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Abstract. We give an algebraic quantization, in the sense of quantum groups, of the
complex Minkowski space, and we examine the real forms corresponding to the signatures
(3,1), (2,2), (4,0), constructing the corresponding quantum metrics and providing an ex-
plicit presentation of the quantized coordinate algebras. In particular, we focus on the
Kleinian signature (2,2). The quantizations of the complex and real spaces come together
with a coaction of the quantizations of the respective symmetry groups. We also extend
such quantizations to the A’ = 1 supersetting.
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1 Introduction

Undergoing crucial advances from Euclid to Newton and then from Minkowski to Einstein,
classical space-time has been one of the pillars in the conceptual building of physics. The theory
of relativity formulated by Einstein stressed the crucial role played by concept of locality, which
lies at the heart of the formulation of effective field theory, one of the most powerful descriptive
frameworks to capture the features of a variety of physical systems at relatively low-energies.

Thus, it is surprising that quantum physics had little or no influence at all on the concepts of
space and time, despite the essential nature of non-locality being one of the striking (and most
counter-intuitive, though) features of quantum mechanics. If one excludes quantum gravity,
all theories characterized by quantum processes and dynamics ultimately relies on a classical
picture of space-time.

A quantum theory of gravity is essentially non-local, as it immediately follows from the
existence of a fundamental length, the Planck length. Indeed, in both superstring/M-theory
and loop quantum gravity, a minimal distance measure occurs, hinting for the fact that the
infinitely-differentiable space-time manifold may be an illusory picture, breaking down at very
small scales. This suggests that space-time may be quantized; Snyder [62] was the first to
introduce the term “quantized space-time”. Consequently, quantum gravity should face the
challenging aim of understanding the nature of quantum space-time, because it is reasonable to
expect that, at some fundamental level, the classical notion of space-time should be superseded
by some suitable quantum notion.

As it seems intuitively natural from the perspective of local effective field theories, the usual
approach to such fundamental conceptual issues in contemporary theoretical physics is that
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quantum space-time should be related to phenomena in which a strong gravitational field is
involved, and/or that the quantum modifications of classical space-time are limited to very tiny
regions, namely of the size of the Planck length. It thus follows that the fundamental properties
of quantum space-time would not be pertaining to ordinary non-gravitational phenomena.

One of the basic ways in which the classical notion of space-time is generalized is non-
commutative geometry (cf., e.g., [19, 21, 26, 63], and references therein). In this framework,
the non-commutative algebra of ‘quantum space-time coordinates’ [19, 20, 39, 51, 59, 63] works
as an ultra-violet regulator, with the Planck length being the minimal resolution length scale
which generates uncertainty relations among non-commuting coordinates. This would allow to
describe the ‘fuzzy’ or ‘discrete’ nature of the space-time, occurring only at very small distances
or high energies [36, 47]. Even if most formulations of non-commutative space-time suffer from
explicit violations of the Lorentz invariance, many examples of covariant non-commutative space-
times, retaining all global symmetries of the underlying classical theory, have been considered
in literature [45, 46, 62, 67].

Studies of simple dynamical models in quantized gravitational background (see, e.g., [18, 34,
35]) also indicate that the Lie-algebraic space-time (Lorentz, Poincaré) symmetries are modified
into quantum symmetries, described by non-cocommutative Hopf algebras; these latter, after
Drinfeld, have been named quantum deformations or quantum groups [22].

It is here worth recalling that most of the ‘quantum’ space-times investigated so far are non-
commutative versions of the Minkowski space-time, thus with signature (s,t) = (3,1) [4, 27, 45,
49, 53, 68]. In [54], Zumino, Wess, Ogievetsky and Schmidke adopted an ad hoc approach for
the quantization of the D = 4 Minkowski space, exploiting the coaction of the Poincaré group
on it. In [13, 14, 15] the quantum deformation of the complex (chiral) Minkowski and conformal
superspaces was investigated by exploiting the formal machinery of flag varieties developed
in [27, 28]. Recently, in [17], another space-time quantization based on the spinorial description,
namely a string theory inspired Spin(3,1) worldsheet action, was introduced. Moreover, some
recent studies considered the construction of non-commutative space-times with non-vanishing
cosmological constant, dealing with the intriguing issue of the interplay between quantum gravity
effects and the non-vanishing curvature of space-time, with interesting cosmological consequences
of Planck scale physics (cf., e.g., [1] and references therein).

As evident from above, in the context of the study of non-commutative space-time structures
at Planckian distances, the procedure of deformation of the space-time coordinates and of the
space-time symmetries plays a key role. In this respect, one of the main approaches to the
classification of deformations has been provided by the theory of classical r-matrices [6, 16, 48,
61]; concerning the various possible signatures in D = 4, recently, in [8, 9, 10] the deformations
of the orthogonal Lie algebras 0(4 —k, k) (with £ = 0, 1,2), were investigated (together with the
quaternionic real form 0*(4)), thus dealing with all possible real forms of 0(4;C).

