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Abstract. We apply categorical machinery to the problem of defining anti-Yetter—Drinfeld
modules for quasi-Hopf algebras. While a definition of Yetter—Drinfeld modules in this
setting, extracted from their categorical interpretation as the center of the monoidal category
of modules has been given, none was available for the anti-Yetter—Drinfeld modules that
serve as coeflicients for a Hopf cyclic type cohomology theory for quasi-Hopf algebras. This
is a followup paper to the authors’ previous effort that addressed the somewhat different case
of anti-Yetter—Drinfeld contramodule coefficients in this and in the Hopf algebroid setting.
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1 Introduction

It is an interesting fact that the theory of coefficients, in cyclic homology theories for Hopf
algebras, began with what is now known as anti-Yetter—Drinfeld modules in [7, 8, 10] that
followed [3, 4]. It was not until [1] that anti-Yetter-Drinfeld contramodules were introduced.
The latter, in retrospect, seem a lot more natural, though they involve notions that are less so.

In this followup paper to [11], we make the modifications necessary to deal with the defini-
tions of anti- Yetter—Drinfeld modules for quasi-Hopf algebras, which generalize Hopf algebras by
relaxing the coassociativity condition to coassociativity up to a specified isomorphism. This iso-
morphism complicated matters sufficiently that a generalization of the formulaic approach used
for Hopf algebras, via the usual method of educated guessing, is not possible. More precisely, the
definition of an anti-Yetter—Drinfeld module involves a module structure together with a com-
patible comodule structure, and while it turns out that both the module and the compatibility
remain essentially the same, the notion of a comodule needs to be rather drastically changed.

Our approach to extracting the definitions of anti-Yetter—Drinfeld modules is similar to [13],
where the categorical notion of the center of a monoidal category of modules over a quasi-Hopf
algebra has been unwound into explicit formulas. Our task is complicated by two factors: we
deal with a certain bimodule category over the category of modules over a quasi-Hopf algebra
and we allow not only finite dimensional representations.

The main theme of [11] was exploiting the fact that the category of modules is biclosed, i.e., it
possesses internal Homs. This allows for a definition of a natural bimodule category over it, the
center of which is what we are looking for. The justification for the importance of the center is
the observation that its elements (or rather the ones satisfying an additional stability condition)
can be used to quickly manufacture a functor called a symmetric 2-contratrace [9] and thus
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define a cyclic cohomology theory for quasi-Hopf algebras. The latter is not yet available in the
literature.

As mentioned above, historically anti-Yetter—Drinfeld modules appeared before their con-
tramodule versions, but in this paper we rely on the conceptual definition of generalized anti-
Yetter—Drinfeld contramodules as in [11] to obtain the module version. In particular the question
of stability is explicitly reduced to the contramodule case, though it is immediate that it is equiv-
alent to the stability in [9], though not completely analogous to what is possible to do in the
Hopf algebra case; see Remark 2.7.

The paper is organized as follows. In Section 2 we review and augment some generalities
from [11] that we use subsequently. Section 3 is a review of the basics of quasi-Hopf algebras
and recalls the definition of internal Homs, from [11], for them. Finally in Section 4 we unravel
the conceptual definitions of Section 2 into formulas. More precisely, we will derive concrete
definitions of anti-Yetter—Drinfeld modules in terms of structures of a module, “comodule”, and
their compatibility. An interesting observation is the appearance of two distinct ways of writing
down the formulas; these are identical for Hopf algebras but very different here. This also occurs
in the contramodule case [11].

Notation. We use the following particular form of Sweedler’s notation. For a coalgebra A
(not necessarily coassociative) we denote the coproduct A(a) of an element a € A by a' ® a®.
We use only lowercase letters to denote elements of a coalgebra so that S? always means the
square of the antipode, and never a part of a coproduct. The composition (Id ®A) o A applied
to a is written as a' ® a?!' ® a?2, and (A ® Id) 0 A(a) = a'' ® a'? ® a®. On the other hand
if M is a right “comodule” (where the quotation marks emphasize the lack of any implied
coassociativity) then the structure map A: M — M ® A is written differently depending on
the context, i.e., A(m) = mg ® my in the Hopf algebra case (where it is a right comodule),
A(m) = m gy ®myy in the Type I case (where a modified coassociativity condition holds), and
A(m) = mp ® my) in the Type II case (with its own version of coassociativity).

