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Abstract. For a simple Lie algebra g and an irreducible faithful representation π of g, we
introduce the Schur polynomials of (g, π)-type. We then derive the Sato–Zhou type formula
for tau functions of the Drinfeld–Sokolov (DS) hierarchy of g-type. Namely, we show that
the tau functions are linear combinations of the Schur polynomials of (g, π)-type with the
coefficients being the Plücker coordinates. As an application, we provide a way of computing
polynomial tau functions for the DS hierarchy. For g of low rank, we give several examples
of polynomial tau functions, and use them to detect bilinear equations for the DS hierarchy.

Key words: Drinfeld–Sokolov hierarchy; tau function; generalized Schur polynomials

2010 Mathematics Subject Classification: 37K10; 17B80

1 Introduction

Given a simple Lie algebra g over C, Drinfeld and Sokolov in [16] explained how to associate
to it a family of commuting bi-Hamiltonian PDEs known as the Drinfeld–Sokolov hierarchy
of g-type. Nowadays, Drinfeld–Sokolov (DS) hierarchies are certainly among the most studied
examples of integrable systems; one of their remarkable properties is that they are tau-symmetric
[7, 20, 21, 38], meaning that they admit the so-called tau function of an arbitrary solution to the
hierarchy. For the case g = sln+1(C) the DS hierarchy of g-type coincides (under a particular
choice of the DS gauge [2, 16]) with the Gelfand–Dickey hierarchy, and so, in particular, for n = 1,
with the celebrated Korteweg–de Vries (KdV) hierarchy. It is known that tau functions of the
Gelfand–Dickey hierarchies can be expressed as linear combinations of Schur polynomials with
the coefficients being Plücker coordinates [15, 32, 34]. In this short paper we aim to generalize
this fact and its development in [3, 40] to an arbitrary given Lie algebra g. The generalization
will depend on matrix realizations of g (note that the tau function itself is independent of the
realizations of g [7]!). Indeed, one of our main observations is that the generalization of Schur
polynomials should be associated with a faithful representation.

As an application of our result, we describe a systematic way of finding simple solutions (here
a simple solution means solution whose tau function is a polynomial or a fractional power of
a polynomial) of the DS hierarchy of g-type. Of course, in the case of the hierarchies of type An,
we recover the well-known results; actually, polynomial tau functions of these hierarchies (more
generally of the Kadomtsev–Petviashvili (KP) hierarchy) had been studied for many years, due
to their relations with Bäcklund transformations [1] and the dynamical systems of Calogero
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type (see for instance [37] and the references therein). Moreover, it had been proved that the
polynomial tau functions of the so-called BKP hierarchy can be written in terms of the projective
representations of the symmetric group [39], and the BKP hierarchy, moreover, contains as
reductions some of the DS hierarchies of Dn-type, as explained in [12]. Nevertheless, it seems to
us that a systematic approach to the study of polynomial tau functions associated to the general
case (i.e., for an arbitrary Lie algebra) is still missing, and this paper gives a first result in this
direction. The polynomial tau functions we obtain are, actually, quite non-trivial, and can also
be used to give some explicit information about the structure of the bilinear equations for the
hierarchy.

In order to state precisely our results, we need to fix some notations about finite-dimensional
Lie algebras [11, 31], loop algebras [16, 29] and Toeplitz determinants [8]. Let g be a simple Lie
algebra over C of rank n, and h, h∨ the Coxeter and dual Coxeter numbers, respectively. Fix h
a Cartan subalgebra of g. Take Π = {α1, . . . , αn} ⊂ h∗ a set of simple roots, and let 4 ⊂ h∗ be
the root system. We know that g has the root space decomposition

g = h⊕
⊕
α∈4

gα.

Let θ denote the highest root with respect to Π, and (·|·) : g × g → C the normalized Cartan–
Killing form, i.e., (θ|θ) = 2. For a root α ∈ 4, denote by Hα the unique vector in h satisfying
(Hα|Hβ) = (α|β), ∀β ∈ 4.

Let Ei ∈ gαi , Fi ∈ g−αi , Hi = 2Hαi/(αi|αi) be a set of Weyl generators of g. They satisfy

[Ei, Fi] = Hi, [Hi, Ej ] = AijEj , [Hi, Fj ] = −AijFj , 1 ≤ i, j ≤ n,

where
(
Aij
)n
i,j=1

is the Cartan matrix of g. Choose E−θ ∈ g−θ, Eθ ∈ gθ, normalized by the

conditions (Eθ|E−θ) = 1 and ω(E−θ) = −Eθ, where ω : g → g is the Chevalley involution. Let

I+ :=
n∑
i=1

Ei be a principal nilpotent element of g. Denote by L(g) = g ⊗ C
[
λ, λ−1

]
the loop

algebra of g. On L(g) there is the principal gradation defined by assigning

degEi = 1, degHi = 0, degFi = −1, i = 1, . . . , n, deg λ = h,

such that L(g) decomposes into homogeneous subspaces

L(g) =
⊕
j∈Z

L(g)j .

Here, elements in L(g)j have degree j. Define Λ ∈ L(g) by

Λ = I+ + λE−θ.

Clearly, Λ is homogeneous of degree 1. Denote by L(g)<0 the set of elements in L(g) with
negative degrees, similarly, by L(g)≤0 elements with non-positive degrees.

It was shown in [28, 31] that Ker adΛ ⊂ L(g) has the following decomposition

Ker adΛ =
⊕
`∈E

CΛ`, deg Λ` = ` ∈ E :=

n⊔
i=1

(mi + hZ),

where the integers m1, . . . ,mn are the exponents of g, and E is called the set of exponents
of L(g). We use E+ to denote the set of positive exponents. The elements Λi commute pairwise

[Λi,Λj ] = 0, ∀ i, j ∈ E.
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They can be normalized by

Λma+kh = Λmaλ
k, k ∈ Z, (Λma |Λmb) = hλδa+b,n+1.

In particular, we can choose Λ1 = Λ.
Let us now take

π : g→ gl(m,C) (1.1)

an irreducible faithful representation. When the representation is fixed and no confusion can
arise, we sometimes write π(b) simply as b for b ∈ g, and write π(g) simply as g. Our genera-
lization will be based on the infinite Grassmannian approach [34, 35] and the related Plücker
coordinates.

