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Abstract. For the Schlesinger-type equation related to the fifth Painlevé equation (V) via
isomonodromy deformation, we present a three-parameter family of matrix solutions along
the imaginary axis near the point at infinity, and also the corresponding monodromy data.
Two-parameter solutions of (V) with their monodromy data immediately follow from our
results. Under certain conditions, these solutions of (V) admit sequences of zeros and of
poles along the imaginary axis. The monodromy data are obtained by matching techniques
for a perturbed linear system.
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1 Introduction

The fifth Painlevé equation normalised in the form
dy (1 1\ (dy\' 1dy
dz?2  \2y y-—1 dx xdz

—1)2 0o — 0 — 0s0)?

+ )ra-t-ap - MY )

with g, 0,, 0~ € C is derived from the isomonodromy deformation of a two-dimensional linear
system of the form

dy Ao(z)  Ax(z) J
o (A S L s )y 1.1
dA ( A Nz 2 (1.1)
with J = diag[l, —1] under a small change of x, where Ap(x) and A,(x) satisfy the following:

(a) the eigenvalues of Ag(z) and A, (z) are £60y/2 and +6,/2, respectively;
(b) (Ao(z) + Ax(2))11 = —(Ao(z) + Az(x))22 = —00/2.

This paper is a contribution to the Special Issue on Painlevé Equations and Applications in Memory of Andrei
Kapaev. The full collection is available at https://www.emis.de/journals/SIGMA /Kapaev.html
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Such matrices Ag(z), Az(z) may be written in the form

(z4+60/2 —u(z+ b))
Ao(x)—< z/u —2—90/2>’

A (x) _ ( —2z— (0o +0x)/2 uy(z + (0o — 0, + 900)/2)>
* —(uy) (2 + (0o + 0z + ) /2) 2+ (6o + 0s0) /2 ’
and then
_ As(@)12(Ao(x)11 + 00/2) p= Ao — O0/2,  u=— Ao(x)12 (12)

— Ao(z)12(An(m)11 + 05/2)

(cf. Andreev and Kitaev [2], Jimbo and Miwa [15, Appendix C]). The functions y and z are the
same as those in [2, 15], and u is written as u = z % upk, where uag denotes the function u
of [2, 15]. System (1.1) has the isomonodromy property if and only if (Ag(z), Az(x)) solves the
Schlesinger-type equation

Ao(x)ll + 90/2

dAg
LL’H = [A$7A0]7 s

dA,
dx

= [AOan} + %[‘L Ax] (13)

(for more concrete setting of monodromy matrices for (1.1) invariant under a change of z, see
Section 2.2); and then y as in (1.2) solves (V). Conversely, for any solution y of (V) there exists
(Ao(x), Az(z)) satisfying (1.2) and (1.3) (cf. [14, Section 3], [15, Appendix C]).

Near z = oo, two-parameter families of convergent solutions of (V) were obtained by solving
the Hamiltonian system for (V) (cf. [22, 26]). Computing monodromy matrices for a system
equivalent to (1.1) by WKB analysis, and using these matrices, which should be independent
of z, Andreev and Kitaev [2] obtained asymptotic solutions of (V) near x = 0 and =z = oo
on the positive real axis, and connection formulas for these solutions. Recently it was shown
that, for (V) near x = 0 (respectively, z = 400 or z = ico), a series expression of the tau-
function 7y (z) may be given by regular (respectively, irregular) conformal blocks (cf. Bonelli et
al. [3], Gamayun et al. [9], Nagoya [20]). Furthermore, using the s-channel representation of the
PVI tau-function and confluence procedure, Lisovyy et al. [19] gave a conjectural connection
formula for 7v(x) between = 0 and x = ico [19, Conjecture C] and the ratios of multipliers
of 7v(z) as © — 0, +00,ico [19, Conjecture D].

As the first step of giving tables of critical behaviours for (V) like those of Guzzetti [12]
for the sixth Painlevé equation, the author [24] presented some families of convergent solutions
of (V) near x = 0 and the respective monodromy data parametrised by integration constants.
In this paper we present a family of matrix solutions of the Schlesinger-type equation (1.3)
parametrised by three integration constants ¢y, ¢, 0 as * — oo along the imaginary axis, and
also the corresponding monodromy data (note that (1.3) under the restrictions (a) and (b) is
regarded as a nonlinear system with respect to (y,z,u)). For the PVI Schlesinger equation
and for (1.3) around z = 0, such matrix solutions have been essentially given [23, 24]. To
find solutions of (1.3) around x = oo we need quite different techniques. As explained later
the monodromy data are computable by using (Ag(x), Az (z)), which is an advantage of treating
solutions of (1.3) instead of those of (V). Each entry of the solution (Ag(z), A, (z)) is a convergent
series in powers of (exxg_l, e_“”m_a_l) having coefficients given by asymptotic series in z~*. This
expression is valid in a sector-like domain with opening angle zero, where e*z°~! and e %z ~!
are sufficiently small. This domain is larger than that known for series solutions of (V) (cf.
Remark 2.20), which is another advantage of solutions of (1.3). Then we easily obtain a two-
parameter family of solutions of (V) by using (1.2), whose corresponding monodromy data also
follow by restricting cg to 1. These monodromy data make it possible to know the parametric
connection formulas between the solutions of (1.3) or (V) mentioned above and those near z = 0
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(respectively, those along the positive real axis near x = oo by [2]). Furthermore, by virtue of
the quotient expression (1.2), under certain conditions, we may find sequences of zeros and of
poles of solutions of (V) in the sector-like domain mentioned above.

Our results are described in Section 2: families of solutions of (1.3) are given in Theorems 2.1
and 2.8; the monodromy data in Theorems 2.10, 2.11 and Corollary 2.13; families of solutions
of (V) in Theorems 2.18 and 2.21; and sequences of zeros and of poles in Theorems 2.26 and 2.27.
To our goal we make an approach different from that in [2]: first construct a general solution
(Ao(x), Az(z)) of (1.3) containing the integration constants ¢y, ¢, o; insert it into (1.1), which
becomes a perturbed system with respect to z~'; and finally find the monodromy matrices
by matching techniques. In Section 3, we define the families %A, 2, and 2A_ consisting of
power series in (ex$°_1,e_xx_g_1), in e*z70! with 09 = —260, — 6 and in e T2z~ %~1 with
o(, = 20y + O, respectively, whose coefficients are asymptotic series in 2z~ ! in suitable sectors,
and show several lemmas which are used in the construction of solutions. In Sections 4 and 5,
under the restrictions (a) and (b) we transform (1.3) into a system of integral equations, and
solve it by successive approximation to obtain solutions as in Theorems 2.1 and 2.8. Section 6
is devoted to the proofs of Theorems 2.18 through 2.27 on solutions of (V). In the final section
we prove Theorems 2.10 and 2.11. Application of matchings to asymptotic solutions of the
perturbed system yields monodromy matrices for (1.1) that apparently contains !, and the
desired matrices are obtained by letting x — oo, which is justified by the isomonodromy property.
In this procedure, we use functions that are essentially WKB solutions, but for a technical
reason we treat them in a method somewhat different from that in usual WKB analysis. For
other Painlevé equations, WKB analysis and matching technique have been employed to find
connection formulas, non-linear Stokes behaviour, distribution of poles or zeros, several examples
of which are described in [7, 13]. To this field Andrei Kapaev made pioneering contributions
by using and developing the WKB matching technique in his works including [16, 17, 18]. For
basic techniques of WKB analysis and related materials see [6, 21, 28].

Throughout this paper the following symbols are used.

(1) I, J, Ay, A_ denote the matrices

10 10 0 1 00
e O R ) e o e ()

(2) R(C\ {0}) denotes the universal covering of C \ {0}.

(3) Q* = Q[GO) 9$7 0007 o, cﬂ_l) Cg, cz_la 0-} .

(4) For k € NU{0}, [#7*] (respectively, [z7*],
an asymptotic representation of the form f(z) ~ 2% 3 fiz™7 with f; € Q. (respectively,

j=0

fi € Q(00,04,0s0,c,0) with ¢ = (¢/)™! = ¢;/co) as © — oo through a specified sector,
each f; not being necessarily nonzero (e.g., note that [x_"‘] with £ € N may also be
denoted by [1] (:[xo])). Furthermore in Sections 4 and 5, for simplicity, we often denote
by (1), a function given by 1+ [a:_l].

) denotes a holomorphic function admitting

(5) Sectors and domains:

Y(0,6,%00,0): |argx — /2| < 7w/2 — 0, |exx"_1‘ <e, ’e_zx_o_l} <eg, |z|> 2z,
D(B.,,700,6) = |J {0} x 20,2, 200,9),

o€B.
Y6, 000,0): — (m/2—0) <argz —7/2 <m—9, ’ewx"o_l’ <eg, |z| > Zoo,
Y6, To0,0): —(m—0) <argr —7/2 < /24, ’e*xaf”é*l} <k, |z| > Zoo,
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Y (oo, 0): |argr — /2| < 7w — 6, |z| > Zoo,
Y0(2e0,0): |argx — /2| < 7/2 — 0, |z| > Zoo,
Yr(01,02;25): (1/2<) O <argz < O2 (< 371/2), |z] > Too.

(6) For the integration constants ¢y, ¢, and o, we frequently write

'y?r = co(0 + 200 — ) /4, A0 = cal(—a+290+9m)/4,
Vi = cp(—0 420, — 0) /4, 7= cp (0 + 20, + 0s0) /4,

c:= (co, ), c:=cz/co, d = cp/cs.

(7) For a sequence {¢’}, A¢? := ¢’ — ¢/~! in Section 5.

2 Results

2.1 Solutions of the Schlesinger-type equation

For 6, &, o satisfying § < 7/2, 20, > €7}, and for each o € B, C C, define X(0,¢,700,d) C

R(C\{0}) by
S(0,6,800,0): |arga —m/2| <m/2 -0, [|e"27 | <e, |eTaTT <, 2| > 2s
and D(Bi,€,Zx0,0) C By x R(C\ {0}) C C x R(C\ {0}) by

D(By,e,250,0) := U {o} x ¥(0,¢,2x0,0).
o€ B,

Theorem 2.1. Let B, C C and By, B, C C\ {0} be given bounded domains, and let ¢ be
a given positive number such that 6 < 7/2. Then equation (1.3) admits a three-parameter family
of solutions

{(Ao(c,0,2),Az(c,0,2)); (c,0) := (o, €z, 0) € By X By X By}
with

Ao(c,o,2) = fole,0,2)J + fi(c,o,2)AL + f_(c,0,2)A_,

Az(c,o,z) = gole,0,2)] + g4+ (c,0,2) Ay + g_(c,0,z)A_

satisfying the conditions (a) and (b). The entries are holomorphic in (c,0,x) € By X B, X
D(By,e,20,9), and are represented by the convergent series in powers of ( Tpo—l e*””x*U*l)
as follows:

fo(es:2) = (0 = )4 = (7 + 002822 + (0 = 0 rTa? ) 2+ o)

+ 9297 (1 + [271]) e 1—1—2 V0NE)" [z (e )"

+73_’Yf(1+ [m e Ty~ 1+Z ’Y+’Y x—n—i—l] (e—zm—o—l)n’

go(c,0,x) = —0/2 — fo(c,0,2),
o o0, =3 (14 [7]) =l =002+ [ ]

0G0 D ) Y () )
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+2(08)" (14 [ ])e a2 4 Z’Y+ Y)Y,
efxx%afeoo)/zw(c ox) =75 (14 [2~ ]) +29° (v ) (14 [271])e2"2

+ZV+ 70 ’y+ [27"] (e"27 1) 73((0+¢900)/2+ [x_l])e_xx_”_l

= O ) ) D () o )
x*(0+9°°)/2f (c,0,2) = (1 + [:U ]) + 2(7,) ’y+(1 + [a: ])eg”a:"*2

+ZV Oy 27 (€27 1)" =% (0 — Boo) /2 + [27])e 2!

e G i I Fo D T oy +ZV O M [ Coe ke
exa:(afem)ng_(c,a,w) = (1 + [ ]) -7 ((U +0x)/2 + [ ])exwafl
= () ) (e +Zv (293)" [ ()"
+ 28 (1) (L [ e e 2+Z'Y )" e (e )"
Here

(i) € = &(Bo, By, Bx, 8) (respectively, Too = Too(Bo, By, Bx,0) > ¢~ 1) is a sufficiently small
(respectively, large) positive number depending on (B, By, Bx,);

(i) 7L =1 (c,0), 7% =i (c,0) denote
1 =co(0+200 —0s0)/4, A2 =yl (—o+ 200 + ) /4,
V= cp(—0 + 20, — 0x0)/4,  E =y (04205 + 00) /4
(7i1) the asymptotic series for [x_l], [x_”], ... are valid uniformly in (c,0) € By X B, X B
as x tends to oo through the sector |argx — /2| < w/2 =0, |x| > Too.

Remark 2.2. The restriction (a) implies the relations fo(c, o, z)%+ f1(c,0,7) f—(c,0,7) = 63 /4
and gO(Cv g, 1:)2 + g+(C, g, x)g* (C’ a, CC) = 0323/4

Remark 2.3. More precisely, € = (By, B, B«,0) may be chosen in such a way that
(2R + A [+ PR [ P+ [+ D) (R [+ 2+ 2+ 2]+ 1) < ro(9)

for every (co,cz,0) € By X By X By, where r9(d) < 1 is a sufficiently small positive number
depending on § (see Sections 5.2, 5.4 and Proposition 5.3).

