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Abstract. We investigate the recurrence coefficients of discrete orthogonal polynomials on
the non-negative integers with hypergeometric weights and show that they satisfy a system
of non-linear difference equations and a non-linear second order differential equation in one
of the parameters of the weights. The non-linear difference equations form a pair of discrete
Painlevé equations and the differential equation is the σ-form of the sixth Painlevé equation.
We briefly investigate the asymptotic behavior of the recurrence coefficients as n→∞ using
the discrete Painlevé equations.

Key words: discrete orthogonal polynomials; hypergeometric weights; discrete Painlevé
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1 Introduction

In the past few years many semi-classical orthogonal polynomials were investigated and discrete
and continuous Painlevé equations were found for their recurrence coefficients. In this paper we
are interested in some discrete orthogonal polynomials on the integers N = {0, 1, 2, 3, . . .}. For
the orthonormal polynomials one has

∞∑
k=0

pn(k)pm(k)wk = δm,n, pn(x) = γnx
n + · · ·

and the three term recurrence relation is

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x),

where, as usual, we take a0 = 0, and the weights are such that all the moments are finite

mn =

∞∑
k=0

knwk <∞, n = 0, 1, 2, . . . .

For the monic orthogonal polynomials Pn = pn/γn the recurrence relation becomes

xPn(x) = Pn+1(x) + bnPn(x) + a2nPn−1(x).

The following families have already been analyzed earlier:
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• The Charlier polynomials Cn(x; a) (a > 0) [4, Section VI.1], [18, Section 9.14] form a sys-
tem of classical orthogonal polynomials on the integers N satisfying

∞∑
k=0

Cn(k; a)Cm(k; a)
ak

k!
= 0, n 6= m.

The monic Charlier polynomials Pn(x) = (−1)nanCn(x; a) satisfy the recurrence relation

xPn(x) = Pn+1(x) + (n+ a)Pn(x) + naPn−1(x),

hence the weights are wk = ak/k! and the recurrence coefficients are a2n = na and bn = n+a.
These are simple polynomial expressions in n and a.

• The Meixner polynomials Mn(x;β, c) (β > 0, 0 < c < 1) [4, Section VI.3], [18, Section 9.10]
are also a family of classical orthogonal polynomials:

∞∑
k=0

Mn(k;β, c)Mm(k;β, c)
(β)kc

k

k!
= 0, n 6= m,

and the recurrence coefficients are again simple and given by

a2n =
n(n+ β − 1)c

(1− c)2
, bn =

n+ (n+ β)c

1− c
. (1.1)

When β = −N is a negative integer and c = p
p−1 , with 0 < p < 1, then one finds

Krawtchouk polynomials Kn(x; p,N). This is a finite family of polynomials which are
orthogonal for the binomial distribution. The recurrence coefficients are

a2n = np(1− p)(N + 1− n), bn = p(N − n) + n(1− p).

Note that a2N+1 = 0, which comes from the fact that this is a finite family of orthogonal
polynomials with a measure supported on N + 1 points.

• Generalized Charlier polynomials with weights wk = ak

k!(β)k
(a > 0, β > 0) were, for β = 1,

first considered in [14] and analyzed in [24]. The general case β > 0 was investigated in [22]
where the discrete Painlevé equations are given, and [11] where the Painlevé differential
equation was given. Clarkson [6] found the connection with the Painlevé equation in
a different way, starting from the Hankel determinants and the special function solutions
of Painlevé equations. For β = 1 the recurrence coefficients are given by a2n = a

(
1 − c2n

)
and bn = n+

√
acncn+1, where cn satisfies the discrete Painlevé II equation

cn+1 + cn−1 =
ncn√

a(1− c2n)
,

with initial conditions c0 = 1 and c1 = I1
(
2
√
a
)
/I0
(
2
√
a
)
, where Iν is the modified Bessel

function. For β 6= 1 the recurrence coefficients satisfy(
a2n+1 − a

)(
a2n − a

)
= a(bn − n)(bn − n+ β − 1),

bn + bn−1 − n+ β =
an

a2n
,

with initial conditions a20 = 0 and b0 =
√
aIβ
(
2
√
a
)
/Iβ−1

(
2
√
a
)
. This is a limiting case

of a discrete Painlevé IV equation with surface/symmetry D
(1)
4 [17, Section 8.1.16]. In

[11, Theorem 2.1] it was also shown that bn, as a function of the parameter a, satisfies a
Painlevé V equation with parameter δ = 0. Such a Painlevé equation can be transformed
to a Painlevé III equation.
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• Generalized Meixner polynomials with weights wk = (γ)ka
k

k!(β)k
(a > 0, β > 0, γ > 0) were for

β = 1 investigated in [2] and for general β > 0 in [22]. The special case β = γ gives the
Charlier polynomials. In [22, Theorem 3.1] it was shown that the recurrence coefficients
are given by a2n = na − (γ − 1)un, bn = n + γ − β + a − (γ − 1)vn/a, where (un, vn)n∈N
satisfy the system

(un + vn)(un+1 + vn) =
γ − 1

a2
vn(vn − a)

(
vn − a

γ − β
γ − 1

)
,

(un + vn)(un + vn−1) =
un

un − an
γ−1

(un + a)

(
un + a

γ − β
γ − 1

)
,

with initial conditions u0 = 0 and

v0 =
a

γ − 1

(
γ − β + a− γaM(γ + 1, β + 1, a)

βM(γ, β, a)

)
,

where M(a, b, z) is the confluent hypergeometric function. This system of non-linear recur-
rence relations is a limiting case of the asymmetric discrete Painlevé IV equation related

to d-P
(
E

(1)
6 /A

(1)
2

)
in [17, Section 8.1.15]. In [10] and [2] it was shown that vn, as a function

of a, satisfies a Painlevé equation. See also [6] for a more direct approach. If we define
a function yn(a) by

vn =
a(ay′n − (1 + β − 2)y2n + (n+ 1− a+ β − 2γ)yn − n)

2(γ − 1)(yn − 1)yn
,

then yn satisfies Painlevé V

y′′n =

(
1

2yn
+

1

yn − 1

)
(y′n)2 − y′n

a
+

(yn − 1)2

a2

(
Ayn +

B

yn

)
+
Cyn
a

+
Dyn(yn + 1)

yn − 1
,

with

A =
(β − 1)2

2
, B = −n

2

2
, C = n− β + 2γ, D = −1

2
.