In the present paper, we exploit a novel procedure which allows us to investigate the quan-
tization deformations of the D = 4 space-time in all possible signatures; in particular, we focus
on the less known case with two timelike and two spacelike dimensions, namely on the Kleinian
(also named ultrahyperbolic) signature (s,t) = (2,2). The corresponding real form of o(4;C)
is 0(2,2), which is also used in two-dimensional double field theory (see, e.g., [41, 60]) or em-
ployed as D = 3 AdS Lie algebra'. Geometries in Kleinian signature currently remains a vast
and yet unexplored realm, with a rich mathematical structure, investigated only in a few papers
(cf., e.g., [11, 23, 24, 25, 40, 42]). The study of the Klein signature should not be considered
as a mere mathematical divertissement, but rather its interest stems from relevant physical
motivations. Just to name a few, the study of symmetries of scattering amplitudes in super
Yang—Mills theories and in supergravity stressed out the relevance of Kleinian signature, espe-
cially in D = 4; in fact, in [55] Ooguri and Vafa showed that N' = 2 superstring is characterized

!The quantum deformation of the D = 3 AdS group was constructed in [5].



Quantum Klein Space and Superspace 3

by critical dimension D = 4, with bosonic part given by a self-dual metric of signature s =t = 2.
Moreover, 4-dimensional Kleinian signature essentially pertains to twistors [56], which provide
a powerful computational tool of scattering amplitudes [65]. In [31] the 4-dimensional Klein
space My o was studied, through its definition inside the related Klein-conformal space, along
with its supersymmetric extensions, namely the Klein N' = 1 superspace M3 1 and the cor-
responding Klein-conformal N' = 1 superspace. To the best of our knowledge, this, together
with our previous work [31], is the first investigation of the superspace with Kleinian (bosonic)
signature.

A direct approach to quantum deformations stems from [30, 31], and it exhibits an intrinsic
elegance based on split algebras A;’s in particular the split complex numbers C;. This is the
subject of the present paper, which, as mentioned, will consider the quantum deformation of both
real Klein and Klein-conformal A/ = 1 spaces. We will not pursue the aforementioned approach
based on r-matrices, but rather we will deal with the procedure introduced by Manin [50]; it is
here worth pointing out that Manin’s approach is equivalent to the one based on r-matrices, at
least for SL(n) groups, which for n = 4 is the case under investigation. In the 1980’s, developing
ideas in part due to Penrose a few years earlier [57], he introduced the approach to D = 4
Minkowski space as the manifold of the points of a big cell in the Grassmannian of complex
two-dimensional subspaces of a complex four dimensional space (twistor space), extending this
framework to the supersymmetric (N = 1) case [52]. After some general but rather abstract
studies in [44, 64], the study of quantization of flag manifolds and of complex Minkowski space
a la Manin was worked out in [27], in which were also given the two involutions of the quantum
complex Minkowski space, respectively defining the real Minkowski space-time and the real
Euclidean space in four dimensions.

The plan of the paper is as follows.

In Section 2 we give a brief account of the classical Minkowski and Klein spaces, both in the
complex and real setting, together with their symmetry groups.

In Section 3, we consider quantum groups and their homogenous spaces. We approach the
theory of deformation according to Manin [51], that is, we quantize the coordinate rings of
our algebraic geometric objects, spaces and groups. This approach is equivalent to the r-matrix
formulation, proposed originally by Fadeev et al. in [26] (see also [16] for a complete account, and
references therein). Our approach is slightly more general than the ones present the literature,
since we take our ground ring A to be a k-algebra, where k is R, C or C,. Observe that one could
also furtherly generalize this approach by substituting the complex and split complex units 4
and j with the so called dual or parabolic one €, with €2 = 0. The use of the parabolic unit
plays a relevant role within the context of non-Euclidean spaces [66] and it was applied in the
framework of quantum groups and quantum Cayley—Klein algebras in [2, 3, 38].

As we shall see, this allows a unified treatment for all signatures of the real forms of the
complex Minkowski space, and provides a natural generalization to the quantum supersetting.
Furthermore, in our treatment, the actions of the symmetry groups get quantized in tandem
with the homogeneous spaces, though we have to interpret them as coactions, since, in the
quantum group setting, as usual, the geometric space is replaced by its algebra of functions (in
this very case, the algebra of polynomial functions).

In Section 4 we examine the real forms of the quantum spaces introduced in the previous
section, thus producing a deformation of Euclidean, Minkowski and Klein spaces, together with
their metrics. We also compute explicitly the commutation relations among generators for the
quantum rings of the Euclidean, Minkowski and Klein spaces, thus giving a presentation of
such quantum rings. The metrics appear naturally as the quantum determinants of suitable
quantum matrices. Our approach allows to obtain at one stroke also the quantization of the
symmetry groups: we in fact obtain also the quantum Poincaré groups as well as a coaction of
such quantum groups on the corresponding quantum spaces.
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Finally, in Section 5 we generalize the constructions of the previous sections to the N' =1
supersetting. In particular, in Section 5.1 we introduce the notion of quantum supergroup,
whereas in Section 5.2 we consider the quantum chiral Minkowski superspace. Then, for brevity’s
sake, in Section 5.3 we focus (working on Cy) on the real form associated to the Klein involution.

2 The classical spaces

In this section we describe the classical Minkowski and Klein spaces using an approach, which
turns out particular fruitful for our subsequent treatment of the quantizations of these spaces
together with their symmetry groups and real forms.

