/
Tn →M



Symplectic Structures in Frame Bundles and Symplectic Cohomology 7

inherits, by the results of the previous section, a 2-form p∗ω + i∗ω
T
A with

ιXi∗ω
F
A =

{
0 X horizontal,

ιXω
T
A X vertical

depending on the choice of the connection (which survives to the quotient), but well defined in
the vertical direction. This form is not necessarily closed: it would be, provided the principal
bundle was flat, or if the holonomy of the original connection was restricted to the torus we
divided by; this is not always the case. We point out that the form can be defined for any
bundle with a cocycle with values in the symplectomorphisms of the fiber, cf. [14].

We proceed to enhance our form a little. We recall the construction from [23]. Consider the
transitive symplectic action of the group Sp(2n,R) on

(
Sp(2n,R)

/
Tn, ωT

A

)
. Since the quotient

is simply-connected (by elementary algebraic topology), it has a well defined moment map
µ : Sp(2n,R)

/
Tn −→ sp(2n,R)∗, and since H2(sp(2n,R)) = H1(sp(2n,R)) = 0, this moment

map is coadjoint-invariant. The connection’s curvature form Ω survives dividing out the torus
and this gives a 2-form ΩT on the quotient, with values in sl(2n,R). By [23] (and references
therein), the 2-form i∗ω

F
A + µΩT is closed.

It may fail to be non-degenerate, but only in the horizontal direction. The idea in [23] tracing
back to Thurston’s paper [20] is to get rid of the possible degeneracies by adding λp∗ω for
sufficiently large λ – the form i∗ω

F
A +µΩT +λp∗ω would be now both closed and non-degenerate.

In [23] this λ can be easily chosen because the bundle is compact, which our bundle obviously
fails to be. But the horizontal part of the form is appropriately bounded in our case as well:
it is invariant by the Sp(2n,R) action and thus descends to the (compact) base manifold. The
existence of λ follows. We summarise this discussion in the following theorem and the remarks
afterwards.

Theorem 3.8. The manifold
(
SpM

/
Tn, i∗ωT

A + µΩT + λp∗ω
)

is symplectic, for some λ ∈ R.

Of course, we could have opted for small perturbation of p∗ω choosing the structure 1
λ i∗ω

T
A +

1
λµΩT + p∗ω, but this is inconsequential.

Remark 3.9. Observe that i∗ω
T
A is closed iff the connection is flat (i.e., the original connection

has its holonomy in the torus we divide by). For any two horizontal fieldsX and Y , and vertical Z
we have di∗ω

T
A(X,Y, Z) = i∗ω

T
A([X,Y ], Z) which is equivalent to [X,Y ] being horizontal by

non-degeneracy in the vertical direction. This in particular implies that µΩT is closed iff it is
zero, while one might have expected “µΩT proportional to p∗ω” to be a meaningful geometric
condition.

Remark 3.10. While the resulting symplectic form is the prescribed form i∗ω
T
A along each

fiber (as described in [23]) the local product structure is problematic. By the previous remark,
the total space of a flat bundle is locally trivialized as a product of symplectic manifolds. We
would like to state that these conditions are equivalent, however we see no obvious way to prove
it. The problem is that Darboux coordinates in general cannot preserve neither the horizontal
nor vertical directions, and we strongly suspect that especially in the non-compact setting there
might appear a non-flat connection yielding a symplectic structure Sp(2n,R)-symplectomorphic
to a product. However, we were unable to procure such an example.

Remark 3.11. The construction carries over to the compact case (yielding symplectic UM
/
Tn

or SOM
/
Tn). We note that the non-compact bundle gives a parallelizable manifold, while the

compact ones may fail to do so (for example, US2/
T1 = S2).
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Remark 3.12. The construction applies to the foliated case as well. Consider a transversally
symplectic foliation of codimension 2n, (M,F , ω). There exist the canonically lifted transversally
symplectic foliation(

SpM
/
Tn,F

Sp
/
T, i∗ωT

A + µΩT + λp∗ω
)
.

Assuming the foliation was Riemannian we can reduce the frame bundle further and obtain two
other lifted transversally symplectic foliations(

SOM
/
Tn,F

SO
/
T, i∗ωT

A + µΩT + λp∗ω
)
,(

UM
/
Tn,F

U
/
T, i∗ωT

A + µΩT + λp∗ω
)

on the quotients of the bundles of transverse frames, with transversally symplectic structures
defined in the similar fashion as in Theorem 3.8. The canonical lift of a foliation is described in
detail in Proposition 2.4 and Chapter 5 of [15].

3.3 Comparing symplectic cohomology of the base, fiber,
and total space of a bundle

After the canonical lifting is constructed, the proof of Theorem 3.1 in [9] proceeds to compare
the basic cohomology of its base and its total space via the Leray–Serre spectral sequence. This
seems not to carry over to the symplectic case for reasons that are interesting in their own right.
We offer the following two observations, being yet unable to propose a coherent picture for
symplectic cohomologies of products and bundles. As is well known, the Leray–Serre spectral
sequence assumes the Künneth formula for de Rham cohomology.

