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Abstract. We evaluate the determinant of a matrix whose entries are elliptic hypergeomet-
ric terms and whose form is reminiscent of Sylvester matrices. A hypergeometric determinant
evaluation of a matrix of this type has appeared in the context of approximation theory, in
the work of Feng, Krattenthaler and Xu. Our determinant evaluation is an elliptic exten-
sion of their evaluation, which has two additional parameters (in addition to the base q and
nome p found in elliptic hypergeometric terms). We also extend the evaluation to a formula
transforming an elliptic determinant into a multiple of another elliptic determinant. This
transformation has two further parameters. The proofs of the determinant evaluation and
the transformation formula require an elliptic determinant lemma due to Warnaar, and the
application of two Cn elliptic formulas that extend Frenkel and Turaev’s 10V9 summation
formula and 12V11 transformation formula, results due to Warnaar, Rosengren, Rains, and
Coskun and Gustafson.
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1 Introduction

The determinant of a Sylvester matrix is used to determine whether two polynomials have a com-
mon root. Recently, in the context of approximation theory, a determinant of a hypergeometric
matrix was evaluated by Feng, Xu and the second author [2]. The matrix they considered re-
sembles a Sylvester matrix. The objective of this paper is to give an elliptic extension of their
determinant evaluation.

We briefly discuss Sylvester matrices. Consider the Sylvester matrix that corresponds to the
polynomials

x2 + 2x+ 1 = (x+ 1)2

and

x3 + 3x2 + 3x+ 1 = (x+ 1)3

given by
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 3 3 1 0
0 1 3 3 1

 .

This paper is a contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications.
The full collection is available at https://www.emis.de/journals/SIGMA/EHF2017.html
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Its determinant is 0, which indicates the obvious fact that the two polynomials (x + 1)2 and
(x+ 1)3 have a common root.

More generally, consider the Sylvester matrix defined as follows. Let

bij(s, r) :=

(
r

j − i

)
sj−i

and consider the (r1 + r2)× (r1 + r2) matrix B = (b′ij), where

b′ij =

{
bij(s1, r1), for 0 ≤ i ≤ r2 − 1,

bi−r2,j(s2, r2), for r2 ≤ i ≤ r1 + r2 − 1.

Then its determinant is given by

detB = (−1)r1r2(s1 − s2)r1r2 . (1.1)

For example, for r1 = 2 and r2 = 3, we have

det


1 2s1 s21 0 0
0 1 2s1 s21 0
0 0 1 2s1 s21
1 3s2 3s22 s32 0
0 1 3s2 3s22 s32

 = (s1 − s2)6.

This explains why the determinant is 0 when s1 and s2 are both 1. The matrix of this last
example is the Sylvester matrix corresponding to the polynomials

x2 + 2s1x+ s21 = (x+ s1)
2

and

x3 + 3s2x
2 + 3s22x+ s32 = (x+ s2)

3.

The formula for detB follows from a well-known result concerning the determinant of Syl-
vester polynomials, given in, for example, Loos [7, Theorem 1, p. 177]. Consider the polynomials

C

r1∏
i=1

(x− γi) and K

r2∏
j=1

(x− βj),

where C, K are constants. Then the determinant of the corresponding Sylvester matrix is given
by

Cr2Kr1

r1∏
i=1

r2∏
j=1

(γi − βj).

However, this classic idea fails in the evaluation of the determinant of the following “Syl-
vesteresque” matrix, which appears in the context of approximation theory in work of the
second author with Feng and Xu [2].

To state their formula, we require the rising factorial (or Pochhammer symbol) (a)n, which
is defined by (a)0 := 1 and

(a)k :=
k−1∏
j=0

(a+ j), for k = 1, 2, . . . .
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Let

mij(s1, s2, r) :=

(
r

j − i

)
(s1 + i)j−i

(s1 + s2 + i+ j − 1)j−i(s1 + s2 + r + 2i)j−i
.

Consider the (r1 + r2)× (r1 + r2) matrix M = (m′ij), where

m′ij =

{
mij(s1, s2, r1), for 0 ≤ i ≤ r2 − 1,

(−1)j−i−r2mi−r2,j(s2, s1, r2), for r2 ≤ i ≤ r1 + r2 − 1.

This matrix is not quite a Sylvester matrix, but still has a nice determinant evaluation (see [2,
Theorem 4.1])

detM = (−1)r1r2
r1∏
j=1

1

(s1 + s2 + r1 + r2 + j − 2)r2
. (1.2)

It is not obvious, but the formula for detM extends the one for detB. To obtain (1.1)
from (1.2), multiply row i of detM by

ti

(s1 + s2)2i
, for 0 ≤ i ≤ r2 − 1,

ti−r2

(s1 + s2)2(i−r2)
, for r2 ≤ i ≤ r1 + r2 − 1,

column j by

(s1 + s2)
2j

tj
, for 0 ≤ j ≤ r1 + r2 − 1,

and multiply by the corresponding products on the right hand side of (1.2). Next, replace s1
by s1t, s2 by s2t and take the limit as t→∞. Equation (1.1) follows after replacing s2 by −s2
on both sides.