2.1 The (split) complex Minkowski space

The complex Minkowski space can be realized inside the conformal space SL4(C)/P, P being
an upper maximal parabolic, as an open set, called the big cell. It admits a natural action of
the Poincaré group and Weyl dilations, which sit as subgroups inside the conformal group (we
address the reader to [32, 33] for more details) that reads as

z 0 Iy Iy
, — 1 , (2.1)
tr y n ynr~ -+t
——— —— —_———
Poincaréxdilations big cell big cell

where all of z, y, t and n are 2 x 2 matrices with complex coefficients. Notice that diag(x,y)
parametrizes dilations, while translations are represented by the matrix ¢t. We then identify the
complex Minkowski space with the translational part of the Poincaré group, that is the space of
2 x 2 complex matrices. Note that the subgroup

= {(”0” 2) Ty E SLQ((C)}

preserve the determinant of n, that we then identify with the norm of a vector; this establishes
the homomorphism

In [31] we have shown how this picture can be consistently generalized by substituting C with Cg
in order to consider a more general picture and different real forms; we will refer to it generally
as the complex Minkowski space ij, and it will be clear from the context which algebra we
use; the determinant of the various real forms will naturally select different pseudo-Riemannian
signatures.

2.2 Real forms and involutions

Let k = C or C; and A be a commutative algebra over k. An involution is a map *: A — A
satisfying the properties

(af +Bg) =af* +Bg*,  (f9)"=[f*9" ()=

where f,g € A, a, € k and the bar indicates the usual conjugation in k. In this setting,
we do not need to specify whether the involution is multiplicative or antimultiplicative, since
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we are working with commutative algebras, while in the quantum case this choice will be cru-
cial. We then consider the following three involutions on functions on C[Ma(k)], the algebra of
polynomials on the matrices:

e @ b (e ¢
Mo \e d b d)’
wr (@ b . d -—c
E- e d b a)’
e (@ b o (@ b
K \e d c d)’
We refer to *ps (resp. xp, *x) as the Minkowski (resp. Fuclidean, Klein) involution. In fact,

that, if kK = C, the fixed points of these involutions are explicitly given as follows.

e The fixed points of *); are Hermitian matrices?; we denote the space of hermitian matrices

by Jéc and we write a generic element m explicitly as

m — xro+x1 X9+ 1T3
ZL‘Q-il‘g o — I ’

Given m,p € Jg, one can define the bilinear form

glm,p) = gtr(m(p—tr(p)) ),  Q:=g(m,m)=—detm

with signature (3,1). One can then identify Hermitian matrices with the real Minkowski
space M3 1 ~ R3! that is naturally equipped with the action of the Lorentz group, H =
SLa(C) x SLy(C), sitting as a subgroup into the conformal group. H acts on the Minkowski
space by

n — yna:_l.

Requiring that this action maps Jéc into itself forces z~! = T, thus we recover the canonical
action of SLa(C) on Hermitian matrices, establishing the isomorphism SLg(C) ~ Spin(3, 1).

e The fixed points of xp are complex matrices e € My(C) satisfying the relations ef =
wetw™!, with w being the usual symplectic matrix. We denote this space by Néc, and the
generic element will be decomposed as

Ty +1ix1  T9 +ix3
e = . . .
—X2 +1x3 X9 — 12X

On the space of those matrices we define the bilinear form

gle.) = Sr(eft),  Qi=gle,e) = dete

that yields the Riemannian metric with signature (4,0). We identify the fixed points
of *g with the real Euclidean space Myo ~ R*Y. The isometry group can be again
obtained by looking at the action of the subgroup H and requiring it maps Néc into itself.
A tedious calculation shows that in this case one gets x,y € SU, as one would expect since
SU2 X SU2 ~ Spin(4).

2This is the quadratic Jordan algebra over C, and this justifies our notation
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e The fixed points of xx are real matrices, and the generic element s € Mg (R) will be written,
introducing a pair of light cone coordinates, as

(ot T T2+ 23
Tro — T3 To— X1 )

We define the bilinear form

9(s,p) = %tr(swptw_l), Q = g(s,s) =dets.

In this case, we obtain a pseudo-Riemannian metric with signature (2,2). The isome-
try group can be again obtained by forcing H to map real matrices into real matrices.
Explicitly, one gets that z and y must be real matrices and thus elements of SLy(R).

We can easily see that the described action preserves the bilinear form defined above, and
this is again not surprising since SLa(R) x SL2(R) ~ Spin(2,2). The proof relies on the
fact that for g € SLa(R) it holds that g~! = wglw™1.

Note that there is a fourth real, non-compact form of 0(4; C): the so-called quaternionic one,
(5)0™(4) ~ sl(2,R) @ su(2); it has been recently treated in [8, 9] (see also, e.g., [37] for recent
applications).

