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Xiaoyue XIA

Department of Mathematics, The Ohio State University,
100 Math Tower, 231 West 18th Avenue, Columbus OH, 43210-1174, USA

E-mail: xiaxiaoyue9@gmail.com

Received April 04, 2018, in final form August 30, 2018; Published online September 08, 2018

https://doi.org/10.3842/SIGMA.2018.095

Abstract. Recently in a paper by Lin, Dai and Tibboel, it was shown that the third and
fourth Painlevé equations have tronquée and tritronquée solutions. We obtain global infor-
mation about these tronquée and tritronquée solutions. We find their sectors of analyticity,
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the singularities near the boundaries of the analyticity sectors. We also correct slight errors
in the paper mentioned.
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1 Introduction

The well-known Painlevé equations were first introduced by Painlevé more than a century ago
and have been investigated by many researchers. The Painlevé equations define new functions
called Painlevé transcendents, which are considered as special nonlinear functions and their
asymptotic behavior is of particular importance. For an overview of Painlevé equations and the
asymptotic behavior of Painlevé transcendents please see, e.g., [2] and [14]. In recent decades
there has been revived interest in Painlevé equations as they play important roles in various
mathematical and physical applications (see, e.g., [2, 7, 13, 14, 22, 23] for references to applica-
tions).

Boutroux first studied a family of particular solutions of the first Painlevé equations PI, which
he named “tronquée” and “tritronquée” solutions in [1]. These special solutions of Painlevé
equations have pole-free sectors while generic solutions have poles accumulating at ∞ in all
sectors. Tronquée and tritronquée solutions receive attention not only for their interesting
analytic property but also because they appear in a number of problems such as the Ising
model [29], the critical behavior in the NLS/Toda lattices [10, 11] and the analysis of the cubic
oscillator [28].

For the first Painlevé equation some pioneering works based on the powerful techniques
of isomonodromic deformation and reduction to Riemann–Hilbert problem were done in the
study of tronquée solutions by Kapaev and coauthors. In [20] and [24] the Stokes constant for
the tritronquée solution of PI was calculated for the first time. In [22] the global asymptotic
behavior of the tronquée solutions of PI was described with connection formulae presented.
In [23] and [17] the global asymptotic behavior of the tronquée solutions of PII was described
with connection formulae presented. In [21] the global asymptotics of the solutions of the fourth
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Painlevé equation PIV including its tronquée solutions was analyzed in detail. In [12] an fourth-
order nonlinear ODE which controls the pole dynamics in the general solution of equation P2

I

was studied. See also the monograph [14] for a summary of recent developments in the theory
of Painlevé equations based on this Riemann–Hilbert-isomonodromy method.

There is an impressive body of work on tronquée solutions and we only mention a few con-
tributions here. Using approaches different from the Riemann–Hilbert-isomonodromy method
Costin and coauthors analyzed tronquée solutions of PI in [9] and [8] and obtained similar re-
sults to those in [20] and [24]. In [15] the existence of the tritronquée solutions of P2

I , the second
member in the PI hierarchy was proved. In [19] the existence of tronquée solutions of the second
Painlevé hierarchy was proved. For the location of poles for the Hasting–McLeod solution to the
second Painlevé equation please see [16], in which a special case of Novokshenov conjecture [31]
was also proved. For the tronquée solutions to the third Painlevé equation please see [27], which
followed the idea in [18].

In this paper the tronquée and tritronquée solutions of the third and fourth Painlevé equation
are studied:

PIII :
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=
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PIV :
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y +

β

y
, (1.1)

where α, β, γ and δ are arbitrary complex numbers. By Bäcklund transformations (see [30])
PIII can be reduced to

P
(i)
III :
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dx2
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1
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(
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dx

)2
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dy

dx
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x

(
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)
+ y3 − 1

y
, (1.2)

P
(ii)
III :

d2y

dx2
=

1

y

(
dy

dx

)2

− 1

x

dy

dx
+

1

x

(
y2 + β

)
− 1

y
. (1.3)

In a famous paper [29] by McCoy, Tracy and Wu, a one-parameter family of tronquée solutions
of a special case of (1.2) where α = 2ν, β = −2ν was constructed, whose asymptotics at ∞
was congruent to ours ((2.1) and (3.1)) and asymptotic expansion for small x was obtained.
Furthermore, in a recent paper [13] by Fasondini et al. a comprehensive computer simulation
of the McCoy–Tracy–Wu solution was given. The computer pictures of the pole distributions
in [13] provide a good illustration of our description of the asymptotic position of poles in,
e.g., (2.16).

(1.3) was studied as the degenerate PIII in [25] and [26], and the position of the first array of
poles was found in [26] via isomonodromy methods.

We base our methods on the results in [3] and [6], which used the technique of Borel sum-
mation to describe the Stokes phenomenon. We obtain representations of tronquée solutions
as Borel summed transseries (see also [5]), as well as the position of the first array of poles,
bordering the sector of analyticity. We will first use a simple example to briefly illustrate some
concepts in the Borel summation method. Please see also [8, Section 5] for an introduction.

In the following, we denote by Lφ the Laplace transform

f 7−→
∫ ∞eiφ

0
f(p)e−xpdp,

where φ ∈ R. See also [3, p. 8] for the notation.
Assume that we have a formal series

f̃(w) =

∞∑
n=0

anw
−r−n, Re(r) > 0,
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where the series
∞∑
n=0

anx
n has a positive radius of convergence. The Borel transform of f̃ is

defined to be the formal power series

(
Bf̃
)
(p) :=

∞∑
n=0

anp
n+r−1

Γ(n+ r)
.

In most cases the explicit solution of a differential equation is not known. We may obtain
classical asymptotic series as formal power series solutions, but these formal solutions do not
contain parameters that help us distinguish between actual solutions. This is illustrated in the
following simple ordinary differential equation at the irregular singularity at x =∞

y′ + y =
1

x2
. (1.4)

The unique formal power series solution for x→∞ is

ỹ0(x) =

∞∑
n=1

n!

xn+1

and the general solution to (1.4) is

y(x;C) = y0(x) + Ce−x, where y0(x) = e−x
∫ x

x1

es

s2
ds ∼ ỹ0(x) as x→ +∞.

The idea of transseries solution is a completion of classical formal power series solution in
the sense that the transseries solution representation includes the free parameters which appear
in the actual solutions. In the example above, if we let

ỹ(x) = ỹ0(x) + Ce−x for x→ +∞, (1.5)

then (1.5) is a formal solution to (1.4) and the simplest example of a transseries.
Under appropriate conditions (see [3, 4, 6]), given φ, the operator LφB is a one-to-one map

between the transseries solutions and actual solutions. In the example (1.4), the actual solutions
have representation:

y(x) =

{
LφBỹ0(x) + C+e−x, −φ = arg(x) ∈

(
0, π2

)
,

LφBỹ0(x) + C−e−x, −φ = arg(x) ∈
(
−π

2 , 0
)
.

The value C+ − C− is called the Stokes constant. This representation is a trivial example of
Borel summed representation of solutions. In the case of nonlinear systems such as (1.8), the
transseries solution is of the form (4.1) and the Borel summed representation of actual solutions
is of the form (4.3).

In this paper we study tronquée solutions of (1.2), (1.3) and (1.1) by first transforming each
of them into a second-order differential equation of the following form

h′′(w)− h(w) +
1

w

[
(β2 − β1)h(w) + (β2 + β1)h

′(w)
]

= g(w, h, h′), (1.6)

where β1 and β2 are constants and g(w, h, h′) is analytic at (∞, 0, 0). See (3.1) for the change of
variable for (1.2), see (3.7) for the change of variable for (1.3) and see (3.12), (3.18) and (3.25)
for the change of variable for (1.1). Next we make the substitution

[
h(w)
h′(w)

]
=

 1− β1
2w

1 +
β2
2w

−1− β1
2w

1− β2
2w

u(w). (1.7)
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Then u is a solution to the following normalized (see [6]) 2-dimensional differential system:

u′ +

(
Λ̂ +

B̂

w

)
u = g(w,u), (1.8)

where

Λ̂ =

[
1 0
0 −1

]
, B̂ =

[
β1 0
0 β2

]
,

and g(w,u) is analytic at (∞,0) with g(w,u) = O
(
w−2

)
+O

(
|u|2

)
as w →∞ and u→ 0.