Example 3.13. The Künneth formula fails for symplectic cohomology in general. For example

H i
d+dΛ

(
R2n

)
=

{
0 for i odd,

R for i even,
and H i

ddΛ

(
R2n

)
=

{
R for i odd,

0 for i even.

Proof. The space R2n is endowed with the standard symplectic structure ω0. Consider a (d +
dΛ)-cycle x in Ωk

(
R2n

)
, i.e., dx = dΛx = 0 (we say it is both closed and coclosed). Since 0 = dx,

x = dy1 by Poincaré lemma. Consider dΛy1. Since 0 = dΛx = dΛdy1 = −ddΛy1, there is y3

such that dΛy1 = dy3. Proceeding inductively, we can construct a sequence {y2i−1} of elements
in Ωk−2i+1 satisfying dy2i−3 = dΛy2i−1 and dy1 = x. This sequence is not unique.

Suppose some y2i−1 is coclosed, i.e., dΛy2i−1 = 0. Then there is an element αi ∈ Ωk−2i+2
(
R2n

)
such that dΛαi = y2i−1 – because the Poincaré lemma works for the operator dΛ as well. Then
the element y′2i−3 := y2i−3 − dαi is coclosed and we still have dy′2i−3 = dΛy2i−5. Proceeding
inductively, we can assume we have chosen a coclosed y1, which then is also coexact, y1 = dΛz.
Observe that then x = ddΛz and thus represents 0 in H•

d+dΛ .
It is easy to see that if k is odd, then eventually this procedure will produce a coclosed

yk ∈ Ω0
(
R2n

)
. If k is even, however, the last yk−1 lives in Ω1

(
R2n

)
and may be coclosed but

need not be. We know however that ddΛyk−1 = −dΛdyk−1 = −dΛdΛyk−3 = 0, hence dΛyk−1 is
a constant function cx. It is easy to see that [x] 7→ cx gives a monomorphism in even degrees
H2k

d+dΛ

(
R2n

)
↪→ R. We have a natural candidate to help us show that it is also an epimorphism.

The form ωk0 is easily seen to be a (d + dΛ)-cycle. Observe that

ωk0 =
∑

i1<···<ik

dxi1 ∧ dyi1 ∧ · · · ∧ dxik ∧ dyik
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= d
∑

i1<···<ik

k∑
j=1

((
xijdxi1 ∧ dyi1 ∧ · · · ∧ dyij ∧ · · · ∧ dxik ∧ dyik

− yijdi1 ∧ dyi1 ∧ · · · ∧ dxij ∧ · · · ∧ dxik ∧ dyik
))

and call the form under the d on the right α2k−1. In order to compute dΛα2k−1, observe
that ?sα2k−1 = −α2n−2k+1. Hence dΛα2k−1 = ?s

(
−ωn−k+1

0

)
= −ωk−1

0 . It follows that the
constant cωk

0
is (−1)k, giving the epimorphism as claimed. Similar computations prove the

assertion about H•
ddΛ with the obvious difference that it is not ωk0 that provides a representative

of 1 in each degree: it is instead represented by the antiderivative of these forms. This is notably
different behaviour than that present on the compact symplectic manifolds. �

This of course contradicts the Künneth formula. Observe that the same reasoning applies
to any contractible symplectic manifold, with any symplectic structure. In particular, these
cohomologies will not distinguish between exotic symplectic structures on R2n. Note that this
example breaks the dualities between the two symplectic cohomologies established in [21], even
though ωn represents a non-zero class (a “fundamental class” for the duality pairing) in one of
them.

Remark 3.14. Even having established some analogue of the Leray–Serre spectral sequence for
the symplectic cohomology (which the previous proposition shows not to be straightforward)
we encounter two other obstacles. The proof in [9] establishes connections between the basic
cohomology of a Riemannian foliation H•(M,F) and invariant basic cohomology of its canonical
lifting H•SO(n)

(
SOM,FSO

)
, and then between the basic cohomology of the canonical lifting

H•
(

SOM,FSO
)

and cohomology of some compact manifold H•(W ). To connect all four there
is a well known and crucial isomorphism between the non-invariant de Rham cohomology and its
G-invariant counterpart for a compact connected G that boils down to the Stokes theorem. Even
using the compact quotient UM

/
Tn and the compact group U(n) we still lack this tool, since

there is no natural candidate for the Stokes theorem analogue for operators d+dΛ and ddΛ. This
may indicate that G-invariant symplectic cohomology will exhibit some interesting behaviour.

4 Proof of the finiteness theorem

In this part we give the promised proof of Theorem 1.1. We follow closely [21] in proving the
following.

Theorem 4.1. Let (M,F , g, ω) be a codimension 2n Riemannian foliation with a transverse
symplectic structure. Then H•

d+dΛ(M/F) and H•
ddΛ(M/F) are finite dimensional.

Proof. We concentrate only on the (d + dΛ)-cohomology, since the proof for the other one
follows along the same lines.

Without loss of generality we can have a compatible triple (M,F , g, J, ω) where we perhaps
changed the metric but left ω intact (and the foliation is still Riemannian). Both g and ω induce
star operators via non-degenerate pairings as explained in Section 2. We denote them ?m and ?s,
respectively.