Remark 2.4. The sector-like domain (0, ¢, 2, 0) is given by |z| > 2 and

—(1+Reo)log|z| +Imo - argz + log (¢71)
<Rex < (1 —Reo)log|z|+Imo-argz — log (5_1),

where Im o - argz = O(1) since |argx — 7/2| < /2 — 6 (cf. Fig. 2.1).



6 S. Shimomura,

Imx Imx Imx

— Rex Rex —1—— Rez

(a) Reo>1 (b) |Reo| <1 (¢) Reo < —1
Figure 2.1. ¥(0,¢,20,9).

Remark 2.5. The asymptotic series for [m‘l} , [a:_”] , - .. seem to be valid in an extended sector
large — /2| < m— 4 (cf. [22, 26]).

Remark 2.6. For k € Z, let ¥i(0,¢,200,9) C R(C\ {0}) be the sector-like domain defined by
largx — (1/2 + k)| < w/2 — 0, |exx"_1‘ <, ‘e_xa:_“_l‘ <, |z| > Zoo

(note that ¥ (0, €, 20, 8) = X(0,€,T0,0)). Then in the domain Dy(Bx, €, Too,0) = U,ep, {0} ¥

Yi(0, 6,0, 0) equation (1.3) admits a family of solutions {(A(()k)(c,U,m),Aggk)(c,U,:r))} having
an expression of the same form as in Theorem 2.1 with [90_1], [:c_”}, ... in the sector |argz —
(1/2+ k)m| <7m/2 6.

Remark 2.7. By Theorem 2.1 and Remark 5.6 the tau-function is given by

% log v (z) = 2t tr(AgAy) — tr(AgJ/2) — 0s0 /2
= (Az)11 + 21 (2(A0)11(Az) 11 + (Ao)12(Az)a1 + (Ao)21(As)12)
—(0 +0s0)/4 — (0* — 0% )2 !/8
— (0 +0s)732 + (0 — 0 )fyﬁfyx) 2/24 [277]
- 7071(1 + [z et 40T 1+ ‘1])6‘%‘“‘2

+Z 7 ’Y+ _j(;' n+1 Tyl 1 +Z 7+'Y x n—i—l]( —a:x—a—l)n.

It may be checked that first some terms agree with those of 7(t — ico) in [19, equation (1.12a)].
It was conjectured by [3, 20] that 7v(z) is represented by an infinite sum of irregular conformal
blocks, whose full structure may be observed explicitly. Conformal field theory (with the Fred-
holm determinant) yields such expansions not via (d/dz)log7v(z). On the other hand, from
the fourth-order bilinear equation [2, 14, 15]

x> (77(4) — 4773 4 3(7’”)2) + 422 (7'7'(3) — 7"7'”) — (x2 — 20501 + 98 + 9325):1:(7'7'” — (T’)2)
+ 2277 + (Ooox — 0 — 02) 77" — 0205077 /2 = 0,
which does not apparently contain the logarithmic derivative, first some terms of 7y (x) may be

obtained by an argument similar to that in [8, Section 3] for 7vi(z). It seems difficult to derive
the full expansion without finding a suitable structure of this equation.

For special values of o, ¢y, c,, we have a two-parameter or one-parameter family of solutions.
If 0 = —260, — 0, namely, v* = 0, we have
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Theorem 2.8. Suppose that 0, # 0 and 0 = 0¢ := =260, — 0. Let Xy (e, 250,9) C R(C\ {0})
be the domain defined by

Y6, 000,0): —(w/2—0) <argzr —7m/2<T—0, ‘e$x”°_1‘ <eg, || > Too,

where § < w/2 is a given positive number. Let BcCbea given bounded domain, and By as in
Theorem 2.1. Then equation (1.3) admits a two-parameter family of solutions

{(Ao(c, ), Ay(c,2)); € = (co,¢z) € By x B}
with

Ao(c,z) = fole,x)J + fi(c,z)Ay + f-(c,z)A,
Az(e,x) = go(c,z)J + g4 (c,2)At + g-(c,z)A_

such that the entries are holomorphic in (c,x) € By x B x Y. (e,Zx0,0) and are represented by
the convergent series in powers of €*x?°~" as follows:

fole,z) = —(0: +00)/2 + Gx’y?r*fyo 72+ [3773]
+92 % (L [ ])ema 1+Z 128 T (e

gO(C7 x) = _900/2 - fO C,.Z'),
z7 % f (c,x) = ’y?r*(l + [:c_l]) + ’yi*(ex + 0 + [x_l])emx"o !
o0
=2, 08,) (1 [ (a0 ) 4 D0t (00 ) e ()
n=3

e eg(e,w) = 91, (1L [27]) + 200, (57) (1L [t

e

oo
L R CLIN 0 o[ (S KRN (A P
n=2

e f(em) =20, (L4 [7]) +20,0) 0 (14 [ ])era

+Z’V 72 5" 2] ()",

T 7917900

e’z g-(c,z) =2 (0, + [x7])e" 270! (79*)27?;*(1 + [271]) (e"270 1)2

#3 (Lan) )”

(i) e = &(Bo, B, 9) (respectively, T = Cl[oo(Bo, B, 9)) is a sufficiently small (respectively, large)
positive number depending on (By, B,0);

(i7) ’yi* =71 (c, 00), ¥i, =% (c,00), that is,

W, =colbo—0: —050)/2, A%, = 00+ 00 +000)/2, AL, = Cubla;

(#i1) the asymptotic series for [x_l], [9:_”], ... are valid uniformly in ¢ € By X B as x tends
to oo through the sector —(m/2 — ) < argx —w/2 < m — 0, |x| > T, and the coefficients
of the series are in Q[HO,GJC,HOO,CO,CO_l,Cx] C Q..
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In addition to o = oy, if c; =0, then (1.3) admits a one-parameter family of solutions
{(Ao(co, ), Az(co,x)); co € Bo}
with

Ag(co, ) = folco,x)J + f+
Ay(co,x) = golco,x)J + g+

(co,x)A% + f—(co,z)A_,

(co,x)A% + g—(co, z)A_,

whose entries are holomorphic in (co, x) € By X Xws(Too, §) with Xy (oo, 0): |argr—m /2] < -0,
|x| > 2o for some oo = Too(Bo,d), and are represented by the asymptotic series

folco, @) = — (02 + 050) /2 + 0, (05 — (02 + 0o0)*) 22 /4 + [277],
go(co, ) = =00 /2 — fo(co, ),

7% f (co, ) = co(By — O — fs0)(1/2 + [l‘_l]),
$_9I+1g+(co,m) =co(bp — 0, — Hm)(ﬁz/2 + [:r_l]),
xazf_(co,x) = 051(90 + 0, + 900)(1/2 + [wil]),

xewﬂg,(co, x) = 051(00 + 0, + 000)(995/2 + [m_l]),

uniformly in co € By as x tends to 0o through Y. (T, 9), the coefficients of [ﬂ:_l] , ... being in
@ [007 9$7 0007 €o, Cal] .

Remark 2.9. If we put o = 0(, = 26p+60 under the supposition §y # 0, we get a two-parameter
family of solutions represented by a power series in e %z~%~! in the domain (e, 200,0):
—(r—9) <argx—7m/2<7/2-9, |e*’”x7”671‘ <eg, |z] > r. If 0 =20, — 0o, 0, # 0 (respec-
tively, 0 = —20p + 00, 6 # 0), then there exist solutions expanded into series in e~z =20 T0—1

(respectively, e®q~200F0—1),

2.2 Monodromy data
System (1.1) with (a) and (b) admits a fundamental matrix solution of the form
Y(z,\) = (I+0(\71))eW2DI\=0x/2] (2.1)

as A — oo through the sector —7/2 < argA < 37/2. Denote by Yi(z,\) and Ya(x,\) the
matrix solutions having asymptotic representations of the same form as in (2.1) in the sectors
—3m/2 < arg\ < 7/2 and 7/2 < arg A\ < 57/2, respectively. In accordance with [2, Section 2],
[24, Section 2.4] let S1 = I 4+ s1A_ and So = I + s9 Ay be the Stokes multipliers given by

Y(va) :Yl(a:?)‘)sh YZ(mv)‘) :Y($7)‘)SQ7

and let My, M, M € SLy(C) be the monodromy matrices defined by the analytic continuation
of Y(x,\) along loops lo, s, lee € 71 (PY(C) \ {0,2,00}) located as in Fig. 2.2 for x such that
—m < argx < w. They surround, respectively, A = 0, x, oo in the positive sense and satisfy
lolzloo = id, which implies Mo M, My = 1.

System (1.1) has the isomonodromy property, that is, the matrices My, M,, Si, So are
invariant under the change of x if and only if (Ap, Az) solves (1.3). Then each solution of (1.3)
corresponds to some (Mg, M) € SLy(C)? not depending on z, and then, by

My = My ' M1 = Spe™P/ g, (2.2)

(cf. [2, Section 2]), we have (M,My)a = —e ™0~s), (M,Mpy)1a = —e ™0sy tr(M,My) =
208 Thoo + € ™51 559, As will be seen in Remark 2.12 and Corollary 2.13, using the relations
in the following theorems we may explicitly represent (Mg, M, S1,S2) for each solution of (1.3)
in terms of 6y, 6,, 05 and the integration constants cg, c;, o.
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A=
1N
lo
/4 A==z
@ A=0

Figure 2.2. [y, [, and [y-

Theorem 2.10. Suppose that 0y, 0, ¢ Z. Then, for each (Ao(c,o,x), Az(c,0,2)) of Theo-
rem 2.1, the corresponding matrices Mg, M,, S1, So satisfy

S1M, MM Syt = (C3) eIl Sy MpSy = (CF) eI C2, (2.3)
M, = C; e/ (2.4)

where C&, C’g and Cy are given by

C{% — %S;leﬂi(o—+6m)J/4C0_J/27 Cg — %S;‘(le—ﬁi(o'-Feoo)J/llcaJ/Q’ Ox _ chm_J/Q
with
emi(0=200—0c0) /AT () I'(—6p)
Vi = F(l - (U+200*900)/4) F(1+ (0*290 7000)/4)
0 ewi(a+2907900)/41'\(60) B F(eo) ’
D(—(o — 260 — 0)/4) I'((0 + 200 — 00)/4)
Ve = VO{(U 00)— (0,02’ i.e., the result of the substitution (o,60p) — (—0o,0,) in Vo,
2mi
=1 A,
> T T~ 26— 0) /AT — (0 + 20— 6)/)
27Tie—7ri(o—900)/2

T((0 + 260 — 6s0) /AT (1 + (0 — 20 — 00 ) /4) AL

Theorem 2.11. In the case where 6y or 0, is an integer, the formulas in Theorem 2.10 are to
be replaced as follows:

(1) if 6y € Z, then
SI M, MoM; 571 = (C3) 'e™A Gl Sy MSy = (C3) T emA-C2, (2.5)
where A, denotes A if g € NU{0}, and A_ if =0y € N, and C’é and C’g are given by

(53 _ %S;lewi(o+0m)J/4caj/27 (53 _ %S;efm(awoo);f/%;l/?
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with Vi written in the form

fo— (B ()

1
emi(0+200—000) /4 (_1)90
00T (1 — (0 4 20 — O)/4) 6'T(1 + (0 — 20y — 00)/4)
(V0),, = ¢(—(0 — 200 — 00)/4) — (1) — (1 + ) — i,
(Vo) 1, = ¥(1 + (0 + 200 — 00)/4) — (1) — (1 + o)

if 6o € NU {0}, and

x diag [

o= (i, (1)

N _oTiH(0=200—0s0) /4 (_1)00
A NI (— (0 — 200 — 60)/4) (—00)'T((0 + 200 — 000)/4)
(V0)y, = ¢(—(0 + 200 — 00)/4) — (1) — 9p(1 — ) — i,

(V0) g5 = ©(1 + (0 = 200 — 00) /4) = (1) — ¥ (1 — )

if —6p € N, 9(t) being the di-Gamma function ¥ (t) = T"(t)/T'(t);
(2) if 0, € Z, then

M, = GG, Gy = T,

where A, is as in (1), and V, = %‘(aeo)e(—ae )

Remark 2.12. Combining M, My = Sy 'e™™0=7 81 (cf. (2.2)) with the first relation in (2.3)
we have

_ _ _ _ 1 —i _ i -1
52 1M33 151 1_ 512 10$ le Wl@chzsl 1_ em@ooJ(Cé) eTl'l@oJCé’

if 6p,0, ¢ Z. The (2,1)- and (1,2)-entries of this yield s; and so, respectively, which reveal
the Stokes multipliers S; and Sy, and then (My, M,,S1,S2) may be written in terms of 6y,
0z, 0, 0, co, ¢, as in the corollary below (note that tr My = 2cosnby, tr M, = 2cos7l,,
det My = det M, = 1). In the case where 6y or 6, € Z as well, these matrices are obtained by
the same argument. Such (M, M,) is a point on the manifold of the monodromy data (cf. [2,
Proposition 2.2, Remark 2.3]).

Corollary 2.13. If 0y, 0, € Z, then

-1
27icy

L1 = (0 + 200 — ) /AT (= (0 — 200 — ) /4)

(M) = e™i(0=0=)/2 (1 —

y 2micy >
(1= (0420, +0s0) /T (—(0 — 20, + 00)/4) )’

_ 2mrie 0o cgl

T T(1— (0 +20p — 000) /AT (—(0 — 200 — 0s0)/4)’

(My)11 = e ™(eH0=)/2]

(My)12 =

(Mp)21

2micy,

(1= (0 + 20, + 00) /AL (— (0 — 20, + 60)/4)’
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27Tie7ri(a+900)/206 1

LT T~ (0 + 200 — 000) /AT (—(0 — 200 — 000)/4)
27TiC;1
T+ (0 — 20, + 0s0) /DT ((0 + 20, + 05)/4)’
= 27rieT0 ¢
T(1+ (0 — 200 — 000) /AT ((0 + 205 — 00 ) /4)
orriemi(0H00)/2

I'(1 — (04205 + 000) /DT (= (0 — 205 + 00) /4)

Remark 2.14. The results above combined with the monodromy data for solutions of (V)
around z = 0 [2, 14, 24] yield the parametric connection formula between z = 0 and z = ico
(cf. Remark 2.19), which corresponds to that for 7y (x) of [19, Conjecture C].