When γ = −N is a negative integer one deals with generalized Krawtchouk polynomials,
which were investigated in [1].

All these families of discrete orthogonal polynomials are orthogonal on the integers N =
{0, 1, 2, . . .}. They were studied by Dominici and Marcellán in [9] who were investigating discrete
semi-classical orthogonal polynomials of class one, which also includes the Hahn polynomials
(which are orthogonal on a finite set {0, 1, 2. . . . , N}). They gave limit relations between these
and other families of orthogonal polynomials. The generalized Charlier polynomials and the
generalized Meixner polynomials can also be made orthogonal on the shifted lattice N + β − 1
if β < 2, and the corresponding recurrence coefficients satisfy the same Painlevé equations, but
with a different initial value for b0. The more general setting is to consider the generalized
Charlier and Meixner polynomials as orthogonal polynomials on the union of N and N + β − 1.
See [22] for more details. This general setting on the bi-lattice gives solutions of the Painlevé
equations depending on a seed function (the moment m0) that consists of a linear combination
of two solutions of the Bessel equation or the Kummer equation.

There is one case of discrete orthogonal polynomials that has not been considered in much
detail and which also has recurrence coefficients that satisfy discrete and continuous Painlevé
equations. Take the weights

wk =
(α)k(β)k
(γ)kk!

ck, α, β, γ > 0, 0 < c < 1, (1.2)



4 G. Filipuk and W. Van Assche

which corresponds to case 7 in [9]. The initial moment of this weight is

m0 =
∞∑
k=0

(α)k(β)k
(γ)kk!

ck = 2F1(α, β; γ; c)

involving the Gauss hypergeometric function, and all the other moments are

mn =
∞∑
k=0

kn
(α)k(β)k
(γ)kk!

ck =

(
c

d

dc

)n
m0.

So therefore one may expect that the recurrence coefficients of the corresponding orthogonal
polynomials satisfy a Painlevé VI equation, because Painlevé VI has special function solutions in
terms of hypergeometric functions, see [5, Section 7.5]. There are also special function solutions
for discrete Painlevé equations, and for a review we refer to [21]. In this paper we will find
a system of two first order recurrence relations (see Theorem 3.1) which allows us to deduce
some asymptotic behavior as n→∞ (Section 6). In Section 5 we make the connection with the
σ-form of the sixth Painlevé equation (see Theorem 5.1). Note that Dominici already obtained
non-linear recurrence relations for the recurrence coefficients in [8, Theorem 4] which he calls
the Laguerre–Freud equations. These are however of higher order than two and neither they are
identified as discrete Painlevé equations, nor is a connection made with Painlevé VI.

There are also some examples of continuous weights for which the recurrence coefficients of
the orthogonal polynomials are related to Painlevé VI. Dai and Zhang [7] and Lyu and Chen [19]
considered a generalization of the Jacobi weight function on [0, 1],

w(x, t) = xα(1− x)β|x− t|γ , x ∈ [0, 1],

where t is a real parameter, and found that Painlevé VI is the relevant equation for the recurrence
coefficients as a function of t. Chen and Zhang [3] investigated another modification of the Jacobi
weight on [0, 1],

w(x, t) = xα(1− x)β
(
A+BΘ(x− t)

)
, x ∈ [0, 1],

where Θ is the Heaviside function, and showed that Painlevé VI is appearing for the recurrence
coefficients of the corresponding orthogonal polynomials. In both cases the moments can be
expressed in terms of the Gauss hypergeometric function, and it is the special function solution
of Painlevé VI which is needed to find the recurrence coefficients. See also [23, Section 6.2.5] for
this connection.

2 Hypergeometric weights

We will investigate the orthogonal polynomials given by the discrete orthogonality relations

∞∑
k=0

pn(k)pm(k)
(α)k(β)k
(γ)kk!

ck = δm,n,

with α, β, γ > 0 and 0 < c < 1, and in particular we want to find the recurrence coefficients
(an, bn)n∈N in the three term recurrence relation

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x). (2.1)

The weights wk = w(k) can be given as the values at the integers k ∈ N of the function

w(x) =
Γ(γ)

Γ(α)Γ(β)

Γ(α+ x)Γ(β + x)