Notations. a) For M =
∑
k∈Z

Mkλ
k with Mk ∈ gl(m,C), define the Laurent matrix L(M)

associated with M by[
L(M)

]
IJ

= MI−J , I, J ∈ Z,

as in Fig. 1. Here and below, we use the capital-letter indices I, J,K, . . . for block row/column
coordinates. We note that the rows and columns of L(M) are labeled by integers and that
we divide this matrix into blocks of size m × m. More precisely, the entries of L(M) satisfy
L(M)Q1m+p1,Q2m+p2 = (MQ1−Q2)p1+1,p2+1 for all Q1, Q2 ∈ Z and p1, p2 = 0, . . . ,m− 1.
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Figure 1. The Laurent matrix L(M).

b) Y will denote the set of all partitions; for ν = (ν1 ≥ ν2 ≥ · · · ) ∈ Y, denote by `(ν)
the length of ν, by |ν| the weight of ν, i.e., `(ν) is the number of non-zero components of ν
and |ν| = ν1 + · · · + ν`(ν). Also, we denote by ν =

(
k1, . . . , kd(ν)|l1, . . . , ld(ν)

)
the Frobenius

notation of ν, for which we recall briefly as follows. First, d(ν) is the number of squares in
the main diagonal of the Young diagram realization of ν (these squares have coordinates (i, i),
i = 1, . . . , d(ν)). The integer ki is the number of squares in the same row strictly to the right
of the square (i, i), and li is the number of squares in the same column strictly below the
square (i, i). For example, the partition ν = (5441) has length `(ν) = 4, weight |ν| = 14, and
can be written in the Frobenius notation as ν = (421|310), as illustrated below.

ν = (5441) ←→

• • • •
• • •
• • •
•

←→ ν = (421|310)
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Definition 1.1. Let ξ :=
∑
`∈E+

t`Λ` with t`, ` ∈ E+, being indeterminates, and let s denote the

Laurent matrix associated with eξ, namely,

s := L
(
eξ
)
. (1.2)

The Schur polynomials of (g, π)-type are labelled by partitions and defined by

sν := det(si−1,j−νj−1)
`(ν)
i,j=1, ν ∈ Y−∅, s∅ := 1.

Definition 1.2. In the case π is taken as the adjoint representation of g, we call sν , ν ∈ Y, the
intrinsic Schur polynomials of g-type.

Remark 1.3. In the case g = An, take π(g) the well-known matrix realization of g, i.e.,

π(g) = sln+1(C). We have Λ =
n∑
i=1

Ei,i−1 + λE1,n+1, where Ei,j denotes the (n + 1) × (n + 1)

matrix with 1 at the intersection of row i and column j, and 0 elsewhere. The Schur polynomials
of (g, π)-type then coincide with the Schur polynomials [32] under the restriction t(n+1)k ≡ 0,
k = 1, 2, 3, . . . .

Definition 1.4. For any X ∈ λ−1g
[[
λ−1

]]
, denote by rX the Laurent matrix associated with eX ,

that is

rX := L
(
eX
)
. (1.3)

For ν = (ν1, . . . , ν`(ν)) ∈ Y, define

rX,ν := det (rX,i−νi−1,j−1)
`(ν)
i,j=1 .

Definition 1.5. For ξ =
∑
`∈E+

t`Λ` (as above), and for any X ∈ λ−1g
[[
λ−1

]]
, define matrices DIJ

and ZX,IJ (I, J ≥ 0) by

I − eξ(λ)e−ξ(µ)

λ− µ
=

∞∑
I,J=0

DIJλ
I+1µJ+1, (1.4)

I − eX(λ)e−X(µ)

λ− µ
=

∞∑
I,J=0

ZX,IJλ
−I−1µ−J−1. (1.5)

Define s(i|j), rX,(i|j), i, j ≥ 0, via

(DIJ)ab = s(m·I+a−1|m·J+m−b), (ZX,IJ)ab = rX,(m·I+m−a|m·J+b−1),

where a, b = 1, . . . ,m. We call ZX,IJ the matrix-valued affine coordinates and rX,(i|j) the affine
coordinates.

Remark 1.6. The matrix-valued affine coordinates ZX,IJ and their generating formula (1.5)
were introduced in [3] by F. Balogh and one of the authors of the present paper for the sl2(C)
case.

The following theorem is the main result of the paper. Denote by κ the constant such that

(a|b) = κTr(π(a)π(b)), ∀ a, b ∈ g. (1.6)
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Theorem 1.7. For any X ∈ λ−1g
[[
λ−1

]]
, the formal series τ defined by

τ :=

(∑
ν∈Y

rX,νsν

)κ
(1.7)

is a tau function of the Drinfeld–Sokolov hierarchy of g-type. Moreover, sν and rX,ν have the
following expressions

sν = det
(
s(ki|lj)

)d(ν)

i,j=1
, (1.8)

rX,ν = (−1)l1+···+ld(ν) det
(
rX,(ki|lj)

)d(ν)

i,j=1
. (1.9)

We refer to (1.7)–(1.9) as the Sato–Zhou type formula for tau functions of the DS hierarchy.

Remark 1.8. As the reader might already have noticed, here the terminology is very similar
to the one used to deal with the KP hierarchy in the Sato’s approach. However, it is worth
mentioning that tau functions of the DS hierarchies of g-type in general are not KP tau functions
(except for g = sln+1(C)). One way to see it (which is close to the spirit of this paper) is that
the generalized Schur polynomials sν of (g, π)-type we defined are “reductions” (in the sense of
the Remark 1.3) of the usual ones [32] just in the An case.

Remark 1.9. The formula (1.7) is intrinsic when π is taken as the adjoint representation of g.
Namely, for such π and for each partition, the corresponding Schur polynomials of (g, π)-type
only depend on the structure constants of g. We will study the intrinsic Schur polynomials
associated to g in a future publication.

Remark 1.10. For the ABCD cases, a result similar to Theorem 1.7 was obtained in [41] where
a different method was used; see also in [4] for more details for the An case.

Organization of the paper. In Section 2 we review the Drinfeld–Sokolov hierarchies and their
tau functions. In Section 3 we prove Theorem 1.7. Some explicit examples and applications are
given in Section 4. A list of first few Schur polynomials of (g, π)-type for g of low ranks and
particular choices of π are given in Appendix A.

2 Review of the Grassmannian approach to the DS hierarchy

Denote by b the Borel subalgebra of g, i.e., b := g≤0, and by n the nilpotent subalgebra n := g<0.
Define a linear operator L by

L := ∂x + Λ + q(x),

where q(x) ∈ b. It is proved by V.G. Drinfeld and V.V. Sokolov [16] that there exists a unique

smooth function U(x) ∈ g
(
λ−1

)<0 ∩ Im adΛ such that

e− adU(x)L = ∂x + Λ +H(x), H(x) ∈ Ker adΛ .

