Symmetry, Integrability and Geometry: Methods and Applications SIGMA 14 (2018), 074, 28 pages

On Regularization of Second Kind Integrals

Julia BERNATSKA T and Dmitry LEYKIN *

T National University of Kyiv-Mohyla Academy, 2 H. Skovorody Str., 04655 Kyiv, Ukraine
E-mail: bernatska.julia@Qukma.edu.ua, jbernatska@gmail.com

1 44/2 Harmatna Str., apt. 32, 03067 Kyiv, Ukraine
E-mail: dmitry.leykin@gmail.com

Received October 03, 2017, in final form July 02, 2018; Published online July 21, 2018
https://doi.org/10.3842/SIGMA.2018.074

Abstract. We obtain expressions for second kind integrals on non-hyperelliptic (n,s)-
curves. Such a curve possesses a Weierstrass point at infinity which is a branch point where
all sheets of the curve come together. The infinity serves as the basepoint for Abel’s map,
and the basepoint in the definition of the second kind integrals. We define second kind
differentials as having a pole at the infinity, therefore the second kind integrals need to
be regularized. We propose the regularization consistent with the structure of the field of
Abelian functions on Jacobian of the curve. In this connection we introduce the notion
of regularization constant, a uniquely defined free term in the expansion of the second
kind integral over a local parameter in the vicinity of the infinity. This is a vector with
components depending on parameters of the curve, the number of components is equal to
genus of the curve. Presence of the term guarantees consistency of all relations between
Abelian functions constructed with the help of the second kind integrals. We propose two
methods of calculating the regularization constant, and obtain these constants for (3,4),
(3,5), (3,7), and (4,5)-curves. By the example of (3,4)-curve, we extend the proposed
regularization to the case of second kind integrals with the pole at an arbitrary fixed point.
Finally, we propose a scheme of obtaining addition formulas, where the second kind integrals,
including the proper regularization constants, are used.

Key words: second kind integral; regularization constant; Abelian function relation; Jacobi
inversion problem; addition formula
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1 Introduction

In this paper we consider second kind integrals on algebraic curves, which are second kind
O-forms r(x,y; [y]) obtained from second kind differential forms dr

(z,y)
bl = [ ar@g). (L1)

[

where [v] denotes a class of homotopically equivalent paths from a fixed basepoint to (z,y),
by (Z,7) we denote a point which serves as a dummy parameter of integration. Definitions of
second kind integrals were discussed in [11], where the theory of second kind differentials was
developed from the theory of stacks adapted for use in the theory of functions of several complex
variables. Here we define a second kind differential form as a locally exact meromorphic form,
whose all singularities are poles of order greater than one.

In what follows we deal with a particular class of curves called (n,s)-curves, possessing
a Weierstrass point at infinity, which is the branch point where all sheets of the curve come
together. We assign the infinity to the basepoint of Abel’s map on the curve. An accurate
definition of the (n,s)-curve is given below in Section 2.1. Throughout the paper we consider
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second kind differential forms with the only singularity at the infinity, except Section 5.1 where
the singularity is located at an arbitrary point. We call the antiderivative of a second kind
1-form dr with the basepoint at the infinity a second kind integral r, namely,

(z,y)
rlay) = [ an(ag) (1.2
oo

and define the latter on the fundamental domain of a genus g (n, s)-curve. Suppose the curve
has a homology basis of 2¢g cycles {a;,b;|i =1,..., g}, all disjoint except for each pair a; and b,
intersecting at one point. The fundamental domain is the one-connected domain obtained by
cutting the curve along all 2g cycles of the homology basis and g paths connecting the basepoint
with g intersection points. Evidently, the integral (1.2) requires regularization at the basepoint,
which is the only singularity point of the integrand function.

The idea of regularization is adopted from the definition of Weierstrass zeta-function. On
the Weierstrass normal form of elliptic curve 0 = f(z,y) = —y? + 423 — gox — g3, which is the
simplest (n, s)-curve, the second kind integral is defined by

(@9) %4z
o= [ G
] Y

Here and throughout the text we denote 0f/0y by 0, f. Let

(z,9) = (p(u),¢'(w)) = (u™?,—2u77) + O(1)

be a parametrization in the vicinity of infinity, namely (x,y) — oo as u — 0, where u serves
as a local parameter. With the standard Abel’s map A(z,y) = f(x’y)(f)gf)_ldi the second

(e.)
kind integral transforms into zeta function ¢(A(z,y)) = r(z,y). The textbook definition of
Weierstrass zeta-function, see, e.g., [14, Chapter XX, Section 20.4], serves as a regularization of

the second kind integral

In the present paper we extend this regularization to a wider collection of curves. In this
connection, a constant arises to be added to the regularized second kind integral, we call it
a regularization constant. As shown in [1, Section 193], where the notion of a regularization
constant arose, these constants vanish in the case of hyperelliptic curves. This can explain why
it was not revealed before. In the non-hyperelliptic case, the regularization constant does not
vanish, and plays an important role when the second kind integral is used to obtain relations
between Abelian functions defined on the Jacobi variety of the curve. In particular, for this
purpose we employ the primitive function

oo

()
1/}(1'7.@) = exp{—/ r(i,g)tdu(fc,g)} (13)

introduced in [6], where {du(x,y),dr(z,y)} form a special cohomology basis, and r(z,y) is the
antiderivative (1.2) of the dr(x,y). In general, the primitive function ¥ (x,y;[y]) also depends
on a path v from the basepoint to a point (z,y), and the second kind integral is defined by (1.1).
As above, [y] denotes a class of homotopically equivalent paths.

The paper is organized as follows. In Section 2 we briefly recall the notions of (n, s)-curve and
primitive function, we explain how to construct the special cohomology basis, and specify the
curves under consideration. Section 3 is devoted to the idea of regularization of the second kind
integral (1.2), also the special cohomology bases on the curves under consideration are specified.
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In Section 4 we show how to produce relations between Abelian functions defined on the
Jacobian of V(3 4) with the help of equality (4.14), which involves the primitive function . Si-
milar computations in the case of (3, 5)-curve are shown in Appendix D. We emphasize that this
method gives consistent relations between Abelian functions only with a correct choice of regu-
larization constant in the definition of r(x,y). Therefore, we could say that the regularization
constant is unique, and consistent with the structure of Abelian function field.

The following proposition summarizes results obtained in the paper. Each regularization
constant c(, s relates to the second kind integral on (n, s)-curve with the special cohomology
basis.

Proposition 1.1. In some non-hyperelliptic cases regularization constants are the following

e (V) = (0, —FA2, —§2s)",

o) = (30 =5 M —3Aa —5)

c@n(N) = (0,=3X2, =223, =35, — 3, *%All)t»
(M) = (0. F5x2, ~1ha, 0% = 2. —pr.—bw)"

We do not have a general formula for c(, ), however we have developed a technique of
finding c(, ) for virtually any pair (n,s). Below we propose two methods of computing c(, -
We demonstrate both of them by carrying out calculation for the case of (3,4)-curve. Other
cases are much more cumbersome.

2 Preliminaries

2.1 (n,s)-curve

As mentioned above, in the paper we deal with (n, s)-curves [2]. They are defined for co-prime
integers n and s as

V(n,s) = {(x7y) S (CQ ’f(n,s)(x7y) = 0}7

where

s—2,n—2
f(n,s)(xa y) = yn + 2 + Z Ans—in—jsxlyj7 (21)
i=0,j=0

Aj € C, g = 0 whenever k < 0. Nondegenerate (n, s)-curve has genus g = 3(n — 1)(s — 1), this

is the maximal genus of the family of curves of the form (2.1), see [2]. The polynomial f, ) is
homogeneous with respect to Sato weight defined by wgtx = n, wgty = s, thus wgt A\; = 5. In
the vicinity of (x,y) = oo we introduce a parameterization on V, ) by the following formulas

() =-¢"  y&=-¢° ((—1)8 + Zuz‘(/\)?) v s (@(8),5(9) = 0.
i=1
Note that wgt £ = —1, and p;(\) are polynomials in A with rational coefficients, wgt p;(A) = i.

2.2 Basis of 1-forms

Fix the basis of holomorphic 1-forms du = (xiyj(ﬁyf(n’s))_ldx), 120,57 >0andin+js < 2g—2
ordered by descending Sato weight. Note that wgt du = (—w1, ..., —wy)’, where {w1,...,w,} is
Weierstrass sequence obtained from n and s with the help of generating function t*! +- .. 4t%s =
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(1—t)"L—(1—¢")(1—t")"1(1—¢*)"1. Further consider meromorphic 1-forms with poles only at
infinity. Up to globally exact forms any such 1-form can be represented as a linear combination
of 2¢g differentials (xiyj(ﬁyf(ms))_ld:c) with 0 < i < s—2and 0 < j < n — 2, which are
holomorphic on V, 4\oo, and the condition in + js > 2g singles out differentials that actually
have a pole at infinity. One can form a vector dr of wgtdr(§) = (w1, ..., w,)" which is subject
to condition

res¢—g ( /O ‘ du(§)> dr(€)t =1,. (2.2)

This condition completely determines the principle part of dr(§). Though the holomorphic part
of dr(§) is inessential in what follows, it is worth to note that it can be chosen so that dr(x,y)
and du(zx,y) form an associated system, see [1, Section 138] and [10, p. 131]. Below in actual
calculations we use the first A(z,y) and second kind integrals A*(x, y) obtained from the chosen
basis of 1-forms, namely,

(z,y) (z,y)

Aw) = [ dulag), Ay = [ @)
o0 o

So A: V — Jac(V) denotes the standard Abel’s map. The meromorphic map .A4* has a pole at

infinity, and requires regularization. The regularization constants c(, ;) computed in this paper

relate to these particular second kind integrals.

2.3 Primitive function

The primitive function introduced by (1.3) is employed by the both methods of computing the
regularization constant. More accurately, we define it as

(z,y)
e o]

In the definition an antiderivative A*(x,y) of the second kind differential is supposed to contain

the regularization constant when parametrized. In terms of local parameter £ the following

representation of (2.3) can be obtained

3
w(© = e - [ ((4©)'ar© + o ag)}.
where due to condition (2.2) the integrand is a holomorphic function of £. Evidently, the
primitive function is entire with a zero at £ = 0 of order g, where g denotes the genus of a curve.