Remark 1.1. Throughout the paper we assume that the antipode S is invertible. In particular,
its inverse is explicitly used in (3.5) in the definition of the right internal Hom. It has been
pointed out to us by a referee that one can still define the right internal Hom in the absence
of S~!. Indeed at this point we must treat the existence of the inverse as a possibly removable
technical condition. However since non-invertible antipodes are somewhat pathological and while
the presence of the inverse may not be required, its absence does complicate the exposition, we
proceed as before, having conceded this point.

2 Generalities

In this section we will extend the general formalism of [11] from generalized anti-Yetter—Drinfeld
contramodule coefficients to their module variant. Recall from [9] that the main ingredient in
constructing Hopf-cyclic cohomology is a symmetric 2-contratrace. It is with a view towards
this goal that we undertake the following.

Let M be a biclosed monoidal category, i.e., it possesses internal Homs. More precisely, the
property of being biclosed implies in particular the existence of the following adjunctions for
M, VW e M:

Hom (W & V, M) ~ Hom g (W, Hom! (V, M)),
and
Homp (V @ W, M) ~ Hom (W, Hom" (V, M)),

where Hom!(V, M) and Hom" (V, M) are left and right internal homomorphisms respectively.
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As in [16], we can introduce the contragradient M-bimodule category M°P. Specifically, for
M € M and V € M, the actions are given by

M <4V :=Hom"(V,M) and V » M :=Hom!(V,M).

A natural object to consider in this situation is the center of a bimodule category /. Roughly
speaking, it is a category with a left and a right action of our monoidal category M, where we
denote the actions by > and < respectively. However, here it becomes too restrictive. If in the
definition of a (strong) center element N € N, we relax the condition that, for all N’ € M the
maps 7: N'>N — N a N’ in N are isomorphisms, we get a weak center. More formally:

Definition 2.1. The weak center w-Zx((N) of a M-bimodule category N consists of objects
that are pairs (IV, 7n,—), where N € N and 7y, _ is a family of natural morphisms such that for
V € M we have: 7y : V>N — N aV, satisfying the hexagon axiom as in the usual definition
of center (see [6]).

We need one more definition.

Definition 2.2. Let M be a biclosed monoidal category and M°P the contragradient category
as above. For M € w-Z,(M°P) let

OM: M — M
denote the image of Idy; under
Homp(M, M) ~ Homp (1, M » M) — Homp (1, M <« M) ~ Hom (M, M),

where the map in the middle is postcomposition with 7 and the isomorphisms come from the
definitions of the actions in M°P.

We have from [11]:
Lemma 2.3. If M € w-Z)((M°P) and opr = 1Id then M € Zp(MOP).

In [11], we called such M stable and denoted the full subcategory containing them by
Zh4(M°P). These are exactly the generalized stable anti-Yetter-Drinfeld contramodules, and
the functor Homp (—, M) is a symmetric 2-contratrace. Recall from [9], that once we have
a contratrace, the cyclic cohomology theory immediately follows. More precisely, for an algebra
A € M the collection Homp(A®*T!, M) is naturally a cocyclic vector space from which the
cohomology is obtained.

2.1 The module variant modifications

Assume as above that M is biclosed and suppose further that there exists a tensor auto-
equivalence (—)# of M, together with natural identifications

Wrl~laW?.
Observe that should such a functor exist, we would immediately have natural identifications
tyw: Hompa(V ® W, 1) >~ Hom g (W# ®V, 1)

for all VW € M.
Consider # M, the M-bimodule category with the right and left M-module structures given
by

M<aV=M®V and VsM=V#gM.
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Lemma 2.4. We have the functor between weak centers
D: (w-Zm(F M) = w-Zp (M)
that sends M to1 €4 M.

Proof. The weak center structure on 1 « M is obtained as follows: V » (1 4« M)~ (V » 1) <
M~e(laV*)aM~14(VFOM) > 14«MaV)~(14M)<V. u

Recall the definition of stability for generalized anti-Yetter—Drinfeld modules from [9]. For
M € w-Zp(# M), if

—1
Homp (M © V, 1) =% Homp (V¥ © M, 1) Y5 Homp (M © V, 1)

is the identity, then M is called stable. It is immediate that the following definition is equivalent
to this one.

Definition 2.5. Let M € w-Zx(* M), we say that M is stable if DM € w-Z,(M°P) is stable,
ie., if o1 = Id.

We have the following analogue of Lemma 2.3:

Lemma 2.6. Suppose that M € w-Zx(* M) is stable. Assume that D reflects isomorphisms
(when considered as a functor from (¥ M)°P to M°P), then M € Zy(*M). We will denote the
full subcategory of such M by Zj\/((#/\/l).