Here g
(
λ−1

)
consists of formal Laurent series in λ−1 with coefficients in g, and <0 means taking

the subspace of elements with negative principal degrees (the principal degree for elements
of g

(
λ−1

)
is defined similarly as for the loop algebra). The following commuting system of

PDEs

∂L
∂t`

= −
[(
eadUΛ`

)
≥0
,L
]
, ` ∈ E+ (2.1)

is called the pre-DS hierarchy of g-type.
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Gauge transformations. For any smooth function N(x) ∈ n, the map

L 7→ L̃ = eadNL = ∂x + Λ + q̃

is called a gauge transformation. A vector space V ⊂ g is called a DS gauge if it satisfies

[I+, n]⊕ V = b.

Below we fix V a DS gauge. It was observed in [16] that the flows (2.1) can be reduced to gauge
equivalent classes; moreover, for any q(x) ∈ b, there exists a unique N(x) such that q̃(x) ∈ V .
Let us denote

Lcan := ∂x + Λ + qcan(x), qcan(x) ∈ V.

Take v1, . . . , vn a homogeneous basis of V , namely deg vi = −mi, and write

qcan(x) =

n∑
i=1

ui(x)vi.

The DS hierarchy of g-type is defined as the system of the pre-DS flows for the complete set
of representatives (aka gauge invariants) u1, . . . , un. Clearly, the precise form of this integrable
hierarchy depends1 on the choice of the DS gauge V . The hierarchies under different choices
of V are Miura equivalent. (To see this we notice that they are all Miura equivalent to the
hierarchy under the modified DS gauge, cf. Lemma 6.7 of [16], or alternatively they are all
Miura equivalent to the DS hierarchy written in the normal coordinates, cf. Section 2.8 of [7];
see also [14, 25, 26]; for the notion of Miura transformation, see [21].) We remark that a unified
algorithm of writing the DS hierarchy of g-type for an arbitrary choice V was obtained recently
in [7]; it has the form

∂ui

∂t`
= ai`

[
u1, . . . , un

]
, ` ∈ E+, (2.2)

where ai,`
[
u1, . . . , un

]
are differential polynomials of u1, . . . , un. It should also be noted that for

the DS hierarchy of g-type the time variable t1 can be identified with −x.
The hierarchy (2.2) is known to be tau-symmetric [7, 21, 25, 38]. In the setting of [5, 7], that

means that, there exist a family of differential polynomials Ωk,` of qcan, indexed by two integers
k, ` ∈ E+ (satisfying certain natural non-degeneracy condition), such that for all m, k, ` ∈ E+,

Ωk,` = Ω`,k,
∂Ωk,`

∂tm
=
∂Ω`,m

∂tk
=
∂Ωm,k

∂t`
.

Therefore, for an arbitrary solution qcan of (2.2), there exists a function τ(t) such that

∂2 log τ

∂tk∂t`
= Ωk,`.

The function τ(t) is called the tau-function of the solution qcan. The tau function is determined
by qcan up to a multiplicative factor of the form

exp

(∑
`∈E+

c`t`

)
,

1It also depends on scalings of the basis vi which gives rise to scalings of ui. Such a coordinate change is trivial
(in the case g = Deven another linear transformation of ui needs to be considered but is again trivial).
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where c` are arbitrary constants. We review in the rest of this section the Grassmannian ap-
proach to tau functions.

Recall that we will fix an irreducible, faithful representation π : g → gl(m,C) (as in (1.1)).
Let H := Cm

(
λ−1

)
be the linear space of Cm-valued formal Laurent series in λ−1, that is,

H = λ−1Cm
[[
λ−1

]]
⊕ Cm[λ].

Let H+ := Cm[λ]. Denote by Gr the Sato–Segal–Wilson Grassmannian [34, 35], and by
e1, . . . , em the canonical basis of Cm. A point W ∈ Gr is a subspace of H. Here we are
interested in the big cell Gr(0) ⊂ Gr which consists of points W of the form

W = SpanC

{
eiλ

` +
∑
k≥0

Ak,`,ieiλ
−k−1

}
i=1,...,m,`≥0

.

Here Ak,`,i ∈ C are called the affine coordinates [23] of W .

Definition 2.1. Define Gr
(0)
g as the following subset of the big cell Gr(0)

Gr
(0)
g =

{
eaH+

∣∣ a ∈ λ−1g
[
λ−1

]}
.

We call Gr
(0)
g the embedded big cell of g-type.

For a ∈ λ−1g
[
λ−1

]
, write G = ea =

∑
k≥0

Gkλ
−k. The matrices G0, G1, . . . serve as the

matrix-valued coordinates for the point W corresponding to a; see Fig. 2. Clearly, G0 = I.

...
... . .

.

· · ·

· · ·

· · ·

· · ·

. . .

G2

G1

G0

G3

G2

G1

G0

Figure 2. Matrix-valued coordinates in Sato–Segal–Wilson Grassmannian.

Definition 2.2. Let M =
∑
k∈Z

Mkλ
k with Mk ∈ gl(m,C). The N -th, N ≥ 0, block Toeplitz

matrix associated to M is defined by

TN (M) = (MI−J)NI,J=0.

The following theorem comes from the results obtained in [9, 10].

Theorem 2.3 (Cafasso–Wu [9, 10]). For any X ∈ λ−1g
[
λ−1

]
, let γ = eξeX . Define τ = τ(t)

by

τ =
[

lim
N→∞

detTN (γ)
]κ
, (2.3)

where κ is defined in (1.6). Then τ is a tau function of the DS hierarchy associated to g.

Remark 2.4. The stabilization proved in [27] for the case of the Witten–Kontsevich tau function
and extended in [10] for the general cases ensures that the limit in (2.3) is meaningful.
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3 Proof of Theorem 1.7

Proof. Define γ = eξeX , where we recall that X is the given element in λ−1g
[[
λ−1

]]
, and

ξ =
∑
`∈E+

t`Λ`. We have

L(γ) = L
(
eξ
)
L
(
eX
)

= srX .

Here s and rX are defined in (1.2) and (1.3), respectively. For any N ≥ 1, define two matrices

sN = (sN,ij)i∈{0,...,N},j∈{−N−1,...,N}

and

rN = (rN,ij)i∈{−N−1,...,N},j∈{0,...,N}

by

sN,ij := L
(
eξ
)
ij
, rN,ij := L

(
eX
)
ij
.