In this paper, we extend the formula for detM to one with elliptic hypergeometric terms.
Our first result (stated in Section 2) is the evaluation of an elliptic determinant, which has two
additional parameters even when specialized to the hypergeometric case.

Our proof (in Section 3) is an elliptic extension of the one given in [2], and requires a de-
terminant lemma due to Warnaar [13, Lemma 5.3] and a Cn summation theorem. Warnaar’s
determinant lemma is an elliptic extension of a very useful determinant lemma due to the sec-
ond author [5, Lemma 5]. The Cn summation theorem was conjectured by Warnaar [13, Corol-
lary 6.2, x = q], proved by Rosengren [9] (and in more generality by Rains [8, Theorem 4.9] and,
independently by Coskun and Gustafson [1]). A combinatorial proof was given by Schlosser [12].

The summation formula is a Cn extension of Frenkel and Turaev’s [3] 10V9 summation formula
(see [4, equation (11.4.1)]). There is a more general transformation formula which is a Cn

extension of Frenkel and Turaev’s 12V11 transformation formula, given in [4, equation (11.5.1)].
Again, this was conjectured by Warnaar [13, Conjecture 6.1, x = q], and proved – in more
generality, and independently – by Rains [8, Theorem 4.9] and by Coskun and Gustafson [1].
(See also [11] for an elementary proof of [13, Conjecture 6.1, x = q].)

Naturally, we consider what happens if we use the Cn 12V11 transformation formula. This
leads (in Section 4) to a surprisingly elegant transformation formula between two elliptic determi-
nants. In Section 5, we show how to recover our determinant evaluation from this transformation
formula by using elementary determinant operations.
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2 An elliptic determinant evaluation

In this section we state our first theorem, an elliptic determinant evaluation. To define the
entries of the matrix under consideration, we need the notation for elliptic shifted factorials. For
these notations, and background results, Gasper and Rahman [4, Chapter 11] is the standard
reference. We recommend Rosengren [10] for a friendly introduction to elliptic hypergeometric
series.

We follow Gasper and Rahman [4, (11.6.2)] and define products as follows:

n∏
j=k

aj :=


akak+1 · · · an, if n ≥ k,
1, if n = k − 1,

(an+1an+2 · · · ak−1)−1, if n ≤ k − 2.

(2.1)

The q-shifted factorials, for k any integer, are defined as

(a; q)k :=

k−1∏
j=0

(
1− aqj

)
,

and for |q| < 1,

(a; q)∞ :=
∞∏
j=0

(
1− aqj

)
.

The modified Jacobi theta function is defined as

θ(a; p) := (a; p)∞(p/a; p)∞,

where a 6= 0 and |p| < 1. The q, p-shifted factorials (or theta shifted factorials), for k an integer,
are defined as

(a; q, p)k :=
k−1∏
j=0

θ
(
aqj ; p

)
.

The parameters p and q are called the nome and base, respectively. When p = 0, the modified
theta function θ(a; p) reduces to (1− a); and thus (a; q, p)k reduces to (a; q)k.

Further, we use the short-hand notations

θ(a1, a2, . . . , ar; p) := θ(a1; p) θ(a2; p) · · · θ(ar; p) ,
(a1, a2, . . . , ar; q, p)k := (a1; q, p)k(a2; q, p)k · · · (ar; q, p)k,
(a1, a2, . . . , ar; q)k := (a1; q)k(a2; q)k · · · (ar; q)k.

Next, we define the elliptic matrix under consideration. Let s1, s2, t1 and t2 be arbitrary
complex numbers, r1, r2, i, and j be non-negative integers, and let

fij = fij(s1, s2, t1, t2, r1, r2) := q(
j−i
2 )+r2(j−i) (q; q, p)r1

(q; q, p)r1−j+i

×

(
s1q

i, t1q
i, t2q

i, s1s
2
2q

r1−r2+i/t1t2; q, p
)
j−i

(q, s1s2qi+j−1, s1s2qr1+2i; q, p)j−i
. (2.2)

We consider the (r1 + r2)× (r1 + r2) matrix F = (f ′ij), where

f ′ij =

{
fij(s1, s2, t1, t2, r1, r2), for 0 ≤ i ≤ r2 − 1,

fi−r2,j(s2, s1, s1s2/t1, s1s2/t2, r2, r1), for r2 ≤ i ≤ r1 + r2 − 1.
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The form of F is similar to that of Sylvester matrices. Observe that, in view of (2.1), we have

1

(q)−r
= 0, for r = 1, 2, 3, . . . .

Thus, for the first r2 rows, mij = 0 if j < i, and if j > r1 + i. Further, the first non-zero entry
is 1 (when i = j). Similar remarks apply for the next r1 rows of F .