Suppose that, for every k € Z\ {0}, (A(()k) (c(’“)7 ok, m),ASEk) (c(k), ok, :c)) with (c(k), o(k)) =
(c(()k),cgck), oM € (C\ {0})? x C is the analytic continuation of (Ay(c,,z), Az(c,0,)) to the
domain X (U(k),g,xoo,é) (cf. Remark 2.6). For every j € Z, let l(()j) and 155) be the loops in
the A-plane defined for (25 — 1) < argx < (25 + 1)7 in the same way as in Fig. 2.2, and
let (Mék),Mggk)) with & = 25 or 2j — 1 correspond to (A(()k) (c(k),a(k),x),Agﬁ) (c(k), U(k),l')) for
T € Xy (O'(k),E, Too, 5), where Mék) and Ma(;k) are the monodromy matrices given by the analytic
continuation of Y (z, \) along l(()j) and lg(cj), respectively (note that l(()o) = lg, lg(co) =g, Méo) = My,
MQEO) = M,). Then by definition, for every j € Z,

(Mézj),M(Zj)) _ (Mé2j)’Mx(2j))(C(Qj),O'(Qj)) - (MO?Mx)‘(c,o‘)»—)(c@j),o‘@j))?

T

(M, MDY = (M 2 (e, o)

T

= (M§V, M) (1) o (- D) (25— 1) (2 -1))-

Remark 2.15. For (A(()_l) (c(*l),a(*l),x),A(Jl) (c(*l),a(*l),x)) in 2_1(0(*1),6,3300,5) the
corresponding matrices Mé_l) and Mé_l) are defined along the loops Iy and [,, respectively,
as in Fig. 2.2 for —7m < argx < w. If 0y, 0, & Z,

Mé_l) _ Co—leﬂiHOJCO,

SlMx(—l)Sl—l _ (C%)—leﬂié'wJC;’ 52(Méfl))—1

MM S = (02) eI 2,
where

Co = f/oe—m(oww),]m (C((]fl))—J/2’ Ccl — NxS*—l(cgc—l))—J/Q7

x

Cz _ ng;}em(a—em)Jp (cﬁfl))_‘m
with
‘N/U = Vvo|ow—>a(*1)v f/x = Vx|m_>o-(*1)7
S = S*‘(a,eo)H(—aH),ex)’ S = S**‘(a,eo)H(—o—H),ew)'

If 6y or 0, € Z, then Vy or V, is to be replaced by %‘oHU(—l) or Vx\aHg(fm, respectively,
as in Theorem 2.11 (cf. Section 7.5). The isomonodromy property implies (Mo, M,)(c,0) =
(Mé*l)7 Méfl)) (c(_l), a(_l)), which gives the relation between (c(_l),a(_l)) and (c, o).
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k+2)

and

ok E2))

The following proposition gives the connection formulas between (c(

(c(k)7 a(k)). This is obtained by deformation of the loops l(j), lg;j) or by action of the braid (7
(see [4, Section 1.2.3], [11, p. 331]).

Proposition 2.16. For every k € Z

ME = MOMP (O) 7 M) = MM A (1) 7 (14 0) 7,

k—2 k)N —1 1 (k k _ k)\—1 k
M — () ) P, - () )
Remark 2.17. For the solution (Ao(c,z), Az(c,x)) with 09 = —260, — 0 in Theorem 2.8,

the corresponding monodromy matrices are given by (Mo, Mz)|s=py=—20,—6.,- For the solution
(AO(C()v fL'), Aa: (C(]v .17)) we have (M(]a eWIGEJ) |(C;p,,a'):(0,0'0)’
2.3 Fifth Painlevé transcendents, zeros and poles

From Theorem 2.1 and (1.2) we may derive a solution of (V) written in the form

Y= g+(c,0,2)(folc,o,z) + 0p/2)
f(c,0,2)(go(c,0,7) + 0,/2)

(2.6)

parametrised by (¢,0) = (¢z/co,0) or (¢/,0) = (co/cz,0). This is meromorphic in (0, €, Too, d)
and is expanded into a convergent series in a subdomain of ¥(o,¢&,2,9). Let 0 be a given
positive number such that ¢ < w/2.

Theorem 2.18. Let B C C\ {0} and B, C C be given domains. Suppose that dist({—26y +
00,20, —000 }, By) > 0. Then (V) admits a two-parameter family of solutions {y(c, o, x); (c,0) €
B x B.} such that y(c, o, x) is holomorphic in (¢,0,x) € B x D(By, €', 2l,0) and expanded into

» Voo
the convergent series in (ewxa_l,e_%:_‘f_l

y(c,o,x) = c(l + [x_l]*)exx"

X (1 + i (an+ [z71] ) (e"2771)" + i (bn + [z71])) (e_xac—(’_l)")

with ay, by, € Qg := Q[Go, O, 000,c, ¢ 0, (004200 — 0s0) 7L, (=0 + 20, — 000)*1} , in particular,
ar=c(—o+00+6,)/2, br=c (o+6g+6,)/2

Here ¢’ = £/(B, By, 0) (respectively, x., = x. (B, Bs,0)) is a sufficiently small (respectively,

large) positive number depending on (B, By, ), and each [3:_1} , s represented by an asymptotic

series with coefficients in Qg valid in |argx — w/2| < w/2 — 0, |x| > xl,.

Remark 2.19. For y(c,0,x) the corresponding monodromy matrices are obtained by putting
(co,cz) = (1,¢) in My, M, of Theorem 2.10.

Remark 2.20. The solution y(c,o,x) corresponds to yy ox(c,z) of [22, Theorem 2.10 and
Section 2.3] (see also [26]) and converges in the domain larger than the previously known one

(note that (V)|zoig is treated in [22]).

Theorem 2.21. Let B C C be a given domain.
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(1) Suppose that 0,(00 — 0, — 0s) # 0, and set 00 = =20, — 0oo. Then (V) admits a one-
parameter family of solutions {y+(c,z); c € B} such that y(c, x) is holomorphic in (c,x) €
B x %.(¢', 2/, 6) and is expanded into a convergent series in e*x°~1 of the form

Yt (e, o) = %(90 — 0, — 900):5*1(1 + [gfl]*)
+e(l+ a7, )ema™ (1 + 3 (n+ [271],) (e%fm—l)”>
n=1

with @, € Q := Q[0o, bz, 000, ¢, (60 — 0 — 0s0) 7,6, 1]. Here e’ = ¢'(B,8) (respectively,

:U’Qo =2/ (B,9)) is a sufficiently small (respectively, large) positive number depending on
(B,0), and each [3:_1]* is represented by an asymptotic series with coefficients in Qq valid
in—(m/2—=0) <argx—7/2<m—19, |z| >zl

(2) Suppose that 09(0o — 02 + 0c) # 0, and set oy = 200 + 0c. Then (V) admits a one-
parameter family of solutions {y_(c’,x); ¢ € B} such that y_(c/,z) is holomorphic in
(d,z) € Bx X, (" 2%,,8) and that the reciprocal is expanded into a convergent series in
e %91 of the form

1y (&) = 2o+ 0027 (1 [71)

+ c’(l + [x_l]*)e—xx—a(’) <1 + i (Z)n + [$—1]*) (e_xx_aé_l)n>

n=1

with b, € Qy = Q[@o,ﬂx, oo,y (B0 — O + O00) ™1, 961]. Here " = ¢"(B, ) (respectively,

z! =z (B,d)) is a sufficiently small (respectively, large) positive number depending on

(B, 0), and each [wil]* 18 represented by an asymptotic series with coefficients in Qo valid
in—(m—0) <argxr —mw/2<m/2—90, |z]| >zl

Remark 2.22. The reciprocal 1/y_(c, z) itself solves (V) with (0o, 05, —0).

Remark 2.23. There exist the asymptotic solutions y1(0,z) = (1/2)(6p — 6, — )z (1 +
[#71],) and y_(0,2) = 2(6p — O, + Ooo) " 'x(1 + [271],) in the sector |argz — /2| < 7 — 4.

Remark 2.24. For 0 = 20, — 0, (respectively, 0 = —260p + 6~,) as well, under the condition
(02 — (02 — 050)?) 65 # 0 (respectively, (62— (6p — 0)?) 00 # 0), there exists a family of solutions
{§_(d,z); ¢ € B} (respectively, {f;(c,z); ¢ € B}) such that

13- =~ 50—+ 8o (14 [571])
b1 7] Jemra st (1+i o [x-m(e-%-%ﬁew-l)“)
n=1

(respectively, U4 (c,x) = —%(90 — 0y — Oo0)z ! (1+ [:U_l]*)

o0

+c(1+ [:U_l]*)exa;_%”e‘” <1 + Z (én + [x_l]*) (em$—200+900—1)n> )
n=1

in X, (", 27,9) (respectively, X.(¢/, 2., )).

» o0

Remark 2.25. Using (1.2) we may derive convergent series representations for z(x) and u(x) =
79 upk (2), which are parametrised by (o, c./co) and (o, ¢z /co, co), respectively.
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From the quotient expression (2.6) we obtain a sequence of zeros or poles of y(c, o, x).
Theorem 2.26. Let Ry be a given positive number.

(1) Suppose that 0,(6p + 0, — 0s) # 0. Then there exists a small positive number g =
eo(Ro) = e0(Ro,00,0:,050) such that, for every (c,0) € C? satisfying 0 < |¢| < Ry,
o # +20) + 0, £20, — O, |0 + 20, + 00| < Rolc| (respectively, |0 + 260y — 0| < Rolc|)
and |4e/(0+260p — )| < €o (respectively, |4c/(o+ 20, +0)| < €0), the solution y(c, o, x)
has a sequence of zeros {xS,Q)}, m > mg, such that
29 = 2mmi — (0 4 1) log(2mai) — log(po(o)c) + O(m™'logm),

where mq is some large positive integer and po(o) = —4/(0 + 20y — O) (respectively,
—4/(0 + 20, + 0s)).

(2) Suppose that 0p(£by — 05 + 0s) # 0. Then there exists a small positive number e, =
eh(Ro) = €h(Ro,00,02,0) such that, for every (c,o) € C? satisfying |c| > 1/Ro, 0 #
1200 + 0o, 220, — O, |c(o — 200 — 0x)| < Ro (respectively, |c(o — 20, + 0)| < Rp)
and |4c71 /(0 — 20, + 0x)| < &) (respectively, |4c™' /(o — 200 — Ooc)| < €f)), the solution

y(c,0,x) has a sequence of poles {xfﬁo)}, m > mg, such that

2(%9) = 9mai — (0 — 1) log(2mmi) — log(pes(c)c) + O(m™'logm),
where poo(0) = —(0 — 20, + 00) /4 (respectively, —(o — 20 — 0)/4).
For one-parameter solutions we have
Theorem 2.27. Let y;(c,x) and y_(c,x) be the solutions given above.

(1) Suppose that 0,(00—0,—0) # 0. If ¢ # 0 is sufficiently small, then y4(c,x) has a sequence
of zeros {x:;(o)}, m > mg, such that

20 = 2mri — (0 + 1) log(2mmi) — log(—2¢/ (0 — O, — 0s0)) + O(m_1 logm),

m

where mq is some large positive integer.
(2) Suppose that 0y(0, — 0y — O) # 0. If ¢ # 0 is sufficiently small, then y_(c',x) has
a sequence of poles {x;(oo)}, m > myg, such that

2% = 2mri — (0 — 1) log(2mi) 4 log(2¢ /(0 — 00 — s0)) + O(m ™' logm).

m

Remark 2.28. To y(c,0,x) of Theorem 2.18 applying the Bécklund transformation and the
substitution 7: (6p — 04,00 + 0z,00) — (1 — 0o, 1 — 09 + 6,,6p + 6, — 1), we obtain another
solution of (V) given by

_ Y@yleoa)
14+Y(z,y(c,o,z))"

g(c7 O-? m)ﬂ-
with

Y(z,y) =27 (y = 1)((Ae)1 +0:/2 — (Az)11 — 02/2)y™")
= —2(Az) 1z + (Ao + 02/2)z 'y + (A1 — 0a/2)2 'y ™!
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(cf. [10], [24, Lemma 6.1]). This is expressed as
§(e,0,2)" = [27Y] = ((0 + 200 — oo — 1) /4 + [271]) ™21 + Z )
— (0420, + 0o — 1) /4+ [27])c Te "2 1+Z ez 1)

for ‘e””az”‘ll <&, !e‘””az“’ _1‘ < &”, €’ being sufficiently small, and admits a sequence of zeros
{Zm} with Z,, = —log c+2mmi—o log(2mmi)+0(m ™! logm) in the domain |e”2?|, [e™*z 7| < 1.