The primitive function ¥ (§) coincides with a certain derivative of sigma function o(u) at
u = A(§) up to a constant factor, see Remark 4.3, and also with a certain modification of the
prime form arisen from [12]. Following [5], we define the sigma function of g variables, which
we call a multivariate sigma function, as a solution of a system of heat equations with a Schur—
Weierstrass polynomial as an initial condition. Here we apply the approach to constructing
multivariate sigma functions on (n,s)-curves after [5, 7]. The most complete survey of the
theory of multivariate sigma is given in [4].

2.4 Curves under consideration

The non-hyperelliptic plane algebraic curves under consideration are unfoldings of simple Pham
singularities x° +y", that is (n, s) = (3,4) or (3,5). Denote by V(3 4) a genus 3 curve defined by
the equation f(z,y) = 0, where the polynomial f is given by

f(% y) = y3 + zt + >\2y$2 + Asyz + )\GIQ 4+ Ay + Agx + Aia. (2.4)
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Denote by V(35) a genus 4 curve defined by the equation f(z,y) = 0, where f is given by
f(l’, y) = y3 + .SU5 —+ )\13/.%3 + )\4ya:2 + )\65133 -+ )\7y$ —+ )\9$2 + )\10y + )\1256 + )\15. (2.5)
We also consider curves V(3 7) and Vi 5y of genus 6 with polynomials f given by

fz,y) =32 + 27 + hoyat + Asyz® + ez 4+ Agyz? + Aozt + A1y + Aoa®
+ A4y + Ai52% + Mgz + Aot

fz,y) = y* + 25 + XoyPa? + Azya® + Ney’x + Ay + sz + Aoy? + Ay
+ A22? + A5y + A6 + Moo,

respectively.

3 Regularization of second kind integral in general

Now we define the regularization more accurately. Consider a second kind integral r(z,y) in
the vicinity of its pole. Let £ be a local coordinate, and dr(&) = /(£)d¢, where r(€) is 0-form.
Then r(§) is decomposed into singular and regular parts:

T‘(f) = 7ﬁsing(g_l) + Treg(é) +c 7“sing(o) =0, Treg(o) =0.

Essentially, this decomposition is a textbook regularization, and ¢ denotes the regularization
constant. We define the reqularized second kind integral as follows

13 -
A(E) = rang(€) + ¢() + /0 (dr(&) — drang(©)). (3.1)

The regularization constant ¢(\) is a vector with g components, which are polynomials in A with
rational coefficients, and wgt c(\) = wgtr(§) = (w1, ..., w,)". Note that representation (3.1) is
essentially connected to parameterization in the vicinity of infinity, and holds true within the
fundamental domain. The regularization constant should not be confused with a constant of
integration. The latter vanishes in order to keep 1 satisfying the functional equation (4.2). The
regularization constant appears only when the second kind integral has the pole at infinity and
is parameterized in the vicinity of this pole.

If one needs to define the regularization constant, we say that the correct choice of this
constant makes the primitive function ¢ at & equal, up to a rational factor, to the first non-
vanishing derivative of sigma-function on the Abel’s image of £&. We also recall the method of
producing relations between Abelian functions, which involves the primitive function . The
correct choice of the regularization constant is necessary for obtaining consistent relations. In
what follows, we use both properties of the primitive function 1 to compute the regularization
constants announced in Introduction.

In the hyperelliptic case the regularization constants vanish due to the hyperelliptic involution
z,y) = (z,—y), that is = A(u(z,y)) = —A(x,y), or after parameterization A(—§) = —A(§),
and the fact that zeta funtions, and also second kind integrals, are odd, for more details see [1,
Section 193]. Therefore, 0 = (&) + r(—§) = 2¢(2,294+1) (),

3.1 Basis differentials and integrals on V(34

On the curve V3 4) punctured at infinity we fix a basis of holomorphic differentials

)
d
du(z,y,\) = |z | —

! @, (3.2a)
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dr(z,y,\) = —2yx W3
—5yz? + %x\%xQ + %/\5)\237 — A6y vf

de (3.2b)

Introduce a local coordinate £ in the vicinity of infinity. Then we have a parameterization

2(§) =67 y(€) =€ -1+ 30 — A8+ 0(€°)). (3.3)
In terms of the local coordinate the basis holomorphic differentials acquire the form

—1+4 gA3¢t + O(¢5)
du(€) = | =€ — 2N+ X8+ 0(¢7) | d¢, (3.4a)
€+ 0’ — b + 0(€19)
~€ = Pt ase +0(e)
dr(¢) = 2670 + 2N+ O(€

) de. (3.4b)
504+ 3A3672 4+ 0(1)

The first kind integral A(§) = fog du(§) is a well defined holomorphic function of local parame-
ter £. On the curve V3 4) the regularized second kind integral A*(¢), defined by (3.1), has the
following singular part

g—l _6_2
Tsing(&) = 5_2 ) d"“sing(&) = réing(g)df = _25_3 dé¢.
75— Ia3e! 5670 4 §A3E?

The integral on the right hand side of (3.1) is regular, and d.A*(§)/d¢ = dr(§)/d€.

Basis differentials of the first and second kinds defined on V(3 5), V(37), and V4 5) are given
in Appendix A, and singular parts of the second kind integrals in terms of a local coordinate in
the vicinity of infinity can be found in Appendix B.

4 Regularization of second kind integral on (3,4)-curve

Theorem 4.1. In the definition of reqularized second kind integral (3.1) on V(3 4y, with the basis
first and second kind differentials given by (3.2), the regularization constant is equal to

() = (o,-?,-ij)t. (41)

We propose two methods of proof for this type of assertions. One of them relies on vanishing

properties of sigma-functions. The other one uses bilinear Hirota type differential equations
satisfied by Abelian functions.

Proof 1. Consider the function P(§,u) = a(A(g) —u). By Riemann vanishing theorem, P(&, u)
has at most g = 3 zeros as a function of u. Let u = A(&) + A(&2) + A(&3) then

P(&u) = (E—&)(E—&)(E— &) > anl&, &2, &, NEF,

k=0

where «j are entire series in A with symmetric polynomials in &1, &, &3 as coefficients. In
particular, ag(&1,82,3,0) = — (&8 + & + & + &1& + &6 + £&3), and a(&1, &2, €3,0) = 0 at
k > 0, further ay(0,0,0,\) = 0 at £ > 0. According to Riemann vanishing theorem, P(&, u)
vanishes identically if & 4+ & 4+ &3 = 0 and &1& + &1€3 + £2£3 = 0, that is u = 0, since the points
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&1, &2, & correspond to zeros of the function  —a on the curve V(3 4y for some a € C. Otherwise,
P(&,u) has exactly g = 3 zeros (with multiplicities).
On the other hand, inverting Abel’s map we come to the determinant

W= zég i%; i _ (6 —&)(& &) —8)
y(&3) (&) 1 £1E36s

Similarly to ag, series [ is entire in A, and vanishes identically if & + & + &3 = 0 and && +
&1&3+ 8283 = 0. Thus, (&1, 82,83, A) and also W vanish simultaneously with o(u) = —P(0,u) =
§1628300(61, 62,83, A).

This representation through a local parameter illustrates Riemann vanishing theorem in de-
tail, and allows to examine the case u = 0.

Lemma 4.2. Functions P(&,u) and 0y, P(&, u) vanish identically atu = 0. Functions 02, P(&, v)
and Oy, P(§,u) have a zero of multiplicity 3 at £ = 0. Moreover,

—02 P(&,u)|u=0 = Ouy P(&, 1) |u=0 = 1(&).

Proof. In fact, the three functions 92 P(§, u)|u=0, Ouy P(§, w)|u=0, and 1 (&) considered as func-
tions of a path  from infinity to the point (z(§),y(£)) on V(3 4) satisfy the following functional
equation

B(£17 52» §37 )\)

V(@ y; [y + x]) = ¥(z,y; 7))

X exp {— (i dr)t ([, du + ;fidu> + mi(Arf(dy) — Arf(qb))} , (4.2)

where i? = —1, x is a cycle, Arf stands for Arf invariant, ¢, and ¢ are Arf functions of the
cycle x and the main Arf function of the curve, respectively, for more details see [6]. The ratio of
any two of the functions 97, P(§, u)|u=0, Oup P (€, u)|u=0, and () is a rational function on V3 4.
It is straightforward to verify that such ratio has no poles and so it is a constant. |

On one hand, we have
831P u)‘u_o 83«1 ( )|u:./4(f)

From the series expansion

5 A A 7
U(tul,t2u2,t5u5) = (U5 + ugus — ul) 5 — (;ugui’ ~3 ‘26u'17) t’ (4.3)

Y A3 Aauf A A A
+ < u1u2 + == %u‘;’ — 2u1) — <5U5u2u1 + 1; uh + - 325 UgU ?) 10 + O(tll)

12 5! 6 7!

we calculate directly
A
—log QZIP(& u)|u50 =3log& — 1—;55 + 0(56). (4.4)
On the other hand, using notation ¢(\) = (c1, c2, ¢5)?, from (2.3) we obtain

log $(€) = Blog & + e1€ + £ (Ao + 3e2)E + 52 (Ao + Ber) "

1
~ e (2t 4e1 3 + 36(:5)55 +0(¢9). (4.5)
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By Lemma 4.2 the series (4.4) and (4.5) are equal. Thus, we come to a system of linear equations,
namely

1 2 A5
5. 62 (21/\5 + 461)\2 + 3605) = ﬁ,

and find (4.1). This solution is unique. [

c1 =0, Ao + 3co =0,

Remark 4.3. The primitive function ¥ (&) coincides, up to a factor which is a rational number,
with the first non-vanishing derivative of sigma function on the Abel’s image of £&. The first non-
vanishing derivative of sigma function has Sato weight equal to —g, the corresponding differential
operator has Sato weight — wgt o(u) — g. Recall that Sato weight of sigma function is negative
and calculated by the formula —(n? — 1)(s? — 1)/24 for (n, s)-curve, see [2].

Remark 4.4. Regarding series expansion (4.3) for the sigma function related to (3,4)-curve
of the form (2.4), it was computed on the base of the theory of multivariate sigma functions
presented in [5, 7]. In [9, ref. 15] the reader can find a reference to page http://www.ma.hw.
ac.uk/Weierstrass/, where an expansion for the sigma function related to (3,4)-curve with
some extra parameters is presented, the expansion is obtained by J.C. Eilbeck. The case of
cyclic (3,4)-curve, when A2, A5 and Ag vanish, is considered in [9], where a series expansion for
the cyclic (3,4)-sigma function is proposed. Taking into account the difference in the number
of parameters and signs between equations of (3,4)-curves, we compared (4.3), and also higher
terms which are not presented here, with the two mentioned expansions, and found that they
coincide.