If £ = C4, the fixed points of all the three given involutions yield the Klein space, as one
can naively check by substituting j to i, where j is the imaginary unit of the split complex
numbers Cs (j2 = 1). At the classical level, one thus obtains four equivalent realizations of the
D = 4 Klein space My 2. Note that, along the way, one proves also the isomorphisms

SLy(C,) = SUs x SUs = Spin(2, 2),

with SA/UQ being the unitary 2 x 2 matrices over C; with determinant one.
All this is summarized in the following table:

involution fixed Points over k = C, C; space isometry group
C Ms; SLy(C)
11 JE: {m € Ma(k) s.t. m = m'}
Cs Maa SLy(Cy)
C Myo SUz xSU;
) Né“: {e € My(k) s.t. el = wetwfl}
Cs Map SU, x SU,
C  Mss SLz(R) x SLa(R)
X Ms(R)
Cs Maa SLa(R) x SLa(R)

3 Quantum deformations

In this section we introduce the quantum deformations of the coordinate rings of the spaces
we have studied above. We construct such deformations together with the coactions of the
deformations of their symmetry groups, and we also give quantizations of the real forms, which
are compatible with such coactions.
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3.1 Quantum groups

We now introduce the quantum special linear group, as well as the notion of quantum space.

Let £ = C,Cy and k; = A[q, q_l], where ¢ is an indeterminate. In applications to quantum
physics and quantum gravity, the non-zero real parameter ¢ can be thought as related to the
Planck constant as g ~ e’; the classical limit is achieved for h — 0 and ¢ — 1.

Definition 3.1. We define quantum space k; the non commutative algebra
ky = kq(x1,. .. ,xn>/(xiacj — q_lxixj, i< j),

where kq(x1,...,2y,) is the free algebra over the ring k, with generators z1, ..., z,.
We define the quantum matriz bialgebra as

My(n) := kqlaij) /I,
where the indeterminates a;; satisfy Manin’s relations [51] generating the ideal I/

ajjag; = qilakjaij, 1<k aijap = agagg, 1<k,j>0 or i>k,j<lI,

ajja; = q_lailazj, 7 <l Qi Ak — ARlQi5 = (q_l — q)aikaﬂ, 1< k,j<l, (3.1)
with comultiplication and counit given by

A(a;) = Zaik ® agj, e(ai;) = dij.
k

The definitions of the comultiplication A and the counit € are summarized with the following
notation

ail ... A1n air ... A1n alr ... QA1n
A = ] ® )
Qan1 Gnpn Qan1 Gnn Gnl Ann
aill Aln 1 0
€ : = ,
Gpl ... Qpp 0o ... 1

ky and My(n) are quantizations of the module k" and the matrix algebra M, (k) respectively,
that is, when ¢ = 1, k; becomes the algebra of polynomials with coefficients in k and similarly
holds for M, (k). Since M, (k) has a natural action on k", we have that dually M,(n) coacts
on k' (see [52], and [32, Chapter 5] for more details).

Proposition 3.2. We have natural left and right coactions of the bialgebra of quantum matrices
on the quantum space kg
At kg — My(n) ® kg, p: ky — ky @ My(n),
mHZaij Kxj, CCZ'l—)ZCCj@ajZ'.
J J

Now we turn to the special linear group SL,, (k). The algebra of polynomials with coefficients
in k£ on the special linear group is obtained from the matrix bialgebra by imposing the condition
that the determinant is equal to 1. We consider the quantum exterior algebra in n variables

An = kq(x1, -5 Xn)/ (XiX5 + OXGXi X5 1 < J)-
Also Ay admits a (right) coaction of M,(n), using the transpose as one expects

Ti Ny — Ag @ My(n), XiHZaz’j@)Xj-
J
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Definition 3.3. We define quantum determinant, the element in My(n) detq(ai;) (or det, for
short) defined by the equation
(X1 Xn) = detg(ai;) @ X1+ Xn-
A small calculation gives
detg(ais) = > (=) Do)+ tnomy = 3 (=€) Doy -+ oy,
o o

where ¢ runs through all the permutations of the first n integers.
Furthermore det, is central, i.e., commutes with all the elements in M, (n) and it is a group-
like element, that is

A(dety) = det, ® det,.
Definition 3.4. We define quantum special linear group over k the algebra
SLy(n) = M, (n)/(det, — 1).

Notice that, most immediately, SL,(n) is a quantum deformation of the special linear group
SL, (k).
SL4(n) is an Hopf algebra, with A, € inherited by M,(n) and antipode given by

Sq(ai) = (—q)’"Aj,

where Aj; is the quantum determinant in the quantum matrix bialgebra generated by the inde-
terminates a,s with r;,s =1,...,n and r # j, s # i.
The following definition will be useful later.

Definition 3.5. We say that a certain set of indeterminates {a;;} is a quantum matriz if the a;;’s
satisfy Manin’s relations (3.1). We also speak of a ¢~ !-quantum matriz, meaning that it satisfies

Manin’s relations (3.1) with ¢ replaced by ¢ .