Γ(γ + x)Γ(x+ 1)
cx. (2.2)
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Observe that for α = γ one finds the weights for the Meixner polynomials, and for c → 0 and
α→∞, in such a way that αc→ a > 0, one finds the generalized Meixner weight, which in turn
for β = γ gives the Charlier weight and for a→ 0 and β →∞ in such a way that βa→ â > 0,
gives the generalized Charlier weight. We will use the theory of ladder operators for discrete
orthogonal polynomials [16], [15, Section 6.3]. This uses a discrete potential

u(x) = −w(x)− w(x− 1)

w(x)
= −1 +

(γ + x− 1)x

c(α+ x− 1)(β + x− 1)
,

which is rational, with simple poles at x = −α and x = −β. Define

An(x) = an

∞∑
k=0

pn(k)pn(k − 1)
u(x+ 1)− u(k)

x+ 1− k
wk,

and

Bn(x) = an

∞∑
k=0

pn(k)pn−1(k − 1)
u(x+ 1)− u(k)

x+ 1− k
wk,

then one has the structure relation

∆pn(x) = An(x)pn−1(x)−Bn(x)pn(x), (2.3)

where ∆pn(x) = pn(x + 1) − pn(x) is the forward difference of pn(x). Some straightforward
calculus shows that

u(x+ 1)− u(k)

x+ 1− k
=

ck
x+ α

+
dk

x+ β
,

for certain sequences (ck, dk), so that

An(x)

an
=

un
x+ α

+
vn

x+ β
, Bn(x) =

rn
x+ α

+
sn

x+ β
,

where (un, vn) and (rn, sn) are sequences depending on α, β, γ, c. The compatibility bet-
ween (2.1) and (2.3) gives the relations

Bn+1(x) +Bn(x) =
x− bn
an

An(x)− u(x+ 1) +
n∑
j=0

Aj(x)

aj

and

an+1An+1(x)− a2n
An−1(x)

an−1
= (x− bn)Bn+1(x)− (x− bn + 1)Bn(x) + 1.

In our case this gives

rn
x+ α

+
sn

x+ β
+

rn+1

x+ α
+

sn+1

x+ β

= (x− bn)

(
un

x+ α
+

vn
x+ β

)
+ 1− (γ + x)(x+ 1)

c(α+ x)(β + x)
+

n∑
j=0

(
uj

x+ α
+

vj
x+ β

)
, (2.4)

and

a2n+1

(
un+1

x+ α
+

vn+1

x+ β

)
− a2n

(
un−1
x+ α

+
vn−1
x+ α

)
= (x− bn)

(
rn+1

x+ α
+

sn+1

x+ β

)
− (x− bn + 1)

(
rn

x+ α
+

sn
x+ β

)
+ 1. (2.5)

Our goal is to determine the unknown sequences an, bn, un, vn, rn, sn from the compatibility
relations (2.4)–(2.5).
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Proposition 2.1. For α 6= β the sequences un, vn, rn, sn are given by

(α− β)un = 2n+ 1− 1− c
c

bn +
α+ β − γ − 1

c
+ (n+ 1− β)

1− c
c

, (2.6)

(β − α)vn = 2n+ 1− 1− c
c

bn +
α+ β − γ − 1

c
+ (n+ 1− α)

1− c
c

, (2.7)

and

(α− β)rn =
n(n− 1)

2
− 1− c

c
a2n + βn+

n−1∑
k=0

bk, (2.8)

(β − α)sn =
n(n− 1)

2
− 1− c

c
a2n + αn+

n−1∑
k=0

bk. (2.9)

Observe the symmetry vn(α, β, γ, c) = un(β, α, γ, c) and sn(α, β, γ, c) = rn(β, α, γ, c), which
holds because an and bn are invariant if we interchange α and β (interchanging α and β leaves
the weights wk unchanged).

Proof. The identity (2.4) gives three equations by looking at what happens for x → ∞, −α,
and −β. If we let x→∞ in (2.4) then

un + vn =
1− c
c

, (2.10)

the residue at x = −α gives

rn + rn+1 = −un(α+ bn)− (γ − α)(1− α)

c(β − α)
+

n∑
j=0

uj , (2.11)

and the residue at x = −β gives

sn + sn+1 = −vn(β + bn)− (γ − β)(1− β)

c(α− β)
+

n∑
j=0

vj . (2.12)

In a similar way we get three equations from (2.5): first let x→∞ to find

(rk+1 + sk+1)− (rk + sk) = −1,

which after summation (and using r0 + s0 = 0, which follows because a0 = 0) gives

rn + sn = −n. (2.13)

The residue at x = −α for (2.5) gives

a2n+1un+1 − a2nun−1 = −rn+1(α+ bn) + rn(α+ bn − 1), (2.14)

and the residue at x = −β gives

a2n+1vn+1 − a2nvn−1 = −sn+1(β + bn) + sn(β + bn − 1). (2.15)

Adding (2.11) and (2.12) while using (2.10) and (2.13) gives

αun + βvn = 2n+ 1− 1− c
c

bn +
α+ β − γ − 1

c
+ (n+ 1)

1− c
c

. (2.16)
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Now we can solve the linear system (2.10) and (2.16) for (un, vn) and this gives the required
expressions (2.6)–(2.7). In a similar way, we add (2.14) and (2.15), which together with (2.10)
and (2.13) gives(

a2n+1 − a2n
)1− c

c
= bn + n− (αrn+1 + βsn+1) + (αrn + βsn).

Summing this then gives (taking into account that a0 = 0)

αrn + βsn =
n(n− 1)

2
− 1− c

c
a2n +

n−1∑
k=0

bk. (2.17)

Now we can solve the linear system (2.13) and (2.17) for the unknowns (rn, sn) to find the
expressions (2.8)–(2.9). �

Corollary 2.2. The recurrence coefficients
(
a2n, bn

)
n∈N are given in terms of (un, rn)n∈N by

bn =
n+ α− γ + (n+ β)c

1− c
− (α− β)

c

1− c
un, (2.18)

a2n =
n(n+ α+ β − γ − 1)c

(1− c)2
− (α− β)

c

1− c

 c

1− c

n−1∑
j=0

uj + rn

 . (2.19)

Proof. The formula (2.18) follows immediately from (2.6). Summing (2.18) gives

βn+

n−1∑
k=0

bk =
n(n− 1)

2

1 + c

1− c
+
n(α+ β − γ)

1− c
− (α− β)

c

1− c

n−1∑
j=0

uj ,

and if we use this in (2.8), then we find

1− c
c

a2n =
n(n+ α+ β − γ − 1)

1− c
− (α− β)

 c

1− c

n−1∑
j=0

uj + rn

 ,

from which (2.19) follows immediately. �

Note that for α = γ the weights wk become Meixner weights, and if we use the recurrence
coefficients in (1.1), then one finds that un = 0 = rn for all n ∈ N. The restriction that α 6= β
in Proposition 2.1 is not needed but is an artifact of our choice of taking un and rn as the basic
sequences. In fact, when α = β the discrete potential u has a double pole, resulting in a double
pole for An and Bn as well. In the next section we will use new variables xn and yn for which
the case α = β needs no separate analysis.