Theorem 2.1. Let F be the matrix defined above. Then

detF = (−1)r1r2
(
t1t2
s2

)r1r2

q
1
2
r1r2(r1+4r2−3)

×
r1∏
j=1

(
s2q
−r2+j/t1, s2q

−r2+j/t2, s1s2q
−r2+j/t1t2; q, p

)
r2

(s1s2qr1+r2+j−2; q, p)r2
. (2.3)

Remark. Theorem 2.1 can also be stated as

detF = sr1r21 qr1r2(r1+r2−1)+r1(r22 )

×
r1∏
j=1

(
s2q
−r2+j/t1, s2q

−r2+j/t2, t1t2q
−r1+j/s1s2; q, p

)
r2

(s1s2qr1+r2+j−2; q, p)r2
. (2.4)

Next we take a special case to obtain a q-analogue of (1.2). Let

uij = uij(s1, s2, r1, r2) := q(
j−i
2 )

(q; q)r1
(
s1q

i; q
)
j−i

(q; q)r1−j+i(q, s1s2q
i+j−1, s1s2qr1+2i; q)j−i

. (2.5)

We consider the (r1 + r2)× (r1 + r2) matrix U = (u′ij), where

u′ij =

{
q(
j
2)−(i2)uij(s1, s2, r1, r2), for 0 ≤ i ≤ r2 − 1,

(−1/s2)
j−i+r2 ui−r2,j(s2, s1, r2, r1), for r2 ≤ i ≤ r1 + r2 − 1.

Corollary 2.2. Let U be the matrix defined above. Then

detU =
(−1)r1r2

sr1r22

qr1(
r2
2 )

r1∏
j=1

1

(s1s2qr1+r2+j−2; q)r2
. (2.6)

Remarks. (1) This determinant evaluation is a q-analogue of (1.2). To see this, we replace s1
and s2 by qs1 and qs2 (respectively), multiply both sides of (2.6) by (1 − q)r1r2 and take the
limits as q → 1.

To take entry-wise limits in the determinant, we need to multiply each entry by an appropriate
power of (1 − q). Thus we multiply each entry of column j by (1 − q)j , and divide the first r2
rows by (1−q)i, and the last r1 rows by (1−q)i−r2 . We compensate by multiplying the resulting
determinant by

r1+r2−1∏
j=0

1

(1− q)j
r2−1∏
i=0

(1− q)i
r1+r2−1∏
i=r2

(1− q)i−r2 =
1

(1− q)r1r2
.

This explains why we need to multiply by (1 − q)r1r2 on the left hand side. The limit on the
right hand side too requires this additional power of (1− q).

(2) Corollary 2.2 being a q-analogue of (1.2), it may be the starting point for finding a q-
analogue for the best approximation result in [2].
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Proof. We take p = 0 in (2.3), and after dividing both sides by (t1t2)
r1r2 , take the limits as

t1 →∞ and t2 →∞. From the right hand side, we obtain

(−1)r1r2

sr1r22

q
1
2
r1r2(r1+4r2−3)

r1∏
j=1

1

(s1s2qr1+r2+j−2; q)r2
.

Before taking the limits on the left hand side, we use the elementary modifications(
t1q

i, t2q
i; q
)
j−i =

(
q1−j/t1, q

1−j/t2; q
)
j−i(t1t2)

j−iq2(
j−i
2 )+2i(j−i)

to reverse some of the products in the first r2 rows of detF , and(
t1t2q

−r1+i/s2; q
)
j−i+r2

=
(
q1+r1−r2−js2/t1t2; q

)
j−i+r2

× (−1)j−i+r2

(
t1t2
s2

)j−i+r2

q(
j−i+r2

2 )+(−r1+i)(j−i+r2)

in the last r1 rows of the determinant. From the jth column of the determinant, we take
out (t1t2)

j . From the first i rows, we can take out (t1t2)
−i, and from the last r1 rows, we take

out (t1tt)
−(i−r2). This results in the product (t1t2)

r1r2 outside the determinant that cancels the
product we divided earlier.

Now we take the limits as t1, t2 →∞ term-wise in the determinant, to obtain a determinant
whose entries are given by{

q2(
j
2)−2(

i
2)+r2(j−i)uij(s1, s2, r1, r2), for 0 ≤ i ≤ r2 − 1,

(−1/s2)
j−i+r2 q(

j−i+r2
2 )+i(j−i+r2)ui−r2,j(s2, s1, r2, r1), for r2 ≤ i ≤ r1 + r2 − 1.

Again, we take out some powers of q from the determinant, and cancel them from the other
side to obtain Corollary 2.2. �

A slightly different limiting case yields another determinant evaluation. Again, let uij be
defined by (2.5). We consider the matrix V = (v′ij), where

v′ij =

{
uij(s1, s2, r1, r2), for 0 ≤ i ≤ r2 − 1,

(s1/s2)
(j−i+r2)/2 ui−r2,j(s2, s1, r2, r1), for r2 ≤ i ≤ r1 + r2 − 1.

Corollary 2.3. Let V be the matrix defined above. Then

detV =

(
s1
s2

) 1
2
r1r2

qr1(
r2
2 )

r1∏
j=1

(
(s2/s1)

1/2q−r2+j ; q
)
r2(

(s1s2)1/2qj−1, s1s2qr1+r2+j−2; q
)
r2

.