3.2 The quantum spaces

We want to quantize the setting introduced in Sections 2 and 2.1. We proceed heuristically
imposing the following equality (see also [32, Chapter 5])

aiy ... ai4

(tz 2) (ﬁ JZ): : e (3.2)

asqy .- Q44

which will yield the variables x, y, t in terms of the coordinates a;; of SLy(n) (for the physical
meaning of x, y, ¢ refer to Section 2.1). Equation (3.2) holds only when D{3 is invertible. After
a small calculation we get the equalities

2= (zy) = (@ @2 F= (th) = —q 'Dy3D1y™" DigDip7!
v ag az)’ ! —q 'DyyD1y™' DuDip™')”

o (DD e (DD Dl
Dyy"'Di3 D Diy ) Di3sD1y~" Di3iDi™' )

where 1 <14,5 <2,3<k,l <4 and Dfllf: is the quantum determinant obtained by taking the
TOWS i1, ..., and columns ji,...,j, (we may omit the column index, when we take the first r
columns).
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The entries of the matrix ¢ correspond to the generators of the quantum Minkowski space: in
fact, we identify the Minkowski space with the translational part of the Poincaré group as it is
classically expressed in formula (2.1). For the time being, we write the elements of ¢, z, y, s in
a matrix form, for convenience. We observe that ¢ is not a quantum matrix, but it is close to it;
we in fact obtain a quantum matrix by exchanging the two columns, i.e., (ii; iii ) is a quantum
matrix. In details we have

tastss = q 'taits, tartas = q 'taotss, taity = q 'tats, taoty = ¢ 'tata,
t3aty) = taitsa + (q_l — q)t31tsa, t31tag = taotsi.

This heuristic reasoning leads to the following definition in analogy with the classical setting.
Definition 3.6. We define quantum Poincaré group P, as the algebra generated inside SL(4)
by the elements in z, y, t described above. This is a quantum deformation of the Poincaré group.
We define quantum Minkowski space the subring Mi’q in SLy(4) generated by the elements ;.

This is a quantum deformation of the coordinate algebra of the translations.
We define the quantum Lorentz group as

Ly = P,/(t,dety(z) — 1, dety(y) — 1).

Our definition is very natural and in fact gives us a coaction of the quantum Poincaré group
on the Minkowski space.

Proposition 3.7. The quantum Minkowski space admits a natural coaction of the quantum
Poincaré group

§: Myt — P MY,
tij Y YisS (@) @ te +ti; @ 1,

S,
where we rescale all indices i,j,r,s =1, 2.

Proof. This is a natural consequence of our construction. In fact the coaction d corresponds
to the restriction of the comultiplication A of SL,(4). In particular we have

Al® 0N (z O ® z 0
tr y) \tzx vy tr y)’
implying

Alte) =tr @z + y ® tx.

Multiplying then by S(z) ® S(x) on both sides one gets the result. Notice that in our notation
we identify the translation matrix ¢;; with the coordinates on the Minkowski space %;;. |

This gives also a coaction of the quantum Lorentz group by setting the generators ¢t = 0.

We have then that the quantum Minkowski space is a quantum homogeneous space for the
quantum Poincaré group and the quantum Lorentz group see also [32] for more details on
quantum homogeneous spaces in general.

Remark 3.8. We consider two quantum planes Cy[x1, x2| and Cg[t)1, 2], that is xax1 = gx1X2
and Y911 = qi119, then one has the following morphism

Vi
2 2 Lq
Cq D (Cq — /\/l(C ,

X1 tin ti2
<X2> ® (2 —apr) = <t21 t22> '

Thus, in analogy with the classical case, we can view the quantum plane as quantum spinors.
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4 Real forms of the quantum Minkowski space

In this section we want to construct real forms of the complex quantum Minkowski space Mi’q
as quantum homogeneous space for the quantum Lorentz group. In other words, we want real
forms, which are compatible with the coaction § of Proposition 3.7, setting to zero the translation
part in P,;. As usual k = C or C; and we shall specify which case, depending on the real form
under consideration.

4.1 Quantum real forms and involutions

In the quantum setting, real forms correspond to involution of quantum algebras. In particu-
lar, if G4 is a quantum group, a real form of G, is a pair (Gy, *4), where *, is an antilinear,
involutive, antimultiplicative map respecting the comultiplication and the antipode (see, e.g.,
[32, Section 5.3] for more details). For a quantum homogeneous space, we give the following
definition of real form.

Definition 4.1. Let V; be a quantum homogeneous space for the quantum group G,, with
coaction dy,: V; — G4 ® V4. Assume (G, *g,) is a real form of G,. We say that (V,*y,) is
a real form as quantum homogeneous space of V; if

e xy, : Vy, — V, is an involutive antilinear map,

e xy, is antimultiplicative, that is (ab)*V2 = b*V2a™Va, or multiplicative (ab)*Va = a*Vab™Va,

e xy, preserves the coaction, that is

5Vq (a™Va) = 5Vq (a)*Ca™*Va,

Remark 4.2. In the following, the compatibility condition with the coaction of the real form
of G, discussed above, will force us to consider also involution for G, and V,, that are not antimul-
tiplicative?; this is not crucial, since we are not interested in studying particular representations
of the real form of Gy, but we are interested just on its action on V.

Inspired by the classical case (treated in Section 2.1), we now consider three different invo-
lutions on /\/li’q. As we shall see later, they are compatible with a suitable real form of the
LIV Mi’q — Mi’q,
<t31 t41>
t3o taz)’
° *Eq: Mijaq — Mi7q’
® x. Mi’q — Mi’q,

complex Poincaré quantum group, thus consistently realizing real forms of Mﬁ’q as quantum
homogeneous space for the suitable quantum group of symmetries:
t31 t32>
—
<t41 tyo
qr—q;
t31 t32> <q_1t42 tn )
—
(t41 tyo t32 —qts1)’
q—q;
t
( 31 t32> . <t31 t32>7
tyr ta ty ta
q—q.