3 New variables

Recall that

An
an

=
un

x+ α
+

vn
x+ β

=
(un + vn)x+ βun + αvn

(x+ α)(x+ β)
,

and

Bn =
rn

x+ α
+

sn
x+ β

=
(rn + sn)x+ βrn + αsn

(x+ α)(x+ β)
.
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We already found that un + vn = 1−c
c , see (2.10), and rn + sn = −n, see (2.13), so we now take

new variables

xn =
c

1− c
(βun + αvn), yn = βrn + αsn,

and thus use

An
an

=
1− c
c

x+ xn
(x+ α)(x+ β)

, Bn =
−nx+ yn

(x+ α)(x+ β)
. (3.1)

The advantage of using the unknowns (xn, yn) is that these are symmetric in α and β: they
remain unchanged if one interchanges α and β. We are also going to use one more compatibility
relation between the An and Bn. We already know

Bn+1(x) +Bn(x) = (x− bn)
An(x)

an
− u(x+ 1) +

n∑
k=0

Ak(x)

ak
, (3.2)

and

a2n+1

An+1(x)

an+1
− a2n

An−1(x)

an−1
= (x− bn)

(
Bn+1(x)−Bn(x)

)
+ 1−Bn(x). (3.3)

Multiply (3.3) by An/an, then

a2n+1

An+1An
an+1an

− a2n
AnAn−1
anan−1

= (x− bn)
An
an

(Bn+1 −Bn) + (1−Bn)
An
an
.

Replace (x− bn)An/an by using (3.2), then

a2n+1

An+1An
an+1an

− a2n
AnAn−1
anan−1

= B2
n+1 −B2

n + (Bn+1 −Bn)

(
u(x+ 1)−

n∑
k=0

Ak
ak

)
+ (1−Bn)

An
an
.

Summing from 0 to n− 1, taking into account that A−1 = 0 and B0 = 0, gives

a2n
AnAn−1
anan−1

= B2
n +Bnu(x+ 1)−

n−1∑
k=0

(Bk+1 −Bk)
k∑
j=0

Aj
aj

+
n−1∑
k=0

Ak
ak
−
n−1∑
k=0

Bk
Ak
ak
.

Use summation by parts (for f0 = 0)

n−1∑
k=0

(gk+1 − gk)fk = gnfn−1 −
n−1∑
k=1

gk(fk − fk−1) (3.4)

to find our third compatibility relation

a2n
An(x)An−1(x)

anan−1
= B2

n(x) + u(x+ 1)Bn(x) +
(
1−Bn(x)

) n−1∑
k=0

Ak(x)

ak
. (3.5)

Compare this with [23, equation (4.8)] for the ladder operators corresponding to the differential
operator.

Now let us find some relations for the unknown sequences
(
a2n, bn

)
n

and (xn, yn)n. If we
use (3.1) in (3.2) and multiply everything by (x+α)(x+β), then we find a quadratic expression
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in x for which the quadratic term vanishes, so that we only have a linear term in x and a constant
term. The coefficient of x gives the identity

bn = xn +
n+ (n+ α+ β)c− γ

1− c
, (3.6)

which corresponds to (2.18) in Corollary 2.2. The constant term gives

yn+1 + yn = −1− c
c

bnxn + αβ − γ

c
+

1− c
c

n∑
k=0

xk. (3.7)

Next we use (3.1) in (3.3) and multiply everything by (x+α)(x+β). Again this gives a quadratic
equation in x in which the quadratic term vanishes. The linear term gives

1− c
c

(
a2n+1 − a2n

)
= yn+1 − yn + bn + α+ β + n. (3.8)

Summing from 0 to n− 1 and using (3.6) gives

1− c
c

a2n = yn +
n−1∑
k=0

xk +
n(n+ α+ β − γ − 1)

1− c
, (3.9)

which corresponds to (2.19) in Corollary 2.2. The constant term gives

1− c
c

(
a2n+1xn+1 − a2nxn−1

)
= −bn(yn+1 − yn) + αβ − yn. (3.10)

Multiply this by 1−c
c xn and use (3.7) to eliminate bnxn, then

(1− c)2

c2
(
a2n+1xn+1xn − a2nxnxn−1

)
= y2n+1 − y2n −

(
αβ − γ

c

)
(yn+1 − yn)− (yn+1 − yn)

1− c
c

n∑
k=0

xk +
1− c
c

xn(αβ − yn).