Then we have

lim
N→∞

detTN (γ) = lim
N→∞

det(sNrN ).

Note that τ1/κ is a formal power series in t`, ` ∈ E+, and the meaning of the above two limits is
in the topology of graded formal power series. By using the well-known Cauchy–Binet formula
(see for instance [22]) we obtain [23, 34] from Theorem 2.3 that

τ1/κ =
∑
ν∈Y

rX,νsν ,

where we recall that rX,ν and sν are defined by

rX,ν = det(ri−νi−1,j−1)
`(ν)
i,j=1 and sν = det(si−1,j−νj−1)

`(ν)
i,j=1.

As explained in [3], formulae (1.4) and (1.5) give the Gaussian eliminations and formulae (1.8)
and (1.9) are due to the Giambelli-type formula [3, 23, 32]. The theorem is proved. �

Remark 3.1. Let us mention three important features of Theorem 1.7: i) For every partition ν,
the function sν is independent of the choice of solutions of the DS hierarchy. ii) Each summand
of
∑
ν∈Y

rX,νsν is accurate; in other words, the limiting procedure is dropped. iii). The expres-

sions (1.8) and (1.9) give rise to an efficient algorithm for computing tau-functions, as explained
in [3, 40].

4 Polynomial tau functions and bilinear equations

Theorem 1.7 gives a simple procedure for efficient computation of tau function τ when τ1/κ is
a polynomial. Indeed, let us take a faithful representation π of g. Choose X ∈ λ−1g

[[
λ−1

]]
such that π(X) is a nilpotent matrix; the infinite series in (1.7) becomes finite, as it is easy
to verify that only finitely many Plücker coordinates {rν , ν ∈ Y} are non zero. Consequently,
τ1/κ is polynomial. This simple idea was used for example in [3] for the KdV hierarchy. If κ = 1,
then the tau function itself is a polynomial. Interestingly enough, in the computations that we
will perform, even when κ = 1/2, we obtain some polynomial tau functions: in other words, the
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finite sum in (1.7) is a perfect square. Even if this result has not been proved in general, we
expect that our procedure, under suitable choices of the faithful representation, gives a way of
computing all the polynomials tau functions (up to a shift of the times {ti, i ∈ E+}) of the DS
hierarchy of g-type. As stated in the introduction of [30], this is an interesting open problem.

In what follows we compute the first few polynomial tau functions of the DS hierarchy of
g-type for g = A1, A2, B2 and D4. Note that our computations of tau functions (and so of
the corresponding solutions to the DS hierarchy) do not require the precise expressions of the
equations that we are solving. And note that deriving the explicit expressions of the PDEs in the
DS hierarchy (or of their bilinear forms) are themselves very interesting and important questions.
These motivate us to do a further application that we explain in more details right below.

We will use the particular tau functions to deduce possible bilinear equations of small degrees.
Note that each Drinfeld–Sokolov hierarchy has infinitely many solutions. The usual question is
to find particular solutions (and their tau-functions) to the DS hierarchy (e.g., to solve all PDEs
in this hierarchy together). Here, as we mentioned above, we will also consider the inverse:

Deduce possible bilinear forms of the PDEs from particular solutions.

Sometimes, one particular solution already contains all the information of an equation and of the
whole hierarchy. For example, the “topological solution” was used by B. Dubrovin and Y. Zhang
to construct the integrable hierarchy of topological type [18, 19, 21]. However, a polynomial tau
function τpoly of the DS hierarchy (or say the corresponding solution) contains less information,
namely, if τpoly satisfies some equation, it will not guarantee directly that other tau functions of
the DS hierarchy satisfy the same equation. Nevertheless, if τpoly does not satisfy some equation,
then this equation cannot belong to the bilinear forms of the DS hierarchy.

4.1 Bilinear derivatives

Given two smooth functions f(x), g(x) with independent variables x = (xi)i∈I , where I denotes
an index set. The bilinear derivatives [24] Di1 · · ·Dik are operators defined via the identity

e

∑
i∈I

hiDi
(f, g) ≡ f(x + h)g(x− h), ∀h.

It means that, expanding both sides of this identity in h

e

∑
i∈I

hiDi
(f, g) = (f, g) +

∑
i∈I

hiDi(f, g) +
∑
i,j∈I

hihj
2
DiDj(f, g) + · · · ,

f(x + h)g(x− h) = f(x)g(x) +
∑
i∈I

hi

(
∂f

∂xi
g − f ∂g

∂xi

)
+ · · ·

and comparing the coefficients of monomials of h, we obtain, for example,

Di(f, g) =
∂f

∂xi
g − f ∂g

∂xi
,

DiDj(f, g) =
∂2f

∂xi∂xj
g + f

∂2g

∂xi∂xj
− ∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi
.

For the Drinfeld–Sokolov hierarchy of g-type, we take I := E+. There is a natural gradation
for the bilinear derivatives, defined by assigning degDi = i for i ∈ E+. Denote by Hg the
linear space of bilinear equations satisfied by the Drinfeld–Sokolov hierarchies of g-type, which
decomposes into homogeneous subspaces

Hg =
⊕
i

H[i]
g .

The gradation allows us to list all possible bilinear equations up to a certain degree.
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4.2 Examples of polynomial tau functions

4.2.1 The A1 case

Let us chose the standard matrix realization g = sl(2;C). Consider the following two elements
in λ−1g

[[
λ−1

]]
1

λ
F =

1

λ

(
0 0
1 0

)
,

1

λ
E =

1

λ

(
0 1
0 0

)
.

The associated polynomial tau functions are

τ1 = 1 + t1, τ2 = 1 + t3 −
t31
3
, (4.1)

respectively. Similarly, one computes polynomial tau functions corresponding to elements of the
form λ−kF , λ−kE, k ≥ 2. For example, for k = 2, we obtain

τ3 = 1 + 2t3 − t5t1 + t23 +
t31
3

+
1

3
t3t

3
1 −

1

45
t61, (4.2)

τ4 = 1− t3t7 + 2t5 + t25 + t33t1 − t3t5t21 − t3t21 +
1

3
t7t

3
1 −

t51
15

− 1

15
t5t

5
1 +

1

105
t3t

7
1 −

t10
1

4725
, (4.3)

corresponding to λ−2F and λ−2E, respectively.