3 Families of series

3.1 Family

Let By, B, and B, be as in Section 2, and Xo(2 o, d) the sector | argx /2| < /20, |z| > Too-
Denote by A = A(By, By, By, X0(Zoo, 9)) the family of pairs (qb, {pn ), 0, ( ),po(x)}neN), where
¢ is a formal series of the form

¢ = ¢(c,0,x) an 2" )"+ py (@) (e 27" + polw)at,
n=1

and p; (), p,, (z) and pg(x) are holomorphic in (¢, 0, z) = (cg, ¢z, 0,2) € BoXx Bz X By X X0 (Zoo, )
and admit asymptotic representations

o o0 oo
L@~ kT P (@)~ D) P po(@) ~ D poma ™
m=0 m=0 m=0

with coefficients pit,, = pit.(c, @), pom = pom(c, ) € Q. uniformly in (c,0) € By x B, x B, as
x — oo through the sector Yo(Zso, ). Note the example py(z)e®z® ! 4+ po(z)z~ ' =027 1 +
0 -z~ with pi(z) = 2#/9 ~ 0, po(z) = —eP/HD227 0 in ¥g(200,8). To avoid such an
ambiguity 2 is defined as the set of the pairs as above. For simplicity, however, keeping the
strict definition above in mind, we regard and deal with 2 as the family of the formal series
¢ =¢(c,o,x). To ¢ € 2 written as above, we assign the function

ol = H¢H(ﬂ3 ) = l|¢lleo(2,n)

o
=S M e S Mo e e " 4 Moo, el

n=1

where M (p, |z|) is a function of (c, o, |z|) given by
M (p, |z]) := Me o (p, |z]) = sup{|p(c,0,&)[; €] = |z], £ € Zo(re0, )}

Suppose that zo, > e~ !, Let 2 = A(By, Bz, By, Y0(2o0,9),€) (C ﬁl) be the family of ¢ € 2 such
that ||@||c,o(x,n) converges uniformly in (c,o,2,71) € By X By x By x E(X0(%x0,0),€), where

E(X0(r0,9),8) = U {z} x {17; }nx_l‘ <e, |17_1£L‘_1‘ < z-:}.
€30 (Too,d)

Let D(By,e,2x,0) be as in Section 2. Then, as shown below, the sum and the product are
canonically defined in 2.
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Proposition 3.1.
(1) Every ¢ €A(By, By, By, X0(%o0,9),€) is holomorphic in (c,0,x) € ByX By X D(By, €, Teo, 9),
and satisfies |¢(c, o0, x)| < oz, e"x%).

(2) Let ¢, Y € A Then ¢ + ¢, ¢y € A, and ||¢ + | < (ol + ¥l lewll < loll¥ll. 1
a=a(c,0) € Q, then ap € A and |lag|| = |al||@].

Proof. Suppose that ¢, € 2 are written as

¢=> phx) ("= )"+ py (@) (e 2" + po(x)a!,
n=1 n=1

= gi @) (€27 )" +> g, (@) (e 27" + go(w)a "
n=1 n=1

It is natural to set
oo
¢¢:Zwi{(x Taf~ 1 +Zw e " _o_l)n+wo(a:)x_1,
n=1

where each coefficient as a formal series is given by

Zpy 2)gr_,(x) + 27 (pE(x)qo(x) + po(= Z a2k (1),

v=n+1

wo(z) = 2 2po(x )+ Zx_gywy

with @y, (2) = py (2)g_, (2) +pi_, (2) gy (2), w)(x) = pf (z)q, () +p, ()q ¢ (2)- 1 (c,02) €
By X By X By X ¥p(%s0, ), then, by the definition of || - ||, for ‘m:_ Ly ’ <e
| (@) < My |2) Mg, |2]) + M(py_p, [2) M (g |])
< 2]l (@ Il (, mlma [ |n~tat 7T < e,

and hence !x_Q(”_”)thy(x)} < e ™(ex)~2»=") | the implied constant not depending on (e, ).
This implies that @, (x) is holomorphic in (c,0,z) € By X By X By X Xo(Zs0,d). Furthermore,
for a given integer N > 1, we have Z,,ZH+N]x*2(”*")w,J{7,,(x)\ < e "(ex)™?N in the domain
By x By X By x X0(2700, 6), which implies that w,! (z) is represented by an asymptotic series in
Y0(Z oo, 9) uniformly in (c,0) € By X By X B,. Thus we have shown that ¢ € 2. To evaluate
llow|| we note that, for v >n > 1,

i (@) (%27 )" - gy (@) (e "= = ("7 ) "pf (2) gy ()22
= [na " sup {[pf (g, () ]; €] > |al, € € To(w00, ) }
< ™" e |2 72 sup {Ip (©)); - Y sup {lgy (O] -}
= |na= "M (p ) |n~ e M (g, 2])
= [[pF (2)(e"27) ||| gy—n (@) (=277 1) "

and that, for v > 1,

)

o (@) (2" 1) - qo(x)a || = |na ™" sup {|p} (§)qo(£)¢ " (oo, 0) }
< \7790_1\”!3?\ 1Sllp{!pu @I - }sup{lqo(&)]; ---}
= [lp5 () (") [|[|qo ()2 "]].

Using these inequalities we have ||¢v| < ||o||||%]]- [
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Example 3.2. In the sector |argz — 7/2| < ™ — §, we may take a path v.(z) (3 ) starting
from x in such a way that ’e_fex| or ‘efe_x‘ is monotone decreasing and decays exponentially
along v.(z). Then for n € N

e = (@) P @),
¥+ ()

-ty = ) P ),
¥+ (@)

where P\ () ~ > pgf%@(a)x_m with p%@(o) € Qlo], t = 1,2, as * — oo through the sector

m=0

o0
|arg x — m/2| < m— . Furthermore if g(x) ~ > gmax™™ as & — oo through this sector, we have
m=0

_/ - (egga_l)ng(f)df = (emfvg_l)nGn(x)v Gn(x) ~ Z Grpm(o)z™™.
Ya(z

m=0
Clearly these integrals belong to 2.

Proposition 3.3. Let {¢y}r>1 C A(Bo, Bz, By, X0(Too,0),€) with
ok =D o (@) (2" + 3 p (@) (e 4 pp (2)a
n=1 n=1

be such that ||pr| < &5 N|z|=Ntko for every pair of integers (k, N) with 1 < ko < N < k if
|nx_1‘ < g, n_1$_1’ < g, x| > zo, where ko is a given positive integer, € is some number

o0
satisfying 0 < € < 1, and the implied constant does not depend on k. Then, ¢>° = > ¢i also

=1
belongs to A(By, By, By, X0(Z0,0),€) and ¢ is given by

¢ = ppt (@) (a7 )" + Y o (@) (e T ) 4 p ()
n=1 n=1

with pE*(z) = kijlp%’“%) = [1], p(x) = élpé“ (2) = [1].

o
Proof. By the condition with N = kg, >  ¢r as a double series converges uniformly and
k=Ko

o0 oo

absolutely, and hence p>**(z) = 3. pglk)i(:n), X (z) = > p(()k) (x) are holomorphic in ¥ (zx, ).
k=1 k=1

It is sufficient to show that ¢ € ﬁl(BO,B:B,B*, Y0(Zoo, ), €), that is, po°*(z) and p°(x) may

be represented by asymptotic series. For a given positive number N > kg, if £ > N and if
Inz=t <e, |n7ta7| <e, |2| > 200 > €7}, then

M, fal) < el Gm)na™ |7 < fna | 7"ek N N,

the implied constant possibly depending on N only. For x € Yy(z,0), letting n — cx, we
o0

have }p%k)Jr(x)‘ < ek =N|z|=N+ho which means ’ > p,(lk)Jr(a?)‘ < g1 — &)~ Y| N+ko in
k=N

Y0(Tx0,d). Substitution of this and pgﬁH(x) with & < N — 1 into p2°*(z) yields the asymptotic

representation of p2°*(z). Thus we obtain the proposition. [
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Remark 3.4. Under the supposition of Proposition 3.3, for p%k)i(:n) Z p(k JE2=m and

( ) ~ Z Pom (k) pp=m , the asymptotic representations of p2**(x) and p°(x) are written in the

00 m-+ko (k)+
form p2**(z) ~ Z pSEr™™ and pP(z) ~ 3 pge,r ™ with coefficients p2°F = > pp and
m=0 m=0 k=1

O (k)
Pom = 2 Doms Tespectively.
k=1

oo
The following sums of the form Y ¢* belong to 2A(By, By, Bx, Lo(Zso, ), ), although HqﬁkH
k=1
does not necessarily satisfy the condition of Proposition 3.3.

Example 3.5. For ¢ = pT(2)e®z° ! 4+ p~(z)e 2771 € A(By, Bz, Bs, X0(200,9),€), if ¢ < €
o

is sufficiently small, then > ¢* € A(By, Bz, By, X0(To0, ), ).
k=1

Verification. Suppose that p*(z) ~ pf + Z prr~™ and that }pi( - po‘ < 1o for

[o¢]
(c,0,2) € By x By X B, X X¢(200,8). We may choose ¢ in such a way that Y- ((|pg |+ |¢4)n4|+
k=1

(Ipg | + \5_\)\n_\)k is convergent for (c,0,&4,&—,n4,n-) satisfying (c,0) € By X By X By, |€4] <
o0
2rg, [ne| <€’ Then Y ((pg+&+)nz ™+ (pa—l—f_)n*lx*l)k converges absolutely for (¢, 0,£4, &)

1

a7l <&, |z| > 1/€, and is written in the form

as above and for (7, ) satisfying !n:p , }17_

Z (ﬂr—l_ (§+,£_,.’B_1) (7735_1)” + 7‘—7; (§+,€_,$_1) (n_lx_l)n) + WO(§+7£—7:C_1)$_17
n=1

where W%(f_i_,g_,l‘_l) = § szltm(f-l-ug—)x_mu 7T0(€+,£_,$_1) = i 7T0m(6+,£_)$_m with

k1 ¢k ki1 ¢k
7T7:"L:m(£+7£7) = Z Trr,:i:mkle +1£727 WOm(£+a£*) = E 7T0mk1k’2£+1£72 converge for |£i| < 27’0,

k1,k2 k17k2

o0
|z| > 1/¢’. Inserting n = e*x%, {4 = p(x) —p(jf ~ 3 pEa~™ into this we have the conclusion.
=

Example 3.6. For ¢ = pi(z)e®2 ! + po(x) (ezx"_l)2 € A(By, By, B«, X0(20,9),€), we have
S ¢F € A(By, By, By, Xo(T0, 0),€), because, for each n > 1, the coefficient of (e®z?~1)" is

k=1
a finite sum of asymptotic series in 271
The following lemma is used in evaluating the primitive function of z~'¢.

Lemma 3.7. For every (0,z) € By X ¥0(Zoo,9),

T o—1|—"n Eeo—1 n@ —x,,—o—1|— / —€¢—0o—1 n’d§’ 2
e[ e g e e e g <5 (0 )

n = 1,2,3,.... Here Too = Too(Bx,0) is a sufficiently large number depending on (Bi,J),
and y(x) is a path with the properties:

(i) y(x) starts from  and tends to coe™2, and & € ~(x) is given by & = it exp(—if(7)) with
|z| <7 < oo, where O(7) satisfies 0(|x|) = 7/2 — argz, O(7) = 0 as T — oo;
(13) for every & € v(x), |e*z7| = {655"‘;
(731) for every & € y(z), |&] > |z|, and |7/2 —arg&| < w/2 — 4.
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Proof. We substitute £ = ir exp(—if(7)) = Texp(i(n/2 — 0(7))) into |e*z7| = |e£§”‘ to obtain
Rexz +Reo -log|z| —Imo -argx = 7sinf(7) + Reo - log7 — Imo - (/2 — 0(7)).  (3.1)
Choose Toy, = Too(Bs, d) in such a way that, for every o € B,
Too > 100(|o| + 1)(tand + 1/sind) > 200(|o| + 1). (3.2)

Then, for any z € Yo(Zoo,d), the function 6(7) satisfying (3.1) and 0(|z|) = 7/2 — argx is
uniquely determined near 7 = |z| by the implicit function theorem. Note that

_sinf(7) + Reo - !
Tcosf(7) +Imo

0'(t) =

T+Imo-cosO(1)+ Reo -sinf(r)
TcosO(7) +Imo

(Im&(7))" = cosO(1) — 760 (1) sin (1) = , (3.4)

(Re&(r)) = sin0(r) + 70/(7) cos O(r) = 22T S;HCZSQ)(T_) iel‘:n';os b(r). (3.5)

Aslong as 7 > |x| > Zeo, |0(7)| < 7/2 =6, from (3.2), (3.4) and (3.5) it follows that

,_ r(1-1/100) 1
(Imé(7))" > 7(1 + 1/100) sin 6 = 2sins
2|o| 3(lo] +1)

[(Re&())'] < 7(1 — 1/100)sin Tsind

and hence (Im&(7))'/|(Re&(7))'| > 7(Jo| +1)71/6 > 10tand. This fact implies that 6(7) may
be prolonged for 7 > |z| > T and that (ii) and (iii) are fulfilled. Then, by (3.3) with (3.2),

, 1+1/3 271
< <
0O a1 73) cost(r) = Sind”

and hence |d¢| = |d¢/dr|dr < ’ie_ie(T) + 0’(7’)7‘6_19(7)‘d7 < (1 + |70 (7)])dr < (14 2/sind)dr.
Using this and (ii) we obtain

‘emwa—l‘ / ‘efga 1‘ ‘ §| —_ |x|n/ — 1 (1 + — > dr < = (1 4 > '
v(x) i |z| sin § n sin §

This completes the proof. |

Remark 3.8. If [argx — 37 /2| < w/2—0, [2] > 7, (B, 0), then along the path 3. o(x) defined
by § = iTexp(—ifs,/2(7)) with O3, /5(7) = —7 + 0(7) (cf. (3.1)) the same estimates for the
integrals are obtained. If [argz + /2| < 7/2—0, then v_ /5(x) given by § = it exp(—i0_; 2(7))
with 6_;/9(7) = 7 + 0(7) has the same property. These paths are obtained by making the
substitutions (z,{,0) — (we_”i,ﬁe_”i, —0) and (z,€,0) — (xe“i,ﬁe”i, —0), respectively, in the
definition of ~(x).