3In literature, multiplicative involution for quantum groups have been already considered, see for example [7].
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Notice that while %7, and *g, are antimultiplicative involutions of kq[t;;]/Ip (with Ips
denoting the ideal of Manin’s relations (3.1)) fixing ky, *xq gives a multiplicative involution
of kg; the antimultiplicative property could be recovered sending ¢ to g~ !. Let us stress once
more that (ﬁii ﬁi; ) is not a quantum matrix (it becomes such by interchanging the first and the
second columns). This has clearly a consequence, when computing the commutation relations
and the quantum determinant, however we shall pay attention and proceed nevertheless with
this notation. We now proceed analyzing case by case the quantum structure for both £ = C

or C,.

4.2 The quantum real Minkowski space

We consider now fixed points of Mf’q with respect to x,, , i.e., the real form (vaq, * In

analogy with the classical case, we parametrize it by the following “real variables”

Mq)'

Zo = 3(ts1 + taa), To = 1(ts2 + tar), Ty = L(ts — t32), T1 = 1(ts1 — ta2),

that are the following fixed points with respect the action of x,, ; their commutation relations

are listed below
ToTo = Q4 ToL + iq_Tox3,
52%1 = q+:ElzT:2 + iq_51i3,
T3IT( = ¢+ TOL3 — iq_ToT2,
T3T| = ¢+ X1X3 — 1q_T1T2,
Tox| = T1T0,

~ o o~ . ~2 =2
Tox3 = 3T + 1q— (330 — :131),

with ¢4 = %(cf1 + q) and q_ = %(q*1 — q). The metric is given by

t3o t31 ~2 | ~2 ~2  ~2
Qq = detq <t42 by ) T2t ¢+ (@1 — 7).

4.3 The quantum Klein space

We want to replicate this construction for the Klein space. This is the most interesting case
since, as we already observe, we have 4 different ways to realize it.

e We start with the real form (Mi’q, *Kq); in this case we can work with C and C, at the
same time. We introduce the following real variables

@y = 5(t31 +t12), @2 =F(tsa+tn), @3=35(ts—t3), @ = (ts1 — ta2),

with commutation relations:

L2y = q+ToxL2 — q—TOIL3,
21 = 4+ T1T2 — J-T1I3,
L3Ly = 4+ Tox3 — §—ToI2,
L3T1 = 4+ 13 — L1,
LT = T1TQ,

T2T3 = T3xL2 + q— (933 - 93?)7
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The quantum determinant now yields

t3o t31> 2 2 2 2
= det =x5 — x5 + T —xf).
Qq q <t42 tiy 5 — @ + qy (2 — )

As expected, we get the deformation of a split signature norm.

We analyze now the other 2 options one has working within the algebra Cy (refer to [31]). In
this case we speak of a C; quantum deformation.

e Fixed points of *)7, on Mfs’q are given by the fixed points

Yo = s(ts1 +ta), Yy =s(ts2+ta),  ys=3i(ts —ts2), Yy =tz — ta),

whose commutations relations can be easily obtained by the previous one and the norm
turns out to be

t32 t31
Qq = det, <t42 t41> =y3 —y5+a+ (¥ — h)-

Note that this real form of the complex Minkowski space is isomorphic to the previous one
by the simple replacement y; — jy;.

e In the end we can also consider the real form (M%’q, * Eq); in this case a convenient choice
of fixed points is given by

- i1 _1 ~ ’ ]
Yo =5(a%ts1 +q 2te2), o =gtz +ta), Y3 = §(tn —ta2),
_ 1 _1

U1 = 5(q7ts1 — ¢ 2ta),

and the metric, as well as the commutation relations coincide, formally, with the previous
one

We have thus obtained four isomorphic constructions of the D = 4 quantum Klein space /\/lgg.

These correspond to the fixed points of the involutions * 4, * g4 on M%’q, and of *x, on Mi’q.

4.4 The quantum Klein group

In the classical setting we have that the metric @ is preserved by the action of the Klein group;
it is natural then to expect that its quantum deformation @4, introduced in the previous section
is preserved under the action of the quantum Klein group, viewed as a suitable real form of the
quantum Lorentz group £,. We now work for convenience with Cy only and we suppress the
subscript k. We can define three antilinear involutions (i.e., real forms) on the quantum Lorentz
group (for the first one, see [32], as for the other two, [43, pp. 102 and 316)):

o xprr: Ly — Ly,
x5 — S(yji),
Yij — S(@5),
q—q;

o xpp: L, — Ly,
xij — S(xji),
Yij — S(Yji),
q—q;
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® Xp: [’q — [,q,
Lij —> Lij,
Yig = Yij,
q——4q,

where S(x;;) denotes the antipode for the quantum matrix x;;, that is

S (»’611 3312) _ < 22 —qx12>
T21 T2 —q w1 wn
and similarly for S(y;;). Observe that xpg is multiplicative and not antimultiplicative; this
property could be again restored by sending ¢ to ¢~ . As one can readily check, these maps are

well defined and give a *-structure on L.
We have the following proposition, whose proof consists of a tedious direct calculation.

Proposition 4.3.
1. The quantum Lorentz group acts on the quantum Minkowski space as follows
Ap: M — L, @ MY,
tij — Zyiss(ivrj) ® tgp.