Proof. By definitions if M is stable, then o1 ¢y = Id, and so by Lemma 2.3 and the proof of
Lemma 2.4 the centrality map 7: V# @M — M ®V is such that its right dual is an isomorphism,
i.e., D(7) is an isomorphism. If D reflects isomorphisms then 7 is an isomorphism as well. B

The M of the lemma above are exactly the generalized stable anti-Yetter—Drinfeld modules.
We note that the functor Homy (M ® —,1) is a symmetric 2-contratrace in this case. This
follows immediately from its isomorphism to Homp(—, DM) as DM € Z/, ((M®P).

Remark 2.7. The current approach to general stability of aYD modules, via stability of aYD
contramodules (implicitly as in [9] or explicitly as in Definition 2.5), may seem unsatisfactory
but it is the only way in general. In particular situations one may do better. More precisely, it
may happen that for M € w-Zx(#* M) the map opys may have a predual, i.e., a s such that
Id € oy = 014usr- This is the case for Hopf algebras where opr(m) = mymg, but this question
remains open in the quasi-Hopf algebra case.

3 Recalling quasi-Hopf algebras

Let us remind the reader of all the necessary definitions following [5]. In this section, k is a field.

Definition 3.1. A quasi-bialgebra is a collection (A4, A, e, ®), where A is an associative k-algebra
with unity, A: A - A® A and €: A — k are homomorphisms of algebras, ® € A® A® A is an
invertible element, such that the following equalities hold:

Id®A)(Ala)) = @ - (A ®1d)(A(a))) - &1, VaeA, (3.1)
(Id®@Id@A)(@)] [(A®Id®Id)(®)] =12 ®) - [(Id®A @ Id)(®)] - (P ® 1), (3.2)
(e ®1d)(A(a)) = a, (Id®e)(A(a)) = a, Vac A, (3.3)
[dee @ Id(®) =1 1. (3.4)
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Remark 3.2. In this paper we will use the Sweedler notation. Let’s denote
P=XY®Z O '=PRQ®R,

here we mean the summation. In particular, the equality (3.1) can be written as
at®@a? @a® = Xa''P @ Ya'?Q ® Za*R.

We are interested in the category of left A-modules 4 M. It was proved in [5] that this
category is monoidal if a tensor product of two left A-modules M and N is defined by the same
formula as in the case of a bialgebra

M®N =M ® N, a-(m®n)=a'm®e an.

The associativity morphism is no longer trivial as it was in the case of a bialgebra. If one sets
the associativity morphism (M@N)®L — M®(N®L) to be the image of ® in Endx(M@N®L),
then it becomes an isomorphism of left A-modules by (3.1). Consider k£ as an A-module by
a-1 =¢e(a)l as in the bialgebra case. Then one defines a morphism A\y;: k @ M — M as the
usual morphism of k-modules. Then Aj; becomes an A-module morphism by (3.3). Similarly
one can define a morphism ppr: M ® k — M. So k is a unit of the monoidal category 4 M.

Remark 3.3. The equality (3.2) is equivalent to the pentagon axiom. Associativity and unit
in the category respect each other by (3.4).

Recall the definition of a quasi-Hopf algebra from [5].

Definition 3.4. Let (H, A, e, ®) be a quasi-bialgebra. Then it is called a quasi-Hopf algebra if
there exist «, 8 € H and anti-automorphism S: H — H, such that

S(h')ah® =e(h)a,  h'BS(h?) = €(h)B.
If one keeps notation as in Remark 3.2, then there are equalities
XBS(Y)aZ =1, S(P)aQBR = 1.

Remark 3.5. We want to emphasize that the antipode .S in the definition above is assumed to
be invertible.

It was shown in [5] that the category of H-modules for a quasi-Hopf algebra H that are finite
dimensional as k-vector spaces is rigid. It was shown in [11] (see also [2, 12, 15]) that if we
consider all modules, i.e., y M then it is biclosed. More precisely, for any M, N € g M, we can
define the left internal Hom by

Hom!(M, N) = Homy(M,N),  h-¢=h'e(S(h%)-).

Furthermore, we can define the right internal Hom by

Hom" (M, N) = Homy, (M, N), h-@=hp(S71(h')-). (3.5)
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4 Anti-Yetter—Drinfeld modules for a quasi-Hopf algebra

Yetter—Drinfeld modules for a quasi-Hopf algebra were described in [13]. The consideration
of YD modules as centers of a monoidal category p M was crucial to write down the explicit
formulas that generalize those that define the YD modules of the Hopf algebra case. In this
section we are going to define the anti-Yetter—Drinfeld modules using the categorical approach
from [9]. Unlike the Hopf-case, there are two different ways to define aYD modules. The
resulting categories are isomorphic to each other, and in turn isomorphic to the center of a certain
bimodule category.