Remark. When we take the hypergeometric case of Corollary 2.3, by replacing s1 by qs1 ,
s2 by qs2 , and taking the limit as q → 1, we obtain the determinant of a matrix very similar to
the matrix M considered in (1.2). The difference is that there are no alternating signs in the
last r1 rows of the matrix.

Proof. We take p = 0 in (2.3), divide both sides by tr1r12 and take limits as t2 → ∞. Next we
replace t1 by (s1s2)

1/2.
In the resulting determinant on the left hand side we multiply the ith row by{(

(s1s2)
1/2; q

)
i
, for 0 ≤ i ≤ r2 − 1,(

(s1s2)
1/2; q

)
i−r2 , for r2 ≤ i ≤ r1 + r2 − 1,
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and, to compensate, divide the determinant by

r2−1∏
i=0

(
(s1s2)

1/2; q
)
i

r1+r2−1∏
i=r2

(
(s1s2)

1/2; q
)
i−r2 .

In the resulting determinant, column j has the common factor(
(s1s2)

1/2; q
)
j

that we can take out from each column. In addition, we take out negative signs and powers of q
to obtain

(−1)r1r2q
1
2
r1r2(r1+3r2−2)

r1+r2−1∏
j=0

(
(s1s2)

1/2; q
)
j

r2−1∏
i=0

(
(s1s2)1/2; q

)
i

r1−1∏
i=0

(
(s1s2)1/2; q

)
i

detV.

Now comparing with what we obtain on the right hand side after taking the limit t2 → ∞
and t1 = (s1s2)

1/2, we obtain Corollary 2.3. �

3 Proof of Theorem 2.1

In this section we give a proof of Theorem 2.1. First we record the required results in a form
suitable for our use. From now on, we suppress q and p and denote the theta shifted factorials
by (a)k.

We begin with a determinant lemma due to Warnaar [13, Lemma 5.3].

Proposition 3.1. Let A0, . . . , An−1, c, and x0, . . . , xn−1, be arbitrary complex numbers. If, for
i = 0, 1, . . . , n− 1, Pi is analytic in 0 < |x| <∞, and satisfies the following two conditions:

1) Pi(px) = (c/x2p)iPi(x) (quasi-periodicity), and

2) Pi(c/x) = Pi(x) (symmetry),

then

det
0≤i,j≤n−1

(
Pi(xj)

n−1∏
k=i+1

θ(Akxj) θ(cAk/xj)

)

=
∏

0≤i<j≤n−1
(cAj/xj)θ(xj/xi) θ(xixj/c)

n−1∏
i=0

Pi(1/Ai).

Warnaar’s determinant lemma is used to evaluate the following determinant.

Lemma 3.2. For all positive integers r2, we have

det
0≤i,j≤r2−1

(
q−ikj

(
qkj−i+1, aqkj

)
i

(
qr1−kj+i+1, aqr1+kj+i+1

)
r2−i−1

)

= q
−
r2−1∑
i=0

iki ∏
0≤i<j≤r2−1

θ
(
qkj−ki , aqki+kj

) r2−1∏
i=0

(
qr1+1, aqr1+i

)
i
.
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Proof. We apply Proposition 3.1 with

Pi(x) =
(
c
1
2 /x
)i(
xq1−i, x/c

)
i
.

The quasi-periodicity and symmetry properties of Pi(x) are easy to verify using the elementary
identities [4, equation (11.2.55)]

(a)n = (pa)n(−a)nq(
n
2)

and [4, equation (11.2.48)]

(a)n =
(
q1−n/a

)
n
(−a)nq(

n
2).

The special case n = r2, xj = qkj , Ak = q−r1−k, c = 1/a of Proposition 3.1 implies that

det
0≤i,j≤r2−1

(
q2(

i+1
2 )−2(r22 )−(2r1−1)(r2−i−1) (1/a)i/2 (1/aq)r2−i−1

× q−ikj
(
qkj−i+1, aqkj

)
i

(
qr1−kj+i+1, aqr1+i+kj+1

)
r2−i−1

)
=

∏
0≤i<j≤r2−1

(
q−r1−j−kj/a

)
θ
(
qkj−ki , aqki+kj

)

×
r2−1∏
i=0

(1/a)i/2
(
q−r1−i

)i (
qr1+1, aqr1+i

)
i
.

To complete the proof of the lemma, we take out the common factors from each row of the
determinant, cancel common terms, and simplify. �

Next, we require a Cn extension of Frenkel and Turaev’s 10V8 summation formula. As ex-
plained earlier, this is due to Warnaar and Rosengren, but we prefer to use a formulation
due to Schlosser. In Schlosser [12, Theorem 3.1], we take r = r2, use the summation in-
dices k0, k1, . . . , kr2−1, make the substitutions a 7→ s1s2/q, b 7→ s1, c 7→ t1, d 7→ t2 and take
m = r1 + r2 − 1, to obtain

∑
0≤k0<···<kr2−1≤r1+r2−1

r2−1∏
j=0

(
s1s2/q, s1, t1, t2, s1s

2
2q

r1−r2/t1t2, q
−(r1+r2−1)