Proof 2. Let u and v be the Abel’s map images of two non-special divisors on V3 4), namely,

9 (24,94) 9 (zi,w;)
U= Z/ du and v = Z/ du, (4.6)
i=1 i=1"7

o0

at that f(z;,y;) = 0 and f(z,w;) = 0,4 = 1,2,3, and o(u) # 0, o(v) # 0. By the residue
theorem we have

g (%i,yi) B . d P(¢, )
; /(Zi,wi) dr = ~rese=o (A (f)dif log P(¢, U)) . (4.7)

Direct calculation using (3.4a) and (3.1) gives

9=3 (i) —(1(u) —C1(v)
/ dr = | —G(u) + pr1(u) | — [ —CW) +p11(v) |, (4.8)
i=1 7 (Fw) —G5(u) + Ps(u) —G5(v) + Ps(v)
where
Ps(u) = —ZXop12(u) — 2p122(u) — Fe111,2(u) — 5701,1,1,1,1(w)

= —2o11(Wp11,1(0) — 3p11(Wp12(u) — F12.2(0) + gA21,1,1 (1) — S5

Here we apply the relation (4.10a), and use the following notation

Gi (U) = 8uZ log U(u)’ 4,5 (u) = _auiauj~ log U(u),

©ij,...k(w) = —0u; Oy - Oy, log o(u). (4.9)
Lemma 4.5. The following relations for Abelian functions on Jacobian of V(3 4y hold

p1.1,1,1(w) = 697 1 (1) — 3p2.2(u) — 4211 (), (4.10a)
p1,1,1,2(0) = 6p1.1(u)p12(u) — Aap12(u) + As. (4.10b)
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Remark 4.6. The complete list of relations between Abelian functions on Jacobian of genus 3
trigonal curve are obtained in [8], the curve is defined by an equation slightly different from (2.4).

Proof. Differentiating (4.8) over x; we obtain

—Ci(u)
W — 0 [ ~Gow) + o1 (u) | LTL L)
1

—(5(u) + Ps(u)

Y

dZL‘1

which produces three relations with rational functions Ry of order k on V(3 4)

Re(x1,y1) =0, Rr(xz1,y1) =0, Rio(x1,y1) =0,

where
Ro(z,y) = 2> +yp11 +wp12 + 915, (4.11a)
Ri(z,y) =2zy +y(p12+ 01,11) +2(p2.2 + 0112) + (925 + 91,15), (4.11b)
Rio(z,y) = byz® — 22327 — ZX5007 + A6y + y(p1,5 + Ou, P5)

+ 2(p2,5 + 0uyPs) + (95,5 + Ous Ps).- (4.11c)

For brevity we omit argument u of Abelian functions. Clearly, the functions (4.11) vanish on
(z2,y2) and (x3,ys3) as well.
In order to proceed, we introduce a rational function of order 10 on V3 4)

e10(z,y) = Rio(z,y) — 5 (22 — p12 — p111)Rr(z, y)
+ (15022 + 150112 + 403) Re (2, ).

In fact, ¢10(x,y) = (y,x,1)a(u) with a certain vector function a(u). Thus, system ¢19(z1,y1) =
v10(x2,y2) = p10(z3,y3) = 0 is equivalent to a relation of the form

y1 a1 1
ya x2 1] a(u)=0.
ys w3 1
. .. . . Y1 x1 1 .
Suppose (z;,y;), ¢ = 1,2, 3, are pairwise distinct, then the determinant |yo =2 i does not vanish
Y3 T3

since o(u) # 0. Therefore, a(u) = 0. By breaking a(u) into even a(u) + a(—u) and odd
a(u) — a(—u) parts we obtain in particular

Ti=p1,1,1,11,1 + 1591122 — 30@%71,1 — 24015 — 30@%,2

— 60022011 — 163011 — 24X = 0, (4.12a)
To=p1,1,1,11,2 + 1591222 — 3001 1,101,1,2 + 36025

— 9092012 — 16A301 2 + 16X2)5 = 0, (4.12D)
Ts=p11112 — 6p1101,12 — 6p120111 + A2p112 = 0. (4.12¢)

From (4.11a) we see that ¢g(x,y;u) = 22 + p11(u)y + p12(u)r + p15(u) is even in u and
has 2g = 6 roots (wi,¥:), @ = 1,...,6, on curve Viz4y. At (21,1), (z2,92), and (x3,y3) the
function ¢7(z, y;u) = 2zy + (m,g(u) + p1,171(u))y+ éng(u) + p1,1,2(u))$+ (@2,5(”) + @1&,5(”)),
cf. (4.11b), vanishes. At the same time, the function ¢7 (x, y;u) = ¢7(x, y; —u) = 2xy—|—(plyg(u)—
pl,m(u))y—l—(pg,g(u)—pl,lg(u))x—l—(p2,5(u)—p1,175(u)) vanishes at (:U4,y4), (.755,3/5), and (x(;,y(;).
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Consequently, the ratio ¢7(x,y;u)¢r (v, y;u)/de(w,y;u) has no poles on V3 4) except the pole
of order 8 at infinity, which means that a decomposition

prdr — (aoy® + a1y + asx’® + asy + asx + ag) g + baf(z,y) =0

exists. Coefficients of monomials 'y’ yield an overdetermined system of 13 linear equations
with respect to ag, a1, ao, a4, as, ag, ba. Its compatibility condition includes in particular

Ti=9i11 — 4011 + 4022011 — 051 +4ps1 +4dapt; =0, (4.13a)
Ts = p1,1,192,1,1 — 4@2,1@%,1 + 92,122 — 2052 + 22021011 — 2A5901,1 = 0. (4.13b)
Taking a linear combination of derivatives of (4.12a), (4.12b), and (4.13a) we come to
OusTi — Oy Ta + 1500, Ta = 30p11,2(01,1,1,1 — 6@%71 + 322 + 4X2p11) = 0.
Since p1.1,2(u) is not identically zero, this implies (4.10a).

Next, denote T = @11.11 — 6@%’1 + 322 + 4X2p1,1. Relation (4.10b) follows from

a’uaﬂ - 8u17§ - 308’1,&17—5; + 20@1,1(31,@7% - 75)
= —6001,1,1(p1,1,1,2 — 6p1,101,2 + 3A2p12 — A5) = 0,

by similar reason. |

In the case of V(3 4) we have the equality, for more detail see [6],

a(u — A(f))a(u + .A(f))
$?(§)o?(u)

where (3.3) is applied. Indeed, both left and right hand sides are rational functions on the curve,

and vanish at 2g = 6 points which are Abel’s map pre-images of v and —u. Comparing the

leading terms of expansions in the vicinity of £ = 0 we see that the functions are equal. The

expansion gives

_ o(u—A))o(u+ A®))

P2(£)o?(u)

+er(-- e+ (cl(---)+

= ¢ ((8), y(€);w), (4.14)

— 6 (2(€), y(€)iu) = —2016 " + (ﬁ e A3> -

2
G A
2+6

1 1

C2+Czp11+lp%1—*@22—*@1111 g2
’ 2° 5 47" 12° 77

5 30 6 6
Applying (4.10) we find (4.1). |

2 T A 1 _
- (Cl(‘ ) — —c5 — A <C2 + 2) P12 — P1191,2 + @1,1,1,2) 14 00).

Remark 4.7. The equality (4.14) produces bilinear Hirota type equations, which give rela-
tions between Abelian functions. Note that only correct choice of the regularization constant
guarantees consistency of relations. So the Hirota type equations carry information about the
regularization constant.

5 Applications

5.1 Second kind integrals with poles at an arbitrary point

Suppose (z,w) is a fixed point on the curve V, ), which is characterized by 8;/ f(z, )l
=0,i=0,...,k—1 and ijf(a:,y)
near (z,w) is defined as follows

(2(€),y(6)) = (= — AF'¢", w — Arg + 0(€%)),

z,y)=(z,w)

|($7y):(z,w) # 0 with £ € N. Then a local parameterization
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Ay = Ko f(z,y) (0F f(a,y)) ™

) 5.1
(x’y):(z»w) ( )

indeed, f(z(£),y(&)) = O(&k“). Points with £ = 1 are regular. When k > 1, the point (z,w) is
a branch point where k sheets join. On (n, s)-curves we have k < n < s.
Consider the following function defined on the curve f(x,y) =0

f(x,y) B f(x,w)
(z —2)(y —w)

R(z,y) = , flz,w)=0.

Given finite values of (x,y) the function R(z,y) has a single simple pole at (z, w):

_ fZ/Ak
3

where f, = ,f(z,w). Suppose w(!) satisfies f(z,w(l)) = 0 and w) # w. Then R(z,y) is
regular at (z,w()) and

_fz

w—wl)’

R(iﬁ(g),y(f)) +0(1), (5.2)

R(z,w) =

Assume (z,w) is a regular point, that is the case k = 1. With the help of R(z, y) we construct
the function having a simple pole at (z,w) and vanishing at infinity, namely,

A A w 2 dr(z,
Ti(z,y) = ji; (R(ﬂf,y) - 32(:6+z) - E‘r’ — :]’%x + ;fy) +u(x,y)t7"((';w)

— (r(@y) —e(N) ——

where 7(z,y) = (r1(z,y), r2(z,y), rs(z,y)) is the second kind integral containing regularization
constant c¢(A), and u(z,y) = (wi(z,y), uz(z,y), us(z,y)) is the first kind integral. The func-
tion Z;(z,y) has zero of order 2g = 6 at co.

Theorem 5.1. 7 (w,y) is the unique second kind integral on V(3 4y with a simple pole at (2, w),
res ;) Z1(z,y) = 1, and zero of order 2g = 6 at co.

Proof. Sinceri(z,y), r2(z,y), r5(x, y) have the only pole at oo, the fact that res, ,,) Z1 (7, y) = 1
follows directly from the expansion (5.2) for R(x,y). Next, using the parameterization (3.3) we
obtain Z;(§) = 0(56) in the vicinity of co. |

Differentiating Z; (z,y) over the parameter z, we obtain an integral of the second kind with
a pole of any order £ =2,3,... at the point (z,w), actually

= (0. — 410,) 'Ti(xy), > 1L

Applying parameterization (5.1), an expansion in the vicinity of the pole (z,w) can be found

(¢ —1)!