Furthermore we have

Lemma 3.9. For every o € B,

2

. n=1,2,3,...,
n|cos(arg )|

| [ Jefera <
()

in the sector |argz — 7| < m/2 =04, |2| > #5,(Bs,0), where 23,(By,0) is sufficiently large
and vx(x) is a ray starting from x and tending to ocoe' **&*.
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Proof. The path 7, (z) is given by & = £(t) = z + te! 8% 0 < ¢ < co. Then
‘egf"‘n|exxg‘_n = exp(—r(t)), —r(t) = n(tcos(argx) + Reo - log(1 + t/|z|)).

Since —dr/dt = n(cos(argx) + Reo/(|z| +t)), we have dt/dr < 2/(n|cos(argz)|), if 2 (B, d)
is sufficiently large. Hence

|| / 67| dg —/ e dr < / e dr £
(@) 0 r n|cos(argx)| Jo n|cos(arg )|

which completes the proof. |

Remark 3.10. Similarly, for o € B,, in the sector |argz| < 7/2 — ¢, |x| > & (B, ), we have

‘e_xm_“’_n/ ‘e_gf_amdﬂ <
Yo ()

ncos(arg )’
iargm'

where o(x) is a ray starting from z and tending to ooe

Lemma 3.11. Let By, Too and y(x) be as in Lemma 3.7 and let xoo > Too. Suppose that p(x)
18 holomorphic in (c,0,x) € By X By X By X ¥(Zs0,0) and admits the asymptotic representation

p(x) ~ Z P ™, pm € Qu uniformly in (c,0) € By X By X B, as x — oo through ¥o(rso, ).
Then, for cmy n €N,

L0 (p(@) 1= — (e / (e5671)"ple) e,

(z)
L @) = —(e7"a™) " / (e™86771) "p(&)de

are holomorphic in (c,o,x) and admit the asymptotic representations

L) Z o L) ~ Z:OP mT

with PE € Q. uniformly in (c,0) € By x By X By as x — oo through Yo(tso,d). Furthermore,
if p(x) = O(a™1),

@)=~ [ ep(@de~ Y P
v(2) 0

with P? € Q..

Remark 3.12. The integrals I i(l)( (z)) are not necessarily absolutely convergent.

oo
Remark 3.13. If p(z) ~ > ppz~™ in the sector |argx — 37/2| < /2 — §, then
m=0

Iin (x)(p(x)) — _(e:txx:tal)—n/ (e:tﬁg:tafl)np(g)dg
737r/2( )

V37 /2

with 73./2(z) in Remark 3.8 admit asymptotic representations of the same form as above.
Furthermore, for p(x) in the sector |argz + 7/2| < 7/2 — 4, we may define If_” (@) (p(x))
with v_r/2(7) as in Remark 3.8 having the same property.
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Proof of Lemma 3.11. For every (k,n) € (NU{0}) x N, integrating by parts and using (ii)
of Lemma 3.7, we have

né
—nx,,—n(oc— € n(o—1)—
) = (Fa7) " [ ey g = g nle ) glo
'Y

n

(O’ — 1 k( T o— 1) / (effa_l)ng_k_ldf
()

zFk n(a -1)—k

) (FYRIC)

v(z)

in ¥0(r0,0), because (’eff"}/|e$x”|)n|x|”|§\_”_k — 0 as £ — oo along y(z). Furthermore,
I, j+1(x) converges absolutely. If k£ > 1, then, by (iii) of Lemma 3.7,

|In,k($)‘ S/ ‘exxcr—l‘—n|65€0—1|n|x|—(k 1) |d£| <<| ’ (k— 1)
v(@) el

Similarly, if ¢(&) < |€]7F,

< |$|_(k_1)

/ (e"2” 1) " (57 ) " g(€)de
V(z)

Combining these facts suitably, we may show that I;F(Z)( (z)) is holomorphic in (c, o, z) and get
the asymptotic expansion of I;F(Z) (p(x)) as in the lemma. [ |

Now we are ready to define the primitive function of ¢ € A or . Let Zoo > Foo With Zo as
in Lemma 3.7. Suppose that

¢=> pr(@)(e"a” )"+ py(z)(e 2" + po(x)z!
n=1 n=1
€ A = A(By, By, By, X200, 6), €)

and that po(z) = O(z™'). Let v(z) be as in Lemma 3.7, and I;E(’;)( ), Ig(x)( -) as in Lemma 3.11.
Then we define

= PH(x)(e"2"") +ZP e "z )" + Py(x)z !
n=1
with

PH@) =0 0f (@), Prla) =0 mn (). Po(@) = %) (o). (3.6)

By Lemma 3.11, P (x) and Py(z) are represented by asymptotic series of the form

+ x) ~ Z Pnimx*m, Py(z) ~ Z Popz™™ (3.7)
m=0 m=0

with an, Py, € Q, uniformly in (c,0) € By x By X By as & — oo through ¥ (z,d), and hence
T[¢] € A. The series Z[@)] is a formal primitive function of ¢.

Proposition 3.14. Suppose that ¢ € A and po(z) = O(z™1). Then (d/dz)Z[¢] = ¢ as a formal
series.
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Proof. For n > 1, let p, = lim p,t(z). Then
I3 (o () = I (9 (@) — i) + o3 (1),

Since (e2771) ™" (5€771) " (pif (€) — o) < [a][€]7% as € = oo along v(x), L% (pi (x) — phy)
converges absolutely, and hence

(/da) (2™ )" 10, (6 (2) — b)) = (27" (o (@) — o).

As shown in the proof of Lemma 3.11, I;F(Z)(l) =1/n—(oc— 1)[%;) (z71'), the last integral being
absolutely convergent. This implies

(d/dx)((e"277")" I;F(Z)( o) = (¢"277") Py
Thus we obtain the conclusion. [ |

Furthermore we have

Proposition 3.15. If ¢ € A = A(By, By, Bx, 20(0,0),€), then I[:c_lgb] e A and HI[:L'_IQS] H <
(1+2/sind)|¢].

Proof. By definition

[z~ '¢] = i P () (€2 ) i e 77" + Py(a)z € 2,

n=1

where

PE(s) = T2 (o7 p ()

= —(eat )™ / (6 1) " () ~ Bfja™! 4o
V(@)
Po(z) = I'(v)(:c) (z7'po(a)) = —= /( )gizpo(f)dﬁ ~ P+
v(z

By Lemma 3.7, for any z, & € ¥o(2o0, d) such that |Z| > |z,

By (@)] < / " |7zt T et M g M (p | ) ||

v(Z
< (1+2/sind)M(ps,|7|) < (1+2/sind)M(pi, |z|),

which implies M(Pni, z]) < (1+2/sind)M(pif,|z|). Similarly, we have M(Po, z]) < (1+
2/siné) M (po, |z|). From these inequalities the proposition immediately follows. [

Proposition 3.16. If ¢ € 2 = A(Bo, By, B, So(tec, 8), ), then we have ¢~*a~"T[e%a"~1g],
exxaz[e—xx—a—l¢] c Ql, and He—xx—oz[exxa—lgb] H’ He:c$az[e—:c$—a—1¢] H < (1 + 2/ smé)”qu

Proof. For ¢ = Y pf(z)(e®z71)" + Z pn () (e7%2771)" 4 po(2)z~! € A, we have
n=1

00
o~ 1 Z eTpd~ 1 +Z e Ty o~ 1) +]5(](33).7)_1
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with

Br(z) =py_4(z) forn>2  pf(z)=a""p(),

Po(x) =a"lpy(x),  Pn(x) =2 py (@) forn>1
By the definition of the primitive function
x o' 1¢ ZPJr x a' 1 Z 7:1: 7071)71_'_?0(‘%):1:71 EQAI
with PE(x) = L7 (5% (x)), Po() = 1%, (fo(a)), and then

( y2n

efxxfal-[exxafl(b] _ ZP*+( Ty~ 1 + ZP* e Ty 0~ 1) +P6k($)$71,

n=1

where
P;+(CU) =z 1PntLl( ) forn >1, Py(x) = :L“_llsfr(x),
P (z) = Py(), P~ (z) = 2P, |(z) = O(z™) for n > 2.

This implies e 27 °T [ezxc’_lqﬁ] € 2. Since, for n > 1,

Pit(z) =a27' Pl (x) = -2~ / (€27 1) T () B (6)de
~(x)

—n— n — d
= [ e e
¥(x) 3

we have |PXT(Z)| < (1+2/sind)M(p;t,|z]) < (14 2/sind)M(p;,|z|) for any z,Z € Xo(zoo, )
such that || > |z|, which implies M (P, |z|) < (1 + 2/sind)M(p;, |z|). Similarly, we can
verify M (Py,|z|) < (1+2/sind)M (po, |x|), M(P;—,|x|) < (1+2/sind)M(p;,,|z|). From these
estimates the proposition immediately follows. |

3.2 Families 2, 2A_

In addition to By, let BcCcChbea given domain, and let o9 = —26, — 0. For given numbers ©
and ©y such that 7/2 < ©; < O2 < 37/2, denote by ¥X:(01,02;x) the sector defined by
01 < argx < @2, |x| > Too.

Let 91+ = Ql+ (Bo, B, ¥, (01, 0y; a:oo)) be the family of formal series of the form

an " 27°)" + po(z)z ",

strictly the family of pairs (¢, {p;} (), po(z)}nen), where p}f () and po(x) are holomorphic in
(c,x) € By X B X X:(01,09; 2+ ) and admit asymptotic representations

(o] (o]
S@) ~ >l po(@) ~ Y pomr "
m=0 m=0

with pom, p,, € Q[GO,Qx,Hm,co,cal,cx] C Q4 uniformly in ¢ € By x Bas z — through
¥:(01,09; ). Furthermore, for ¢ above set

1ol = lloll+(z,m) = l|oll4c(2,m) ZM+ el + M (po. |a]) x|~
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with
M (p, |z]) = My o(p, [z]) = sup {|p(c,&)]; [¢] > |z], & € Br(O1,02;7) }-

Let 1, = Ql+(BO,B,ZW(@1,@2;xOO),€) (C ﬁl+) be the family of series ¢ € 2, such that
6|4 (,m) converges uniformly in (c,z,1) € By x B x Z4(X:(01, O2; Zo), €), Where

B4 (Sx (01, 025 200),€) = U ey x{mnl<e}

€Y1 (01,02;%0)

Then every ¢ € 2, (By, B, X(01,02; ), €) is holomorphic in (c,z) in the domain By x B x
(2r(01, O2;200) N {z; [€"27°| < €}), and satisfies |¢(c, )| < ||¢]|+¢(z,e"27); and we may simi-
larly verify properties corresponding to those in Propositions 3.1 and 3.3. The primitive function
of ¢ € Ay or A, is also defined by replacing (v(@),e"27 1) by (yx(z),e%2?°) (cf. Lemma 3.9).
Then we obtain the same conclusions as in Propositions 3.14 and 3.15. Note that the con-
stant 1 4 2/siné in Proposition 3.15 may be replaced by 2/ min{|cos 1], | cos ©2|}. Instead of
Proposition 3.16 we have

Proposition 3.17. Ifp € A, =2, (BO,B,EW(@l,@Q;l‘OO),g), then (exq:"o) nI[(exxUO) qi)] €
Ay and || (e®z?) "Z[(e%270)" ] || < 29|/ min{| cos ©1], | cos Oz|} for every n > 1.
Remark 3.18. If ¢ € A(By, By, By, Yo(2o0,0),€) N A4 (Bo, B, Xr(1/2 + 8,m — 8;00), €), then
¢ € QlJr (B(]v B7 Eﬂ'(ﬂ-/2 + 577T - 5a 33'00),5), and ||¢H+ < H¢||

In the sector Xo(0}, 05, 7o) —7/2 < O] < argz < ©) < 7/2, we may similarly define

the family 2A_ = 2A_ (B Bx,Eo( 1,04 25)) and A_ = A_(B, By, Xo(0), 04; 250), €) with o) =
26y + 0+, which have similar properties.