)
kj

(q, s2, s1s2/t1, s1s2/t2, t1t2qr2−r1/s2, s1s2qr1+r2−1)kj

×
∏

0≤i<j≤r2−1
θ
(
qkj−ki , s1s2q

ki+kj−1
)2 r2−1∏

j=0

θ
(
s1s2q

2kj−1
)

θ(s1s2/q)
q

r2−1∑
i=0

(2r2−2i−1)ki

= q−4(
r2
3 )
(

s2
t1t2q2

)(r22 ) r2∏
j=1

(
q, s1, t1, t2, s1s

2
2q

r1−r2/t1t2
)
j−1(q, s1s2)r1+r2−1

×
r2∏
j=1

(
s2q

1−j/t1, s2q
1−j/t2, s1s2q

1−j/t1t2
)
r1

(q, s2, s1s2/t1, s1s2/t2, s2q1−2r2+j/t1t2)r1+r2−j
. (3.1)

These are all the ingredients required for the proof of Theorem 2.1.

Proof of Theorem 2.1. Let F a1,a2,...,ar
b1,a2,...,br

denote the submatrix of F consisting of rows a1, . . . , ar
and columns b1, . . . , br. By taking the Laplace expansion of detF with respect to the first r2
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rows, we find that

detF =
∑

0≤k0<···<kr2−1≤r1+r2−1
(−1)

(r22 )+
r2−1∑
i=0

ki
detF 0,1,...,r2−1

k0,k1,...,kr2−1
detF r2,r2+1,...,r1+r2−1

l0,l1,...,lr1−1
, (3.2)

where {l0, l1, . . . , lr1−1} is the complement of the set {k0, k1, . . . , kr2−1} in the set {0, 1, 2, . . . ,
r1 + r2 − 1}. Let D1 and D2 denote the two determinants in the sum. Then

D1 = detF 0,1,...,r2−1
k0,k1,...,kr2−1

= det
(
fi,kj (s1, s2, t1, t2, r1, r2)

)
and

D2 = detF r2,r2+1,...,r1+r2−1
l0,l1,...,lr1−1

= det
(
fi,lj (s2, s1, s1s2/t1, s1s2/t2, r2, r1)

)
,

where the fij ’s are as in (2.2). After evaluating these determinants using Lemma 3.2, the
resulting sum can be evaluated using the elliptic Cn summation theorem given in (3.1). The
result follows after performing a large amount of simplification. Here are some more details.

We first evaluate D1 = det(fi,kj ), where we suppress the dependence on other parameters
for the time being. We first take out many factors out of the rows (indexed by i) and columns
(indexed by j), with the goal of eliminating all denominators and reducing the number of factors
in each entry of the determinant as much as possible. We have

D1 = det
(
fi,kj

)
= q

r2−1∑
j=0

(kj
2
)+r2

r2−1∑
j=0

kj− 1
3
(2r2−1)(r22 ) r2−1∏

i=0

(q)r1(s1s2q
r1)2i(

s1, t1, t2, s1s22q
r1−r2/t1t2

)
i

×
r2−1∏
j=0

(
s1, t1, t2, s1s

2
2q

r1−r2/t1t2
)
kj(

q, s1s2qkj−1
)
kj

(q)r1+r2−kj−1(s1s2q
r1)r2+kj−1

× det
0≤i,j≤r2−1

(
q−ikj

(
qkj−i+1, s1s2q

kj−1
)
i

(
qr1−kj+i+1, s1s2q

r1+kj+i
)
r2−i−1

)

= q

r2−1∑
j=0

(kj
2
)+r2

r2−1∑
j=0

kj− 1
3
(2r2−1)(r22 )−

r2−1∑
i=0

iki
r2−1∏
i=0

(q)r1
(
qr1+1, s1s2q

r1+i−1)
i
(s1s2q

r1)2i(
s1, t1, t2, s1s22q

r1−r2/t1t2
)
i

×
r2−1∏
j=0

(
s1, t1, t2, s1s

2
2q

r1−r2/t1t2
)
kj(

q, s1s2qkj−1
)
kj

(q)r1+r2−kj−1(s1s2q
r1)r2+kj−1

×
∏

0≤i<j≤r2−1
θ
(
qkj−ki , s1s2q

ki+kj−1
)
,

where the determinant evaluation in the last line is from Lemma 3.2, with a 7→ s1s2/q.

The second determinant

D2 = det
(
fi,lj (s2, s1, s1s2/t1, s1s2/t2, r2, r1)

)
is obtained from the above by replacing kj by lj , and simultaneously replacing

(s1, s2, t1, t2, r1, r2) by (s2, s1, s1s2/t1, s1s2/t2, r2, r1).