We obtain information about the tronquée and tritronquée solutions of the normalized sys-
tem (1.8) such as their existence, regions of analyticity and asymptotic position of poles through
which we obtain corresponding results regarding tronquée and tritronquée solutions of PIII

and PIV. See also [8] in which a similar approach was used to study the tronquée solutions
of the first Painlevé equation.

2 Tronquée solutions of (1.6)

2.1 Formal solutions and tronquée solutions of (1.6)

In Proposition 2.1 and Theorem 2.2 we present formal and actual solutions on the right half
w-plane S1 :=

{
w : arg(w) ∈

(
−π

2 ,
π
2

)}
. Then through a simple symmetry transformation we

obtain solutions in the left half plane S2 :=
{
w : arg(w) ∈

(
π
2 ,

3π
2

)}
. We start with the formal

expansions of the solutions.

Assume that d is a ray of the form eiφR+ with φ ∈
(
−π

2 ,
π
2

)
. We have the following results on

transseries solutions, formal expansions in powers of 1/w and e−w (see [6]), of (1.6) valid on d
and, moreover, in the sector S1:

Proposition 2.1. Assume that d is a ray of the form eiφR+ with φ ∈
(
−π

2 ,
π
2

)
. Then

(i) the one-parameter family of transseries solutions of (1.6) satisfying h(w)→ 0 as |w| → ∞
on d are

h̃(w) = h̃0(w) +

∞∑
k=1

Cke−kww−β1ks̃k(w), (2.1)

where for each k ≥ 1

s̃k(w) =
∞∑
j=0

sk,j
wj

is a formal power series in w−1.

(ii) The formal power series in w−1

h̃0(w) =
∞∑
j=2

h0,j
wj

is the unique formal power series solution of (1.6).
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The results in [6] provide us with the relation between these transseries solutions and actual
solutions.

In the following, we denote by Lφ the Laplace transform

f 7−→
∫ ∞eiφ

0
f(p)e−xpdp,

where φ ∈ R. See also [3, p. 8] for the notation.

Theorem 2.2. Let d, h̃0(w) and s̃k(w) be as in Proposition 2.1. Let h(w) be a solution to (1.6)
on d for |w| large enough satisfying

h(w)→ 0, w ∈ d, |w| → ∞.

Then

(i) There is a unique pair of constants (C+, C−) associated with h(w), and h(w) has the
following representations

h(w) = LφH0(w) +
∞∑
k=1

Ck+e−kwwkM1LφHk(w), −φ = arg(w) ∈
(

0,
π

2

)
, (2.2)

h(w) = LφH0(w) +
∞∑
k=1

Ck−e−kwwkM1LφHk(w), −φ = arg(w) ∈
(
−π

2
, 0
)
, (2.3)

where

M1 = bRe(−β1)c+ 1, H0 = Bh̃0,
Hk = Bh̃k = B

(
w−kβ1−kM1 s̃k

)
, k = 1, 2, . . . ,

where each Hk is analytic on the Riemann surface of C\ (Z+ ∪ Z−), and the branch cut
for each Hk, k ≥ 1, is chosen to be (−∞, 0].

(ii) There exists ε0 > 0 such that for each 0 < ε ≤ ε0 there exist δε > 0, Rε > 0 such that h(w)
can be analytically continued to (at least) the following region

San,ε(h(w)) = S+
ε ∪ S−ε , (2.4)

where

S−ε =
{
w : |w| > Rε, arg(w) ∈

[
−π

2
− ε, π

2
− ε
]

and |C−e−ww−β1 | < δ−1ε

}
,

S+
ε =

{
w : |w| > Rε, arg(w) ∈

[
−π

2
+ ε,

π

2
+ ε
]

and |C+e−ww−β1 | < δ−1ε

}
. (2.5)

Consequently, h(w) is analytic (at least) in

San(h) =
⋃

0<ε≤ε0

(
S−ε ∪ S+

ε

)
. (2.6)

(iii) h(w) ∼ h0(w) in S1.

Note 2.3.

(i) It is straightforward to check that if Re(β1) > 0, San contains all but a compact subset of iR.
In other words there exists R0 > 0 such that h(w) is analytic in the closure of S1\DR0 ,
where S1 is the open right half plane and DR0 = {|w| < R0} is the open disk centered at
origin with radius R0.



6 X. Xia

(ii) On the other hand if Re(β1) < 0, Scan contains all but a compact subset of iR. We point
out that in particular, the solution is not analytic in S1\DR0 for any R0 > 0, contrary to
the claim in [27]. Singularities of the tronquée solutions exist for large w in S1 as seen in
Theorem 2.4, 2.5, 3.2, 3.3, 3.9 and 3.10.

Theorem 2.4 (asymptotic position of singularities). Let h, C+ and C− be as in Theorem 2.2.

(i) Assume C+ 6= 0. Denote

ξ+(w) = C+w
−β1e−w. (2.7)

Then

h(w) ∼
∞∑
m=0

Fm(ξ+(w))

wm
, |w| → ∞, w ∈ D+

w ,

where for each m ≥ 0, Fm is analytic at ξ = 0 and

D+
w =

{
|w| > R : argw ∈

(
−π

2
+ δ,

π

2
+ δ
)
, dist (ξ+(w),Ξ) > ε, |ξ(w)| < ε−1

}
(2.8)

for any δ, ε > 0 small enough and R large enough, and where Ξ is the set of singularities
of F0(ξ). F0(ξ) satisfies

F0(0) = 0, F ′0(0) = 1. (2.9)

(ii) Assume C+ 6= 0, and ξs ∈ Ξ is a singularity of F0. Then the singular points of h, w+
n ,

near the boundary {w : arg(w) = π/2} of the sector of analyticity are given asymptotically
by

w+
n = 2nπi− β1 ln(2nπi) + ln(C+)− ln(ξs) + o(1) (2.10)

as n→∞.

(iii) Assume C− 6= 0. Denote

ξ−(w) = C−w
−β1e−w. (2.11)

Then

h(w) ∼
∞∑
m=0

Fm(ξ−(w))

wm
, |w| → ∞, w ∈ D−w ,

where

D−w =
{
|w| > R : argw ∈

(
−π

2
− δ, π

2
− δ
)
, dist(ξ−(w),Ξ) > ε, |ξ(w)| < ε−1

}
(2.12)

for any δ, ε > 0 small enough and R large enough, and where Fm, m ≥ 0, and Ξ are as
described in (i).

(iv) Assume C− 6= 0, and ξs ∈ Ξ is a singularity of F0. Then the singular points of h, w−n , near
the boundary {w : arg(w) = −π/2} of the sector of analyticity are given asymptotically by

w−n = −2nπi− β1 ln(−2nπi) + ln(C−)− ln(ξs) + o(1)

as n→∞.

The expression of F0 (see (3.5), (3.11), (3.17) and (3.23)) is obtained explicitly in each case
where asymptotic position of singularities is presented.
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2.2 Tritronquée solutions of (1.6)

The information on formal and actual tronquée solutions of (1.6) in the left half plane S2 :={
w : arg(w) ∈

(
π
2 ,

3π
2

)}
is obtained by means of a simple transformation

h(w) = ĥ(−w), w̃ = −w.

(1.6) is rewritten as

ĥ′′(w̃)− ĥ(w̃) +
1

w̃

[
(β1 − β2)ĥ(w̃) + (β1 + β2)ĥ

′(w̃)
]

= g
(
−w̃, ĥ,−ĥ′

)
, (2.13)

which is of the form (1.6) with β1 and β2 exchanged, and thus all results in Proposition 2.1,
Theorems 2.2 and 2.4 apply. Without repeating all of the results, we introduce some notations
needed for describing the tritronquée solutions of (1.6).

The small transseries solutions of (2.13) in the right half w̃-plane is

h̃l(w̃) = h̃0(−w̃) +

∞∑
k=1

Cke−kw̃w̃−β2k t̃k(w̃),

where for each k ≥ 1, t̃k(w̃) is a formal power series in w̃−1.