Summing and using summation by parts (3.4) then gives

(1− c)2

c2
a2nxnxn−1 = yn

(
yn − αβ +

γ

c

)
− (yn − αβ)

1− c
c

n−1∑
k=0

xk. (3.11)

Finally, we use (3.1) in (3.5) and multiply everything by (x + α)2(x + β)2. This gives a cubic
equation in x in which the cubic term vanishes. The quadratic term gives (3.9) again. The
linear term gives

(1− c)2

c2
a2n(xn + xn−1) = −yn

(
n

1 + c

c
+ α+ β − γ + 1

c

)
+

(αβ − γ)n

c

+ (α+ β + n)
1− c
c

n−1∑
k=0

xk, (3.12)

and the constant term gives (3.11) again.
So now we have equations (3.6) and (3.9) to express the recurrence coefficients a2n and bn

in terms of the sequences (xn, yn)n. Furthermore we will use (3.7), (3.11) and (3.12) to find
a system of recurrence relations for (xn, yn)n. Note that these three equations contain the sum
n−1∑
k=0

xk which we will eliminate from these equations so that we are left with a system of two first

order equations for (xn, yn)n.
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Theorem 3.1. The sequences (xn, yn) can be computed recursively using(
yn − αβ + (α+ β + n)xn − x2n

)(
yn+1 − αβ + (α+ β + n+ 1)xn − x2n

)
=

1

c
(xn − 1)(xn − α)(xn − β)(xn − γ), (3.13)

and

(xn + Yn)(xn−1 + Yn)

=
(yn + nα)(yn + nβ)

(
yn + nγ − (γ − α)(γ − β)

)(
yn + n− (1− α)(1− β)

)(
yn(2n+ α+ β − γ − 1) + n

(
(n+ α+ β)(n+ α+ β − γ − 1)− αβ + γ

))2 , (3.14)

where

Yn =
y2n + yn

(
n(n+ α+ β − γ − 1)− αβ + γ

)
− αβn(n+ α+ β − γ − 1)

yn(2n+ α+ β − γ − 1) + n
(
(n+ α+ β)(n+ α+ β − γ − 1)− αβ + γ

) .
The initial values are given by

y0 = 0, x0 =
cαβ

γ
2F1(α+ 1, β + 1; γ + 1; c)

2F1(α, β; γ; c)
− (α+ β)c− γ

1− c
.

Proof. Multiply (3.7) by yn to find

yn+1yn + y2n = −1− c
c

bnxnyn + αβyn −
γ

c
yn + yn

1− c
c

Sn +
1− c
c

xnyn, (3.15)

where from now on we write

Sn =

n−1∑
k=0

xk.

Multiply (3.12) by xn and use (3.6) to find

1− c
c

a2n
(
x2n + xnxn−1

)
= −bnxnyn + x2nyn +

xnyn
1− c

+
(αβ − γ)nxn

1− c
+ (α+ β + n)xnSn.

Use (3.11) to remove a2nxnxn−1 and then (3.9) to remove the remaining a2n to find

x2n

(
Sn +

n(n+ α+ β − γ − 1)

1− c

)
+

c

1− c
yn

(
yn − αβ +

γ

c

)
− (yn − αβ)Sn

= −bnxnyn +
xnyn
1− c

+
(αβ − γ)nxn

1− c
+ (α+ β + n)xnSn. (3.16)

Eliminate bnxnyn from (3.15) and (3.16) to find

yn+1yn −
n(n+ α+ β − γ − 1)

c
x2n + xnyn +

(αβ − γ)nxn
c

=
(
αβ − (α+ β + n)xn + x2n

)1− c
c

Sn. (3.17)

Now use (3.7) and (3.6) to find

1− c
c

Sn = yn+1 + yn +
1− c
c

xn

(
xn +

n+ (n+ α+ β)c− γ
1− c

)
− αβ +

γ

c
− 1− c

c
xn
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and use this to replace the sum Sn in (3.17). This gives an expression containing xn and the
terms yn+1 + yn and ynyn+1. Some calculus shows that it can be factored as in (3.13).

Next, use (3.9) to replace a2n in (3.11) and (3.12). Then one can eliminate the sum Sn =
n−1∑
k=0

xk

from both equations and find

xnxn−1
(
yn(2n+ α+ β − γ − 1) + n

(
(n+ α+ β)(n+ α+ β − γ − 1)− αβ + γ

))
+ (xn + xn−1)

(
y2n + yn

(
n(n+ α+ β − γ − 1)− αβ + γ

)
− αβn(n+ α+ β − γ − 1)

)
= y2n(−n+ γ + 1) + yn(2αβn+ αγ + βγ − αβγ − αβ)− αβ(αβ − γ)n.

This is an equation containing yn and the sum xn + xn−1 and product xnxn−1. Some (lengthy)
calculus shows it can be factored as in (3.14).

The initial values are a20 = 0 and b0 = m1/m0, where m0 = 2F1(α, β; γ; c) and m1 =
cαβ
γ 2F1(α+ 1, β + 1; γ + 1; c), which gives

y0 = 0, x0 =
m1

m0
− (α+ β)c− γ

1− c
. �

The system (3.13)–(3.14) is a system of two first order recurrence equations for xn, yn and is

a discrete Painlevé equation, similar to d-P
(
E

(1)
6 /A

(1)
2

)
in [17, Section 8.1.15] or [13, Eδ6 on p. 296],

except for a quadratic term x2n on the left of (3.13) and the rational term Yn on the left of (3.14).