Note that the indices of summation are kj and the expression we obtain for D2 is in terms of
the lj ’s. We use elementary algebraic manipulations to express the products in terms of the kj ’s.
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For example, we use the “inclusion-exclusion” formula

∏
0≤i<j≤r1−1

θ
(
qlj−li

)
=

∏
0≤i<j≤r1+r2−1

θ
(
qj−i

) ∏
0≤i<j≤r2−1

θ
(
qkj−ki

)
r2−1∏
j=0

kj−1∏
i=0

θ
(
qkj−i

) r2−1∏
i=0

r1+r2−1∏
j=ki+1

θ(qj−ki)

=

r1+r2−1∏
i=0

(q)i
∏

0≤i<j≤r2−1
θ
(
qkj−ki

)
r2−1∏
j=0

(q)kj

r2−1∏
i=0

(q)r1+r2−ki−1

;

and, using the same idea,

q
−
r1−1∑
i=0

ili
=

∏
0≤i<j≤r1−1

q−lj = q
−
r2−1∑
i=0

iki+
r2−1∑
i=0

(ki2 )−(r1−1)(r1+r22 )+
r1+r2−1∑
i=1

(i2)
.

After some further algebraic simplification, we obtain

D2 = q

1
3
(2r1+2r2−1)(r1+r22 )−r1

r2−1∑
j=0

kj− 1
3
(2r1−1)(r12 )−

r2−1∑
i=0

iki ∏
0≤i<j≤r2−1

θ
(
qkj−ki , s1s2q

ki+kj−1
)

×
r1+r2−1∏

j=0

(s2, s1s2/t1, s1s2/t2, t1t2q
r2−r1/s2)j

(s1s2qr2)r1+j−1(q)r1+r2−j−1

×
r1−1∏
j=0

(q)r2
(
qr2+1, s1s2q

r2+j−1)
j
(s1s2q

r2)2j

(s2, s1s2/t1, s1s2/t2, t1t2qr2−r1/s2)j

×
r2−1∏
j=0

(s1s2q
r2)r1+kj−1

(s2, s1s2/t1, s1s2/t2, t1t2qr2−r1/s2)kj
(
s1s2q2kj

)
r1+r2−kj−1

.

Next we substitute the above expressions for D1 and D2 in (3.2) to obtain, after some algebraic
manipulation, the multiple sum

detF = (−1)(
r2
2 )qr1r2(r1+r2−1)

r1+r2−1∏
j=0

(s2, s1s2/t1, s1s2/t2, t1t2q
r2−r1/s2)j

(s1s2qr2)r1+j−1(q)r1+r2−j−1

×
r1−1∏
j=0

(q)r2
(
qr2+1, s1s2q

r2+j−1)
j
(s1s2q

r2)2j

(s2, s1s2/t1, s1s2/t2, t1t2qr2−r1/s2)j

×
r2−1∏
j=0

(q)r1
(
qr1+1, s1s2q

r1+j−1)
j
(s1s2q

r1)2j(s1s2)r1(
s1, t1, t2, s1s22q

r1−r2/t1t2
)
j
(s1s2)r2(s1s2)r1+r2−1(q)r1+r2−1

×
∑

0≤k0<···<kr2−1≤r1+r2−1

(
r2−1∏
j=0

(
s1s2/q, s1, t1, t2, s1s

2
2q

r1−r2/t1t2, q
−(r1+r2−1)

)
kj

(q, s2, s1s2/t1, s1s2/t2, t1t2qr2−r1/s2, s1s2qr1+r2−1)kj

×
∏

0≤i<j≤r2−1

(
θ
(
qkj−ki , s1s2q

ki+kj−1
))2 r2−1∏

j=0

θ
(
s1s2q

2kj−1
)

θ(s1s2/q)
q

r2−1∑
i=0

(2r2−2i−1)ki
)
.
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This sum can be evaluated using (3.1). After replacing the multiple sum by the corresponding
products, we again require a large number of algebraic simplifications. For example, we use

r2∏
i=1

(
s2q

1−i/t1
)
r1

=

r1∏
j=1

(
s2q
−r2+j/t1

)
r2
,

r1−1∏
j=0

(
s1s2q

r2+j−1)
j

=

r1−1∏
i=0

(
s1s2q

r2+2i
)
r1−i−1,

r2−1∏
i=0

(s1s2)r1(s1s2q
r1)2i

(
s1s2q

r1+i−1)
i

(s1s2)r1+r2+i−1
= 1,

and other elementary identities. The result then condenses to the right hand side of (2.3). �

4 A transformation formula for elliptic determinants

In this section, we derive a transformation formula between two determinants that extends
Theorem 2.1, by adding two further parameters. It is apparent from our proof in Section 3 that
the matrices we consider are closely linked with very-well-poised elliptic hypergeometric series
(see [4] for the terminology, if required). We make this connection transparent by re-labelling
the parameters.

The Sylvesteresque matrices which we study now are defined as follows. Let a, b, c, d, e, f
be arbitrary complex numbers, r1, r2, i, and j be non-negative integers, and let

gij(a; b, c, d, e, f ; r1, r2) := q(
j−i
2 )+r2(j−i) (q)r1

(q)r1−j+i

×

(
bqi, cqi, dqi, eqi, fqi, a3qr1−r2+i+3/bcdef

)
j−i

(q, aqi+j , aqr1+2i+1)j−i
. (4.1)

We consider the (r1 + r2)× (r1 + r2) matrices G = (g′ij) and H = (h′ij), where

g′ij =

{
gij(a; b, c, d, e, f ; r1, r2), for 0 ≤ i ≤ r2 − 1,

gi−r2,j(a; aq/b, aq/c, aq/d, aq/e, aq/f ; r2, r1), for r2 ≤ i ≤ r1 + r2 − 1,

and

h′ij =

{
gij(λ;λb/a, λc/a, λd/a, e, f ; r1, r2), for 0 ≤ i ≤ r2 − 1,

gi−r2,j(λ; aq/b, aq/c, aq/d, λq/e, λq/f ; r2, r1), for r2 ≤ i ≤ r1 + r2 − 1.