Assume that ĥ(w̃) is an actual solution to (2.13) on d = eiθR+ with cos θ > 0, such that
ĥ(w̃) = o(1) as |w̃| → ∞. Then there exists a unique pair of constants

(
Ĉ+, Ĉ−

)
such that

ĥ(w̃) =


LφĤ0(w̃) +

∞∑
k=1

Ĉk+e−kw̃w̃kM2LφĤk(w̃), −φ = arg(w̃) ∈
(

0,
π

2

)
,

LφĤ0(w̃) +
∞∑
k=1

Ĉk−e−kw̃w̃kM2LφĤk(w̃), −φ = arg(w̃) ∈
(
−π

2
, 0
)
,

where

M2 = bRe(−β2)c+ 1, Ĥ0(p) = −H0(−p), Ĥk = B
(
w−kβ2−kM2 t̃k

)
, k ≥ 1,(2.14)

where each Ĥk is analytic in the Riemann surface of C\(Z+ ∪ Z−), and the branch cut for
each Ĥk, k ≥ 1, is chosen to be (−∞, 0]. Note that the second equation in (2.14) holds because
the power series solution of (2.13) must be h̃0(−w̃). By the definition of the Borel transform
(see Appendix A) we have Ĥ0(p) = −H0(−p).

By Theorem 2.2(ii), ĥ is analytic at least on

Ŝan(h) := −San
(
ĥ
)
,

where San(ĥ) is given by (2.4)–(2.6) with β1 replaced by β2. Denote ξ̂± = Ĉ±w̃
−β2e−w̃ as in (2.7)

and (2.11). By Theorem 2.4 if Ĉ+ 6= 0 then

ĥ(w̃) ∼
∞∑
m=0

F̂m
(
ξ̂+(w̃)

)
w̃m

, |w̃| → ∞, w̃ ∈ D+
w̃ ,

where F̂m are analytic at ξ = 0. If Ĉ− 6= 0 then

ĥ(w̃) ∼
∞∑
m=0

F̂m(ξ̂−(w̃))

w̃m
, |w̃| → ∞, w̃ ∈ D−w̃ ,
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where D±w̃ are defined by (2.8) and (2.12) with ξ± replaced by ξ̂± respectively and Ξ replaced

by Ξ̂ which is defined to be the set of singularities of F̂0.
Tritronquée solutions are special cases of tronquée solutions with C+ = 0 or C− = 0. Denote

h+(w) = LφH0(w), − φ = arg(w) ∈ (0, π),

h−(w) = LφH0(w), − φ = arg(w) ∈ (−π, 0),

ĥ+(w) = LφĤ0(w), − φ = arg(w) ∈ (0, π),

ĥ−(w) = LφĤ0(w), − φ = arg(w) ∈ (−π, 0).

Corollary 2.5. Assume φ ∈
(
0, π2

)
. Let Ct1, Ct2, Ct3, Ct4 be the constants in the transseries

of h± and ĥ±, namely,

h+(w) = L−φH0(w) = LφH0(w) +
∞∑
k=1

(
Ct1
)k

e−kwwM1kLφHk(w),

h−(w) = LφH0(w) = L−φH0(w) +

∞∑
k=1

(
Ct2
)k

e−kwwM1kL−φHk(w),

ĥ+(w) = L−φĤ0(w) = LφĤ0(w) +

∞∑
k=1

(
Ct3
)k

e−kwwM2kLφĤk(w),

ĥ−(w) = LφĤ0(w) = L−φĤ0(w) +

∞∑
k=1

(
Ct4
)k

e−kwwM2kL−φĤk(w). (2.15)

(i) We have

h+(w) = ĥ−(−w), h−(w) = ĥ+(−w).

A consequence of Theorem 2.2(ii) is that for any δ > 0 there exists R > 0 such that h+ is
analytic in the sector

T+
δ,R :=

{
w : |w| > R, arg(w) ∈

[
−π

2
+ δ,

3π

2
− δ
]}

,

and h− is analytic in the sector

T−δ,R :=

{
w : |w| > R, arg(w) ∈

[
−3π

2
+ δ,

π

2
− δ
]}

.

(ii) Assume ξs ∈ Ξ is a singularity of F0 (see Theorem 2.4(ii)) and ξ̂s ∈ Ξ̂ is a singularity
of F̂0. Then the singular points of h+, w−1,n near the boundary

{
w : argw = −π

2

}
and w+

1,n

near the boundary
{
w : argw = 3π

2

}
, are given asymptotically by

w−1,n = −2nπi− β1 ln(−2nπi) + ln
(
Ct1
)
− ln(ξs) + o(1),

w+
1,n = −2nπi + β2 ln(2nπi)− ln

(
Ct4
)

+ ln
(
ξ̂s
)

+ o(1), (2.16)

as n→∞. The singular points of h−, w−2,n near the boundary
{
w : argw = −3π

2

}
and w+

2,n

near the boundary
{
w : argw = π

2

}
, are given asymptotically by

w−2,n = 2nπi + β2 ln(−2nπi)− ln
(
Ct3
)

+ ln
(
ξ̂s
)

+ o(1),

w+
2,n = 2nπi− β1 ln(2nπi) + ln

(
Ct2
)
− ln(ξs) + o(1).



Tronquée Solutions of the Third and Fourth Painlevé Equations 9

3 Normalizations and Tronquée solutions of PIII and PIV

3.1 Tronquée solutions of P
(i)
III

If y(x) is a solution of (1.2) which is asymptotic to a formal power series on a ray d which is
not an antistokes line (lines on which argw = ±π

2 where w is the independent variable in the
normalized equation), then by dominant balance we have

y(x) ∼ l(x), |x| → ∞, x ∈ d,

where

l(x) = A−
(
α+A2β

4

)
1

x

for some A satisfying A4 = 1. Fix some A satisfying A4 = 1 and make the change of variables

w = 2Ax, y(x) = h(w) + l
( w

2A

)
. (3.1)

Then the equation (1.2) is transformed into an equation for h of the form (1.6) with

β1 =
1

2
+
α

4
− A2β

4
, β2 =

1

2
− α

4
+
A2β

4
.

Results in Section 2 apply. Let the notations be the same as in Section 2.

Theorem 3.1.

(i) There is a unique formal power series solution

ỹ0(x) =

∞∑
k=0

y0,k
xk

to (1.2), where

y0,0 = A, y0,1 = −α+A2β

4
.

(ii) There is a one-parameter family FA,1 of tronquée solutions of (1.2) in A−1S1 with repre-
sentations

y(x) =


l(x) + h+(2Ax) +

∞∑
k=1

Ck+e−2Akx(2Ax)kM1LφHk(2Ax), −φ ∈
(

0,
π

2

)
,

l(x) + h−(2Ax) +
∞∑
k=1

Ck−e−2Akx(2Ax)kM1LφHk(2Ax), −φ ∈
(
−π

2
, 0
)
.

(3.2)

(iii) There is a one-parameter family FA,2 of tronquée solutions of (1.2) in A−1S2 with repre-
sentations

y(x) =


l(x) + h−(2Ax) +

∞∑
k=1

Ĉk+e2Akx(−2Ax)kM2LφĤk(−2Ax), −φ ∈
(

0,
π

2

)
,

l(x) + h+(2Ax) +

∞∑
k=1

Ĉk−e2Akx(−2Ax)kM2LφĤk(−2Ax), −φ ∈
(
−π

2
, 0
)
.

(3.3)
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(iv) For each tronquée solution in (ii) or (iii) we have

y(x) ∼ ỹ0(x), x ∈ d = A−1eiθR+, |x| → ∞,

and the solution is analytic at least in (2A)−1San if cos θ > 0, in (2A)−1Ŝan if cos θ < 0.
San and Ŝan are as defined in Theorem 2.2 and Section 2.2.

From Theorem 2.4 we obtain information about the singularities of y. Assume that y is
a tronquée solution with representation (3.2) or (3.3). Let ξ+ = C+e−ww−β1 , ξ− = C−e−ww−β2 ,
Fm and F̂m be as in Section 2. Then the equation satisfied by F0 is

ξ2
d2

dξ2
F0(ξ) + ξ

d

dξ
F0(ξ)−

ξ2
(

d
dξF0(ξ)

)2
A+ F0(ξ)

− (A+ F0(ξ))
3

4A2
+

1

4A2(A+ F0(ξ))
= 0. (3.4)

The equation of F̂0 is the same as (3.4). The solution satisfying (2.9) is

F0(ξ) =
2Aξ

2A− ξ
. (3.5)

Theorem 3.2.

(i) Assume y(x) ∈ FA,1 is given by the representation (3.2). If C+ 6= 0, then the singular
points of y, x+n , near the boundary {x : arg(2Ax) = π/2} of the sector of analyticity are
given asymptotically by

(2A)x+n = 2nπi− β1 ln(2nπi) + ln(C+)− ln(2A) + o(1), n→∞.