To(2(€),y(€)) = (02 — 410, — ) 7' Ty (2(€), y(€)) = z

+0(1).

Clearly, Zy(z,y) has zero of order 2¢g = 6 at infinity.
In a similar way, taking into account (5.1) for k& > 1, integrals Zy(z,y) can be constructed
when the pole (z,w) is a branch point.
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5.2 Addition formulas

Below we need polynomials Rg(z,y) and Ry(z,y) from (4.11) with coefficients evaluated at u
and v. We will use notation R¢(x,y;u), Re(z,y;v) and so on

Reo(z,y;u) = 2 + yp1.1(u) + vp12(u) + p1,5(u),
Rr(z, y;u) = 2zy + y (1,11 (w) + p1,2(w) + 2 (p1,1,2(w) + p22(w)) + p11,5w) + P25(u).

Further, introduce

@1_&(@1,5 + i(@il,l - P%z)
+ %(917172 + 92,2))
M(u) = £1.1 (3 (@_1111 +912) (01,12 + 92.2)
2 (@1,1,5 + @2,5))
pf%(%@l&’) (@1,1,2 + (pz,g) + %(@1,1,1
—p12) (p1,15 + 925))
%@1,1@1,2 + %@1,1@1,1,1
m(u) = @%,2 + %@1,1@2,2 — P15+ %@1,1@1,1,2 )
£1,201,5 + %@1,1@2,5 + %@1,1@1,1,5

(o111 +912) o1

(@1,1,2+@2,2) ©1,2 | »

N[

(@1,1,5 + 92,5) ©1,5

N[

where the argument u of Abelian functions p; j(u), p; jk(u) is omitted for brevity.

Theorem 5.2. Assume the rational function of order 3g =9 on V3 )

Ro(x,y) = 23 + a19® + awzy + azz?® + asy + asz + ag (5.3)
vanishes at 2g = 6 points (z;,y;) and (z;,w;), i = 1,2,3, which are equivalent under Abel’s map
to w and v in Jacobian of V(34y, see (4.6). Then

(o, g, a3)t = (M(u) — M(v)) " (n(u) — 7(v)),

—1
(a5, a6, a9)" = M (u)(M(u) = M(v))" (7(u) = 7(v)) — 7 (u). (5.4)

Proof. Our starting point is the following relation

Rg(ﬂl’,y) - A(:c,y;u)RG(x,y;u) - %B(xay; U)R7($,y; u) = (yw%'? 1)@(“)7

where

[0
Az, y;u) = ag — p12(u) + = + m@y + p1,1,1(w) + p12(u)),

aq
 2011(u)
Q(u) = —M(u)(ay, az, a3)' + (as, ag, ag)t + m(u).

B(z,y;u) = ag — p11(u) (22 — p111(u) + p12(u)),

By the assumption Rg(z,y) vanishes simultaneously with R¢(x,y;u) and R7(z,y;u) at (x,y) =
(i, yi), © = 1,2,3. Thus, Q(u) = 0. Similarly, the assumption that Rg(x,y), Re(z,y;v) and
Rr(x,y;v) vanish together at (z,y) = (z;,w;), ¢ = 1,2,3, implies Q(v) = 0. We obtain the
following linear equations

—M (u)(o, a2, a3)" + (as, ag, ag)" = —m(u),

—M(v) (e, s, as3)’ + (a5, a6, ag)' = —7(v)

that determine ay. The solution is given by (5.4). [
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Remark 5.3. In fact, all aj are symmetric with respect to u and v. Indeed, the expression for
(a1, s, a3)t is explicitly symmetric. From (5.4) we find
(045, Qag, ag)t(u7 U) - (045, Qag, ag)t(va U)
~1
= (M(u) — M(v))(M(u) — M(v)) " (m(u) — w(v)) — (7(v) — w(v)) = 0.
Remark 5.4. The function of the form (5.3) described by Theorem 5.2 has 3g = 9 zeros
on V(3 4). Besides the sets (v, y;), (zi,w;), i = 1,2,3, Ro(x,y) vanishes at (s;,t;), i =1,2,3. Let

3

(siyti)
Z/ du = w.

i=1
Then by Abel’s theorem v + v + w = 0.
Finally, the addition law on Jacobian of V(3 4) can be written in the following natural way
I3 M(u) w(u)
rank | I3 M(v) w(v) | <6=2g.
Is M(w) =w(w)
This form is natural in the sense that it is a direct analogue of the famous elliptic relation
1 p(u) ¢ (u)
1 pv) ¢(v)]=0.
1 pw) ¢ (w)

Introduce even and odd parts of «;(u,v) defined by (5.4)
CK?(U, U) - %((Xi(’u, U) + (XZ‘(—U, —'U)), (X?(U, ’U) - %(ai(ua U) - ai(_uv _U))'

Theorem 5.5. The following addition formulas hold on Jacobian of V(3 4)

Ci(u+v) = C1(uw) + G (v) +af,
G(u+v) = G(u) + G(v) + 205,
G(u+v) = G(u) + G0) + 2(pro2u) + p122v) + 5 (@1,1,1,1,1( )+ 91,1,1,1,1(v))
+ 20u,0u,0f + i@ilfﬁ af +5a8 — 5a8(af + ) — basag
—af (5(a5)? + 5(a9)” + 5as((af)? — Xe) + (a ) Fro(a?)? +323).  (5.5)

Proof. We need the following assertion.

Lemma 5.6. Under the assumptions of Theorem 5.2 we have

o(u—A(§))o(v = A())o(u+v+ A®))
3 (€)o(u)o(v)o(u+v)
Proof follows immediately from Riemann vanishing theorem and properties of (), for more
detail see [6].
Given a multi-index w denote p,, = o, (u) + pu(v) + pu(w) subject to u+ v+ w = 0. In the
case #w = 1 we have p; = —(;(u) — i (v) —Gi(w), i = 1,2,5. Then we aply parameterization (3.3)
and expand (5.6) over £. Series coefficients vanish, that produces expressions for «;:

+ Ro(x(£),y(£)) = 0. (5.6)

ap = —p1 + 3c,
az = —3(p2 —p11+P]) + 5 (A2 +3c2) +ea(---),
as = §(3p12 — P11 — 3p2p1 4 3p1apr — pi) — § (A2 — 9e2)p1 + (),
and so on. Recall that ¢; = 0. Splitting a; into odd and even parts and applying regularization

we come to expressions for pq, pa, ps, where p;292(u + v) and @1,1,1,1,1(u + v) are expressed in

sbstyty

terms of derivatives of af. [
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Remark 5.7. In general, equalities of the form (5.6) produce trilinear relations which serve as
addition formulas. Note that the equality contains the primitive function (), requiring the
regularized second kind integral with the correct regularization constant. The correct regula-
rization constant makes the formulas (5.5) consistent with the ‘natural’ addition formulas, cf.
Remark 5.4.

6 Regularization of second kind integral on (3, 5)-curve

Theorem 6.1. In the defifnition of regularized second kind integral (3.1) on V(3 5), with the
basis first and second kind differentials given by (A.1), the regularization constant is equal to

A1 4)\2 A4 A7 !
A) = —_ ——, ——, —— ] . 1
R R (6.1)
We briefly consider the two methods of proof.

Proof 1. Introduce the function P(§,u) = o(A(£) — u). According to Riemann vanishing
theorem, P(&,u) has at most g = 4 zeros. Let u = A(&1) + A(&2) + A(E3) + A(E4) then

P&, u) = (6= &)(E = &)(E = &)(§ =€) D anl&r, &2, &, &0, MR,

k=0

where « are entire series in A with symmetric polynomials in &1, &o, &3, &4 as coefficients. By
Riemann vanishing theorem P(&) vanishes identically if there exists a selection of three items
from four zeros such that & + & + &3 = 0 and &€ + £1&3 + £263 = 0, that is u = 0, since the
points &1, §2, {3 correspond to zeros of the function  — a on the trigonal curve V(3 5) for some
a € C. Otherwise, P(§, u) has exactly g = 4 zeros (with multiplicities).

Consider the case u = 0.

Lemma 6.2. Functions P(é—vu); a’ulP(g?u)f 851})(5, U), auzp(ga ) 831P(£7u) and au1au2P(£?u)
vanish identically at w = 0. Functions 8 P(&,u), 02, P(§,u), 84,02 P(§,u), and 8y, P(&,u) have
a zero of multiplicity 4 at &€ = 0. Moreover,

éaﬁlp(fyu)’uEO = _8u2812L1P(§7U‘)|UE0 = _8 P( u)|u=0 = —0u, P(§,u)|u=0 = ¥ (§).

Proof. It is straightforward to verify that the ratio of any two functions in the equality has no
poles, and so is a constant. |

On one hand, we have
P(g’ ’LL) u=0 au‘lo-(u)lu:/\(é)'
Series expansion for o(35) has the form
o (tur, tPug, t*ug, t7ur) = Sgt® + Sot” + - + S15t"° + O(¢19), (6.2)

the terms S, k = 8,9,...,15 are given in Appendix C. From (6.2) we calculate directly

A1 1 2 A4 5Ail 4 7)\? 5
—log 0y, P(§,u } _0—410g5—€§+ i <3_35 § 36.105
A7 2X6A1 23\ /\3 22)\7
— (6 + AIAg)E0 — (7 - Soe T ) £ +0(). (6.3)

10 9-5 35 10
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On the other hand, using notation c¢(\) = (c1, 2, ¢4, c7), from (2.3) we obtain

2
log (&) = 4log € — <cl ; %>§ 1 (CQ T %) ¢

1 A 53 1421 20 5 6
+4<C4+9C2_34€—35.5+ >f+( )5 +()§

1 5A3 2201 2303 206 BAAT 449
‘7<C7‘3404+< 9 ‘36>02‘<3+ 3 38>Cl

13 29 2-73AA3 23 19A] 5
— A7 — ——= XAl — 0(&°). 6.4
+ M g e w5 Togg )& T (€°) (6.4)
By Lemma 6.2 the series (6.3) and (6.4) are equal. Thus, we find (6.1). This solution is
unique. |

Proof 2. Let u and v be the Abel’s map images of two non-special divisors on V3 5)