4 Equation (1.3) and a system of integral equations
We would like to construct a general solution of (1.3) under the restrictions (a) and (b). A generic

form of a pair of matrices Ag, A, satisfying (Ag + Az)11 = — (Ao + Az)22 = —0/2 and having
the eigenvalues +6y/2, £6, /2, respectively, may be given by

1 1
Ao = Z(U —00)J 150 +2A Ay = _Z(U F0s0)J +75 AL+ A (4.1)
with
C:I:l Cil
vi ::I:(jT(U:I:2907900), vi :$%(0:F29I+000)

(cf. Theorem 2.1), where o, cg, ¢, are arbitrary. For a solution (Ag(x), Az(z)) of (1.3), let us
set

Ao(l‘) _ $_(1/4)(U+9°°)J(A0 + (I)Q(LE))$(1/4)(U+0°°)J
Ag(z) = @/ g(UNO=0)T (A4 @ (2))z~ /D (O—00)] = (2/2)] (4.2)

)

(cf. (4.7) and (4.8)). If ®o(x), Pz(x) — 0 along some curve tending to oo, then (Ao(x), Az(z))
satisfies (a) and (b), and (1.1) has the isomonodromy property. In checking (a) and (b

use (d/dx)trAg(z) = (d/dz)trAy(z) = 0, (d/dz)det Ap(x) = (d/dx)det Ax(z) = 0. In-
deed, if det Ag(x) # 0, then (d/dz)Ag(z) = 27 (Az(x) — Ao(z) Az () Ao(z) 1) Ap(), and
(d/dzx) det Ag(z) = x_l tr (Ag(z) — Ao(z)Az(2) Ao (z) 1) det Ag(z) = 0.
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In what follows we change (1.3) into a suitable nonlinear system, and construct a solution of
it as mentioned above. Let

Ao = fod + [+ AL + f-A-, Ay =goJ + 9+ +g-A_
with go = —fo — 0 /2. Then, (1.3) is equivalent to a system of nonlinear equations

afy = f-g+ — f+9-, 9o = —fo — 00/2,

xfy =2(frgo — fog+),  xg'. = 2(fogs — fr90) + xgy,

afl =2(fog- — f-g90), gL =2(f-go — fog-) — xg-. (4.3)
We set

fo=(0—=0x)/4+¢,  go=—(0+0x)/4—¢

to write (4.3) in the form

v = f-gv — fr9-,

afy = —(1/2)((0 + o) f1 + (0 = O0)g+) = 2(0f+ + wg+),

afl = (1/2)((0 + o) f- + (0 — Oo0)g-) + 2(f—- + ©g-),

zgy = 291 + (1/2)((0 = O0) g1 + (0 4 00) f+) + 2(0g+ + 0 f+),

xg_ = —xg- — (1/2)((0 = Os0)g— + (0 + 0o0) f-) — 2(pg— + @ f-). (4.4)

The following fact may be verified by an argument analogous to that of [25, Section 10] (see also
[27, Chapter 4]).

Lemma 4.1. By the change of variables y = (I + p(x)AL)z the linear system
dy ({0 0 1 [(—(0+0x) —(0—0x)
xd:c—<<0 1)“2( 0+0s  o—0 )]V

s taken to

xj—z — <(8 (1)> z+ % <_(G +z°jr)(9100+ P o — O + (2 + Hoo)p(fﬁ))) “

and by z = (I + q(z)A_)w the last system is reduced to

x(ji—: = ((8 (1)) z+ % <_(U " 0“%(1 Fr) 0 — b0 + (3 + Goo)p(w)>> v

Here p(z) and q(x) satisfy

xp'(z) + zp(x) + (1/2)(1 + p(2))(0 — oo + (0 + O )p(z)) = 0,
¢ (z) — zq(z) — (1/2)((0 + o0 ) (1 + (1 + 2p(2))q(2)) + (0 — O )g(x)) = 0,

and admit the asymptotic representations

p(x) = —(1/2)(c — 900)(1‘71 +(1- U)af2 + [af‘g]) for|argz — 7| < 37w /2 — 0,
q(z) =—(1/2)(c + 900)(95*1 —(140)z 2+ [373]) for |argx — /2| < — 9,

whose coefficients are in Q[fx, o].



26 S. Shimomura

Remark 4.2.

(1) In Lemma 4.1, p(x) may be replaced by p(z) having the same asymptotic representation
in the sector |argx + 7| < 3w/2 — . The diagonalisation is possible by (p(z), ¢(x)) for
|argz + /2| < 7w —§ as well as (p(x),q(x)) for |arge — /2| <7 — 0.

(2) By the substitution (6 — o, 0 + 00, 2) > (—(0 — Ox), —(0 + ), ™) 01 = (—(0 —
fs0), —(0 + boc), € ™x), We obtain

pi(x) = —(1/2)(0c = O0) (z7' = (1 + o)z + [277%]),
q*(

such that

2 ()5 1)

is changed into

(6 DT ) o)

Remark 4.3. The proof of Lemma 4.1 depends on the following fact: from every point in the
sector |argx — w| < 3w/2 — ¢ (respectively, |argz| < 3w/2 — §) one may draw a line such that
it is contained in the sector and that Rex — —oo (respectively, — co) along it.

8
~
|
|
—
~
>
—~
Q
_I_
>
3
~
—
8
—
_I_
—
—
2
8
&
_I_
B
&
~—

By the facts above the linear parts of (4.4) may be diagonalised, that is, there exists a trans-
formation of the form
fr=0+pgus +poy = (1+ [272])uy —27 ' ((0 = bu0) /2 + [271]) vy,
g4 = qui + s =27 (—(0 +000) /2 + 27 Du++v+7
fo=0+p*¢)u_ +pv_=(1+ [ Nus —27H (0 — ) /24 [27]) v,
g-=q'u_+v_=x" ( (0 +0)/2+ [z~ ])u +v_
that takes (4.4) to
xyp = (1 + [:U_Q])u_wr — (1 + [x_Q])quv_
+ (04 00 + [:U_l])x 2uju_ + (60— 0o+ [2~ 1])3: VU,
zly = (=(0 4 000) /24 [27 ] Juy = 20((1+ [27 )y + (14 [71])vs),
zvly = vy + ((0 = 0s0)/2+ [ )vs +20((1+ [27 1 )ug + (14 [271])vy),
zu = ((0+0x0)/2+ [z )u +20((1+ [ )ue + (L4 [271])vo),
v = —zv_ — ((0— 0x0)/2 + [1:_1])1), —2p((1+ [x_l])u, +(1+ [a:_l])v,), (4.5)

where [x_l], [x_Q] ,... are valid in the sector |argz — /2| < m — §. Rewriting, e.g., the last
equation in the form

("2 0= (1 4 [a7])oo) = =267l 2 (1 [ Jum + (14 [271])o-),
and setting

$(U+9°°)/2(1 + [e7 ) uy =15 + o4, 67%7(070&)/2(1 + [z vy =95 + v,
337(0+9°°)/2(1 + [mfl})u_ =2 4+, ema:(afew)ﬂ(l + [xil} )v_ =% +¢_
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with v} and 7% as in (4.1), we arrive at a system of integral equations of the form

=Tz  (1)e(2 + o) (V] +¢p) —e 2 (1) (4] + 1) (0" +¥)]
+Z[(0+ 00+ [271]) 23 (V] + 1) (72 +¢-)
+ (0= Oc + [271]) 27 (4% +04) (02 + 0o )],
oy = —2Z[p(z7 ' (1) (V] + 1) + ™27 (D2 (78 +¢4))],
by =2L[p(a 7 (Ve (v +¥p) +e 27 (1) (V] + 94))],
) )]
(

p- = 2Z[p(z 7 (Do (72 + o) + e"”ﬂ:“’_l(l o (72 + -
o= =2Z[p(z  (1)e(v2 +¢-) +e"27 (1) (72 + ¢-))

Here (1), denotes 1 + [:fl], and the functions ¢, ¢4, ¥+ and the products ¢_vi, @i,

]
)
)
] (4.6)

.. are supposed to be at least in 2. If we succeed in constructing ©, p+,Y+ € 2, then, by
Propositions 3.14 through 3.16, (Ag(z), Az(x)) with
Jo=(o—0x)/4+¢,  go=—(0+0sx)/4— ¢,
fr=am IR0 (4] + 04) = (0 = 0) /2 + [27])e" 2" (7 + 44 )),
g+ = "2 (1), (V + 1) = (0 +00)/2+ [271])e 27 (] + 1)),
fo= a:("+9°0)/2((1)x(’yg +¢o-) = ((0 = 0x0)/2 + [xil])e*xaf"*l(’yx + 1)),
g- = e T2 (1), (v +v-) — ((0 4 0s) /2 + [271])e®27 1 (72 + 2)) (4.7)

is a solution of (1.3) written as (4.2). Then, ®¢(x) and ®,(z) in (4.2) are given by

Qo(x)11 = —Po(x)22 = o,
1

(x)
Do)z = 12 [ + (D — (0~ 0u0)/2 4+ [27]) 27 (7% + 0,
Do(x)o1 =10 [27] + (Vap— — ((0 = 00)/2 + [271])e "z (4" +4),
Pyp(z)11 = —Pp(2)22 = —00,
Qy(z)12 = Wi [56_1] + (Dt — ((U +00)/2 + [f_l])e_mx_a_l(’& + 80+),
Dy(z)or =7 (27 + (Dath- — ((0 4 0s0)/2+ [271]) ez 1 (/2 4+ 0-). (4.8)

Moreover, if ¢, @+, ¥+ are such that ®o(x), P,(x) — 0 as  — oo along some curve, then
(Ao(x), Az(z)) satisfies (a) and (b), and hence it is a desired solution of (1.3).

Remark 4.4. By p(z) and p*(z) in Lemma 4.1 and Remark 4.2, the linear parts of (4.5) are
written in the more detailed form

zu, = (—(0+000)/2 + £(2))uy + -+,

v, = a2vg + ((0 — 0)/2 — K(z))vy + -+,

ru = ((0 4+ 000)/2 — K(T))u_ + -+,

o = —zv_ + (—(0 — 0x)/2 + k(z))v_ + - - -
with k(x) = (02 — Hgo)x_l/él + [m_Q}, in each appearance [x_ﬂ not necessarily denoting the
same function. Then the expressions of fi, g4+ in (4.7) become

fo = ) ) )

g1 = a2 ((Lt m(@) (7 +s) — ),

fo =202 (14 k(2)) (Y2 + o) =),

g- = e a2 ((1 = k(@) (V2 + o) =),
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and the first equation in (4.6) is

o =Z[e"z7 (1 +20(2)) (V2 + o) (v ++)
—e a7 (1 = 26(2)) (0] + 04) (0F +9-)] +

5 Proofs of Theorems 2.1 and 2.8

5.1 System of integral equations

Instead of system (4.6) we deal with

o= Fo(@, 0,04, 04, -,9-) 1= "2 (12 (02 +9-) (0F + )
+e T (e (0 +0s) (18 + )
—4Z[e"2" 2 (1)ap (Y2 + o) (7% + 1) — e 272 (D)0 (1Y + 1) (7F + )]
+Z[a7 (0 + b0 + [27] 4+ [We) (OF + 04) (72 + )
+ 270 = oo + [27] + ]<P)(’Y++¢+)(7x + )],

=y (m,0,04,9%4) = —QI[SO($ D2 (0] 4+ o4) +e"27 (D)o (V5 +4))],

=Gz, 0,04, 04) = 2L[p(z7 (1) (VF +¥4) + e 277 (1) (V] + 04))],

F(z,0,0,%-) = 2Z[p(z (1) (72 + ¢ ) +e 277 (1) (72 +v))],
¢,:G (2,0, —,0_) 1= =2Z[p(x 7 (V)2 (7" + =) +e"27 H(1)a (72 +¢-))]. (5.1)

which is equivalent to (4.6). Indeed, by Proposition 3.14 and integration by parts, we may write
the first equation of (4.6) in the form

o=1Io+Z[(c+0+ [x_l])x_?’(fyg_ —|—<p+)(79 +o )+
with

=" (e (02 + o) OF +4) +e77a 7 (e () + 04) (12 +9-)

—I[e"z77 (1 (%('y +o-) + oL (v +v4))
+e e (D) (WL (W +or) + el (0 +y))]-

The substitution of

Ip=Z[e"z7  (1)a(v2 + o) (v +v4) —e 27 (D)2 (W + o4) (7" +¥-)]
0
)a

¢y = =20z (D (V) +o4) + €27 (D2 (v +¥4)),

¢l =---, ¢l =--- into the last integral yields the first equation of (5.1).

5.2 Sequences
; i A J
To construct a solution of (5.1) we define { (47, ¢’,, go R )}]>0
P=pl=91=0 ¢ =Fo(r, ¢, 00l 00),
- , o . , S
P = P, @b 0l ), T = Gy (T el ),
L , s o , s
G = Fo (2,0t o 7)), T = Gl (x0T 0 (5.2)

for j > 0. It is shown by induction on j that ¢/, gozt, T/Ji are finite sums of (exx"_l)n[l],
(e=®z=o~1)"[1] and [#71], and hence ¢7, ¢’ 9% € A for j > 0.
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Remark 5.1. As long as |argz —m/2| < m—4, the path of integration for Z[- | may also be taken
to be a line on which ‘egﬁ"_l’ or ]e—fg—"—l\ decays exponentially, and hence the asymptotic

expansions [z7!], ... in the expressions of ¢/, ¢’ , 1} are valid in the sector |argz—7 /2| < 7—0
(cf. Example 3.2).

In this section, to simplify the description, for a sequence {¢/} we write A¢? := ¢/ — ¢/~ 1.