Now consider all bilinear equations up to degree 4(
β + α0D

2
1 + α1D

4
1 + α2D1D3

)
(τ, τ) = 0, (4.4)

where β, α0, α1, α2 are complex constants. Requiring that τ1, τ2 satisfy the above ansatz (4.4),
we find that up to a multiplicative constant there is only one possible choice of coefficients:(

D4
1 − 4D1D3

)
(τ, τ) = 0. (4.5)

Similarly up to degree 6, we find out only two more possible linearly independent bilinear
equations that are satisfied by τ1, τ2, τ3, τ4(

D6
1 + 20D3

1D3 − 96D1D5

)
(τ, τ) = 0, (4.6)(

D3
1D3 + 2D2

3 − 6D1D5

)
(τ, τ) = 0, (4.7)

which are identified to two of the well-known bilinear equations for the hierarchy of A1-type (the
KdV hierarchy). Consequently, we have shown that

dimCH
[deg≤6]
A1

≤ 3.

Moreover, (4.5)–(4.7) are the three only possible choices of homogeneous basis (up to constant

factors) of H[deg≤6]
g .

Relation with the Adler–Moser polynomials. An alternative way of computing polynomial
tau functions for the KdV hierarchy was given by Adler and Moser [1]. Define a family of
polynomials θk(x = q1, q3, q5, . . . , q2k−1), k ≥ 0, recursively by

θ0 = 1, θ1 = x, θ′k+1θk−1 + θk+1θ
′
k−1 = (2k − 1)θ2

k, ∀ k ≥ 2,
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where the prime denotes the x-derivative and for each k ≥ 2 the integration constant is chosen
to be q2k−1. The polynomials θk are known as the Adler–Moser polynomials. It was also proven
in [1] that there exists a unique change of variables q → t that transforms the Adler–Moser
polynomials into the polynomial tau functions of the KdV hierarchy. In [17], one of the authors
of the present paper proved that the desired change of variables is given by q1 = t1 = x and∑

i≥2

q2i−1

α2i−1
z2i−1 = tanh

(∑
i≥2

t2i−1z
2i−1

)
,

where α2i−1 := (−1)i−132 · · · (2i − 3)2(2i − 1). Up to a shift and renormalisation of the times,
we recover in particular the polynomials given in equations (4.1)–(4.3).

4.2.2 The A2 case

We still chose the standard matrix realization g = sl(3;C). Consider for example the following
two elements in λ−1g

[[
λ−1

]]
:

X1 =
1

λ

 0 0 0
a1 0 0
a2 a3 0

 , X2 =
1

λ

0 a1 a2

0 0 a3

0 0 0

 ,

where a1, a2, a3 are arbitrary constants. The corresponding polynomial tau functions will be
denoted by τ1, τ2, respectively. We have