4 4 .
Z/(%yl and v = Z/(Z“M) du,
=1 i=1 v
at that f(z;,y;) =0 and f(z;,w;) =0,7=1,2,3,4. Then we use the formula (4.7), which gives
—Ci(w) —Gi(v)
Z/ (wi,1) | G —ea(w) | | —Gv) —p1a(v) (6.5)
v | G i) | | —Gal0) + i)
—C7(u) + Pr(u) —(7(v) + Pr(v)
with notation (4.9) and
Pa(u) = —p1.12(0) + $A101,1,1 (1) + p1,1(0)* + $ATp11 () + A4,
Pr(u) = 3 (p2.2(w)p11,1(u) + 3p12(W)e11.2(u) — e11(w)p122(w) + 91,1 (u) E11,1(u))
+ 2 (pra(wpri(u) = pra(w)pr12(u) + gh (4@1,1,4( ) — 1,1(w)pr1,2(u)
= 5p12(w)p11,1(u) + Tp11(w)?) = A p122(u) + $ATP11(w)p11,1(u)
)\1{01 1(u)? + %/\491,1,1@) + M1 (u) + Ts(/\7 — i) — 9*10)\?/\4-
Lemma 6.3. The following relations for Abelian functions on Jacobian of V(3 5y hold
11,11 = 6@%,1 — 3p20 + 2M1p12 + Mp11 + 2\, (6.6a)
011,12 = 6011012 — 3p1.4 — Mp22 + A1, (6.6b)
©1,1,22 = 4@%,2 + 2011922 + P24 — A1pP1.4, (6.6¢)
0222 = P114 — 2(P1201,1,1 — P1,101,1,2) + A1P12,2, (6.6d)
1,24 = £1,1€1,2,2 — %(@2,2@1,1,1 + @1,2{01,1,2) + %/\1(@1,2@1,1,1 - @1,1@1,1,2), (6-66)
P11 =405 — 4p11p22 + PT o + 42+ 2M1p11012 + ATET ) + 4hap1 — 4, (6.6f)

£1,1,101,12 = §p1,1,1,4 + 4@1,2@%,1 —6p01,1901,4 — P1,2922 + /\1(@%,2 — 91,102,2)

+ 21024 — 2XT014 + Ap1,1012 — 3A7. (6.6g)
Proof. Differentiating (6.5) over 1, we obtain
—Gi(u)
dr(zi,y1,A) _5 —Co(u) — 1,1 (uw) | dulz1,y1, A)
dxy v —C4(u) + Py ’

(u) dwq
—C7(u) + Pr(u)
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which produces g = 4 relations with rational functions Ry of order k on V3 5)

Rs(z1,91) =0, Ro(z1,91) =0, Rai(z1,91) =0, Raz(z1,y1) = 0, (6.7)
where
Rs(w,y) = xy + 2°p11 + yp12 + Tp14 + P17, (6.8a)
Ro(x,y) = 22° + Mizy + 2 (p12 — p1,1.1) + ¥(p22 — P1,1,2)
+ 2(p24 — p114) + (2,7 — P1.1,7), (6.8b)
Ri1(z,y) = pa+ 2 (P14 + 0, Pa) + y(p2,5 + OuyPa)
+ 2 (P44 + 0u,Pa) + (04,7 + Our Pa), (6.8¢)
Ria(z,y) = pr + (p1,7 + 2°0u, Pr) + y(p2,7 + 0uy Pr)
+ 2(pa7 + 0w Pr) + (97,7 + 0u, Pr), (6.8d)

p4 and p7 are defined by (A.1), see Appendix A. For brevity we omit argument u of Abelian
functions. The equations similar to (6.7) take place for the points (z;,v;), i = 2,3, 4.
Let

e11(z,y) = Rur(z,y) + (2011 + 3A) Ro(z, y) — (4o — 4p1 2 + 2M1p11 + A7) Rs(2, ).

At the same time, p(z,y) = (2%, y,2,1)a(u) with a certain vector function a(u). System
o(zi,yi) = 0,1 =1,2,3,4, is equivalent to a relation of the form

23 oy a1
3 oy w1
5 a(u) = 0.
3 y3 w3 1
3 oys wg 1

We suppose (z;,¥;), i = 1,2,3,4, are pairwise distinct, so the determinant of the matrix does
not vanish, that is o(u) # 0. Thus, a(u) = 0. By splitting a(u) into even a(u) + a(—u) and
odd a(u) — a(—u) parts we obtain in particular

Ti= 1112~ 3Mp1110 — 6011912 + 3014 + 2M101 1 — $ATp12

+ %)\?@171 + %)\1/\4 =0, (6.9a)
To=p1122 — sATO1L11,1 — 4@%2 — 2011022 — P24 + M P14 — A P22 + %/\%@%,1

+ 3N P12+ $ATp11 + AT =0, (6.9b)
Tz = 11,24 — sMP11,14 — 4012014 — 2011024 + 4017 — P4+ 2N 9119014

— X024 + 3AT014 =0, (6.9¢)
Ti= 11111 +3p122 — 1201190111 — 2M19112 — Aip111 =0, (6.9d)
Ts = 11112 + 30222 — 120110112 — 2A1 9122 — Alp1,1,2 = 0. (6.9¢)

From (6.8a) we see that ¢g(x,y;u) = zy + xzpm + yp12 + P14 + p1,7 is even in w and
has 2g = 8 roots (z;,9:), i = 1,...,8, on curve Vg 5. At (v;,y:), i = 1,2,3,4, the function
do(x,y;u) = 223 + \jzy + xg(mz - @1,1,1) + y(@zz - @1,1,2) + x(@u - @1,1,4) + (@2,7 - @1,1,7),
cf. (6.8b), vanishes. At the same time, the function ¢g (z,y;u) = ¢o(x,y; —u) = 223 + \jzy +
2% (p12+01,1,1) +y(02.2+01,1,2) 2 (p2.4+91,1,4) + (p2,7+91,1,7) vanishes at (z;,v;), i = 5,6,7,8.
Consequently, the ratio ¢g(z,y; u)pe (7, y;u)/ds(z,y; u) has no poles on V3 5) except the pole
of order 10 at infinity, which means that a decomposition

pody — (apy® + a12® + aszy + asz® + asy + azz + a10) ¢s + (box + bs) f(z,y) = 0.
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exists. Coefficients of monomials 2y’ yield an overdetermined system of 17 linear equations with
respect to ag, a1, asz, a4, as, a7, aig, by, bs. Its compatibility conditions include in particular

To = 9111 — 4011 + 4011022 — P51 — 424 — 2M1p11012 — ATt 4
— 411 +4X6 = 0,
Tr = ©1,1,191,14 — P1,1901,1,101,1,2 — 6@%,1@1,4 + 4@?,1@1,2 + 2022014 — 91,2024
— 11012022 — 2,7 + M (9119024 — P1201.4) — Mp11(P1102,2 — @%2)
— A p11014 + AT01 1012 — 2Map14 + 206012 — 2A7p1,1 + 209 = 0.
Taking into account (6.9d) and (6.9¢) we simplify the derivatives 0,, 71 and 0y, T1 — Ou, T2,

thus a system of linear equations for g222 and 124 is obtained. Solving the system, we come
to (6.6d) and (6.6e). Next, we take the derivative d,,7¢ and apply (6.6¢), therefore we come to

20111 (GK’%J — 01111 — 3p22 + 2\ 012 + M1 + 2X\4) =0,

which gives (6.6a). Substituting the expression for ;11,1 into (6.9d) and (6.9¢), we find (6.6b)
and (6.6¢). Finally, we solve the system

811471 - 8’11173’) = O)

au475 - 8u27§ + %Alaulﬁ =0
for 1,17 and p127. Using the expressions for ©i27, 91,24, ©1,1,1,1, ©1,1,1,2 we simplify 0,77,
and subtract pi11,27¢. Then we get

O Tr — 911,276 = 301,11 (P1,1,1011.2 — 201,114 — 4@1,2@%,1 +601,191,4 + 91,202,2

-\ (@%2 — p1192,2) — %>\1@2,4 + %A%m,z; ~ No11p1a + §/\7).

This gives the relation (6.6g), and finalizes the proof of Lemma 6.3. [ |

In the case of V3 5) we have the equality

_ a(u — A(f))o(u + A({))
P2(§)o?(u)

where the local parametrization in the vicinity of infinity is applied, for more details see [6].
Again the both left and right hand sides are rational functions on the curve, and vanish at
2g = 8 points which are Abel’s map preimages of v and —u. Comparing the leading terms of
expansions in the vicinity of £ = 0 we see that the functions are equal. Applying (6.6) to the
expansion of (6.10) given in Appendix D, we find (6.1). [

— ¢s(2(8),y(); u), (6.10)

7 Regularization of second kind integrals
on (3,7)- and (4, 5)-curves

Theorem 7.1. In the definition of regularized second kind integrals (3.1) on V(3 7y and V),
with the basis first and second kind differentials given by (A.2) and (A.3), respectively, the
reqularization constants are equal to

2 222 X s A

cam)(A) = (07_3a_77_27_3a_6 )
Th  3\3 3 o A A

c(4,5) ()‘> - (07 45 ’y 4 170()‘6 - )‘3)7 - - .
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The first method of computing regularization constants, see Section 4 or 6, requires the series
expansion for sigma function. Computational complexity increases with genus, one needs 2g
terms with coefficients of Sato weights from 0 to 2g — 1, which are polynomials in A. The
total number of terms needed to be computed grows exponentially. In the case of (3,7)- and
(4, 5)-curves we omit this method.

The second method uses relations between Abelian functions, the number of which also
increases. Actually we need 2 relations for V(3 4, then 7 for V3 5y, 16 for V(3 7y and 18 for V(4 5).
Auxiliary lemmas, introducing the relations in the cases of (3,7)- and (4, 5)-curves, are given in
Appendices E and F. To prove Theorem 7.1 we again use the equality, similar to the one for
hyperelliptic case from [6],

O'(u — A(f))a(u + A(f))
$*(§)o?(u)
where the rational function ¢aog(x(€), y(€);u) can be found with the help of (4.7) as well as the
relations between Abelian functions.

= ¢2g($(§),y(f);U),

8 Concluding remarks

In the paper we introduce regularization procedure for the second kind integral defined on a plane
algebraic curve. This regularization is an extension of the standard textbook regularization,
known for the elliptic case, to a wider collection of curves, namely (n, s)-curves. The proposed
regularization is combined with parameterization in the vicinity of infinity, which is a special
point on an (n, s)-curve where all sheets come together. We prove the importance of a correct
regularization constant in the definition of the second kind integral (3.1) parameterized near
infinity. The regularization constant does not serve as an integration constant, it arises only
under parameterization and corresponds to the case of zero integration constant. The choice of
the constant is significant in connection to the definition of the primitive function v, see (2.3),
as a function of the complex parameter ¢ near infinity. As conjectured in [6] and proven for some
particular cases in the present paper, the primitive function coincides with a certain derivative
of sigma-function on the Abel’s image of £, see Remark 4.3. This is true only for the correct
choice of the regularization constant in the definition of the second kind integral.