If C− 6= 0, then the singular points of y, x−n , near the boundary {x : arg(2Ax) = −π/2} of
the sector of analyticity are given asymptotically by

(2A)x−n = −2nπi− β1 ln(−2nπi) + ln(C−)− ln(2A) + o(1), n→∞.

(ii) Assume y(x) ∈ FA,2 is given by the representation (3.3). If Ĉ+ 6= 0, then the singular
points of y, x̃+n , near the boundary {x̃ : arg(−2Ax̃) = π/2} of the sector of analyticity are
given asymptotically by

(−2A)x̃+n = 2nπi− β2 ln(2nπi) + ln
(
Ĉ+

)
− ln(2A) + o(1), n→∞.

If Ĉ− 6= 0, then the singular points of y, x̃−n , near the boundary {x̃ : arg(−2Ax̃) = −π/2}
of the sector of analyticity are given asymptotically by

(−2A)x̃−n = −2nπi− β2 ln(−2nπi) + ln
(
Ĉ−
)
− ln(2A) + o(1), n→∞.

From Theorem 2.4 we obtain the following results about tritronquée solutions of (1.2):

Theorem 3.3. (1.2) has two tritronquée solutions y+(x) and y−(x) given by

y+(x) = l(x) + h+(2Ax), y−(x) = l(x) + h−(2Ax).

Let Ctj, 1 ≤ j ≤ 4 be as in (2.15). Then

(i) FA,1 ∩ FA,2 = {y+, y−}.
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(ii) For each δ > 0 there exists R > 0 such that y+(x) is analytic in A−1T+
δ,R, and y+ is

asymptotic to y0(x) in the sector⋃
−π

2
<φ< 3π

2

(
A−1eiφR+

)
.

The singular points of y+(x), x±1,n, near the boundary of the sector of analyticity are given
asymptotically by

(2A)x−1,n = −2nπi− β1 ln(−2nπi) + ln
(
Ct1
)
− ln(2A) + o(1), n→∞,

(2A)x+1,n = −2nπi + β2 ln(2nπi)− ln
(
Ct4
)

+ ln(2A) + o(1), n→∞.

(iii) For each δ > 0 there exists R > 0 such that y−(x) is analytic in A−1T−δ,R, and y− is
asymptotic to y0(x) in the sector⋃

− 3π
2
<φ<π

2

(
A−1eiφR+

)
.

The singular points of y−(x), x±2,n, near the boundary of the sector of analyticity are given
asymptotically by

(2A)x−2,n = 2nπi + β2 ln(−2nπi)− ln
(
Ct3
)

+ ln(2A) + o(1), n→∞,
(2A)x+2,n = 2nπi− β1 ln(2nπi) + ln

(
Ct2
)
− ln(2A) + o(1), n→∞.

3.2 Tronquée solutions of P
(ii)
III

If y(x) is a solution of (1.3) which is asymptotic to a formal power series on a ray d which is
not an antistokes line, then by dominant balance we have

y(x) ∼ l(x), |x| → ∞, x ∈ d,

where

l(x) = Ax1/3 − β

3Ax1/3
(3.6)

for some A satisfying A3 = 1. Fix an A satisfying A3 = 1 and make the change of variables

w = (27A/4)1/2x2/3, y(x) = x1/3h(w) + l(x). (3.7)

Then the equation (1.3) is transformed into an equation for h of the form (1.6) with

β1 = β2 =
1

2
.

Let the notations be the same as in Section 2. In view of the transformation (3.7), we denote

S
(0)
R :=

{
x : |x| ≥ R, arg(x) ∈

[
−3π

4
− 3 argA

4
,
3π

4
− 3 argA

4

]}
,

S
(1)
R :=

{
x : |x| ≥ R, arg(x) ∈

[
3π

4
− 3 argA

4
,
9π

4
− 3 argA

4

]}
,

S
(2)
R :=

{
x : |x| ≥ R, arg(x) ∈

[
9π

4
− 3 argA

4
,
15π

4
− 3 argA

4

]}
,
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S
(3)
R :=

{
x : |x| ≥ R, arg(x) ∈

[
15π

4
− 3 argA

4
,
21π

4
− 3 argA

4

]}
.

We notice that for j ∈ {0, 2}, S(j)
R is mapped under the transformation (3.7) bijectively to the

closed sector S1\DR0 in the w-plane, where R0 = R2/3 (see also Note 2.3); for j ∈ {1, 3}, S(j)
R is

mapped bijectively to the closed sector S2\DR0 in the w-plane.

Theorem 3.4.

(i) There is a unique formal power series solution

ỹ0(x) = x1/3
∞∑
k=0

y0,k

x2k/3

to (1.3), where

y0,0 = A, y0,1 = − β

3A
.

(ii) For each j ∈ {0, 1, 2, 3}, there is a one-parameter family FA,j of tronquée solutions of (1.3)

in S
(j)
R where

y(x) = l(x) + x1/3h(w), w = Kx2/3, K = (27A/4)1/2.

If j is even, then h(w) has the representations

h(w) =


h+(w) +

∞∑
k=1

Ck+e−kwLφHk(w), −φ ∈
(

0,
π

2

]
,

h−(w) +

∞∑
k=1

Ck−e−kwLφHk(w), −φ ∈
[
−π

2
, 0
)
.

(3.8)

If j is odd, then h(w) has the representations

h(w) =


h−(w) +

∞∑
k=1

Ĉk+ekwLφĤk(−w), −φ ∈
(

0,
π

2

]
,

h+(w) +

∞∑
k=1

Ĉk−ekwLφĤk(−w), −φ ∈
[
−π

2
, 0
)
.

(3.9)

(iii) Let y(x) be a tronquée solution in FA,j. If j is even, the region of analyticity contains the

corresponding branch of
(
K−1San(h)

)2/3
, which contains S

(j)
R for R large enough. If j is

odd, the region of analyticity contains the corresponding branch of
(
K−1Ŝan(h)

)2/3
, which

contains S
(j)
R for R large enough, and

y(x) ∼ ỹ0(x), x ∈ d, |x| → ∞,

where d is a ray whose infinite part is contained in the interior of S
(j)
R .

Assume that y(x) is a tronquée solution to (1.3) and h is defined by (3.7). Then h has the
representation (3.8) or (3.9). From Theorem 2.4 we obtain information about singularities of h.
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Let ξ+ = C+e−ww−1/2, ξ− = C−e−ww−1/2, Fm and F̂m be as in Section 2. Then the equation
satisfied by F0 and F̂0 is the same

ξ2
d2

dξ2
F0(ξ) +

(
d

dξ
F0(ξ)

)
ξ −

(
d
dξF0(ξ)

)2
ξ2

A+ F0(ξ)
− (A+ F0(ξ))

2

3A
+

1

3A(A+ F0(ξ))
= 0. (3.10)

The solution satisfying (2.9) is

F0(ξ) =
36A2ξ

(6A− ξ)2
. (3.11)

Theorem 3.5.

(i) If j ∈ {0, 2}, then h has representation (3.8) for a unique pair of constants (C+, C−). If
C+ 6= 0, then the singular points of h, w+

n , near the boundary {w : argw = π/2} of the
sector of analyticity are given asymptotically by

w+
n = 2nπi− ln(2nπi)

2
+ ln(C+)− ln(6A) + o(1), n→∞.

If C− 6= 0, then the singular points of h, w−n , near the boundary {w : argw = −π/2} of
the sector of analyticity are given asymptotically by

w−n = −2nπi− ln(−2nπi)

2
+ ln(C−)− ln(6A) + o(1), n→∞.

(ii) If j ∈ {1, 3}, then h has representation (3.9) for a unique pair of constants
(
Ĉ+, Ĉ−

)
. If

Ĉ+ 6= 0, then the singular points of h, w̃+
n , near the boundary {w̃ : arg w̃ = −π/2} of the

sector of analyticity are given asymptotically by

w̃+
n = −2nπi +

ln(2nπi)

2
− ln

(
Ĉ+

)
+ ln(6A) + o(1), n→∞.

If Ĉ− 6= 0, then the singular points of h, w̃−n , near the boundary {w̃ : arg w̃ = π/2} of the
sector of analyticity are given asymptotically by

w̃−n = 2nπi +
ln(−2nπi)

2
− ln

(
Ĉ−
)

+ ln(6A) + o(1), n→∞.

Theorem 3.6.