As in [9] consider a monoidal functor #: yM — g M, taking a left H-module M to M#,
where M# is the same as M as a k-vector space but the module structure is modified by S

h-m = S%(h)m, for me M7,

Define the pM-bimodule category fl./\/l such that it has the same objects as yM. For
M € ﬁM and V € gM, the right and left yM-module structures are given by

MaV =MV and VeM=V#o M

Remark 4.1. Observe that as required according to Section 2 we have a very trivial identifica-
tion V » k ~ k €« V¥, indeed the left hand side is Homy(V, k) with h - = ¢(S(h)—) whereas
the right hand side is Homy,(V#, k) with k- = @(S7'(h) - —) = ¢(S(h)—). Furthermore, the
functor D, being essentially a vector space duality functor, reflects isomorphisms, and so, as
long as we insist on stability in the sense of Definition 2.5, we do not need to worry about the
difference between the weak and the strong center.

If H is a Hopf algebra, it was proved in [9] that the center Z,, M(ﬁM) is the same as anti-
Yetter—Drinfeld modules. We are going to use this fact as a guide and give a description of aYD
modules in the quasi-Hopf case.

4.1 Anti-Yetter—Drinfeld modules I

Below we use a similar approach to [13] in defining the “coaction” from the centralizing isomor-
phism.

Lemma 4.2. Let M € ﬁ/\/l Natural transformations 7, € Nat(Id>M, M < 1d) are in 1-1
correspondence with k-linear maps p: M — M ® H, denoted by m — my @ myy, such that

htmgy ® hPmay = (h*m) o ® (K*m) )% (h'). (4.1)

Proof. Consider the morphism 7: H > M — M < H. Define p(m) as tg(1>m) € M ® H.
Because 7y is a morphism in the category (of left H-modules), we have: h - 1h(l>m) =
7i(h- (1>m)) for any h € H. The left hand side gives us h'm gy ® h*m ;). Using the definition

of fI/\/l we can see that h- (1>m) = S2(h')>h2m. The right action of H on itself is a morphism
in gM, so because T, is a natural transformation, one can rewrite the right hand side as
(h*m) ) © (h*m)yS*(h').

Conversely, given the map p, for any V € g M one can define the map 7: VoM — M <V
by the rule v>m = m gy <mpyv. It is a morphism of H-modules by (4.1). Clearly 7, is a natural
transformation.

These correspondences are mutually inverse. For a given v € V' consider a morphism H — V'
by the rule h — h-v. So, if we want 7 to be a natural transformation, it is uniquely defined
from p. |
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In the Hopf case the k-linear map p: M — M ® H was a part of a right comodule structure
on the left H-module M. But in the quasi-Hopf case the comodule condition must be replaced
(see (4.2) below), since we are now dealing with an H that is not coassociative (see [14] for
example).

Let (M,7.) € 2, M(fIM) By the hexagon axiom of the center, the following diagram is
commutative

Id> -1
Ve (W M) w Ve (MaWw) ¢ (Ve M)aW
d-1 Ty <1d

T —1
(VeW)sM vew Ma(Vew) @ (MaV)aW.

Consider this diagram in the case V. = W = H. Start with the element 1> 11> m in the
upper left corner. The definition of the k-linear map p: M — M ® H from Lemma 4.2 and the
definition of the category fl./\/l imply the following equality

(@myo)) () ® (Qmyey) (1yS*(P) ® Rmyy
= P(Rm) gy ® Q((Rm)1y)'S*(P) ® R((Rm)1))*S*(Q). (4.2)

Remark 4.3. Notice that if H is Hopf algebra, ® is trivial and the condition (4.2) comes down
to the definition of a right H-comodule.

Consider the following diagram

Id o
He M b ks M M
TH Tk 1d
Id (o
MaH < Mak M.

The left square commutes by the naturality of 7 and the right square commutes by the
definition of the center. If we start with 1> m in the upper left corner we will get the equality

m = 5(m<1>)m<0>. (4.3)
This condition is exactly the same as in the Hopf case.

Definition 4.4. Let H be a quasi-Hopf algebra. A pair (M, p), where M is a left H-module
and p: M — M ® H is a k-linear map, written as p(m) = my ® my, is called a left-right
anti- Yetter—Drinfeld module of type I, if it satisfies the equalities (4.1), (4.2) and (4.3).