Furthermore, the primitive function occurs in polylinear equalities of the forms (4.14)
and (5.6), introduced in [6] with regard to hyperelliptic curves. We call the equalities poly-
linear, in general, or bilinear and trilinear in the mentioned cases, since the left hand sides are
results of the action of polylinear operators, for more details see [6]. A bilinear equality of
the type (4.14) allows to obtain relations between Abelian functions, as seen from Proofs 2 of
Theorems 4.1 and 6.1. Such equalities are used in the proof of Theorem 7.1. In the paper we
compare the relations between Abelian functions, obtained from the bilinear equality relating to
a curve under consideration, with the same relations obtained independently, and compute a reg-
ularization constant. Conversely, when the regularization constant of the second kind integral
on the curve is known, the bilinear equality produces all relations between Abelian functions.
A trilinear equality of the type (5.6) leads to addition formulas, as we show in Section 5.2.
So the primitive function provides a new way to obtain relations between Abelian functions,
and addition laws. And the correct regularization constant is essential for obtaining consistent
relations and true addition laws.

In addition to these results, we suggest a new technique of obtaining relations between Abelian
functions, that is to derive the relations from (4.7) where the second kind integral on a divisor is
computed by the residue theorem. In the paper we consider the difference of the second kind in-
tegrals on two divisors in order to cancel the regularization constant. This technique is displayed
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by the examples of proving Lemmas 4.5 and 6.3, and was used to prove Lemmas E.1 and F.1. The
technique is applicable to any curve, and easy to use, unlike the known way using Klein’s formula.
The latter demands the knowledge of Klein’s fundamental 2-form, which is another problem,
rather difficult for non-hyperelliptic case. Recently, in [13] it was solved for a wide class of curves
including (n, s)-curves. In the case of trigonal curves the problem was solved before in [3].

A First kind and associated second kind differentials

According to the scheme proposed in [7] we compute the second kind differentials associated to
the standard first kind differentials. The both collections are holomorphic on the corresponding
curve punctured at infinity.

First and second kind differentials on curve V3 5)

2

x yx
y | dz 228 + \yx | da
du(z,y, \) = —_—, dr(xz,y, \) = — —_—, Al
(2,y,A) | 9,5 (2,9, o o, (A1)
1 P7
pa = dya® — 3Xi2® — N2,
pr = 7yx3 + %)\?yx2 — 22\ 2 + (3)\6 + %)\4)\%)yaz — (%)\i - %)\6)\% + %)\7)\1)562
+ (Mo + 15A7A1) Y — (3A10A1 — $A0A] + FA7 M)z
First and second kind differentials on curve V3 7
yx xt
a3 2yx?
du(z,y,\) = y | dz dr(z,y,\) = — pa | dz (A.2)
IR 1'2 ayfa 'y I p5 ayfv
x P8
1 pi1

pq = 4a5 + 2)\2@/3:2 + Asyx + 2)\6363,
p5 = 5ysc3 — %)\%$4 + Ay — %)\2)\5@3 — Aoy,
pg = 8y:1:4 — %A%x‘r’ + ddgyx? — 22X szt + 2 gyx — %(2)\2)\84- /\g)xg — %()\2/\11—1— )\5/\8)562,
p11 = 1lya® + (The + EX3)yz® — LAAs2” + (5Ag + SA3A5)ya
— (BxaAs — 2N3N6 + 3A2) 2" + (BA12 + 2A3Xs)yz — (2X0A11 — EA3Ng + 2X508)2”
+ (M5 + 2X301)y — (3X2h1a — SX3N12 + X501 + 2A3) 22
+ (2X3M15 — 22514 — 2XsA11) 2.

First and second kind differentials on the curve V4 5

Y2 3
u 2
T dx 3y“x + Ao dx
du(x,y, \) = —, dr(z,y,\) = — —, A3
(2,9, ) y | 8,7 (2,9, A) oo B, (A3)
x p7
1 P11

p6 = 6yx3 + 3>\3y2x — )\gny — %)\2)\3563 + )\7y2 + (2)\8 — )\2)\6)yz — %)\2)\7x2,
pr =Ty — EX3yPa — Bodgya® + (2X6 — 3A3)2” 4+ (s — 2o e) Y
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— (3A326 + SXoA7)yz + (Ao — FAoAs —

3XsA7)2? — (35 A1 + 2A3)10),
p11 = 11y%a® — %)\%y%ﬂ

— Bshoya® + (5As — 1226 + 2XaA3)y%
— (327 + Exgh6 — %3)%2 + (310 — SXAods — §A3A7)2?
— (2 XoA11 + A3A10 + 2FAA7 — 3)\§)\7)yﬂf + (2x12 — PXoXio — 2 + SA3h6)y°
— (3X2A12 4+ SAshi1 + 2)\6>\8 23N + 203)2?

— (EXoA15 + 2X6A 11 — SA3A11 + SA7A10)Y

— (22 XA16 + 3X3A15 + 26 A2 — %A§A12 + 3X7A11 — AsAio) 2.

B Singular parts of second kind integrals

For (3,5)-, (3,7)- and (4,5)-curves the principle parts of second kind integrals in Laurent series
about infinity are the following

_5—1
-2 - %)\1571
V - Tsin - _ _ — ’
(3,5) z(§) £ Iaze 2 — 23
r;mg
r?mg =74 L NP+ 54??4)\ £+ ( A1Ag — )5_
- (%)‘6 + 52??3 )‘2)‘ 538 )‘6)5_
g 1
)
—E a7
Vst Tsing(§) = g5 1 A2 ;
8+ $xg¢ +(§>\6+34)\3)§ 2 2Nt
e
smg ¢ 1y 11 )\ 2¢- 7 (%)\6 + 76§4A3)€75 + %/\2)\5574
+(2h + - s 2IAA)E % — (Bhads — 22 M3he + 5A3 — 2o AN
_571
5—2
_§73 _ %)\2571
Vias): Tsing(§) = —76 — g3 — I\ 2 4 Laonse! |
T;lng
smg
11
= T = Tt 4+ Bt - A A2A35—2 (526 — 3573 + 537 A3) €,
A= e T B (Gl - e

- (§)‘ - 9251264 A2A¢ + 9527 /\2)‘2 211)‘4)5 ’
( )\2>\7 + )\3>\6 51275 >\3 + 9 26)5_

- (i)‘lo - W)‘2)‘8 - 27A3A7 + 9~5~27 77 A3A6 — 525;10 ASAS + 91(23?3 /\5)5_1'

C Sigma expansion for (3,5)-curve

Series expansion for sigma function related to (3,5)-curve of the form (2.5) was computed on

the base of the theory of multivariate sigma-functions presented in [5, 7]. The expansion has
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the form

o (tur, Pus, tus, tTur) = Sst® + Sot” + - - + S15t1 + O(¢19),

where
4 4,2 8
Sg = u2 — Uruq — U1UQU4 — % — u18u2 71%126’
)\1 )\1 )\1 )\1
Sg = —?u4u§u1 - auzlu? 3.3 mu%ui’ + 3 Al 5!u2uz,
A Ag A2 Y A2 893
Si0 =~ o+ - o - Ghubed = et + 5l
A3 3A3 A3 233
St = — g guauzul — Fopuau] — s} + gg e,
25A4 + ) A4 24)\4 + A\ A4 24)\4 -\
Si2 —247.5!11&7@ - ?uiu% + ol 11@211/11 + Euw%u% + ol 5l 1U4u2u(f
A 3-240 — A\ 3
+ ﬁug Wuéu% 3.8 (7-2°A4 + 3)\4)u2u1
5 3 4
+25'11'(2 6°A\g +5- 137\ )u1 ,
A1\ A1\ A1 A
Si3 = Tuim - ﬁuiugu:f + Tuwgul ~ 5.5 (24/\4 + )ff)uw%u‘i’
)\1 1 )\1)\4 3)\1
2 (1980 = g s + 2208t — 2% (820 ]
3\ 4 11
+ 5100 (404 + 417 uguy’,
1
1= o5 (20 - 4G — 22 - AINIAs — A uru] — Aguius + — 51 = (1226 — ATAg)ujudui
36
+ 26 - 6' (3 26)\6 + 3- 24)\2)\4 + )\G)U4 Uq + TOU4U2 + —- 3' (3 3 )\6 —+ )\ )\4)’[1,4u2?,6411
1 1
- 5 (24 23906 — 20 19MIN, + )\?)U4’UJ2U§ — Ta(m)‘f‘ — 5)\%)\4)ugu%
1 3
ETIGA 2006 — 34N AL + AD)uguf + —— 5ol (2 6 — 33 - 42Ny — 509 udul®
3
+ ———(22-3!- 6!\ +2-383 - 5IAIN\, + 39373\0)u
25141
A7 A7 27
S15 = —EU7U4U% — EU7U4U411 + Ttwu%u% + 2 S'U7u2u?
1
+ 3 (A7 — 2 31\ A6 + AT\ ujuf + 7(2A7 + A o) ududuy
1 1
+ 4.5 (4)‘7 + 6A1 6 — )‘?)\4)1&“2“? (4,) (4'/\7 + 62NN + A )\4)U4u2u?
1
+ 5 (3-27A7 — 39250106 — 3 - 22NNy — \])uanidu]
1
+ 55 11,( (512X — 79231 4\ Ag + 40 - 19 - 23A3 Ny — 5A)uqut!
3 3 3 5,5
7' (10)\7 + 3)\1)\6)u2u1 m (20/\7 + 6)\1)\6 - 5)\1)\4)u2u1
+ 35 (6% - 417 + 61N 6 — 202N3 Ay — A])udu]
3
+ (2 6\ — 21 - 22X A6 4+ 40A3 N4 + 53N ugu .
26. 11! ! 1
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D Expansion of bilinear equality related to (3, 5)-curve

The following relation holds between sigma-function o(u), u = (u1,us, us, u7) € C*, primitive
function 1, Abel’s map A on curve V(35), and Abelian functions @; j, ©;jk, ©ijk; on the
Jacobian of the curve

o(u—A))o(u+ A®))
P2(§)o?(u)