4 The Toda lattice

If we put c = c0e
t then the weight (2.2) is an exponential modification of the weight with c = c0

for t = 0, and this deformation (with deformation parameter t) corresponds to a Toda flow. The
recurrence coefficients a2n(t) and bn(t), as functions of the deformation parameter t, then satisfy
the Toda equations

d

dt
a2n = a2n(bn − bn−1), n ≥ 1,

d

dt
bn = a2n+1 − a2n, n ≥ 0,

see, e.g., [15, Section 2.8] or [23, Section 3.2.2]. In the variable c, these Toda equations become

c
d

dc
a2n = a2n(bn − bn−1), n ≥ 1, (4.1)

c
d

dc
bn = a2n+1 − a2n, n ≥ 0. (4.2)

For the sequences xn and yn we then have:

Proposition 4.1. The derivatives of xn and yn with respect to the parameter c are given by

x′n = b′n −
2n+ α+ β − γ

(1− c)2
, (4.3)

and

y′n = −1 + c

c2
a2n +

1− c
c

(
a2n
)′
, (4.4)

where ′ denotes derivation with respect to c. Furthermore the Toda equations for (xn, yn) are

(1− c)x′n = yn+1 − yn + xn, (4.5)

(1− c)y′n =
(1− c)2

c2
a2n(xn − xn−1), n ≥ 0. (4.6)
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Proof. If we take the derivative with respect to c in (3.6) then we find (4.3). In a similar way
we take the derivative in (3.9) and (4.3) to find

y′n = −a
2
n

c2
+

1− c
c

(
a2n
)′ − n−1∑

k=0

b′k.

Now use the Toda equation (4.2) to find

n−1∑
k=0

b′k =
1

c

n−1∑
k=0

(
a2k+1 − a2k

)
=
a2n
c
,

where we used a20 = 0. This gives (4.4). If we use (4.2), then (4.3) becomes

x′n =
a2n+1 − a2n

c
− 2n+ α+ β − γ

(1− c)2
,

which after using (3.9) gives (4.5). If we use (4.1), then (4.4) becomes

y′n = −1 + c

c2
a2n +

1− c
c2

a2n(bn − bn−1),

and (3.6) then gives (4.6). �

5 Painlevé VI

By combining the Toda equations (4.5)–(4.6) with the discrete Painlevé equations (3.13)–(3.14)
one can in principle find a differential equation for xn and yn as a function of the variable c,
which after a suitable transformation can be reduced to Painlevé VI. This approach is rather
cumbersome and we were able to work it out by using computer algebra. However, we will

present here another approach which gives an easier differential equation for Sn =
n−1∑
k=0

xk.

Theorem 5.1. If we put σn = (c− 1)Sn +Kc+ L, with

K = αβ − 1

4
(α+ β + n)2,

L =
1

4

(
(α+ β + γ + 1)n+ α2 + β2 − (α+ β)(γ + 1) + 2γ

)
,

then σn satisfies the Painlevé VI σ-equation

σ′n
[
c(c− 1)σ′′n

]2
+
[
σ′n
(
2σn − (2c− 1)σ′n

)
+ d1d2d3d4

]2
=
(
σ′n + d21

)(
σ′n + d22

)
(σ′n + d23

)(
σ′n + d24

)
, (5.1)

with parameters

d1 =
n+ α− β

2
, d2 =

−n+ α− β
2

, d3 =
n+ α+ β − 2

2
, d4 =

n+ α+ β − 2γ

2
.

Proof. Again we consider Sn (and σn) as a function of the variable c and derivatives are with
respect to c. Summing (4.5) and using y0 = 0 shows that

(1− c)S′n = yn + Sn,
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and hence

yn = [(1− c)Sn]′, y′n = [(1− c)Sn]′′. (5.2)

Subtracting (3.12) and (4.6) gives

2
(1− c)2

c2
a2nxn = (1− c)y′n − yn

(
n

1 + c

c
+ α+ β − γ + 1

c

)
+

(αβ − γ)n

c
+ (α+ β + n)

1− c
c

Sn, (5.3)

while adding (3.12) and (4.6) gives

2
(1− c)2

c2
a2nxn−1 = −(1− c)y′n − yn

(
n

1 + c

c
+ α+ β − γ + 1

c

)
+

(αβ − γ)n

c
+ (α+ β + n)

1− c
c

Sn.

If we multiply both expressions, then

4
(1− c)4

c4
a4nxnxn−1 =

[
−yn

(
n

1 + c

c
+ α+ β − γ + 1

c

)
+

(αβ − γ)n

c
+ (α+ β + n)

1− c
c

Sn

]2
−
[
(1− c)y′n

]2
. (5.4)

Recall that (3.9) gives

(1− c)2

c2
a2n =

1− c
c

(yn + Sn) +
n(n+ α+ β − γ − 1)

c
,

hence combining this with (3.11) gives

4
(1− c)4

c4
a4nxnxn−1 = 4

(
1− c
c

(yn + Sn) +
n(n+ α+ β − γ − 1)

c

)
×
(
yn

(
yn − αβ +

γ

c

)
− (yn − αβ)

1− c
c

Sn

)
. (5.5)

Clearly (5.4)–(5.5) gives the equation[
−yn

(
n

1 + c

c
+ α+ β − γ + 1

c

)
+

(αβ − γ)n

c
+ (α+ β + n)

1− c
c

Sn

]2
−
[
(1− c)y′n

]2
= 4

(
1− c
c

(yn + Sn) +
n(n+ α+ β − γ − 1)

c

)
×
(
yn

(
yn − αβ +

γ

c

)
− (yn − αβ)

1− c
c

Sn

)
,

and if we replace yn and y′n by (5.2), then this is a non-linear second order differential equation
for Sn, or better for σ̂n = (c− 1)Sn:

[c(1− c)σ̂′′n]2 + 4
(
(c− 1)σ̂′n − σ̂n + n(n+ α+ β − γ − 1)

)
×
(
σ̂′n(cσ̂′n + αβc− γ)− (σ̂′n + αβ)σ̂n

)
=
[
σ̂′n
(
n+ (α+ β + n)c− γ − 1

)
+ (αβ − γ)n− (α+ β + n)σ̂n

]2
.