5.2.1 oI, %, ¢l for j =1,2
By definition ¢! = Fy(z,0,0,0,0,0), ¢} = Fy (x, 901,0,0), Pl =Gy (93, 901,0,0), that is
¢t =208 (1ees" ™t 102 (Dee™ 277+ (VA2 [1] + 43y 2 1)) 27,

P = —20X0 - XL, v =25 Xg +40XD,
el =29° X5+ XL, ¢l =-29"X; -4 X} (5.3)

with
X5 =295 (1)ee"27 2 — 94" (Dze 272 + (4172 [1] + 1547 [1]) 272,

X1 =291 = 29077 (V™ + (W2 [ + 952 (1) 22,
XL =292 (1,27 =872 (1)ae™ 272772 4 (V32 [1] + 4342 [1])e a2,

which belong to % = 2A(Bo, Bz, Bsx, 0(Zc0,8),€) (cf. Section 3.1). We may choose xl, =

o0
23,(Bo, By, Bs,0) > Zoo depending on (7%,7%) or on (c,0) € By x By X B, in such a way
that the following estimates with absolute implied constants are valid for (c,o,z) € By x B, x
B, x 5o (2l 6):

o' | < 2t fne ™+ [yl et + |27

X[l < Izl 7 (W 2E e ™" + W2 [~ 2™ + 1),

[ R e | B e [ R e [T
XL < 222 27t + ]2 || e et

Then under the condition that
(6 +7 + D +1e < <1 (5.4)
with
W% = 2%+ Rz] = A R+ R+

for every (c,0) € Byx By X B, (cf. Remark 2.3), we have, for ‘nx_l‘, ‘n_lx_l‘ <e x € Xy (:rio, 5),

o'l < (6 + e, ekl 0h]l < (6 + 1) (7 + 1)e, (5.5)

where 7 will be chosen later. By (5.3) we have e ?2~7¢! €2, and, under (5.4),

e Tr 7ol H <1
for |77x_1‘, ‘n_lx_l‘ <eg x€ Zo(xéo,é). Similarly, e®z%p! | (e””ac")j[ll/)iE € 2, and Hexx"gol_H,
H(exx")ilwiﬂ < 1. By (5.2),

A§02 = FO(:L‘7§01790}|»7’¢41»)801—7¢1—) - FO(JU,0,0,0,0,0) = XO + Il +-[2
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with
Xo = €27 (1) (Vipl +7220% + Lol ) + e e T (1) (Vi ph + L0l + plel),
Iy = —4Z[e"2" ?(ap' (12 +01) (7] + 94) — e "2 2 (e’ (1] + 1) (0% +91)],
L=Z[[z°] (120} + 130 +ohel) + [ 7] (1 + 1) (2 + L)
+ 23] (v uk + 5wt +9lyl) + [0t (v + k) (FF + vl)].
It is easy to see Ap? € 2. By Proposition 3.15
| Xoll < ([[e"2" [ + [le™"2=7 ") Yo,
Il < ([lem M| + [le™ == DM (96 +Lo), I < |21 ([le* || + 1) (4 + Yo)

with Yo = (1 + [k [+ || ) (e[| [ ]| + [l |+ o
on § only. Substituting (5.5), we have, under (5.4), ||Ap?|| < (§+1)e for [nz~"

It is easy to verify (e“m")ﬂAQOQ € 2, and we have
e A < a2 (a + 0 ) e | + feraut )
+ 12708 + i ) (e lF+ 12 1) + 11 + [1all + [le"2 I |

_|_
+

}), the implied constants depending

77’13:’1‘ <e.

)

with
I3 = exw"I[ezx”_2(1)mcp1 (79 + 4,01_) (Wi + UJ}r)],
I = ezx“I[e*xx*"d(l)xcpl (’yg + cp1+) (Vf + 1/)5)]
and I given above. By Proposition 3.16
ng — ’yg’yiex:zal[esz*Q(l)zgol] H
= |le*27Z[e a7 (1) 62" ot (Fe a7y + yLe a7l + ylea7pl )]||
< |le"27 [l [ (F + [l [ (le"27wi || + [le"z7 L)),
174l < J2 1Ml (v + O + e D) Ul ]+ [121D),
le"27 L] < f2| |27 | (eIl + 1) (+6 + To)-
By (5.3)

ez [e"27~2(1)a0"]|| < 75 (|l H” + |2l |e" ) + (97) || 2 e 1",

Summing up these estimates we get Hex:c"AchH < (’y(’)“ +7 + 1)5 under (5.4). Similarly for
He_l’:n_"AgoQH we have the same inequality. We may verify that e_x;v_UAgpr € A as well, and
by analogous arguments we have
1aed ]| < PR lAe®] + ¥l || + ez A + o] [le*zwA |
le™ a7 AGk || < il A% + [[*[[le™"=™ @k | + il Ae® ]| + [l |44 ]
where HgoQH < nglH + HA902H. Substitution of (5.5) and the estimates for HA@QH, ... ob-
tained above yields HA@%FH, He*mx*"Ago%rH < (’yf)k +7 + 1) (fyf + 1)5. Furthermore ez Ag?
(exx")ﬂAwi € 2, and for HA(pZ_H, He‘”m"Acpz_H, HA@/JiH, H(exx")iAwiH, we have the same
estimates. As will be shown later (exac")ﬂAcpj“, (exx")ﬂAcpjfl, (exac")ﬂAwiH e 2 for
7 > 2 as well. Let us set
By = 8 o2+ o mue
+ HA(pi—HH + Hefxx—aA(pi—i-lH + HAwi—i—lH + |’ex$0Awi+l}|
+ 12T || + et ApTH[ + (A + (e 2T AgIT|.

)

For j =1, as shown above, we have
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Lemma 5.2. Ifzl =zl (Bo, Bs, Bs,0) is sufficiently large, then (emxa)ilﬁgog, (exx(’):HAgoi,
(e“”x")ilﬁwi also belong to A, and, under the condition (5.4) for every (c,0) € By X By X By,
we have

o'l < Kol +1)e il [[will < Ko(vg + 1) (o1 + 1)e,
Uy < Ko(vg+71+1) (7 +1)e

1

for ’7793_ n_lx_l‘ <e, x €y (acéo, 5), where Ko > 1 is some positive number depending on &

only.

)

5.2.2 ¥, for j > 2
In addition to (5.4) suppose that

lell <3Ko(vs +7 +1) (0 +1)e <1, [l [[eL] < 1, (5.6)
(exmg)ilAtp”, (ex:r")jFlAgolj’E, (exx”)ﬂﬁwi e, (5.7)
\Ilzx—l S (1/2)\111,_2 if v Z 3 (58)

for 2 < v < j. Lemma 5.2 implies that (5.6), (5.7) and (5.8) are valid for j = 2 if 3Kyrg < 1,
since [[o?|| < [|!]| + W1, [[ed|| < [|ok]| + W1 and [[¢2]] < [lvi + 1.
From (5.2) it follows that, for j > 2,
HA(,onrlH < Hewxofl(l)xﬁw{ + efmaf”*l(l)wagH
+ “U[exw”_Q(l)zA(@jw{) - e_xx_g_z(l)xA(tpng)] |
+{|Z[=72 (A + [14x5 + A (x1) + 1A ()]
with w] = (/2 + L) (0 +94), wf = (L + L) (02 +91), o = (L +¢4) (12 + L),
x5 = (V4 + %) (7% + ). Then, by (5.4) and (5.6), the first two parts on the right-hand side
are, respectively,
< a2 + e |+ (e o))
e A+ b llAG ] + Al e )
< (L )e(lAh]] + 1AL + [|a2 ]| + [[Avi]) < (1 +1)eWm,

and

< Lofle"2” M| (W22l ae]| + o A @)+ PEIlA e |+ 1A (el e)])
+ Lolle™ 27| (W22 A || + PIIIA (L) | + 2@l ]
+ A el

<2Lo (v + 5 + De(|A@]| + | A% |+ [A¢L ] + [[ae ] + | avl )

< 2Lo (g +77 +1)eP1

for ‘nx_ll, ‘n_lx_ll <g x€ Eo(l‘éo,é), since

A DI < I NIAR ]+ e~ DA |+ e N2 avs

Here Ly > Ky is some number depending on § only, which may be retaken larger, if necessary,
in each appearance below. Similarly the remaining part is < 2Lg (’VS +v7 + 1)62 ¥;_1, and hence

AT < 5L (g +7F +1)eV,q. (5.9)
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Observe that e*z°T [e””a:“‘Z(l)xA(gojw{)] = c"27Z[e "z 7 1 (1)e"a” (- - )], where
() =27 A(pIw]) = (295 + 120 + 950 + el ) - etat Ay
+ (2 ) e AL+ (T e A
By Proposition 3.16, this and analogous facts combined with (5.7) imply that ez® A/t € 2.

Then, dividing Hexx"AgojHH into three parts corresponding to those of HAQDj—HH above, we
derive

o7 AT < 4Lo (75 + 47 + De([|A¢7[] + [e"a” ||
+ |9 || + [le"a” Ay || + [|e"a” Al || + [|avL )
<ALo(vg +7 +1)e¥;_1. (5.10)
Similarly we may show that e 2277 Ap/*! € A and

le "2 AT || < 4Lo(7§ + 71 + 1)e¥j—1. (5.11)

Since e “x 7ZL [z (1)2 (/T (7Y —i—goi) -7 (14 +<pi_1))] =e g 7L [e"2" 1 (1)y(- -+ )] with
()= (W + @h)e Pz oAt 4 e Tr AP, we have e 2T APl € A as well. Fur-
thermore by (5.6)

1A ] < Lo(rifl A | + 1A (L) + At a2 | + [|ea” A (714t )|
< Lo(vi + ) ([ 267 + [lema” 2"
+3Ko(75 + 1 + e[ A + [le"a”Av )
since
2@ @I < e llae ]+ e lllae L |
le”a7A () || < [l [[le”a” A + [l |e"2” A

)

and similarly
lea™ AL | < Lo (i + 1) (| A" || + [le™a™ 2™
+3Ko (15 + 71 + De(lle 72~ At || + | A ).
We combine these estimates with (5.9), (5.10) and (5.11) to obtain
[+ [l A < B3 + 21 +1) 0F + D)o
+ Lo(71 +1) (289" [ + [[e"a” AT | + [lea™7 AT
<2LG (v + 91 +1) (07 +1)e¥a.
The other differences Agpj_ +1, e”“"a:"Agoj_ +1, Awiﬂ, (e””m”)ilAwiﬂ are treated in a similar man-
ner. Thus we have shown that (5.7) is valid for v < j+1, and that ¥; < 100L3 (7§ +7v1+1) (7 +

1)5\I/j_1. Choose 79 in (5.4) in such a way that 3Korg < 100L3rg < 1/2. Then ¥; < (1/2)¥,_y,
and hence (5.8) is valid for v < j + 1. By Lemma 5.2

J J
le < Ml + Do ae™ < Ml + > < || + 29

v=1 v=1
< Ko(vg +1)e +2Ko (16 +17 +1) (31 + 1)e < 3Ko (76 + 71 +1) (4 +1)e,
1 < |l@h || + 291 < 3Ko(vg +v5 +1) (v +1)e, ...,

that is, (5.6) is also valid for v < j+ 1. Thus we have shown that (5.6), (5.7) and (5.8) are valid
for every v if g is as above.
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Proposition 5.3. For j > 2 we have (exx")ilAcpj, (eﬁx”)jFlAgozt, (exac")ilAdJi e A, and
U; < (1/2)¥,q for [nz7 !, |nta™t| < e, @ € So(zl,0) under (5.4) with ro = ro(6) such that
100Lgro < 1/2.

)

5.3 Asymptotic coefficients
Let ¢ € 2 be given by

¢ = Zp:f(x)(exa:"_l)" - Zp;(x) (e "2~ H)" + po(z)z .

n=1

For every pj(z) # 0, let d(n) € NU {0} be such that p;(z) = =% ™ (g}t + O(z7!)) with
at # 0, and assign the lattice point (n,—dy(n)) € Z? to p}(x). For the other asymptotic
coefficients po(x),p,, () ¢ 0, the degrees d(0) and d_(n) are similarly defined, and the lattice
points (0, —d(0)) and (—n,—d_(n)) are assigned to po(z) ¢ 0 and to p, (x) +# 0, respectively.
Then denote by w(¢) the set of such lattice points for all asymptotic coefficients # 0 of ¢. For
d,m_,my € Z satisfying m_ < my, d > 0, set

[m_,my;—d] := {(xl,xg) €Z% xo< —d,xo <z —m_ —d, x9 < —x1 + My — d}.
Then, for 7, gozt, wi given by (5.2), we have

Proposition 5.4. For every j > 2, the lattice sets w(@jfl), w(tpﬂ[—l), w(wi_l) consist of finite
numbers of lattice points, and have the properties:

w(¢’) C[-1,1;0],  w(A¢?) C 4, 4;—7 + 1];
(L), w(Wl) C[0,2,0],  w(AgL), @(AYL) C [—4,—1; =] u[0,5 + 1;—j + 1];
w(el), w(Wl) c[-2.0:0,  w(A¢)) @(AY}) € [=5— 1,0, + UL, j; —j].