The propositions below follow by exactly the same arguments as in [21]. Denote the formal
adjoint of an operator P by P ∗, 〈Px, y〉 = 〈x, P ∗y〉. We proceed as follows:

1) the operator

Dd+dΛ =
(
ddΛ

)(
ddΛ

)∗
+
(
ddΛ

)∗(
ddΛ

)
+ d∗dΛdΛ∗d + dΛ∗dd∗dΛ +

(
d∗d + dΛ∗dΛ

)
is a self-adjoint elliptic operator;
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2) therefore

Ωk(M/F) = kerDd+dΛ ⊕ ddΛΩk(M/F)⊕
(
d∗Ωk−1(M/F) + dΛ∗ωk−1(M/F)

)
with the kernel being of finite dimension;

3) Hd+dΛ(M/F) is isomorphic with kerDd+dΛ , hence of finite dimension.

For 1), the self-adjointness is obvious. As for the ellipticity, in order to show that the principal
symbol is an isomorphism, we must compute how the adjoints of the operators involved behave.
According to [21, Proposition 3.3] and [18, Proposition 3.1], we have the following equalities and
equivalence of the principal symbols

d∗ = ± ?m d− κ ∧ ?m,
dΛ = (dc)∗ '

√
−1(∂ − ∂̄)∗ = ±(?m∂ − ?m∂̄ − κ1 ∧ ?m + κ2 ∧ ?m),

where κ, κ1, and κ2 are the various parts of the mean curvature form and the operators ∂, ∂̄,
and dc come from the compatible almost complex structure. We conclude that the only factors
contributing to the principal symbol of Dd+dΛ are ∂ and ∂̄, from which the ellipticity follows
precisely as in [21, Theorem 3.5]. This proves the decomposition in 2). The isomorphism in 3)
follows (again, exactly as in [21]): ker(d + dΛ) = kerDd+dΛ ⊕ddΛΩk(M/F) because, should any
d∗A+ dΛ∗B be (d + dΛ)-closed, then

0 =
〈
A, d

(
d∗A+ dΛ∗B

)〉
+
〈
B, dΛ

(
d∗A+ dΛ∗B

)〉
=
〈
d∗A, d∗A+ dΛ∗B

〉
+
〈
dΛ∗B, d∗A+ dΛ∗B

〉
=
∥∥d∗A+ dΛ∗B

∥∥2
.

Thus each class in H•
d+dΛ(M/F) has a unique representative in kerDd+dΛ . �

5 Final remarks

While the methods to prove Theorem 1.1 for H•
d+dΛ(M/F) and H•

ddΛ(M/F) are the same, we
must stress that their roles in the foliated case are not, contrary to the non-foliated theory.
Indeed, the dualities of Proposition 3.24 in [21] and Theorem 2.16 in [1] give in the compact
case the inequalities

dimH•dR(M) ≤ dimH•d+dΛ(M), dimH•dR(M) ≤ dimH•ddΛ(M),

while substantially less is true in the foliated case

dimH•dR(M/F) ≤ dimH•d+dΛ(M/F) + dimH•ddΛ(M/F)

as Lemma 1 and the example of Section 4 in [6] show. We recall it here.

Example 5.1. Consider the transversally symplectic dimension one foliation FL given by the
suspension of the matrix L = [ 1 1

0 1 ] acting on the torus, i.e., T2 × [0, 1]
/

(t, 0) ∼ (Lt, 1) = M . The
transverse manifold T of Definition 2.1 is the torus T2 and the pseudogroup Γ is the cyclic group
generated by L. One can check thatH0(M/FL) = H1(M/FL) = R andH2(M/FL) ' C∞(S1,R),
the infinite dimensional space of smooth functions on a circle. However, the basic symplectic
cohomologies (for a standard symplectic structure on T2, invariant by L) turn out to be

1) H0
d+dΛ(M/FL) = H2

d+dΛ(M/FL) = R,

2) H1
d+dΛ(M/FL) = C∞

(
S1
)
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and

1) H0
ddΛ(M/FL) = H2

ddΛ(M/FL) = C∞
(
S1
)
,

2) H1
ddΛ(M/FL) = R.

This example suggests that one should not hope to extend finiteness results on symplectic
cohomologies to any class of symplectic foliations broader than Riemannian foliations. We note
that this dependence on metric structure is somewhat unexpected.

We note that Theorem 3.8 and Remark 3.11 applied to the Kodaira–Thurston manifold
(cf. [20]) produce, somewhat trivially, another non-Kähler symplectic manifold. The mani-
fold KT is parallelizable, hence the frame bundle is trivial and so is the quotient bundle we
constructed, KT × S2. Its first Betti number is again 3 and again it does not satisfy the hard
Lefschetz theorem. We also note that application to CP2 yields a symplectic structure satisfying
the hard Lefschetz theorem: by elementary algebraic topology the bundle

S2 → SpCP2/
T2 → CP2

has cohomology ring isomorphic to H•
(
S2
)
⊗H

(
CP2

)
.
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