Theorem 4.1. With G and H as defined above, and λ = a2q2−r2/bcd, we have

detG =
(a
λ

)r1r2 r1∏
j=1

(
λqr1+r2+j−1)

r2

(aqr1+r2+j−1)r2
detH.

Remark. We reiterate that we have suppressed the q, p in our notation.

Sketch of proof. The first few steps in the proof are similar to those of Theorem 2.1. We begin
with the Laplace expansion of detG with respect to the first r2 rows to obtain an expression of
the form

detG =
∑

0≤k0<···<kr2−1≤r1+r2−1
(−1)

(r22 )+
r2−1∑
i=0

ki
D1 ·D2,
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where D1 and D2 are the determinants

D1 = det
(
gi,kj (a; b, c, d, e, f ; r1, r2)

)
and

D2 = det
(
gi,lj (a; aq/b, aq/c, aq/d, aq/e, aq/f ; r2, r1)

)
.

Here the gij ’s are as in (4.1) and the lj ’s have the same meaning as in the proof of Theorem 2.1.
Again, both determinants D1 and D2 can be evaluated using Lemma 3.2, after taking out

common factors from rows and columns of each determinant; and again, the expression for D2 is
in terms of the lj ’s and we have to write it in terms of the indices of summation kj . After some
algebraic manipulations, just as done earlier, we arrive at a Cn multiple sum. This multiple
sum can be transformed into a multiple of another multiple sum using the Cn transformation
formula (4.2) below.

Next, we perform these steps in reverse. Using Lemma 3.2, and some algebraic simplification,
we write the summand of the resulting sum in the form

(? ? ?)
∑

0≤k0<···<kr2−1≤r1+r2−1
(−1)

(r22 )+
r2−1∑
i=0

ki
D3 ·D4,

where (? ? ?) are some explicit products, and D3 and D4 are the determinants

D3 = det
(
gi,kj (λ;λb/a, λc/a, λd/a, e, f ; r1, r2)

)
and

D4 = det
(
gi,lj (λ; aq/b, aq/c, aq/d, λq/e, λq/f ; r2, r1)

)
.

This is the Laplace expansion of detH with respect to the first r2 rows, multiplied by some
products.

These products simplify considerably and we obtain the right hand side of Theorem 4.1. �

The Cn transformation formula we require for our proof is a formula due to Warnaar,
Rains, and Coskun and Gustafson, as explained earlier. We use a formulation presented in
the second author’s paper with Schlosser [6, Theorem 2], where we use the summation indices
k0, k1, . . . , kr2−1, take r = r2 and m = r1 + r2 − 1, in order to write it in the form

∑
0≤k0<···<kr2−1≤r1+r2−1

(
q

r2−1∑
i=0

(2r2−2i−1)ki ∏
0≤i<j≤r2−1

θ
(
qkj−ki , aqki+kj

)2

×
r2−1∏
j=0

θ
(
aq2kj

) (
a, b, c, d, e, f, λaqr1+1/ef, q−(r1+r2−1)

)
kj

θ(a) (q, aq/b, aq/c, aq/d, aq/e, aq/f, efq−r1/λ, aqr1+r2)kj

)

=

r2∏
j=1

(b, c, d, ef/a)j−1(aq)r1+r2−1(aq/ef)r1(λq/e, λq/f)r1+r2−j
(λb/a, λc/a, λd/a, ef/λ)j−1(λq)r1+r2−1(λq/ef)r1(aq/e, aq/f)r1+r2−j

×
∑

0≤k0<···<kr2−1≤r1+r2−1

(
q

r2−1∑
i=0

(2r2−2i−1)ki ∏
0≤i<j≤r2−1

θ
(
qkj−ki , λqki+kj

)2

×
r2−1∏
j=0

θ
(
λq2kj

) (
λ, λb/a, λc/a, λd/a, e, f, λaqr1+1/ef, q−(r1+r2−1)

)
kj

θ(λ) (q, aq/b, aq/c, aq/d, λq/e, λq/f, efq−r1/a, λqr1+r2)kj

)
, (4.2)

where λ = a2q2−r2/bcd.
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5 How Theorem 4.1 extends Theorem 2.1

It is apparent that the transformation formula in Theorem 4.1 contains two additional para-
meters than the determinant evaluation in Theorem 2.1, and is thus formally an extension of
Theorem 2.1. By examining the proofs of the two theorems, this fact is confirmed. In this section,
we show how to obtain the determinant evaluation in (2.4) directly from the transformation
formula in Theorem 4.1, by using elementary determinant operations.