(i) For each j ∈ {0, 2} we have a tritronquée solution y+j analytic in S
(j)
R

⋃
S
(j+1)
R for R large

enough, given by

y+j (x) = l(x) + h+(w).

(ii) For each j ∈ {1, 3} we have a tritronquée solution y−j analytic in S
(j)
R

⋃
S
(j+1)
R , where

S
(4)
R = S

(0)
R and R is large enough, given by

y−j (x) = l(x) + h−(w).

Let Ctj, 1 ≤ j ≤ 4 be as in (2.15). Then
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(iii) The singular points of h+(w), w±1,n, near the boundary of the sector of analyticity are given
asymptotically by

w−1,n = −2nπi− ln(−2nπi)

2
+ ln

(
Ct1
)
− ln(6A) + o(1),

w+
1,n = −2nπi +

ln(2nπi)

2
− ln

(
Ct4
)

+ ln(6A) + o(1).

(iv) The singular points of h−(w), w±2,n, near the boundary of the sector of analyticity are given
asymptotically by

w−2,n = 2nπi +
ln(−2nπi)

2
− ln

(
Ct3
)

+ ln(6A) + o(1),

w+
2,n = 2nπi− ln(2nπi)

2
+ ln

(
Ct2
)
− ln(6A) + o(1).

3.3 Tronquée solutions of PIV

By dominant balance we have four possibilities for the leading behavior of PIV. We shall study
them one by one.

y(x) ∼ l(x), |x| → ∞, x ∈ d.

3.3.1 Case 1

l(x) = −2x

3
+
α

x
.

Make the change of variables

x =
(√

3iw
)1/2

, y(x) = xh(w) + l(x). (3.12)

Then the equation (1.1) is transformed into an equation for h of the form (1.6) with

β1 = β2 =
1

2
.

Let the notations be the same as in Section 2. In view of the transformation (3.12), we denote

S
(0)
R :=

{
x : |x| ≥ R, arg(x) ∈

[
0,
π

2

]}
, S

(1)
R :=

{
x : |x| ≥ R, arg(x) ∈

[π
2
, π
]}

, (3.13)

S
(2)
R :=

{
x : |x| ≥ R, arg(x) ∈

[
π,

3π

2

]}
, S

(3)
R :=

{
x : |x| ≥ R, arg(x) ∈

[
3π

2
, 2π

]}
.

We notice that for j ∈ {0, 2}, S(j)
R is mapped under the transformation (3.7) bijectively to the

closed sector S1\DR2 in the w-plane, (see also Note 2.3); for j ∈ {1, 3}, S(j)
R is mapped bijectively

to the closed sector S2\DR2 in the w-plane.

Theorem 3.7.

(i) There is a formal power series solution of (1.1) of the form

ỹ0(x) = x
∞∑
k=0

y0,k
x2k

,

where

y0,0 = −2

3
, y0,1 = α.
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(ii) For each j ∈ {0, 1, 2, 3}, there is a one-parameter family FA,j of tronquée solutions of (1.1)

in S
(j)
R , where

y(x) = l(x) + xh(w), w =
x2√
3i
.

If j is even, then h(w) has the representations

h(w) =


h+(w) +

∞∑
k=1

Ck+e−kwLφHk(w), −φ ∈
(

0,
π

2

]
,

h−(w) +

∞∑
k=1

Ck−e−kwLφHk(w), −φ ∈
[
−π

2
, 0
)
.

(3.14)

If j is odd, then h(w) has the representations

h(w) =


h−(w) +

∞∑
k=1

Ĉk+ekwLφĤk(−w), −φ ∈
(

0,
π

2

]
,

h+(w) +

∞∑
k=1

Ĉk−ekwLφĤk(−w), −φ ∈
[
−π

2
, 0
)
.

(3.15)

(iii) Let y(x) be a tronquée solution in FA,j. If j is even, the region of analyticity contains the

corresponding branch of
(√

3iSan(h)
)1/2

, which contains S
(j)
R for R large enough. If j is

odd, the region of analyticity contains the corresponding branch of
(√

3iŜan(h)
)1/2

, which

contains S
(j)
R for R large enough, and

y(x) ∼ ỹ0(x), x ∈ d, |x| → ∞,

where d is a ray whose infinite part is contained in the interior of S
(j)
R .

Assume that y(x) is a tronquée solution to (1.1) satisfying y(x) ∼ −2x
3 and h is defined

by (3.12). Then h has representation (3.14) or (3.15). From Theorem 2.4 we obtain information
about singularities of h. Let ξ+ = C+e−ww−1/2, ξ− = C−e−ww−1/2, Fm and F̂m be as in
Section 2. Then the equation satisfied by F0 and F̂0 is the same

ξ2
d2

dξ2
F0(ξ) + ξ

d

dξ
F0(ξ)−

3ξ2
(

d
dξF0(ξ)

)2
2(3F0(ξ)− 2)

+
(3F0(ξ)− 2)3

24
+

(3F0(ξ)− 2)2

3
+

3F0(ξ)− 2

2
= 0. (3.16)

The solution satisfying (2.9) is

F0(ξ) =
4ξ

ξ2 + 2ξ + 4
(3.17)

with simple poles at ξ
(1)
s = −1−

√
3i and ξ

(2)
s = −1+

√
3i. Hence the statements in Theorems 3.5

and 3.6 hold true for function h, with S
(j)
R as defined in (3.13) and 6A in the formula replaced

by ξ
(i)
s , i = 1 or i = 2.
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3.3.2 Case 2

l(x) = −2x− α

x
.

Make the change of variables

x = (w)1/2 , y(x) = xh(w) + l(x). (3.18)

Then the equation (1.1) is transformed into an equation for h of the form (1.6) with

β1 = α+
1

2
, β2 = −α+

1

2
.

Let the notations be the same as in Section 2. In view of the transformation (3.12), we denote

S(0) :=
{
x : arg(x) ∈

(
−π

4
,
π

4

)}
, S(1) :=

{
x : arg(x) ∈

(
π

4
,
3π

4

)}
,

S(2) :=

{
x : arg(x) ∈

(
3π

4
,
5π

4

)}
, S(3) :=

{
x : arg(x) ∈

(
5π

4
,
7π

4

)}
. (3.19)

For j ∈ {0, 2}, S(j) is mapped under the transformation (3.7) bijectively to the right half w-
plane S1; for j ∈ {1, 3}, S(j) is mapped bijectively to the sector to the left half w-plane S2.

Theorem 3.8.

(i) There is a formal power series solution of (1.1) of the form

ỹ0(x) = x
∞∑
k=0

y0,k
x2k

,

where

y0,0 = −2, y0,1 = −α.

(ii) For each j ∈ {0, 1, 2, 3}, there is a one-parameter family FA,j of tronquée solutions of (1.1)
in S(j), where

y(x) = l(x) + xh(w), w = x2.

If j is even, then h(w) has the representations

h(w) =


h+(w) +

∞∑
k=1

Ck+e−kwwkM1LφHk(w), −φ ∈
(

0,
π

2

)
,

h−(w) +

∞∑
k=1

Ck−e−kwwkM1LφHk(w), −φ ∈
(
−π

2
, 0
)
.

(3.20)

If j is odd, then h(w) has the representations

h(w) =


h−(w) +

∞∑
k=1

Ĉk+ekw(−w)kM2LφĤk(−w), −φ ∈
(

0,
π

2

)
,

h+(w) +

∞∑
k=1

Ĉk−ekw(−w)kM2LφĤk(−w), −φ ∈
(
−π

2
, 0
)
.

(3.21)
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(iii) Let y(x) be a tronquée solution in FA,j. If j is even, then the region of analyticity contains
the corresponding branch of (San(h))1/2. If j is odd, then the region of analyticity contains

the corresponding branch of
(
Ŝan(h)

)1/2
, and

y(x) ∼ ỹ0(x), x ∈ d ⊂ S(j), |x| → ∞.

Assume that y(x) is a tronquée solution to (1.1) satisfying y(x) ∼ −2x and h is defined
by (3.18). Then h has representation (3.20) or (3.21). From Theorem 2.4 we obtain information
about singularities of h. Let Fm and F̂m be as in Section 2. Then the equation satisfied by F0

and F̂0 is the same

ξ2
d2

dξ2
F0(ξ) + ξ

d

dξ
F0(ξ)−

ξ2
(

d
dξF0(ξ)

)2
2(F0(ξ)− 2)

− 3(F0(ξ)− 2)3

8

− (F0(ξ)− 2)2 − F0(ξ)− 2

2
= 0. (3.22)

The solution satisfying (2.9) is

F0(ξ) =
2ξ

ξ + 2
(3.23)

with a simple pole at ξs = −2.