τ1 = 1 + a2t1 +
1

2
a1t

2
1 −

1

2
a3t

2
1 +

1

8
a1a3t

4
1 −

1

160
a2

1a3t
6
1 +

1

160
a1a

2
3t

6
1 −

a2
1a

2
3t

8
1

1792
+ a1t2

+ a3t2 +
1

16
a2

1a3t
4
1t2 +

1

16
a1a

2
3t

4
1t2 +

3

2
a1a3t

2
2 −

1

8
a2

1a3t
2
1t

2
2 +

1

8
a1a

2
3t

2
1t

2
2 +

1

32
a2

1a
2
3t

4
1t

2
2

+
1

4
a2

1a3t
3
2 +

1

4
a1a

2
3t

3
2 +

1

16
a2

1a
2
3t

4
2 −

1

4
a2

1a3t
2
1t4 −

1

4
a1a

2
3t

2
1t4 −

1

2
a2

1a3t2t4 +
1

2
a1a

2
3t2t4

− 1

4
a2

1a
2
3t

2
1t2t4 −

1

4
a2

1a
2
3t

2
4 +

1

2
a2

1a3t1t5 −
1

2
a1a

2
3t1t5 +

1

4
a2

1a
2
3t1t7,

τ2 = 1− 1

8
a1t

4
1 +

1

8
a3t

4
1 +

1

20
a2t

5
1 +

1

640
a1a3t

8
1 −

a2
1a3t

12
1

358400
+
a1a

2
3t

12
1

358400
− a2

1a
2
3t

16
1

90112000
− 1

2
a1t

2
1t2

− 1

2
a3t

2
1t2 −

a2
1a3t

10
1 t2

12800
− a1a

2
3t

10
1 t2

12800
+

1

2
a1t

2
2 −

1

2
a3t

2
2 − a2t1t

2
2 +

1

16
a1a3t

4
1t

2
2

− 13a2
1a3t

8
1t

2
2

17920
+

13a1a
2
3t

8
1t

2
2

17920
+

3a2
1a

2
3t

12
1 t

2
2

1126400
− 1

320
a2

1a3t
6
1t

3
2 −

1

320
a1a

2
3t

6
1t

3
2 −

3

8
a1a3t

4
2

− 1

128
a2

1a3t
4
1t

4
2 +

1

128
a1a

2
3t

4
1t

4
2 −

a2
1a

2
3t

8
1t

4
2

10240
− 1

32
a2

1a3t
2
1t

5
2 −

1

32
a1a

2
3t

2
1t

5
2 −

1

32
a2

1a3t
6
2

+
1

32
a1a

2
3t

6
2 +

1

256
a2

1a
2
3t

4
1t

6
2 +

1

256
a2

1a
2
3t

8
2 + a1t4 + a3t4 +

a2
1a3t

8
1t4

1280
+
a1a

2
3t

8
1t4

1280

− 3

2
a1a3t

2
1t2t4 +

1

160
a2

1a3t
6
1t2t4 −

1

160
a1a

2
3t

6
1t2t4 −

a2
1a

2
3t

10
1 t2t4

12800
+

1

32
a2

1a3t
4
1t

2
2t4

+
1

32
a1a

2
3t

4
1t

2
2t4 −

1

8
a2

1a3t
2
1t

3
2t4 +

1

8
a1a

2
3t

2
1t

3
2t4 −

1

320
a2

1a
2
3t

6
1t

3
2t4 −

3

16
a2

1a3t
4
2t4

− 3

16
a1a

2
3t

4
2t4 −

1

32
a2

1a
2
3t

2
1t

5
2t4 +

3

2
a1a3t

2
4 +

1

32
a2

1a3t
4
1t

2
4 −

1

32
a1a

2
3t

4
1t

2
4 +

a2
1a

2
3t

8
1t

2
4

2560

− 3

8
a2

1a3t
2
1t2t

2
4 −

3

8
a1a

2
3t

2
1t2t

2
4 −

1

8
a2

1a3t
2
2t

2
4 +

1

8
a1a

2
3t

2
2t

2
4 +

1

64
a2

1a
2
3t

4
1t

2
2t

2
4 −

3

32
a2

1a
2
3t

4
2t

2
4

+
1

4
a2

1a3t
3
4 +

1

4
a1a

2
3t

3
4 −

1

8
a2

1a
2
3t

2
1t2t

3
4 +

1

16
a2

1a
2
3t

4
4 + a2t5 +

1

2
a1a3t

3
1t5 +

3a2
1a3t

7
1t5

1120
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− 3a1a
2
3t

7
1t5

1120
+
a2

1a
2
3t

11
1 t5

140800
+

1

80
a2

1a3t
5
1t2t5 +

1

80
a1a

2
3t

5
1t2t5 +

1

8
a2

1a3t
3
1t

2
2t5 −

1

8
a1a

2
3t

3
1t

2
2t5

+
1

320
a2

1a
2
3t

7
1t

2
2t5 +

1

4
a2

1a3t1t
3
2t5 +

1

4
a1a

2
3t1t

3
2t5 −

1

32
a2

1a
2
3t

3
1t

4
2t5 +

1

4
a2

1a3t
3
1t4t5

+
1

4
a1a

2
3t

3
1t4t5 −

1

2
a2

1a3t1t2t4t5 +
1

2
a1a

2
3t1t2t4t5 +

1

80
a2

1a
2
3t

5
1t2t4t5 +

1

4
a2

1a
2
3t1t

3
2t4t5

+
1

8
a2

1a
2
3t

3
1t

2
4t5 +

1

4
a2

1a3t
2
1t

2
5 −

1

4
a1a

2
3t

2
1t

2
5 −

1

160
a2

1a
2
3t

6
1t

2
5 −

1

2
a2

1a3t2t
2
5 −

1

2
a1a

2
3t2t

2
5

− 1

8
a2

1a
2
3t

2
1t

2
2t

2
5 −

1

2
a2

1a
2
3t2t4t

2
5 −

1

4
a2

1a
2
3t1t

3
5 −

1

40
a2

1a3t
5
1t7 +

1

40
a1a

2
3t

5
1t7 +

1

2
a2

1a3t1t
2
2t7

− 1

2
a1a

2
3t1t

2
2t7 −

1

2
a2

1a3t5t7 +
1

2
a1a

2
3t5t7 −

1

16
a2

1a3t
4
1t8 −

1

16
a1a

2
3t

4
1t8 −

1

4
a2

1a3t
2
1t2t8

+
1

4
a1a

2
3t

2
1t2t8 −

1

160
a2

1a
2
3t

6
1t2t8 +

1

4
a2

1a3t
2
2t8 +

1

4
a1a

2
3t

2
2t8 +

1

8
a2

1a
2
3t

2
1t

3
2t8 +

1

2
a2

1a3t4t8

− 1

2
a1a

2
3t4t8 −

1

16
a2

1a
2
3t

4
1t4t8 +

1

4
a2

1a
2
3t

2
2t4t8 +

1

2
a2

1a
2
3t1t2t5t8 −

1

4
a2

1a
2
3t

2
8 +

1

80
a2

1a
2
3t

5
1t11

− 1

4
a2

1a
2
3t1t

2
2t11 +

1

4
a2

1a
2
3t5t11.

Consider all possible bilinear equations of degree 4:(
α1D

4
1 + α2D

2
2

)
(τ, τ) = 0.

Requiring that τ1 satisfies this ansatz we find that there is only one possible choice:(
D4

1 + 3D2
2

)
(τ, τ) = 0.

Similarly, requiring that τ1 and τ2 both satisfy the ansatz of bilinear equation of degree 6, we
find that there are only two linearly independent bilinear equations of degree 6:(

D6
1 + 45D2

1D
2
2 + 90D2D4 − 216D1D5

)
(τ, τ) = 0,(

D6
1 + 15D2

1D
2
2 + 60D2D4 − 96D1D5

)
(τ, τ) = 0,

which are identified to two of the well-known bilinear equations for the hierarchy of A2-type (the
Boussinesq hierarchy).

4.2.3 The B2 case

We choose the matrix realization of the B2 simple Lie algebra as in [16] (cf. p. 2032 therein).
We consider two explicit examples given respectively by the following matrices2

X1 =
1

λ


0 0 0 0 0
a2 0 0 0 0
a3 a5 0 0 0
a4 0 a5 0 0
0 a4 −a3 a2 0

 , X2 =
1

λ


0 0 a3 a4 0
0 0 0 0 a4

0 0 0 0 −a3

0 0 0 0 0
0 0 0 0 0

 .

The associated tau functions will be denoted by τ1 and τ2. They have the expressions

τ1 = 1 +
1

2
a4t1 +

1

4
a3t

2
1 +

1

12
a2t

3
1 −

1

12
a5t

3
1 −

1

192
a2

3t
4
1 +

1

96
a2a4t

4
1 +

1

192
a3a5t

5
1 +

a2a5t
6
1

1920

2X2 is not the most general upper triangular element of homogeneous degree −1, as the tau function for the
most general case is too big.
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− 1