We take d = aq/c in Theorem 4.1. Let G′ = (g′′ij) be the resulting matrix. So

g′′ij =

{
gij(a; b, c, aq/c, e, f ; r1, r2), for 0 ≤ i ≤ r2 − 1,

gi−r2,j(a; aq/b, aq/c, c, aq/e, aq/f ; r2, r1), for r2 ≤ i ≤ r1 + r2 − 1,

where the gij ’s are as defined in (4.1). Further, let F ′ = (f ′′ij) be the matrix whose entries are
given by

f ′′ij =

{
fij(b, aq/b, e, f, r1, r2), for 0 ≤ i ≤ r2 − 1,

fi−r2,j(aq/b, b, aq/e, aq/f, r2, r1), for r2 ≤ i ≤ r1 + r2 − 1,

where the fij ’s are as in (2.2).
We first observe that

detG′ =

r1−1∏
i=0

(c, aq/c)r2+i

(c, aq/c)i
· detF ′. (5.1)

To see this, we multiply the ith row of detG′ by{
(c, aq/c)i, for 0 ≤ i ≤ r2 − 1,

(c, aq/c)i−r2 , for r2 ≤ i ≤ r1 + r2 − 1,

and, to compensate, divide detG′ by

r2−1∏
i=0

(c, aq/c)i

r1+r2−1∏
i=r2

(c, aq/c)i−r2 .

In this manner we get a determinant equivalent to detG′. But in the resulting determinant,
column j has the common factor

(c, aq/c)j

that we can take out from each column, to obtain

r1+r2−1∏
j=0

(c, aq/c)j

r2−1∏
i=0

(c, aq/c)i

r1−1∏
i=0

(c, aq/c)i

detF ′.

After some cancellation, we obtain (5.1).
Next, we consider detH when d = aq/c. Again, let H ′ = (h′′ij), where h′′ is obtained from h′

by replacing d by aq/c. Note that under this substitution, λ = aq1−r2/b and

λb/a = q1−r2 .
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Thus, in the first r2 rows of H ′ (i.e., for 0 ≤ i ≤ r2 − 1), h′′ij contains the factor
(
q1−r2+i

)
j−i.

But (
q1−r2+i

)
j−i =

(
q−(r2−i−1)

)
j−i = 0, for j − i > r2 − i− 1,

so

h′′ij = 0, for j > r2 − 1.

This shows that in the first r2 rows of H ′, the entries in all the columns after the first r2 columns
are 0.

Similarly, for the next r1 rows we find that due to the presence of the factor

1

(q)(r2−j)+(i−r2)
=

1

(q)i−j

in h′ij , we have

h′′ij = 0, for j > i,

for r2 ≤ i ≤ r1 + r2 − 1. Thus the matrix H ′ is of the form

1 ∗ ∗ ∗ 0 . . . . . . 0
0 1 ∗ ∗ 0 . . . . . . 0
...

... 1 ∗ 0 . . . . . . 0
0 0 . . . 1 0 . . . . . . 0

∗ ∗ ∗ ∗ ∗ 0 . . . 0
0 ∗ ∗ ∗ ∗ ∗ 0 0
...

...
...

...
...

... ∗ 0
0 0 . . . ∗ . . . . . . . . . ∗


.

Here the top-left block is an r2 × r2 upper-triangular matrix, and the bottom right block is an
r1 × r1 lower-triangular matrix. The determinant of H ′ is given by the product of the diagonal
entries. For the first r2 rows, the diagonal entry is 1. To compute the diagonal entries when
r2 ≤ i ≤ r1 + r2 − 1, note that

h′′ij = q(
j−i+r2

2 )+r1(j−i+r2)
(q)r2
(q)i−j

×

(
aqi−r2+1/b, cqi−r2 , aqi−r2+1/c, λqi−r2+1/e, λqi−r2+1/f, λbefq−r1+i−1/a2

)
j−i+r2

(q, λqi+j−r2 , λq2i−r2+1)j−i+r2

.

An expression for detH ′ is given by the product of the diagonal entries

detH ′ =

r1+r2−1∏
i=r2

h′′ii

and this gives, after some simplification,

detH ′ = qr
2
1r2+r1(r22 )

r1−1∏
i=0

(c, aq/c)r2+i

(c, aq/c)i(λq
r1+r2+i)r2

×
r1∏
i=1

(
aq−r2+i+1/be, aq−r2+i+1/bf, efq−r1+i−1/a

)
r2
,
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where λ = aq1−r2/b. From here, we see that, when d = aq/c, the right hand side of Theorem 4.1
reduces to(a

λ

)r1r2 r1∏
j=1

(
λqr1+r2+j−1)

r2

(aqr1+r2+j−1)r2
detH ′ = br1r2qr1r2(r1+r2−1)+r1(r22 )

×
r1−1∏
i=0

(c, aq/c)r2+i

(c, aq/c)i

r1∏
i=1

(
aq−r2+i+1/be, aq−r2+i+1/bf, efq−r1+i−1/a

)
r2

(aqr1+r2+i−1)r2
. (5.2)

Now comparing (5.1) and (5.2), and simultaneously replacing

(a, b, e, f) by (s1s2/q, s1, t1, t2),

we obtain Theorem 2.1 in the form (2.4).
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