Theorem 3.9.

(i) If j ∈ {0, 2}, then h has representation (3.20) for a unique pair of constants (C+, C−). If
C+ 6= 0, then the singular points of h, at w+

n , near the boundary {w : argw = π/2
}

of the
sector of analyticity are given asymptotically by

w+
n = 2nπi− (α+ 1/2)ln(2nπi) + ln(C+)− ln(−2) + o(1), n→∞.

If C− 6= 0, then the singular points of h, w−n , near the boundary {w : argw = −π/2} of
the sector of analyticity are given asymptotically by

w−n = −2nπi− (α+ 1/2)ln(−2nπi) + ln(C−)− ln(−2) + o(1), n→∞.

(ii) If j ∈ {1, 3}, then h has representation (3.21) for a unique pair of constants
(
Ĉ+, Ĉ−

)
. If

Ĉ+ 6= 0, then the singular points of h, w̃+
n , near the boundary {w̃ : arg w̃ = −π/2} of the

sector of analyticity are given asymptotically by

w̃+
n = −2nπi + (−α+ 1/2)ln(2nπi)− ln

(
Ĉ+

)
+ ln(−2) + o(1), n→∞.

If Ĉ− 6= 0, then the singular points of h, w̃−n , near the boundary {w̃ : arg w̃ = π/2} of the
sector of analyticity are given asymptotically by

w̃−n = 2nπi + (−α+ 1/2)ln(−2nπi)− ln
(
Ĉ−
)

+ ln(−2) + o(1), n→∞.

Denote

T
(0)
δ,R :=

{
w : |w| > R, arg(w) ∈

[
−π

4
+ δ,

3π

4
− δ
]}

,

T
(1)
δ,R :=

{
w : |w| > R, arg(w) ∈

[
π

4
+ δ,

5π

4
− δ
]}

,

T
(2)
δ,R :=

{
w : |w| > R, arg(w) ∈

[
3π

4
+ δ,

7π

4
− δ
]}

,

T
(3)
δ,R :=

{
w : |w| > R, arg(w) ∈

[
−3π

4
+ δ,

π

4
− δ
]}

. (3.24)
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Theorem 3.10.

(i) Let j ∈ {0, 2}. For each δ > 0 there exists R large enough such that we have a tritronquée

solution y+j analytic in T
(j)
δ,R given by

y+j (x) = −2x+
α

x
+ h+

(
x2
)
.

(ii) Let j ∈ {1, 3}. For each δ > 0 there exists R large enough such that we have a tritronquée

solution y−j analytic in T
(j)
δ,R given by

y−j (x) = −2x+
α

x
+ h−

(
x2
)
.

Let Ctj, 1 ≤ j ≤ 4 be as in (2.15). Then

(iii) The singular points of h+(w), w±1,n, near the boundary of the sector of analyticity are given
asymptotically by

w−1,n = −2nπi− (α+ 1/2)ln(−2nπi) + ln(Ct1)− ln(−2) + o(1),

w+
1,n = −2nπi + (−α+ 1/2)ln(2nπi)− ln(Ct4) + ln(−2) + o(1).

(iv) The singular points of h−(w), w±2,n, near the boundary of the sector of analyticity are given
asymptotically by

w−2,n = 2nπi + (−α+ 1/2)ln(−2nπi)− ln(Ct3) + ln(−2) + o(1),

w+
2,n = 2nπi− (α+ 1/2)ln(2nπi) + ln(Ct2)− ln(−2) + o(1).

3.3.3 Case 3

l(x) =
A

x
+
αA+ β

2x3
, A2 = −b/2.

Make the change of variables

x = (w)1/2 , y(x) = x−1h(w) + l(x). (3.25)

Then the equation (1.1) is transformed into an equation for h of the form (1.6) with

β1 = −α
2

+
3A

2
, β2 =

α

2
− 3A

2
.

Let the notations be as in Section 2, S(j) be as in (3.19) and T
(j)
δ,R be as in (3.24).

Theorem 3.11.

(i) There is a formal power series solution of (1.1) of the form

ỹ0(x) =
1

x

∞∑
k=0

y0,k
x2k

,

where

y0,0 = A, y0,1 =
αA+ β

2
.
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(ii) For each j ∈ {0, 1, 2, 3}, there is a one-parameter family FA,j of tronquée solutions of (1.1)
in S(j), where

y(x) = l(x) + x−1h(w), w = x2.

If j is even, then h(w) has the representations

h(w) =


h+(w) +

∞∑
k=1

Ck+e−kwwkM1LφHk(w), −φ ∈
(

0,
π

2

)
,

h−(w) +

∞∑
k=1

Ck−e−kwwkM1LφHk(w), −φ ∈
(
−π

2
, 0
)
.

If j is odd, then h(w) has the representations

h(w) =


h−(w) +

∞∑
k=1

Ĉk+ekw(−w)kM2LφĤk(−w), −φ ∈
(

0,
π

2

)
,

h+(w) +

∞∑
k=1

Ĉk−ekw(−w)kM2LφĤk(−w), −φ ∈
(
−π

2
, 0
)
.

(iii) Let y(x) be a tronquée solution in FA,j. If j is even, then the region of analyticity contains
the corresponding branch of (San(h))1/2. If j is odd, then the region of analyticity contains

the corresponding branch of
(
Ŝan(h)

)1/2
, and

y(x) ∼ ỹ0(x), x ∈ d ⊂ S(j), |x| → ∞.

Theorem 3.12.

(i) Let j ∈ {0, 2}. For each δ > 0 there exists R large enough such that we have a tritronquée

solution y+j analytic in T
(j)
δ,R given by

y+j (x) =
A

x
+
αA+ β

2x3
+ h+

(
x2
)
.

(ii) Let j ∈ {1, 3}. For each δ > 0 there exists R large enough such that we have a tritronquée

solution y−j analytic in T
(j)
δ,R given by

y−j (x) =
A

x
+
αA+ β

2x3
+ h−

(
x2
)
.

Note 3.13. In this case, the corresponding F0 and F̂0 turn out to be ξ, which yield no singu-
larities for h. However, it does not imply that the poles are nonexistent. More research needs
to be done for this case.

4 Proofs and further results

4.1 Proof of Proposition 2.1

Let h and u be as defined in Section 1. We have a system of differential equations (1.8) for u. It
is known (see [3, 4, 6]) that it admits transseries solutions (i.e., formal exponential power series
solutions) of the form

ũ(w) = ũ0(w) +
∞∑
k=1

Cke−kww−β1kũk(w), (4.1)
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where ũ0(w) and ũk(w) are formal power series in w−1, namely

ũk(w) =

∞∑
r=0

uk,r
wr

, k ≥ 1, ũ0(w) =
∞∑
r=2

u0,r

wr
.

Also, ũ0(w) is the unique power series solution of (1.8). The coefficients in the series ũk can be
determined by substitution of the formal exponential power series ũ(w) into (4.1) and identifi-
cation of each coefficient of e−kw. Proposition 2.1 is then obtained through (1.7). Furthermore,

h̃0(w) = r1 · ũ0(w), s̃k(w) = r1 · ũk(w), r1 =

[
1− β1

2w
1 +

β2
2w

]
. (4.2)

4.2 Proof of Theorem 2.2

Let d = eiθR+ with cos θ > 0, and let u be a solution to (1.8) on d for w large enough, satisfying

u(w)→ 0, w ∈ d, |w| → ∞.

Theorem 3 in [4], Theorem 16, Lemma 17 and Theorem 19 in [6] imply the following results:

Proposition 4.1.

(i) For any d′ = eiθ
′R+ where cos θ′ > 0, the solution u(w) is analytic on d′ for w large enough

and u ∼ ũ0(w) on d′.

(ii) Given φ ∈
(
−π

2 , 0
)
∪
(
0, π2

)
, there exists a unique constant C(φ) such that u has the

following representation:

u(w) = LφU0(w) +

∞∑
k=1

(C(φ))ke−kwwkM1LφUk(w), (4.3)

where

U0 = Bũ0, Uk = B
(
w−kβ1−kM1ũk

)
, k = 1, 2, . . . , (4.4)

where for each k ≥ 1, Uk is analytic in the Riemann surface of C\ (Z+ ∪ Z−), and the
branch cut for Uk is chosen to be (−∞, 0]. The function C(φ) is constant on

(
−π

2 , 0
)

and
also constant on

(
0, π2

)
.