S,

2. The maps xpa, with A= M, E, K define a x-structure and a the real form of Lq. Further-
more, the Klein space is quantum homogeneous with respect to the coaction of the quantum
Klein group. In other words we have

(kpA X *4q) O AL = AL 0 *4q.

3. The quantum Klein quadratic form is a coinvariant for the action of the quantum Lorentz
group

AL(Qq) =1® QCJ'

Proof. The first point is a direct consequence of Proposition (3.7).
The relation (xpa X *44) 0 A, = A, 0% 44 arises from a direct calculation; consider for example
the element t;; and the Minkowskian involutions, then one has

AL(ti1) = y11S(z11) @ t11 + y125(221) @ toz + y125(211) @ ta1 + y115(221) @ t12
= Y1722 @ t11 — ¢ Y12721 ® tog + Y1272 D ta1 — ¢ L y11791 @ to.
Applying then (xpas X *p74) and keeping in mind that the Minkowskian involution is antimul-
tiplicative one gets
(kpar X *a1g) © AL(E11) = Y1722 @ ti1 — ¢ y12201 @ ta2 — ¢ Y1172 @ tia + Y1aT2e @ o

= Ar(ti1),

and since *74(t11) = t11 the result follows naturally. Similarly one proves the same for the other
elements and involutions.

To prove the point 3 it is enough to observe that, due to the Manin relation and the parabolic
structure we consider, one has %;jyxm = Yrm¥i; and after some elementary reordering and
algebras, one gets

AL(Qq) = det(y) det(z) @ Q.

Considering that det,(z) = 1 = dety(y), we obtain that the quantum metric is coinvariant as
claimed. |
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Observe that this proposition tells us in fact that we have a well defined coaction of (L4, *pa)
n (MZ, * A) preserving the quantum metric.

4.5 Formulation with the algebraic star product

In this section, we want to present the results obtained in the previous section in terms of classical
objects. In particular we want to take advantage of the isomorphism between the algebra M(2)
and (O(Mgg)[q,q_l},*) = kgy[7a1, Ta2, 731, T32], where % is certain non-commutative product
naturally inherited from the underlying quantum group structure. This approach and language
is probably more familiar to physicists because of its versatility. As mentioned before, the
starting point for this construction is the observation that the map

Dy kg[Ta1, Taz2, T31, T32] — My(2),
m__n P ' m gn D r
T41T42T31T32 > tyrlaats tsn

is a module isomorphism and thus has an inverse; @, : is called quantization map, and essentially
it encodes a choice of ordering. It is here worth stressing that with this choice of ordering one
gets a basis for My(2) as proved in [15], but in principle one could make other compatible choices.
Next, we define the following non commutative product

Frg =2 (2(HPe(9),  f € (OM22)[a,q7"]).
Using Manin’s relations (3.1), then one can easily construct the following

—m(c+b)— d(n+p)( a+m b+n c+p d—l—r)

a, b _c _d m._n, P _r\ _
(741742731732) * (741742731T32) =4q Ta2 T31 T32
min(d,m)
+ Z (k m)(c+b) +(k7d)(n+p)F(k7q’d m)TEf_m ka-&-k-&-nT?(’:i‘rk-i-p d— k:-‘rr

where F'(k, q,d, m) is a function defined recursively (see [15] for more detail). We comment that
there exists a (unique) differential star product, thus acting on C°° functions, that coincides
with the one given above on polynomials.

We can now pullback the metric to the star product algebra, obtaining

Q =, (Qq) = 23 + x5 — qu§ — gz,

where the star product among polynomials on the real variables x and is naturally inherited
from the & commutation relations.

5 The N = 1 quantum Klein superspace M2 201

The extension of the natural construction that we have done in the previous sections to the
supersetting offers no difficulty, hence we will summarize quickly the relevant definitions and
the results. For all of the supergeometry terminology we refer the reader to [12, 32].

5.1 Quantum supergroups

We start with the definition of quantum matrix superalgebra and quantum special linear super-
group. Let k = C or Cy, as in beginning of Section 3 and k; = k‘[q, q_l].

Definition 5.1. We define quantum matriz superalgebra

def
My(m|n) = kgai) /I,
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where I/ is generated by the relations [51]

aijag = (1))@ D" g <

aijag; = (—1)”(a”)ﬂ(a’”)q(_l)pomakjaz‘j’ i <k,

aijay = (_1)7T(aij)7'r(akl)aklaij7 1<k,g>1l or 1>k, j<lI,

aijar — (_1)W(aij)7f(akz)aklaij = 77(‘171 — q)akjail, 1< k,j<l,
where

n = (—1)PEPO+p(pO+p(E)P()

with p(i) = 0if 1 < i <m, p(i) = 1 otherwise and 7(a;;) = p(i) + p(j) denotes the parity of a;;.
M, (m|n) is a bialgebra with the usual comultiplication and counit

Aay) =Y an®a;,  elay) = 5.

We define the special linear quantum supergroup SLy(m|n) as My(m|n)/(By — 1), where By
is the quantum Berezinian, which is a central element in My (m|n) (see [29, 58, 69] and [32,
Chapter 5, Section 5.4] for more details).