A morphism of two aYD modules (M, p) — (M’',p') is an H-morphism f: M — M’, such
that p'o f = (f ®1d) o p.

Theorem 4.5. The category of aYD-modules of type I for a quasi-Hopf algebra H is equivalent
to the weak center W—ZHM(}%IM).

Proof. We have seen that an object in the center (M,7) gives us an aYD module (M, p).
Consider a morphism of central objects f: (M, 7) — (M’,7'). In particular the following diagram
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must commute:

TH

Hvo M M«H
Id>f f<ld
h
H> M M'« H.

By the construction of p one gets the condition p' o f = (f ® Id) o p.

Conversely, take an aYD module (M, p). By Lemma 4.2, there is a natural transformation
7: Id>M — M<ld. Formula (4.2) guarantees that 7 satisfies the hexagon axiom. Equality (4.3)
gives that 7, = Id. |

4.2 Anti-Yetter—Drinfeld modules 11

There is the second way to introduce aYD modules. Let us again consider the central element
(M, 1) € ZHM(?;M). So for any V € gM we have a natural isomorphism: 7: V# @ M —
M ® V. Using internal Homs this gives a morphism

7y M — Hom" (V#, M e V).

Now we want to introduce a new H-module M ®" H which is the same as M ®;, H as a vector
space, but the H-action is different

z- (m®h)=2"'m® 2**hS(z").

For any V € yM define a map ry: M @ H — Hom"(V#,M ® V) by the rule: m ® h
(v — m ® hv). This is a morphism in the category by construction of M ®" H and V#,
We can formulate a lemma similar to Lemma 4.2.

Lemma 4.6. Let M € fI/\/l Natural transformations 7 € Nat(IdeM, M <1d) are in 1-1
correspondence with k-linear maps A\: M — M ® H, written as m — mjg ® myy), such that

(hm)g) @ (hm)py = h*'myg) @ h**myy S (h'). (4.4)

Proof. First assume that 7 is given. Then for m € M we define A(m) := (T7g(m))(1). From
the fact that (Tg(m)) is a right internal homomorphism we get (4.4).

Conversely, given a k-linear map A\: M — M ® H we can consider it as an H-homomorphism
M — M ®" H by (4.4). Now for any V € gM we define 7y by

~

Hom"(V#, M @ V)

po

M@ H.

Everything is constructed naturally and the one-to-one correspondence is clear. |

Remark 4.7. It will be useful to explicitly write the reconstruction formula. Given A\: M —
M ® H, satisfying (4.4), 7v: V*# @ M — V ® M is built by the formula

v Mm le[o] ® R2m[1]S(Q)S(a)S2(P)U. (4.5)
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As above to write the replacement of the comodule condition consider the hexagon axiom.
Then, using formula (4.5), we get the following equality

PRY(Rm)jq ® Q(R*(Rm)pjx) ' S%(P) ® R(R*(Rm)yx) S%(Q)
= R (QR'myq)) o ® R*(QR'myg)) ;s S*(P) ® RR*myrs, (4.6)

where we set k = S(Q)S(a)S?(P).
The unital condition that 74: k> M — M <k is identity gives

m = Rimyo - e(R*myy k) = e(mpy) Rmyg - (k).

Here we used that ¢ is algebra map and the formula (3.3). For a quasi-Hopf algebra the equality
€05 = ¢ holds (for the proof see [5]). So we can simplify ¢(k) = e(a)e(Q)e(P). Using (3.4), we
get the final equality

m = e(my)me(a). (4.7)

Definition 4.8. Let H be a quasi-Hopf algebra. A pair (M, \), where M is a left H-module
and A\: M — M ® H is a k-linear map, written as A(m) = mpg ® myy}, is called a left-right
anti-Yetter—Drinfeld module of type II, if it satisfies the equalities (4.4), (4.6) and (4.7).

And as before we have the following theorem with a proof that is very similar to the type I
case and so is omitted.

Theorem 4.9. The category of aYD-modules of type II for a quasi-Hopf algebra H is equivalent
to W—ZHM(ﬁM).

Remark 4.10. Type I and type II aYD modules are different, though of course are equivalent
as categories. The difference between them is like the difference between two maps: H ®
Hom"(H,V) — V, where the first map is h ® f — f(h) (naive evaluation) and the second one
is ev"(h ® f) (actual evaluation). In the Hopf case, these two evaluations are the same, but this
is no longer true for a quasi-Hopf algebra.

The reader is also invited to consult the proof [9, Lemma 2.2] that, in the Hopf case, the
formula (4.1) is equivalent to (4.4).
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