(iii) Let ε be small. There exist δ, R > 0 such that u(w) is analytic on

San,ε(u(w)) = S+
ε ∪ S−ε ,

where S± is as defined in (2.5).

We now return to the proof of Theorem 2.2. Assume that h(w) is a solution of (1.6) on
d = eiφR+ with cosφ > 0 for |w| > w0, where w0 > 0 is large enough. Without loss of generality

we may assume that w0 >

√
|β1β2|
2 . Thus the vector function u(w) defined by

u(w) =

 1− β1
2w

1 +
β2
2w

−1− β1
2w

1− β2
2w


−1 [

h(w)
h′(w)

]
(4.5)

is a solution of the differential system (1.8), and h(w) = r1 · u(w).
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Next we use the basic properties (see Lemmas A.1 and A.2) of the operators B and Lφ and
obtain the following

LφB
(
r1 · ũ0

)
= r1 · LφB

(
ũ0

)
= r1 · LφU0,

LφB
(
w−kβ1−kM1r1 · ũk

)
= r1 · LφB

(
w−kβ1−kM1ũk

)
= r1 · LφUk. (4.6)

By Proposition 4.1(i), given a ray d′ in the right half w-plane, h(w) = r1 · u(w) is analytic
on d′ for |w| large enough and is asymptotic to h̃0(w) = r1 · ũ0(w) on d′. From the represen-
tations (4.3), (4.4) in Proposition 4.1(ii) of u(w) and (4.6) we obtain the representations for
h(w) = r1 · u(w) as in (2.2) and (2.3). For |w| large enough, h(w) is analytic where u(w) is
analytic, hence Proposition 4.1(iii) implies Theorem 2.2(ii). Thus Theorem 2.2 is proved.

4.3 Proof of Theorem 2.4

Let h(w) and u(w) be as in the proof of Theorem 2.2. h(w) has representations (2.2) and (2.3).
We will consider the case C+ 6= 0 and prove (i) and (ii). The statements (iii) and (iv) about the
case C− 6= 0 follow by symmetry.

By Theorem 1 in [6], there exists δ1 > 0 such that for |ξ+| < δ1 the power series

Gm(ξ+) =

∞∑
k=0

ξk+uk,m, m = 0, 1, 2, . . .

converges, where G0 satisfies

G0 = 0, G′0 = e1.

Furthermore,

u(w) ∼
∞∑
m=0

w−mGm (ξ+(w)) , |w| → ∞ (4.7)

holds uniformly in

Sδ1 =
{
w : arg(w) ∈

(
−π

2
+ δ,

π

2
+ δ
)
, |ξ+(w)| < δ1

}
.

By Theorem 2 in [6], for R large enough and δ, ε small enough, u(w) is analytic in D+
w (see (2.8)).

Also, the asymptotic representation (4.7) holds inD+
w . Moreover, if G0 has an isolated singularity

at ξs, then u(w) is singular at a distance at most o(1) of w+
n given in (2.10), as w+

n →∞. Since
h(w) = r1 · u(w), Theorem 2.4(i) follows from the results cited.

Assume |w| >
√
|β1β2|/2. Both (1.7) and (4.5) hold. While (1.7) implies that h is analytic

at least where u is analytic, (4.5) implies that h is singular where u is singular. Thus the
asymptotic position of singularities, i.e., poles of h(w) is the same as that of u(w), which is
presented in equation (2.10). Thus Theorem 2.4(ii) is proved.

4.4 Proof of Corollary 2.5

Let the notations be the same as in Section 2.2. First we point out some properties of U0(p).
See also [3].

We apply formal inverse Laplace transform to the system (1.8). To be precise, assume the
analytic function g(w,u) has the Taylor expansion at (∞,0) as follows

g(w,u) =
∑

m≥0;|l|≥0

gm,lw
−mul,

∣∣w−1∣∣ < ξ0, |u| < ξ0.
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Note that by assumption gm,l = 0 if |l| ≤ 1 and m ≤ 1. Denote U = L−1u. Then the formal
inverse Laplace transform of the differential system (1.8) is the system of convolution equations

−pU(p) = −
[
Λ̂U(p) + B̂

∫ p

0
U(s)ds

]
+N (U) (p), (4.8)

where

N (U) (p) =

∞∑
m=2

gm,0
(m− 1)!

pm−1 +
∑
|l|≥2

g0,lU
∗l +

∑
|l|≥1

( ∞∑
m=1

gm,l
(m− 1)!

pm−1

)
∗U∗l.

Let v(p) = (v1(p), . . . , vn(p)) be an n-dimensional complex vector function, f(p) be a locally
integrable complex function and l = (l1, . . . , ln) be an n-dimensional multi-index. Then

v∗l := v∗l11 ∗ v
∗l2
2 ∗ · · · ∗ v

∗ln
n , (v ∗ f) (p) ∈ Cn, (v ∗ f)j = vj ∗ f, j = 1, . . . , n.

We gather the following facts about U0.

Proposition 4.2.

(i) Let K ∈ O be a closed set such that for every point p ∈ K, the line segment connecting
the origin and p is contained in K. Then U0 is the unique solution to (4.8) in K.

(ii) U0 = Bũ0. U0 is analytic in the domain O = C\ [(∞,−1] ∪ [1,∞)], and is Laplace
transformable along any ray eiφR+ contained in O. LφU0 is a solution of (4.8) for each φ
such that | cos(φ)| < 1.

(iii) Let K be as in (i). There exists bK > 0 large enough such that

sup
p∈K

∫
[0,p]
|U0(s)|e−bK |s||ds| <∞.

Proposition 4.2(i) and (ii) come from Proposition 6 in [3]. Although (iii) is not stated expli-
citly in [3], it can be easily obtained by the same approach used to prove Proposition 6. Let K
be as in (i). Consider the Banach space

Lray(K) := {f : f is locally integrable on [0, p] for each p ∈ K}

equipped with the norm ‖ · ‖b,K defined by

‖f‖b,K := sup
p∈K

∫
[0,p]
‖f(s)‖e−b|s||ds|,

where ‖f(s)‖ = max{|f1(s)|, |f2(s)|}. We can show that for b large enough, the operator

N1 := U(p) 7→
(
Λ̂− pI

)−1(−B̂ ∫ p

0
U(s)ds+N (U)(p)

)
is contractive in the closed ball S := {f ∈ Lray(K) : ‖f‖b,K ≤ δ} of Lray(K) if δ is small enough.
By contractive mapping theorem there is a unique solution of N1U = U in S, namely U0 by
uniqueness of the solution. Using integration by parts and (iii) we have the following:

Corollary 4.3.

(i) If φ ∈ (0, π) or φ ∈ (−π, 0), LφU0(w) is analytic (at least) in the region

Aφ := {w : |w| cos(φ+ arg(w)) > b},

where b = bK is as in Proposition 4.2(iii) with K = eiφR+.
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(ii) If 0 < φ1 < φ2 < π or 0 < −φ1 < −φ2 < π, then Lφ1U0 and Lφ2U0 are analytic
continuations of each other.

Since H0 = Bh̃0, by (4.2) and Lemma A.1 we have

H0(p) = (Bu0,1)(p) + (Bu0,2)(p)−
β1
2

[1 ∗ (Bu0,1)](p) +
β2
2

[1 ∗ (Bu0,2)](p)

= U0,1(p) + U0,2(p)−
β1
2

(1 ∗ U0,1)(p) +
β2
2

(1 ∗ U0,2)(p), (4.9)

where u0,i, i = 1, 2, is the i-th component of the vector function u0 and U0,i, i = 1, 2, is the i-th
component of U0. It is clear from (4.9) that Proposition 4.2(iii) and Corollary 4.3 hold with U0

replaced by H0.
Merely by Ĥ0(p) = −H0(−p) and Corollary 4.3(ii) with U0 replaced by H0 we obtain Corol-

lary 2.5(i). Moreover, both h+ and h− are special cases of tronquée solutions, thus Theorems 2.2
and 2.4 apply. h+ is analytic at least on San(h+) ∪

(
−San

(
ĥ+
))

and h− is analytic at least on

San(h−)∪
(
−San

(
ĥ−
))

. We also obtain the asymptotic position of singularities of the tritronquée
solutions as in Corollary 2.5(ii).