We now turn to the more relevant definitions for us, namely the quantum Poincaré super-
group SP, and the 4|1 dimensional quantum Minkowski superspace MPF4 as quantum homoge-
neous space, that is together with a coaction of SP, on it.

Definition 5.2. We define quantum Poincaré supergroup SP, as the quotient of SL,(m|n) by
the generators a;j, ags, as, 4,7 =1,20r4,j=3,40or1=3,4,j=1,2and k=1,2,1=3,4. In
quantum matrix form

L 0 0

SP,=|M R x|,
o 0 d

where
I = (CLH CL12> : M= <a31 a32> 7 R— <G33 a34> :
as1  ag2 aq1  a42 a43 Q44
_ [935 _ _
X = <a45> ; ¢ = (as3 os4), d = as;

in terms of the generators a;;, oy of SLy(m|n), the quantum special linear supergroup.

5.2 Quantum chiral Minkowski superspace

We now define the quantum Minkowski superspace SM*? as generated by the matrices ¢ and 7,
in analogy with our heuristic derivation in (3.2), obtained through the equality

ai; ... @14 015
L 0 0 b s o
tL R O|[0 L, p|=
L v d/ \0 0 1 e

a51 ... 54  Qsh
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After a small calculation, the following result is achieved:

E= (b)) = —q 'Dy3D1y™! DigDyp™!
& ~q 'D9yD1ot DyyDyp7 )

7= (75;) = (—q¢ ' DasD12™" DisD1p7').
As above, both ¢ and 7 are quantum matrices, once the first and second columns are interchanged.

Remark 5.3. Notice that our definition is over k£ and so works for k£ = C, giving the quantum
complex Minkowski superspace, but also over k = Cg, hence giving the quantum C,; Minkowski
superspace. The advantage of our unified treatment is that, when looking at real forms, we will
obtain at once both the real Minkowski and real Klein quantum superspaces.

Our definition corresponds to identify the Minkowski superspace with the translation super-
group inside the Poincaré supergroup as we did in Section 3.2.

Proposition 5.4. The N = 1 quantum Minkowski superspace SM* is a quantum homogeneous
superspace for the quantum Poincaré supergroup. The coaction is explicitly given as

58 MM — SP, @ MP,
ti = ti; @14+ 1S (lyy) @ tuw + > XisS(Loj) @ To,

U,

Tsj > s @ 1+ Y dS(Ly;) @ T,

where R = (ri;), L = ({y1). (To ease the notation, we replace the undetermined in M with NL,
for a suitable N and similarly ¢ with 1L for a suitable 1).)

Proof. This again follows naturally from our construction since the coaction of 6¢*) corresponds
to the restriction of the SL,(4]|1) coaction to the blocks ¢t and 7. [

5.3 Real forms

The chiral complex Minkowski superspace does not admit a physically interesting real form,
because the odd part is spinorial and in this case, the (Weyl) semispinors are complex. In the
unquantized setting, this defect is fixed by considering extra odd coordinates and pairing them
to obtain such a real form (see [32, Chapter 4] for an exhaustive treatment and the references
within). A quantization of the quantum real Minkowski superspace presents then difficulties,
since the extra odd coordinates must also be quantized and calculations become intricated.

On the other hand, the quantization of the chiral Klein superspace follows very naturally in
our construction. It should be here recalled that in the non supersymmetric case we have defined
three different involution yielding the same geometrical structure; in the following, we will focus
for simplicity on the N/ = 1 superextension of the case associated to the Klein involution.

We define the quantum real chiral Klein superspace as the pair (SM’W, *SKq), where *gpg
is the antilinear involution

¥SKq SMFT —5 SMP,

t31 t32) <t31 t32>
)
<t41 tyo ty tao

(751 7’52) — (751 752),
q—q,
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which is the identity on the coordinates. Note that since we want it to be multiplicative as in
the even case, we need to send ¢ to q.

Our construction is compatible to what we have discussed in our previous sections. The
metrics are the ones discussed in Section 4.2, since the odd variables do not modify them (see
also [32, Chapter 4]).

(S/\/lkq, xg Kq) is a real homogeneous quantum superspace, when the antilinear multiplicative
involution on the quantum supergroup SP, (which is the identity on the generators and send ¢
to itself) is considered. One can in fact immediately see that preserves the coaction as given in
Proposition 5.4.

6 Conclusions

In this paper we propose an algebraic quantization in the sense of quantum groups, of the
complex and split complex Minkowski spaces ./\/l4’q and /\/l(cg’q viewed as quantum homoge-
nous spaces; we focus our attention on their real forms, yielding the Lorentzian, Kleinian and
Euclidean signatures (3,1), (2,2), (4,0). All this is summarized in the following table:

real quantum space | signature

(*Kq,/\/u’q) (2,2)
(# ey M s’q) (2,2)
(*MQ7M4"1) (3,1)
( Mq7M4S7q) (27 )
(4,0)
(2,2)

( Eq’M4,q)
(g M)

)

)

The beauty of our approach is that those spaces are naturally endowed with the (co)action of
the corresponding isometry quantum group, as we explicitly show; moreover, for all these spaces,
we give an explicit representation of the deformed coordinates algebra. In this setting we also
extend such analysis to the supercase by constructing the chiral Klein superspace.
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