If we now put σn = σ̂n + Kc + L, then a lengthy but straightforward computation gives the
required Painlevé VI σ-equation. �
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The Painlevé σ-equations are given as equations EI–EVI in [20] and σ-equations σPII–σPVI
are given in [12, equation (8.15) in Section 8.1 or equation (8.29) in Section 8.2]. They are equiva-
lent to the six Painlevé equations PI–PVI in the sense that there is a one-to-one correspondence
between solutions of the Painlevé equations and the corresponding σ-equations. Clearly our
solution σn is a special function solution which is expressed in terms of a Wronskian containing
hypergeometric functions.

If σn is known, then also Sn is known, and then from (5.2) it follows that yn = [(1− c)Sn]′.
Using (3.9) we find

1− c
c

a2n = yn + Sn +
n(n+ α+ β − γ − 1)

1− c
,

so that the recurrence coefficient a2n is in terms of Sn and S′n. For xn one can use (5.3) to find
that it is in terms of Sn, S′n and S′′n. Then finally (3.6) shows that bn is also in terms of Sn, S′n
and S′′n. Hence Sn and its first two derivatives are enough to find the quantities of interest for
these discrete orthogonal polynomials. Furthermore S′′n is in terms of Sn and S′n because of the
σ-equation (5.1).

Remark. Special function solutions of Painlevé VI are generated by a seed function that comes
from a Riccati equation; see, e.g., [5, Section 7.5] or [23, Section 6.2.5]. We can show that xn in-
deed satisfies a Riccati equation and in particular that x0 is the seed function. Differentiate (4.5)
with respect to c to find

(1− c)x′′n = y′n+1 − y′n + 2x′n.

Replace y′n+1 and y′n by using the Toda equation (4.6), then

(1− c)2x′′n =
(1− c)2

c2
(
a2n+1(xn+1 − xn)− a2n(xn − xn−1)

)
+ 2(1− c)x′n. (5.6)

Combining (3.8) with (3.6) and (4.5) gives

(1− c)2

c2
(
a2n+1 − a2n

)
=

(1− c)2

c
x′n +

2n+ α+ β − γ
c

.

Multiply this by xn and add this to (5.6) to find

(1− c)2x′′n +
(1− c)2

c
xnx

′
n +

2n+ α+ β − γ
c

xn

=
(1− c)2

c2
(
a2n+1xn+1 + a2nxn−1 − 2a2nxn

)
+ 2(1− c)x′n. (5.7)

Multiply (3.10) by 1−c
c and add this to (5.7) to find

(1− c)2x′′n +
(1− c)2

c
xnx

′
n +

2n+ α+ β − γ
c

xn +
1− c
c

(yn − αβ)

+
1− c
c

(
xn +

n+ (n+ α+ β)c− γ
1− c

)
(yn+1 − yn)

= 2
(1− c)2

c2
a2n(xn−1 − xn) + 2(1− c)x′n.

Use (4.5) and (4.6) to replace yn+1 − yn and xn − xn−1 and collect terms to find

c(1− c)x′′n + 2(1− c)xnx′n +
(
n+ (n+ α+ β − 2)c− γ

)
x′n − x2n + (n+ α+ β)xn − αβ

= −yn − 2cy′n. (5.8)
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This equation contains only the functions x′′n, x′n, xn and the functions y′n, yn. Observe that the
left hand side can be written as(

c(1− c)x′n + (1− c)x2n +
(
n+ (n+ α+ β)c− γ − 1

)
xn − αβc

)′
so that (5.8) is in fact a Riccati equation for xn if yn is given. Recall that y0 = 0, therefore we
have the Riccati equation for x0

c(1− c)x′0 + (1− c)x20 +
(
(α+ β)c− γ − 1

)
x0 − αβc = constant.

One can verify this, using the fact that

x0(c) =
cαβ

γ
2F1(α+ 1, β + 1; γ + 1; c)

2F1(α, β; γ; c)
− (α+ β)c− γ

1− c
,

and it turns out that the constant is −γ. This Riccati equation for x0 gives a seed function for
all the special function solutions xn.

6 Asymptotic behavior

As we mentioned before, the case α = γ (or β = γ) gives the Meixner polynomials for which
the recurrence coefficients are known, see (1.1). If we compare this with (3.6) and (3.9), then it
follows that for this special case

xn = γ, yn = −nγ.

The sequence (xn)n is a constant sequence and the constant is a zero of the right hand side
of (3.13).

In Fig. 1 we computed the (xn, yn)n for α = 3/2, β = 3, γ = 1/3 and c = 1/2 for the
weights wk in (1.2) on the integers N = {0, 1, 2, 3, . . .} by using the recurrence (3.13)–(3.14). We
used a precision of Digits:=50 in Maple, because for Digits:=10 the resulting values for xn, yn
were wrong when n ≥ 40. The precision Digits:=20 gives the same plots and the computed
values only go wrong for n ≥ 80. The initial values are

y0 = 0, x0 =
m1

m0
− (α+ β)c− γ

1− c
,

where

m0 = 2F1(α, β; γ; c), m1 =
cαβ

γ
2F1(α+ 1, β + 1; γ + 1; c).

The calculations seem to suggest that xn converges to γ and that yn decreases linearly for large n.

We conjecture that for this initial value for x0

lim
n→∞

xn = γ

and then (3.13) implies that

lim
n→∞

(yn + nγ) = (γ − α)(γ − β).

Note that the latter is a zero of the right hand side of (3.14). This asymptotic behavior seems
to be confirmed by the numerical results. We believe that this is the only initial value which
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Figure 1. The sequences xn (left) and yn (right) for (α, β, γ, c) =
(
3
2 , 3,

1
3 ,

1
2

)
.

gives this asymptotic behavior. The calculations are very sensitive of the initial value: a slight
change of x0 gives a more erratic behavior of the (xn, yn) for large n.