= (261 + )\1)5_7 + (02 + 201

— s (x(€),y(&);u)

3

4 5 4\
A+ ey rond+ 200

219 - A
3 3 1+ C1§1,1 191,1

26A2 ™3 I~
5 P15

+ (20201 +

2 2 2
€5 —c4 9 24 TN 10A1 5 T9A] 31A7 509)\1 A4
—i—( 5 +20201+§cl+70201+ 9 )+ 90 co + 30 L 310 " 6

25 11)%
34.925
1 9 —4

+ 5(6@1 L= 91111 — 3922 + 21012 + A1 + 2X\4) )€

4 4 8\1 13)\4 40
+ ((c% —c4)e1 F 3620‘1’ + Eci’ T cq + 302)\1 + 2)\102c1 1—501 7611
59\2 T2 223 1923 5 2-79A] 4A1A4_% 83

T Loz 1*‘fﬁ§ 1*“57 QT AT 33 4T Ty 3.5

TA1 14
—(02+201+3 1+15>\>p12

40\ 2 1322 4 4, ) o1

5\ 3A7
— (2¢1 + M)p12 — <C2 +2¢] + %01 +— > ©1,1

4
26102+361+)\102+ 3 c]+ c+

15 15

+ —(—p11,12 + 6011012 — 3p1.4 — M2 + Alp12)

P—‘OA\H/‘\\

A
~ 5 <C1 + 31) (6@%1 — P1,1,1,1 — 3§22 + 2\ p12 + )\%91,1 + 2/\4)>§3

3 9 4 A 11\ 72 9\
C2Cy Cy 4 6 4 46% _ %)\1)\461 — 1—00461

LA, 10y 2A1 13X\ 373 837 1972 Y
6 20T g Neael el = Tt Sata + Sgpte + g

210973 7-13 5 4 2-463A% 7-89A1 5 22.331\7
gi5 20t g NE T T ot b e g o

35.2
2263 4 4\ 2002 ™3
e N ¢ A —(2 —B 4+ = 2\c2 + =L 1
35195 ( c1 + 1)@1,4 ( cocy + 301 + 3 Cco + 2A1c] + 15 c1 + 15 > £1,2

B (c%——64 2 . 5\ 20 5 T2AZ 0 B3AZ,  BOA3 )

A2A4

“a- 33 5

2pc2 + = i M
206 + 3el+ Tpee + S+ —grte+ gid + grpe =

19723
31.25

4
) P11+ 5 (4@1 L= 9T T 92— 4p11922 + P24 + 2\ 011012 + AT9T
+4Ap11 — 4Xe) + 5(49322@1,1@22 +—p1122 + 924 — Mp1a)

8
+ @(3001 + 1301) (61,1912 — 1,112 — 3914 — AP22 + AT912)
2

A
3 L — 18011 +92)) (6@%1 —P1,1,1,1 — 32,2 + 2 1012

2
6' (30(02 + 261 + )\101)
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2 1 4 8
+ X2 11,1+ 2)\4))5 + <C7 —ci1c3¢4 + = 3 (c% — 04) + fclcg + 6102 4+ — 7

7 3 15 32.35°1
8 11N 5 2\ 4/\1 AN\ 222 307
150264/\1 15 cl 4+ — 9 s 5 + )\1 9 ci‘cQ 4+ 57 35 6 Tc 1C4 + Tclcg
53\2 B 202 . 2 853>\3 14A§> 5  2-TINS 79N,
LA 2y 63
T st T T T gy s T gT G T gr g e T g ol gl
13)\4 N 2-13- 47Xl1 N 1249)\4 1A 5 8M\A N 22112133
— C1C ———C1C — Cci — C C
15 72 .25 2T 36.95¢ 45 17 91 2 36.25.7 °
2803 &2 106 2211 - 130\ 22. 17-37~43)\6 A7 BAgA
+ c1 — c1 1+ 57+
35.251 T o1 33.25.7 38.53.7 21 21
21670 A3 23011A7 5\1 3)\2 G —cy 5
— 2 = = — 2
335 38.53.7—1- co + 01—1— 3 c1 + 5 1, 5 + 2¢9¢7
2 7>\1 N 10N 5 7T9N? N 31A2 509>\3 Y N 25 11A]
— —C C C C —_—
tratgreat grat et 5 34 107" 6 " 3t.o5 )12
4 4 11\ Al o A4 2)1 4
( 02—04 01—1—30201—1—15 5 20 04—1—302—1— /\10201 501—1—?01
34/\2 N 1102 N 11-17X3 7- 29/\3 2, 72 31/\4 . 61N A\
C C C C —
45 AT Ty AT gty 2T 30 YT 3550 P 3to 1 ) P

1 3 , 3
+ 15 | PLLa — goae12 + 601,201,1 — 991,19014 — gP1202,2

3 3
+ §>\1 (P12 — P1.102:2) + M2 — AMpra+ §>\%K)L1K)1,2 — 2>\7>

1
+ %(601 + M) (40T — i1+ 9t — dprap22 +4p2a + 2M1p01,1012 + ATPT

1
+ A1 — 4x) + 50 —(p1,1,14 — 91,222 + 201101112 — 201,201.1,1,1 + A\191,1,2,2)

7
90(301 +2X1) (4970 + 2011022 — P1122 + P24 — A1p14)

Lpay Ty +% €L (6 3 Ap2,2 + Alp12)
6 3 30 C1 135 30@11 21,1012 — £1,1,1,2 1,4 1§22 161,2

20\ 82 88

1 10
5' <200201 + = 3 1+ 3 (CQ +c ) + T 81)\1 (1261 + 2)\1)p171 — 14@1’2

+ aulauz + 9(601 + )\1)0 > (650%1 —P111,1 — 3@2,2 + 2)\1@172

+ Mo+ m))g—l +0(1).

E Regularization of second kind integral on (3, 7)-curve

Given (3, 7)-curve the formula (4.7) acquires the form

—(1(u) —C1(v)
ot —C2(u) + p11(u) —C2(v) + p1.1(v)
/@iv%’ dr— | ~G@+Paw) || =Calv) + Pa(v)
) (zi0) —(5(u) + Ps(u) —C5(v) +Ps(v) |’
—(s(u) + Ps(u) —(8(v) + Ps(v)
—Ci1(u) + Pri(uw) —C11(v) + P11(v)
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where in notation (4.9)

Pa(u) = —pr12 — 911 + A2pr1,
Ps(u) = —50122 — § (3911 — A2) P11 — 3911012 + 5014 — 15A2,
Ps(u) = —p2.24 + 5X201,14 + (922 + 5X201,1) 91,12
+2(p11012 — P14 — 32012 + 3A5) 91,11 + 911 + 407 2011 — 329 )
—4p12p14 — Ap1,1015 + SN0 1 + 26011 — 2oAs + A2,
Pri(u) = —%@1,1,2@1,1,1,4 - i@m@z,u + (%@2,2 + X211 — %)\%)91,2,4
+ (3or1p12 = P14 = Aopre + 5Xs)oria + (5012 — 011022 — A2pts
1, .43 32 5,2 23 _ 13
5915 + G024+ 2 A5011)P122 + (5011012 + BP14011 — 15012022
- %/\2@1,1@1,2 + 2005 — 3Aop14 + %)\gpm + o A501,1) 91,12
+ (3011 — 5911022 — §O1L10T2 + 3A200 1 + 1011 (10015 + p2.4)
+ % + 15050 + 154 + 807, — LA3p?
g P1,201,4 T 166022 T 13A2601,102,2 T 552012 — 35420711
— L(11 — X200 — 19N — 2 — 133 1y
5 A2(11p15 + P2.4) — 722022 — 575012 — TA691,1 — 7A3011 + 13 g) 01,11
=5 (011012 = 971 (pra+ Aapra) + 010011 — 0T 2014
— 01.1(2012015 — 91.8) + Aol 1914 + X507 1 + 914915)
— (3234 ZX6) p11912 + 2AaXsp1 1 + (33 + TA6) p1a
7 5,
+ (%)\%)\5 + %))\9@171 — 277)\%)\5 + %)\5)\6 + 2 7?’3)\2)\9 — %)\11.

Here and in what follows the argument of Abelian functions is omitted for the sake of brevity.

Lemma E.1. The following relations between Abelian functions on Jacobian of V(3 7y hold

P = 6@%,1 — 3p22 — 4X2p1,1,
©1,1,1,2 = 6p1,191,2 — 3P1.4 — A2p12 + As,
P1122 = 4910 + 2011022 — 415 + P24 — A2p2.2 + 2),
P1,1,24 = 4p1201.4 + 20119024 + P44 — A2f2.4,
01,224 — 3X291,1,1.4 = 4912024 + 2022014 — 2X201,101.4 — 3P1.8 + 2045
+ 503014 — 2X,
£222 = P1,1,4 + 201191,1,2 — 201,201,1,1 — A2§1,1,2,
@%,1,1 = 4@:1)',1 —4p119022 + Piz - 4)\2@%,1 —4p15 + 424,
PLILPLL2 — 201114 = 4pT 1012 — 6911014 — P1202.2 — A2P11012 + 2025
+ 82014 + 25011,
©1,1,191,2,2 + %@%,172 = 4@1,1@%,2 + 2@%,192,2 —4p11915 + 201,192.4 — 91,2014 — %p§2
— X2 (2p1,1902,2 + pfg) + 2044 4 2X2(p1,5 — ©2,4) + Asp1,2 + 2X601,1 — 2Xs,
©1,1,201,2,2 = 201,101,262,2 + 2@:1)’,2 — 4012015 + 2012024 — 92,2014 — A201,2602,2
+ 2045 + Asp2.2 + 2 69012 — 49,
PLLIPLIA — 201101114 = 01,2024 — 2022014 — 3A201101,4 — 2081,
91,1,1901,2,4 + 91,1,201,1,4 — %@1,2@1,1,1,4 = 2@%,1332,4 +4p1,191,201,4 + 201,194,4
— p22024 — 2014 — 2 X2 (3011024 + P12014) + 2082 + 2A501.4,
£1,1,201,1,4 T %KJ%,Q,Q + %(@1,1 - )\2) @%,1,2 - %@1,2@1,1,1,4

=2(p11 — A2) 11972 — 691,101,201.4 + 207 9022 + 501,105 0 + 2012025
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— 20922015 + 022024 — %@%,4 + BXop1 2014 — >\2@2 2+ 3N 21 2X501,1912
— 2008+ 2055 + Asp1.4 + 206022 — A2 Asp12 + 3A2ds + A2,

£01,2,201,1,4 T ©1,1,201,24 T ©1,1,1§02,2,4 — (@2,2 + §>\2@1,1)@1,1,1,4
= 2011 (3p1,202.4 — P2,2014) + 2@?2@1,4 - 4>\2@%71@1,4 —6p1,101,8 + 201,104,5
+ 2014015 + 91,2044 — DP149P2,4 — 222 (01,202,4 — P2,201,4) + %)\391,1{@1,4
+ 2018 + As2.4 + 2X601.4 — 2A901,1 — 211,

07 14— 301401114 = —4p1107 4 + P54 + 3A20T4 — 4p111,

$1,1,461,2,4 — %92,4@1,1,1,4 = 2@1,2@%74 + 201 4044 — %/\2@1,4@,4 + 209 11.