720
a2

5t
6
1 −

a2a4a5t
7
1

11520
− a2a3a5t

8
1

53760
− a2

2a5t
9
1

483840
+

a2a
2
5t

9
1

1088640
+
a2a4a

2
5t

10
1

3110400
+

11a2a3a
2
5t

11
1

87091200

+
43a2

2a
2
5t

12
1

2090188800
− 79a2a

3
5t

12
1

2874009600
− 37a2

2a
3
5t

15
1

1931334451200
+

a2
2a

4
5t

18
1

115880067072000
+

1

2
a2t3 + a5t3

− 1

8
a2

3t1t3 +
1

4
a2a4t1t3 +

1

8
a3a5t

2
1t3 +

1

16
a2a5t

3
1t3 −

1

24
a2

5t
3
1t3 +

1

192
a2a4a5t

4
1t3

+
1

640
a2a3a5t

5
1t3 +

a2
2a5t

6
1t3

3840
− a2a

2
5t

6
1t3

1080
− a2a4a

2
5t

7
1t3

34560
− a2a3a

2
5t

8
1t3

193536
− 31a2

2a
2
5t

9
1t3

17418240

+
11a2a

3
5t

9
1t3

8709120
+

101a2
2a

3
5t

12
1 t3

22992076800
− 29a2

2a
4
5t

15
1 t3

6437781504000
+

3

4
a2a5t

2
3 +

1

4
a2

5t
2
3 +

1

16
a2a4a5t1t

2
3

+
5

288
a2a

2
5t

3
1t

2
3 +

a2a4a
2
5t

4
1t

2
3

1152
+

7a2a3a
2
5t

5
1t

2
3

23040
+
a2

2a
2
5t

6
1t

2
3

138240
− 17a2a

3
5t

6
1t

2
3

69120
− 13a2

2a
3
5t

9
1t

2
3

34836480

+
a2

2a
4
5t

12
1 t

2
3

2043740160
+

1

16
a2

2a5t
3
3 +

11

36
a2a

2
5t

3
3 +

1

144
a2a4a

2
5t1t

3
3 −

1

576
a2a3a

2
5t

2
1t

3
3 +

a2
2a

2
5t

3
1t

3
3

3456

+
7a2a

3
5t

3
1t

3
3

1728
− 11a2

2a
3
5t

6
1t

3
3

414720
− a2

2a
4
5t

9
1t

3
3

34836480
+

25

576
a2

2a
2
5t

4
3 +

5

144
a2a

3
5t

4
3 +

a2
2a

3
5t

3
1t

4
3

3456

− a2
2a

4
5t

6
1t

4
3

552960
+

5

576
a2

2a
3
5t

5
3 +

a2
2a

4
5t

6
3

2304
− 1

4
a2a5t1t5 +

1

4
a2

5t1t5 −
1

16
a2a4a5t

2
1t5

− 1

48
a2a3a5t

3
1t5 −

1

192
a2

2a5t
4
1t5 +

1

72
a2a

2
5t

4
1t5 +

a2a4a
2
5t

5
1t5

5760
− 11a2a3a

2
5t

6
1t5

69120
+
a2

2a
2
5t

7
1t5

483840

+
41a2a

3
5t

7
1t5

483840
− a2

2a
3
5t

10
1 t5

17418240
+

a2
2a

4
5t

13
1 t5

4379443200
− 1

8
a2a3a5t3t5 −

1

8
a2

2a5t1t3t5

− 1

24
a2a

2
5t1t3t5 −

1

48
a2a4a

2
5t

2
1t3t5 −

5

576
a2a3a

2
5t

3
1t3t5 −

a2
2a

2
5t

4
1t3t5

1152
+

7a2a
3
5t

4
1t3t5

1152

+
29a2

2a
3
5t

7
1t3t5

967680
− a2

2a
4
5t

10
1 t3t5

116121600
− 1

24
a2a3a

2
5t

2
3t5 −

7

96
a2

2a
2
5t1t

2
3t5 −

1

48
a2a

3
5t1t

2
3t5

+
a2

2a
3
5t

4
1t

2
3t5

1152
+
a2

2a
4
5t

7
1t

2
3t5

258048
− 11

576
a2

2a
3
5t1t

3
3t5 +

a2
2a

4
5t

4
1t

3
3t5

9216
− 1

768
a2

2a
4
5t1t

4
3t5

− 1

24
a2a4a

2
5t

2
5 −

1

32
a2a3a

2
5t1t

2
5 +

1

64
a2

2a
2
5t

2
1t

2
5 −

1

96
a2a

3
5t

2
1t

2
5 −

a2
2a

3
5t

5
1t

2
5

2304
− a2

2a
4
5t

8
1t

2
5

1290240

+
1

192
a2

2a
3
5t

2
1t3t

2
5 −

a2
2a

4
5t

5
1t3t

2
5

7680
+
a2

2a
4
5t

3
1t

3
5

2304
− 1

192
a2

2a
4
5t3t

3
5 +

1

8
a2a3a5t1t7 +

1

16
a2

2a5t
2
1t7

− 1

8
a2a

2
5t

2
1t7 +

1

288
a2a3a

2
5t

4
1t7 +

a2
2a

2
5t

5
1t7

1440
− 1

640
a2a

3
5t

5
1t7 −

a2
2a

3
5t

8
1t7

967680
− a2

2a
4
5t

11
1 t7

87091200

+
1

12
a2a3a

2
5t1t3t7 +

1

24
a2

2a
2
5t

2
1t3t7 −

1

16
a2a

3
5t

2
1t3t7 −

a2
2a

3
5t

5
1t3t7

11520
− a2

2a
4
5t

8
1t3t7

1935360

+
1

192
a2

2a
3
5t

2
1t

2
3t7 −

a2
2a

4
5t

5
1t

2
3t7

46080
+
a2

2a
4
5t

2
1t

3
3t7

1152
+

1

12
a2

2a
2
5t5t7 −

1

12
a2a

3
5t5t7

+
1

576
a2

2a
3
5t

3
1t5t7 +

7a2
2a

4
5t

6
1t5t7

138240
+

1

24
a2

2a
3
5t3t5t7 +

a2
2a

4
5t

3
1t3t5t7

1152
+

1

96
a2

2a
4
5t

2
3t5t7

+
1

192
a2

2a
4
5t1t

2
5t7 −

1

48
a2

2a
3
5t1t

2
7 −

a2
2a

4
5t

4
1t

2
7

2304
− 1

96
a2

2a
4
5t1t3t

2
7,

τ2 = 1 +
1

288
a3t

6
1 −

a4t
7
1

2016
− a2

3t
12
1

11612160
− 1

12
a3t

3
1t3 +

1

48
a4t

4
1t3 −

a2
3t

9
1t3

69120
+

1

2
a3t

2
3 −

1

2
a4t1t

2
3

− a2
3t

6
1t

2
3

1920
− 1

48
a2

3t
3
1t

3
3 +

1

16
a2

3t
4
3 +

a2
3t

7
1t5

4032
− 1

96
a2

3t
4
1t3t5 +

1

4
a2

3t1t
2
3t5 + a4t7 +

1

160
a2

3t
5
1t7

− 1

2
a2

3t5t7.
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Consider all bilinear equations up to degree 4(
α0 + α1D

2
1 + α2D

4
1 + α3D1D3

)
(τ, τ) = 0,

where α0, . . . , α3 are constants. Requiring that τ1 satisfies this ansatz of bilinear equations we
find that there is no solution. Similarly, up to degree 8, we find that there are only two possible
homogeneous equations (one is of degree 6 and the other is of degree 8). We arrive at

Proposition 4.1. The following dimension estimates hold true

dimCH
[deg≤4]
B2

= 0, dimCH
[deg≤6]
B2

≤ 1, dimCH
[deg≤8]
B2

≤ 2.