4.5 Proof of the results in Section 3

Once we have the normalizations in the form of (1.6) of the equations (1.2), (1.3) and (1.1), the
results in Section 3 follow from the results in Section 2. Here we present the details of finding
solutions to (3.4), (3.10), (3.16) and (3.22) satisfying (2.9).

4.5.1 Solving (3.4)

Make the substitution Q(s) = A+ F0(e
s) then (3.4) transforms into

d2

ds2
Q(s)−

(
d
dsQ(s)

)2
Q(s)

− (Q(s))3

4A2
+

1

4A2Q(s)
= 0.

Multiplying both sides by 1/Q(s) we obtain

d

ds

(
Q′(s)

Q(s)

)
=

1

4A2

(
Q2(s)− 1

Q2(s)

)
.

Multiplying both sides by 2Q′(s)/Q(s) and integrating with respect to s we have(
Q′(s)

Q(s)

)2

=
1

4A2

(
Q2(s) +

1

Q2(s)
+ C1

)
, i.e.,

(Q′(s))2 =
1

4A2

(
Q4(s) + C1Q

2(s) + 1
)
. (4.10)

By a linear transformation Q(s) = Q̃(s)/(2A), (4.10) is reduced to the Jacobi normal form which
is solved by Jacobi elliptic functions unless C1 ∈ {−2, 2}. Since Q(s) = A+F0(e

s) and F0(0) = 0
(see (2.9)), the solution we look for cannot be an elliptic function. Moreover, as Re(s) → −∞,
Q(s)→ A implies Q′(s)→ 0, so (4.10) needs to be of the form

(Q′(s))2 =
1

4A2

(
Q2(s)−A2

)2
.

The solution satisfying Q(s)→ A as Re(s)→ −∞ is

Q(s) = A · C2 − es

C2 + es
, C2 6= 0.
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Thus the solution to (3.4) is

F0(ξ) = − 2Aξ

C2 + ξ
.

Hence the solution to (3.4) satisfying (2.9) is

F0(ξ) =
2Aξ

2A− ξ
.

4.5.2 Solving (3.10)

Make the substitution Q(s) = A+ F0(e
s) then (3.10) transforms into

d2

ds2
Q(s)−

(
d
dsQ(s)

)2
Q(s)

− (Q(s))2

3A
+

1

3AQ(s)
= 0.

Multiplying both sides by 1/Q(s) we obtain

d

ds

(
Q′(s)

Q(s)

)
=

1

3A

(
Q(s)− 1

Q2(s)

)
.

Multiplying both sides by 2Q′(s)/Q(s) and integrating with respect to s we have(
Q′(s)

Q(s)

)2

=
1

3A

(
2Q(s) +

1

Q2(s)
+ C1

)
, i.e.,

(Q′(s))2 =
1

3A

(
2Q3(s) + C1Q

2(s) + 1
)
. (4.11)

Notice that if the equation 2x3+C1x
2+1 = 0 has three distinct roots then (4.11) is known to have

Weierstrass ℘-functions as general solutions, in which case the corresponding F0(ξ) = Q(ln ξ)−A
fails to satisfy the condition (2.9). Hence C1 must be such that the equation 2x3 +C1x

2 + 1 = 0
has a multiple root. Denote the multiple root by r1. Then

2x3 + C1x
2 + 1 = 2(x− r1)2(x− r2).

Then we obtain

r1 = −2r2, r31 = 1, C1 = −3r1.

Since Q(s) → A as Re(s) → −∞, Q′(s) → 0. Hence r1 = A or r2 = A. We knew from the
normalization (see (3.6)) that A3 = 1. Thus r1 = A, r2 = −A/2, and C1 = −3A. Hence (4.11)
is of the form

(Q′(s))2 =
2

3A
(Q(s)−A)2

(
Q(s) +

A

2

)
. (4.12)

The solution to (4.12) is

Q(s) = −A
2

+
3A

2

(
C2 − es

C2 + es

)2

.

Hence the solution of (3.10) satisfying (2.9) is

F0(ξ) =
36A2ξ

(6A− ξ)2
.
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4.5.3 Solving (3.16)

Make the substitution Q(s) = F0(e
s)− 2/3 then (3.16) transforms into

d2

ds2
Q(s)−

(
d
dsQ(s)

)2
2Q(s)

+
9Q3(s)

8
+ 3Q2(s) +

3Q(s)

2
= 0.

Multiplying both sides by 2Q′(s)/Q(s) and we have

d

ds

[
(Q′(s))2

Q(s)

]
=

d

ds

(
−3

4
Q3(s)− 3Q2(s)− 3Q(s)

)
.

Integrating with respect to s we have

(Q′(s))2 = −3

4
Q4(s)− 3Q3(s)− 3Q2(s) + C1Q(s). (4.13)

Letting Re(s) → −∞ we have Q(s) → −2/3 and Q′(s) → 0. Thus C1 = −8/9 and the
equation (4.13) is of the form

(Q′(s))2 = −3

4
Q(s)

(
Q(s) +

8

3

)(
Q(s) +

2

3

)2

.

This is a separable differential equation with general solutions

Q(s) = −2

3

e2s − C2
2 − 2iC2e

s

e2s − C2
2 + iC2es

.

Hence the solution of (3.16) satisfying (2.9) is

F0(ξ) =
4ξ

ξ2 + 2ξ + 4
.

4.5.4 Solving (3.22)

Make the substitution Q(s) = F0(e
s)− 2 then (3.16) transforms into

d2

ds2
Q(s)−

(
d
dsQ(s)

)2
2Q(s)

− 3Q3(s)

8
−Q2(s)− Q(s)

2
= 0.

Multiplying both sides by 2Q′(s)/Q(s) and we have

d

ds

[
(Q′(s))2

Q(s)

]
=

d

ds

(
1

4
Q3(s) +Q2(s) +Q(s)

)
.

Integrating with respect to s we have

(Q′(s))2 =
1

4
Q4(s) +Q3(s) +Q2(s) + C1Q(s). (4.14)

Letting Re(s)→ −∞ we have Q(s)→ −2 and Q′(s)→ 0. Thus C1 = 0 and the equation (4.14)
is of the form

(Q′(s))2 =
1

4
Q2(s)(Q(s) + 2)2.

This differential equation has general solutions

Q(s) = − 2C2

C2 + es
.

Hence the solution of (3.22) satisfying (2.9) is

F0(ξ) =
2ξ

ξ + 2
.
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A Appendix

Recall that the Borel transform of a formal series

f̃(w) =
∞∑
n=0

anw
−r−n, Re(r) > 0,

where the series
∞∑
n=0

anx
n has a positive radius of convergence, is defined to be the formal power

series

(
Bf̃
)
(p) :=

∞∑
n=0

anp
n+r−1

Γ(n+ r)
.

Lemma A.1. Assume that we have two formal series f̃ and g̃,

f̃(w) =

∞∑
n=0

anw
−r−n, Re(r) > 0,

g̃(w) =
∞∑
n=0

bnw
−r−s, Re(s) > 0,

where both series
∞∑
n=0

anx
n and

∞∑
n=0

bnx
n have positive radii of convergence. Then

B
(
f̃ g̃
)
(p) =

(
Bf̃ ∗ Bg̃

)
(p) = pr+s−1

∞∑
n=0

(
n∑
k=0

akbn−k

)
pn

Γ(n+ r + s)
,

where(
Bf̃ ∗ Bg̃

)
(p) :=

∫ p

0

(
Bf̃
)
(t)
(
Bg̃
)
(p− t)dt.

Recall that the Laplace transform Lφ is defined as the following

f 7−→
∫ ∞eiφ

0
f(p)e−xpdp,

where φ ∈ R.

Lemma A.2. Assume that the function f is integrable over the ray eiφR+, namely∫ ∞eiφ

0
|f(p)||dp| <∞.

Then for Re(weiφ) > 0,

Lφ(1 ∗ f)(w) =
1

w
Lφ(f)(w).
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Math. Res. Not. 2002 (2002), 1167–1182, math.CA/0202235.

[8] Costin O., Costin R.D., Huang M., Tronquée solutions of the Painlevé equation PI, Constr. Approx. 41
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Painlevé equation, Stud. Appl. Math. 98 (1997), 139–194.

[31] Novokshenov V.Yu., Distributions of poles to Painlevé transcendents via Padé approximations, Constr.
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