The proof is similar to the proofs of Lemmas 4.5 and 6.3.

F Regularization of second kind integral on (4, 5)-curve

In the case of (4, 5)-curve, the formula (4.7) gets the form (notation (4.9) is used)

—Ci(u) —Gi(v)
ot —C2(u) + p1.1(u) —C2(v) + p1.1(v)
/(Zi,yi) 4 — —(3(u) + Ps(u) B —(3(v) + P3(v)
2 i ~Go(u) + Polu) (o) + Psl) |
—(7(u) + Pr(u) —(7(v) + Pr(v)
—C11(u) + Pr1(u) —C11(v) + Pi(v)

Ps(u) = %@1 1,1+ 2@1 2;
Po(u) = —p123 — (P11~ 322)p112 — 5(pr2 — A3)p111 — o1y — 3p11013 — 5012
Doy + Phapne - 2o — o
Pr(u) = —3p133 — (P11 — 2X2) (P13 + 39122) — (P12 — $As)p112 — 3 (P11 + 013
—EXaop11 + 2N p1a0 — (@1 (P12 — 3A3) + p12(p13 — Aep1,1) — P16)
X312 — 3o e dsp11 — T7!2>‘7’
Pui(u) = 5011103311 + (30122 — 501,13 — (7011 + §A2)01,1,1)05,1,11
+ (3011 + 3931 — 3922 — %Awm)m,&l + (3011012 + 5032 = 5A202.1) 0321
+ (49?,1 +4p11013 — %@%,2 — 2011022 — %/\2@%1 + %9373
— 22 (11913 — Tpa) + Aap12 + FA3011 — 573 — £X6) 01,13
— (P11 + 011 (3015 — p22) — §0T2 — Bhepls — 5033 — gr2(p13 — 3022)
+ 13012 + §AIPLL + 56A5 — BAe)praa + (3011002 + 5011023
+ 2012(2013 — Bp2:2) — SAep11012 + X307 1 — ZXap2s + 1 A3(p22 — 4p13)
+ 33012 + SAAsp11 + SA7) P10 + (2@1 1+ 3901 (922 + 4p13) + Poripl
TS)Qle — 4p11903,3 — 301,202,3 + 522013 — 6p7 3t 592 2
+ 152279013 — L po2) 11 — 33 X2pT 0 — L Asp11p012 + T3A01 1
+ é(m 6+ 2017) + 5 hopsa + $As023 + HA3 (022 — 4013) + Shadaprs
( 3 )\g _ %)\3)@1 L+ 20)\2)\3 + 30)\2)\6 As)pm,l
L

10
(601 (P12 — 3A3) + 95 5 (p11 — 3A2) + 01 191.2(3p13 — 2A2p11)
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— 01 1 (01,6 T A3913) + 01207 3 — 2X201191.201,3 — A391,197 2 — 91,2017
— - A A0t 1) + GEEASeT BAaAsp!
(@1,3 2@1,1)@1,6 T A601,101,2 + 3A7TRT 1) T g A201,101,2 T 15243071 1
+ 90012013 + B3 (2011013 + 01a) — DA3o11012 — BAIAs07 4
- 2
- %))\391,6 + (%)\2&2; - ;T))Q)\ﬁ + 5Xs)p12 + (2%)\3 - %)\3)\6 - %)\2)\7) 01,1

2-211 2:277 12 22 112
— =5 AaA3Ag + 371 ASA7 + R)‘3>‘8 — W)‘ll‘

The argument of Abelian functions is omitted for brevity.

Lemma F.1. The following relations between Abelian functions on Jacobian of V(4 5y hold

P1,1,1,1 = 6@%71 — 322 +4p13 — 4A2p1.1,
©1,1,1,2 = 6911012 — 2023 — A2p1,2 — 3A391.1,
P1122 + 501113 = 401,101,3 + 2011922 + 4@%,2 — 3033+ 3A2p01,3 — A2pa2
— 33012 + 2X,
©1,1,2,3 = 4012013 + 201,102.3 — 201,6 — A2g23 — A3p1,3 + A7,
0222 =2p123+ (2011 — A2)p1,12 — (2p12 — A3)p1.1.1,
02,23 = 01,33 + (1,1 — A2)P1,1,3 + P1,101,22 — 301201,1,2 — 5(P22 + 201,3)P1,1.1,
0233 = P1191,23 — 301,201,22 + (2012 — A3)p1,13 — (P11 + 3P1,3 — P2.2 — A2P1.1)P1,1,2
+ 3(201,101,2 — 2023 — A2P1,2 — A3P1,1)01,1,15
P333 = —(P1,1 — A2)p133 + 3(3p12 — 2X3)p123 + 3(4pT 1 — 2013 — P22 — 2Xop11)P1.2,2
— (39%71 + 013 — 2022 — 2X201,1)01,1,3 — %(2@2,3 + A3p1.1)01,1,2 + %(5@1,1,1,3
- 6@%2 — 6p1,192,2 — 120119013 + 4933 — 4213 + 3A222 + 63012
—6)6)91,1,1,
©1 11+ 301118 = 490 1 + 12011013 — 4911022+ P1o + 3033 — DAl 1 — FA2p13,
P11101,12 = 491 1912 — 201,19023 — 12022 + 201.201,3 — 2016 — 2A201101,2 — 2A307 1,
@%,1,2 — 201133+ %)\2@1,1,1,3 = 4@1,1@%,2 + @%,2 - 8@%3 — 412023 — 491,103,3 T 2026
+ 4017+ 8A2p1,191,3 + 3A2033 — AN301101,2 + 2X3023 — 2A3013 + Ahepr1 — 4As,
01110122 + 201133 + 2 (1,1 — 2X2)p1,1,1,3 = 2@1,1@%,2 + 2@%,1@2,2 + 4@%7191,3 + 8@%,3
+ 291,193,3 + 2912023 — 2@%,2 + 2913022 — %A2(20@1,1p1,3 + 6p1,102,2 + 3@%,2)
— A391,101,2 — 8917 — 32033 — 2A302,3 + FA301,3 + 4As,
£©1,1,101,1,3 + £1,1,3,3 — %@1,1@1,1,1,3 = 6@%,3 — 2013022 + 1,223 + %@1,1@3,3 + 02,6
—4p17 — %/\2@1,1@1,3 — A32.3 + 2s,
P1120122 + 01110123 + (P12 — 323) 01,113 = 207 1023 + 811012013
+ 2p1,101,2602,2 + 2@%2 —201,101,6 — 2§2,202,3 T 201,302,3
— X2(201,102,3 + 01.2022) — A3(dp1,1901,3 + P1192,2 + 207 5) + 2036 — 2A303,3
+ 2XoA301,3 + 2X601,2 + 2A701.1,
01120113 + P1,1,101,23 — 391.201,1,1,3 = 2071 02,3 + 401,1012013 — 201,101,6
+ %@1,2@3,3 — 2223 — %)\2 (p1,201,3 + 3P1,102,3) — 2A301,101,3 + 2027 + 2A701.1,
©1,1,201,2,3 + %P%,m - %@%,1,3 + (p1,1 — A2)p1,1,33 + %(291,3 + 922 — 2A2p1.1
+2X3)p11,13 = 2@%1(@3,3 —2Xop13) + 2@%,2(@2,2 +p13) + 6@%3@1,1
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+ 201,102,2601,3 + 201,1901,202,3 — 4901,201,6 — %@gg + %(@1,3@3,3 — 2,203.3)
— p1,1(p2,6 + 201,7) + §>\2 (p1,302,2 — 7@%,3 — 3p1,2023 — 491,1033)
— X3(p1192,3 + 201,2022) + A3 (2801,101,3 + 3@%,2) — A2 A31,11,2
+ 20N —4X6) 11 + 2037 + X2 (2017 + 02,6) + 203016 + 23033 + A2 X323
- %(3>\6 + A%) 01,3 + 26022 + 2 7012 + (As + 2X206) 1,1 — 2X2A8 — 210,
012,201,138 — P11101,33 — 59113+ (P11 — A2)p11.33 + 3 (3013 — P2.2) 011,13
= 8@1,1@%,3 + 2@%2@1,3 — 2011022013 + 91,102,6 — ©1,201,6 T %@2,2@3,3 — 2¢01,303,3
+ %Pgs - %)\2 (3p1,202,3 — 2022013 + 12@%73) — A301,201,3 + 2037
+ X2 (201,7 — P2.6) + A2A3p2,3 + Arpr2 — 2X2)s,
£1,2,201,2,3 + ©1,1,201,3,3 — (@1,1 - )\2)@1,1,1@1,2,3 - %(@1,1@1,2 - 2@2,3 - )\391,1)@1,1,1,3
= 2@%,1 (@1,6 — 2012013 — 91,192,3 + 2X2023 + /\3@1,3)
+ 2(@1,2@1,3 + 91,192,3) (@1,3 + {{92,2) + 2@%,2@2,3 + %@1,1@1,2(@3,3 + 5)\2@1,3)
— 2011027 — 412017 — (2013 + 02.2) 01,6 — 392,303,3 — 2A201,101,6
+ 2X2(201,3 — 3p2.2) 02,3 — 5A3(201,103,3 + 302,201,3 + 691,2023) — 2X301 19023
— 2 A3p1,1013 — 2707 1 + 2Xap2.7 + 2X301,7 + 2X62,3 + AMrp2.2 + 2Asp012
+ 2XA701,1 — 21,

The proof uses the idea of the proofs of Lemmas 4.5 and 6.3.
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