Moreover, the only possible elements in H[deg≤8]
B2

are linear combinations of(
D6

1 − 5D3
1D3 − 5D2

3 + 9D1D5

)
(τ,τ) = 0,

and (
D8

1 + 7D5
1D3 − 35D2

1D
2
3 − 21D3

1D5 − 42D3D5 + 90D1D7

)
(τ, τ) = 0.

Remark 4.2. As far as we know, explicit bilinear equations for the DS hierarchy of B2-type
are not pointed out in the literature, except that there is a super-variable version given in [30].
However, the relationship between the super bilinear equations of Kac–Wakimoto [30] and the
DS hierarchy of B2-type is not known. Finding explicit generating series of bilinear equations
for the DS hierarchy of B2-type remains an open question. It is also interesting to remark
that the very same equations are contained in [13], as the first two equations of the BKP
hierarchy [13, 33, 36, 39].

4.2.4 The D4 case

Take the matrix realization of g as in [6] (cf. Example 4.4 therein). Consider the particular point
of the Sato Grassmannian of D4-type given by

γ = 1 + λEθ.

We put t11 = 0. It follows from Theorem 1.7 that the corresponding tau function is given by

τ =

(
1− 1

2
s(7|6) −

1

2
s(6|7) −

1

4
s(7,6|7,6)

) 1
2

,

where s(7,6|7,6) = s(7|7)s(6|6) − s(7|6)s(6|7), s(6|6) = s(7|7) = 0, and

s(6|7) = s(7|6) =
t11
1

1900800
− 1

480
t5t

6
1 +

1

160
t23t

5
1 +

1

120
t23′t

5
1 +

1

80
t3t3′t

5
1

− 1

8
t33t

2
1 −

1

4
t3t

2
3′t

2
1 −

3

8
t23t3′t

2
1 +

1

2
t25t1 +

3

4
t23t5 + t23′t5 +

3

2
t3t3′t5.

Hence we have

τ = 1− 1

2
s(7|6) = 1− t11

1

3801600
+

1

960
t5t

6
1 −

1

320
t23t

5
1 −

1

240
t23′t

5
1 −

1

160
t3t3′t

5
1

+
1

16
t33t

2
1 +

1

8
t3t

2
3′t

2
1 +

3

16
t23t3′t

2
1 −

1

4
t25t1 −

3

8
t23t5 −

1

2
t23′t5 −

3

4
t3t3′t5.



Drinfeld–Sokolov Hierarchies, Tau Functions, and Generalized Schur Polynomials 15

Proposition 4.3. The following dimension estimates hold true

dimCH
[deg≤4]
D4

= 0, dimCH
[deg≤6]
D4

≤ 3.

Moreover, the only possible elements in H[deg≤6]
D4

are linear combinations of

(
2D3

1D3′ + 4D3D3′ − 3D2
3′
)
(τ, τ) = 0, (4.8)(

D3
1D3 −D3

1D3′ +D3D3′ −D2
3

)
(τ, τ) = 0, (4.9)(

D6
1 + 9D1D5 − 10D3

1D3 + 5D3
1D3′ − 5D3D3′

)
(τ, τ) = 0. (4.10)

Our last remark is that under the following linear change of time variables

∂t1 7→ 2−1/6∂T1 , ∂t3 7→ 21/2∂T3 , ∂t3′ 7→ 21/2∂T3 + 21/23−1/2∂T3′ , ∂t5 7→ 27/6∂T5 ,

the bilinear equations (4.8)–(4.10) in the new time variables T1, T3, T3′ , T5 coincide with those of
Kac and Wakimoto [30]. Essentially speaking such a change of times is simply a renormalization
of flows.

A List of generalized Schur polynomials of (g, π)-type

Take π as in [6, 16] (cf. [6, Example 4.4] and [16, p. 2032]). We list in Table 1 the first several
Schur polynomials of (g, π)-type for simple Lie algebras of low ranks.

g A1 A2 B2 B3 C2 D4

s1 t1 t1 0 0 t1 0

s2
1
2 t

2
1

1
2 t

2
1 + t2

1
2 t1

1
2 t1

1
2 t

2
1

1
2 t1

s12
1
2 t

2
1

1
2 t

2
1 − t2 −1

2 t1 −1
2 t1

1
2 t

2
1 −1

2 t1

s3
1
6 t

3
1 + t3

1
6 t

3
1 + t1t2

1
4 t

2
1

1
4 t

2
1

1
3 t

3
1 + 2t3

1
4 t

2
1

s21
1
3 t

3
1 − t3 1

3 t
3
1 0 0 1

3 t
3
1 − t3 0

s13
1
6 t

3
1 + t3

1
6 t

3
1 − t1t2 −1

4 t
2
1 −1

4 t
2
1

1
3 t

3
1 + 2t3 −1

4 t
2
1

s4
1
24 t

4
1 + t3t1

1
24 t

4
1+ 1

2 t2t
2
1+

1
2 t

2
2 + t4

1
12 t

3
1 + 1

2 t3
1
12 t

3
1 + 1

2 t3
1
12 t

4
1+2t1t3

1
12 t

3
1 +

1
2 t3 + t3′

s31
1
8 t

4
1

1
8 t

4
1 + 1

2 t
2
1t2−

1
2 t

2
2 − t4

1
12 t

3
1 − t3 1

12 t
3
1 − t3 1

4 t
4
1

1
12 t

3
1 −

t3 − t3′

s22
1
12 t

4
1− t1t3 1

12 t
4
1 + t22

1
4 t

2
1

1
4 t

2
1

1
12 t

4
1 − t1t3 1

4 t
2
1

s212
1
8 t

4
1

1
8 t

4
1− 1

2 t
2
1t2−

1
2 t

2
2 + t4

− 1
12 t

3
1 + t3 − 1

12 t
3
1 + t3

1
4 t

4
1

− 1
12 t

3
1 +

t3 + t3′

s14
1
24 t

4
1 + t3t1

1
24 t

4
1− 1

2 t2t
2
1+

1
2 t

2
2 − t4

− 1
12 t

3
1 −

1
2 t3

− 1
12 t

3
1 −

1
2 t3

1
12 t

4
1+2t1t3

− 1
12 t

3
1 −

1
2 t3 − t3′

Table 1. Simple Lie algebras and Schur polynomials of (g, π)-type.
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