We can also use the weights (1.2) on the shifted lattice N + 1 − γ since w(−γ) = 0 for the
function w in (2.2), in a similar way as was done in [22, Sections 2.2 and 3.2]. The same recur-
rence relations still hold for the corresponding recurrence coefficients ân, b̂n. These recurrence
coefficients are related to the recurrence coefficients of the weights on N by

â2n(α, β, γ, c) = a2n(α− γ + 1, β − γ + 1, 2− γ, c),
b̂n(α, β, γ, c) = bn(α− γ + 1, β − γ + 1, 2− γ, c) + 1− γ.

We conjecture that in this case

lim
n→∞

x̂n = 1

and then (3.13) gives

lim
n→∞

(ŷn + n) = (1− α)(1− β).

The corresponding initial values are

ŷ0 = 0, x̂0 = x0(α− γ + 1, β − γ + 1, 2− γ, c) + γ − 1.

Again we believe this is the only initial value for which this asymptotic behavior holds. An
interesting question is to find out which initial values give an asymptotic behavior of the form

lim
n→∞

xn = α, or lim
n→∞

xn = β,

which are the other two zeros of the right hand side of (3.13).

7 Concluding remarks

The reason why we considered the hypergeometric weights (1.2) in this paper is twofold. On
one hand they generalize various other discrete weights that were already analyzed in the lite-
rature (Charlier, Meixner, generalized Charlier, generalized Meixner, generalized Krawtchouk),
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building up from explicit rational expressions for the recurrence coefficients to second order non-
linear recurrence and differential equations (Painlevé III and Painlevé V). On the other hand, it
was already known that Painlevé VI has special function solutions in terms of Wronskians with
hypergeometric functions [23, Section 6.2.5], and such Wronskians appear naturally in formulas
for the recurrence coefficients a2n and bn for orthogonal polynomials:

a2n =
∆n+1∆n−1

∆2
n

, bn =
∆∗n+1

∆n+1
− ∆∗n

∆n
,

where ∆n = det(mi+j)
n−1
i,j=0 is the Hankel determinant and ∆∗n is obtained from ∆n by repla-

cing the last column (mn−1,mn, . . . ,m2n−2)
T by (mn,mn+1, . . . ,m2n−1)

T and (mn)n∈N are the
moments

mn =

∞∑
k=0

knwk.

The moment m0 is a Gauss hypergeometric series and all the other moments can be obtained
from them by

mn =

(
c

d

dc

)n
m0,

so that ∆n and ∆∗n are Wronskians. The challenge was to find the discrete Painlevé equations
(Theorem 3.1) and the continuous Painlevé equation (Theorem 5.1) for the recurrence coefficients
of the orthogonal polynomials with these hypergeometric weights, using only standard properties
of orthogonal polynomials and a number of suitable transformations. The system of discrete

Painlevé equations (3.13)–(3.14) seems to be new but closely related to d-P
(
E

(1)
6 /A

(1)
2

)
, and the

Painlevé equation (5.1) is the σ-form of the Painlevé VI equation.
Note that one can write the weights in (1.2) as

wk =
Γ(γ)

Γ(α)Γ(β)

Γ(α+ k)Γ(β + k)

Γ(γ + k)Γ(k + 1)
ck := w(k)

and that w(−1) = 0, which gives a boundary condition for the weights on the lattice N =
{0, 1, 2, 3, . . .}. One also has w(−γ) = 0 so that one can also use these weights on the shifted
lattice N + 1− γ = {1− γ, 2− γ, 3− γ, . . .}, as was done for generalized Charlier and Meixner
polynomials in [22]. The recurrence coefficients will satisfy the same discrete Painlevé equations
but with a different initial value because m0 and m1 are different hypergeometric series: one
has a20 = 0 and b0 = m1/m0 with

m0 =
Γ(γ)

Γ(α)γ(β)

∞∑
k=0

Γ(α+ k + 1− γ)Γ(β + k + 1− γ)

Γ(k + 1)Γ(k + 2− γ)
ck+1−γ

=
Γ(γ)Γ(α+ 1− γ)Γ(β + 1− γ)

Γ(2− γ)Γ(α)Γ(β)
c1−γ2F1(α+ 1− γ, β + 1− γ; 2− γ; c),

and m1 = c d
dcm0. The same Painlevé VI σ-equation will hold, but the solution will be a different

special function solution coming from a different hypergeometric seed function. The general case
is obtained by taking a combination of both lattices, giving a one parameter family of special
function solutions of Painlevé VI.

Note that nonlinear recurrence relations for the recurrence coefficients of these orthogonal
polynomials were found by Dominici in [8, Theorem 4], but these were of higher order and were
not identified as discrete Painlevé equations. Our version (3.13)–(3.14) has the advantage that
one can predict the asymptotic behavior of a2n and bn (or xn and yn) as n→∞ from them, and
in Section 6 we conjectured this asymptotic behavior when the weights are on the lattice N and
on the shifted lattice N + 1− γ.
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[13] Grammaticos B., Ramani A., Discrete Painlevé equations: a review, in Discrete Integrable Systems, Lecture
Notes in Phys., Vol. 644, Springer, Berlin, 2004, 245–321.

[14] Hounkonnou M.N., Hounga C., Ronveaux A., Discrete semi-classical orthogonal polynomials: generalized
Charlier, J. Comput. Appl. Math. 114 (2000), 361–366.

[15] Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics
and its Applications, Vol. 98, Cambridge University Press, Cambridge, 2005.

[16] Ismail M.E.H., Nikolova I., Simeonov P., Difference equations and discriminants for discrete orthogonal
polynomials, Ramanujan J. 8 (2004), 475–502.

[17] Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, J. Phys. A: Math. Theor.
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