The polygons packing the lattice sets on the right-hand sides are described in Fig. 5.1.

m_ my —J 0 7

—j+1 J

[m_,my;—d] [=4,7;—J +1]

[_j7_1; _.7] U [07.7 + 1; _j + 1] [_j - 170; _j + 1] U [Lj; _J]

Figure 5.1. Polygons packing the lattice sets.
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Proof. Let us identify (e2°1)"z —di(n) =15=d0) and (e_””x_"_l)n:c_d*(") with (n, —d4(n)),
(0,—d(0)) and (n,—d_(n)), respectively. Then we may canonically define the product of them
and write, for example, (e?2®1)"z=% (M) (—p/, —d_(n")) = (n, —di(n))(-n/, —d_(n')) = (n —
n',—dy(n) —d_(n') — 20/) if n > n/, (e®2? 1) "2~ (—n, —d_(n)) = (0,—d}(n) — d_(n) —
2n 4 1). The following formulas are easily obtained:

exxail[_jaj; _j + 1] = [_j + 17 _1; _j - 1] U [07 17 _j] U [27,7 + 17 _j + 1]7 (512)

" ([=j = 1,0;—j + U155 =) =[5, ~15—j = JU[0,5 + 1 —j], (5.13)
in particular,

e® 277 1[=1,1;0] C [1,2;0], e®x7 H—2,0;0] C [0,2; —1]. (5.14)
Indeed, for example, (5.12) is verified by using

[_j7j§ —J+ 1] - [_j, —2;—j+ IHx <_2U[—1, 0;—7+ 1”_1<x1<0U[17j§ —J+ 1Hx1>1'

We show the relations by induction on j. By virtue of the symmetrlc property of (5. 2) it

is sufficient to focus on ¢/ and ¢’.. By (5.3), w(¢') C [-1,1;0], ( 1), @ (vl) c [0,2;0],
w(pl),@w(¥l) C [-2,0;0]. Note that Z[(ez?~1)"[z7!]] = (e"2z71)"[x _l], AR F 1]] =
1, I (e a1 " [ 1] = (e %z~ 1 "z, where m € N, I € NU{0}. By A
[ o
Fo(z, o' @b, vk, ol 9l) — Fy(2,0,0,0,0,0) and (5.14) we have w(A¢?) C [-2,2;—1], and
hence w(gp ) [—1,1;0]U[-2,2; —1] = [-1, 1;0]. In obtaining this, we have used w(e’”m" 2ol o )
C 2~ te*27~1[=2,0;0][=1,1;0] C [0,2; —2][-1,1;0] C [~1,3;—2] C [0,2; —1]. From

AR = Tl (1) + 05) A% + poh) + e ({1 + 6 ) Ag + ol )],
we derive @ (Aph) C [-2,—1;—-2]U[0,3; —1] and @(¢?%) C [0,2;0] by using

w(e® 2 T Ap?) C a1 [-2,2; 1] C e" 27 ([—2, —2; —1] U [-1,0; —1] U [1,2; —1])

C[-L,-5-3JU[0,1;-2]U[2,3; 1] C [0, 1, =2] U [2,3; —1] C [0, 3; —1],
w(ezx"_lzﬂ}r&w?) C wiw(ezx"_lAQDQ) C [-2,0;0](]0,1; —2] U [2,3; —1])
[_2a 1; _2] U [07 3; _1] - [_27 _1; _2] U [07 3; _1]7
@ (e"a” oyl ) C a1 [=2,0;0][-1,1;0] C [0,2; —1]([~1,~1;0] U [0, 1;0])
c[-1,1;-2]U]0,3; —1]
and so on. Hence the assertion is valid for j = 2.
Suppose that the assertion is valid for every integer < j. From (5.2) it follows that

Acpj"'l — T 1[ ](([1] )A¢J ([1] + W;l)ﬁsﬁ;) +e—xx—a—1(, )
+Z[e"a?[(([1] + L) (] + 1) A7 + (1] + L)' A
( W 1) J— 1A(p ) wxfaﬂ(...)}
+Za7 (1] + L) (1) + 1) A + (1] + 1) (1] + ¢ ) A,
+ ([ + (W) (1 + )Aso_) z73(- ‘-)}-
By (5.12) and (5.13) we have
w(e" 2" 2Ap!) C[—j+1,—-1;—j —2]U[0,1; -5 — 1] U [2,j + 1; —4]
Cl-j—-1,74+1;-1],
w ("2 2T A ) € [<1,1;0)([—j, —1;—j — 2] U [0,5 + 1;—j — 1])
Cl——-10—j—2JU[-1,j+2—j—1 C[-j—1,j+1—j]
@ ("2 L AGT) € [<2,0;0]([—j — 1,0, —j — 2] U [~1,j + 2, —j — 1))
Cl-j-17j+1—-j
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and so on. From these it follows that w(Agpj“) C [-j—1,j+1; —j] and consequently w(goj“) C
[—1,1;0]. Furthermore,

AGT =T (1) + @) A + P AP
+e 2?1 (([1] + ) ATt + o Ay )]

Observing that, by (5.13),

w (e Ayl) C [-1,1;0)([j, —1; —5 — 1] U [0,5 + 15 —4])
Cl-7-1,0,—5 —1U[-1,1;0][0,5 + 1;—j] C [-F — 1,5;—j — 1JU[0,5 + 2; —7],
where [—1,1;0][0,j +1; —j] = ([-1,-1;0]U[0,1;0])[0, 5 + 1; —j] C [—1,5; —j — 1] U[0, j + 2; —j],

[0,
and so on, we have (Agpjﬂ) Cl-j—1,-1;—j—1U[0,j + 2;—j] and = ( ]H) C [0,2;0].
Thus we obtain the proposition.

Proposition 5.5. The summands of ¢/, gpi and wft satisfy the following: if n > 1,

(i) ot (x) = (Y29%) (1, pp (&) = (W42)"[1] for ¢
(i) Py (@) =73 (427)" 1), pr (2) =72 (19097)"[1] for &
(iii) pf (@) =2 (1295)" 1], p (2) =12 (492)" 1] for
(i) pif(2) =4° (129%)"[1], P (2) = 4° (139%)" 1] for ¢ ;
(v) P (@) =2 (427)" (1], pr (@) =72 (199)"[1] for v

Furthermore po(z) = YL[1] for v+, and po(z) = y%[1] for .
Proof. Note that the relations for /T, gofl and le in (5.2) are rewritten in the form
P = Fo(, 97, e a7 0, ) et eyl ),

- . o T
o =e T O, (z, T e a% ¢, ),
i+l i1 j
P =TT 0G (o ) ey,

Where‘cpi* = e_wx_”cpi, @ZJZ* = ¢ %2799’ . Combining these with the relations for goj_ﬂ
and Q/Jfl in (5.2), by induction on j we may verify the facts: if n > 0,

(a) pyf (z) = (v29%)"[1] for ¢7;
(b) p;f(z) = 7% (Y29%)"[1] for ¢, ¥;
(¢) pif(x) =72 (72~%)"[1] for ¢’ , ¢

f)n[l] for @i, "
)"[1] for ¢, 7,

where @b =€ x"wi, goj . = egcx”(p] Then the proposition immediately follows. |
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5.4 Completion of the proof of Theorem 2.1

H < |&[7*1, and hence ||(e"z AgoJH

i AwiH < |x\ AR 1f nz~ a7l <6z e So(x 00,5) the im-
plied constants p0551bly depending on j. Let N be a glven positive integer. Combining this fact
with Proposition 5.3 we derive that, for every j > N + 1,

‘ i1 S 2_j+1+N\I’N < 2—j+N|$’—N+1’

the implied constant not depending on j but possibly on N. By Proposition 3.3 we conclude
that

By Proposmon D. 4 for j
I(ema) ™

o o0 o
=N AP+, =) AL, YR =D AL+l
j=2 j=2 j=2
belong to A = Ql(Bo, B., B, X (:réo, 5),6) if ¢ fulfils (5.4) with ¢ chosen as in Proposition 5.3.
Thus we have constructed a solution (¢, p+,1+) = (>, ¢, %) of (5.1) and of (4.6). By (5.3),
Propositions 3.3 and 5.5, ¢*°, ¢3°, ¥3° are written in the form

1
0 = =5 (0 + 09892 + (0 = Boc) " + [271])a 2

—I—’YE’M_ )ee®x? ! 4 Z "H] (exm(’_l)n

+7+7 ( T —0— 1+Z ’Y+'}/ n—i—l]( —acx—a—l)n7
o _ 07[,.-17 _ T, 0—2 x\2 x, 0—1\2
o —m[ =i (@i + [9«" et e =22 (1) (D (")

+ZFY+ ’Y ’Y-‘,— x—n+2]( .0 1) +2(’Y+) 7_<1)xe—x$—a—2
+ZV+ Wrt) [ (e )

d}io _ ,yi [CL‘_I] + 2’}8( Iezl,cr 2 + Z,y+ ’7 ’7+ x—n] (emxg—l)n
—A (it + [ o2 - (73)273<1>x(e‘”$“"1)2

+ Z WO e )"

+Zv i M P | o R
V=17 [ s (2%7 + e 1)o7 = (1) (e (")
_i_Z,y_ 7 7+ —n+2]( T, .0— 1) +2’Y+('Y )2(1>ze—xx—a—2

+ Z ~* '7+'7 x_"] (e_xaz_(’_l)n.
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Then, by (4.8), ®o(z), ®,(z) = 0 as x — oo along a curve on which |e”z| = 1. Substitution of
these into (4.7) leads us to the desired solution of Theorem 2.1.

Remark 5.6. By Remark 4.4, in the first equation of (5.1),

FO(J:7 ¥, 4,04—,1/1-1-, ()0—71/} ) =e"z7" 1(1 - (U - 1)%‘71 + 25(%)) (79 + 90—) (’Yi + ¢+)
+e Tz 7 (1= (0 + 27 = 26(2) (V] + o) (VE v —

Using this fact, (4.7) and Proposition 5.4, and computing ¢?, p3, 13, we may write some terms
of the expressions for fy, f+, g+ in Theorem 2.1 in more detail:

fo= ...+797_”f_(1— (o0 — 1—1—2(73_79 +’Yfﬁ’yf) - ( 262 )/2 et [ 2])em:c‘7 '
999 (1= (041 -2(1292 +4%4%) + (a —05)/2)a 4 [2 7] )e 2T

w002 f =30 (14 (29597 = (0% = 6%) /4)a™" + [27%]) +-

o a0y = 4T (1 (29992 — (07 - 0%) /4)a ! [l‘_z}) o

amOH0)/2p = A0 (1 — (29347 — (02 = 62) /4)at + [272]) + -,

ezl 70) g — 4 (14 (29070 = (0% = 02) /4)x ™" + [27%]) + -+

These facts are used in computing the tau-function.

5.5 Proof of Theorem 2.8
In the proof of Theorem 2.1 described above, we put ¢ = 09 = —260, — 0, namely v* = 0, to

obtain the solution of Theorem 2.8 in the sector |argz — /2| < 7/2 — 4, |e®2?°7!| < ¢, since
the restriction }e_xa:_"o_l‘ < ¢ is removed. It is sufficient to show that this expression may
be extended to the sector |argz — 7| < /2 — 4. In the sector |argz — /2| < w/2 — §, write
(gooo, »T, z/)io) with 0 = o¢ in the form

P~ =p(x) + e 2% ¢T = px() + 270

—x,.,—0 7,00 00 .0 .0 2 700
T =qi(x)e " 0+1/J+, Y =q_(x)e 0—1—( 0) *, (5.15)

where p(z) = [272], pi(z) = [27!], qu(z) = [a:_3]1 and ¢, P, PP € A(Xo (2L, 6),¢)
(:QL(BO,Bm, {00}720($C1>O,5),6)). Note that ¢, ¢°, ¥$° also belong to A (Zﬂ (7?/2 + 4, m—
§;2L),€). Recall that (o>, ¢, 93°) solves (5.1) with 4% = 0. Inserting (5.15) into this sys-
tem and putting v§ = 0, we find that (p(z),p+(x),q+(x)) solves (5.1) with v* = ~+§ = 0,
namely (5.1) with

FO = FS((CU, P ()0+71/]+7S0—7¢—) = "1:71( 1 J3(7 + - )¢+ + (’YE]I» + SD+)¢—)

—4Z[z7%o((Da (V2 + 9= )t — (1)a (1] + 04) )]
+Z[z73 (1 + (L) (7 +91) (02 + =) + (1 + [Le)ry-)],

Fy = Fi(z,0,04,91) = =2 [z~ o(( 1)x(7+ +o1) + (Lats)],

Gy = G, 0, 04,91) = 26" [e 2~ (1) (V] + 04) + (Dator)],

F_=F(z,0,0,¢) =2L [z o((1)2 (72 + =) + (D)av-)],

G- =G (a0, 0-,0-) = =272 L [e"27 o((1) (72 + ) + (1)ato-)].
Let (¢, 4,01, T/’i) be the sequence defined by

=l =yl =0,

P = F* (2,07, 04, v, 0, 90),

P = (e, oM eh k), T = G (T e, ).
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Here, for |argx — /2| < m — 6, we may replace the path y(z) by a ray tending to ooel” such
that [J] < 7/2 — 4 (respectively, [0 —n| < m/2 —0) in G% (respectively, GZ) and by one
tending to coe'®” in the others. Then the sequence converges to (p™(z), pF (), ¢ (z)) whose
entries admit asymptotic expansions in the sector |argx — 7/2| < m — d. Since (5.1) with
7% =~ = 0 whose paths are replaced as above has a unique solution tending to 0 in this sector,
the asymptotic expression for (p(x),p+(z),q+(x)) is valid in the sector |argx — w/2| < m — 0.
By the fact that (p(z),p+(z),qs(z)) solves this system, (@,@i,wi) = (cﬁoo,gb:oto,wf) satisfies
a system of the form

by =[]+ (Fa™) !

X Z[ete™ ([ + () + [a72)@s + [072]ds + (124 + (1)),
dr = [ + I (U] + ) + [0 0 + [272]dhs + 214 + (01)]
oo = (e"27) Tz (g + 276 + [P + p((1)p- + (1)),
b= ("0™) L[ (") 2 (1@ + [ o + [272 - + 2(()o- + (+)$))],

where every asymptotic coefficient is valid in the sector |argx — 7/2| < m — §, and each (x)
denotes a function of the form [z7!] + [1]e”z?° + [1] (exx"o)z. For |argx — 7| < 7/2 — 4,
replace y(z) by v (x) (cf. Section 3.2), and define the sequence (¢7, @ &i) by the same way as
in (5.2). Then, using the facts in Section 3.2, we may construct a solution (g&*, @*i,i[}l) whose
entries are in 2 (Zﬂ (7r/2 +0,3m/2 -9, x})o),e). This coincides with (@OO, O, @f) in the sector
m/2+0 < argx < m—J, since the corresponding asymptotic coefficients of these solutions satisfy
the same recursive relation. This completes the proof of Theorem 2.8.

6 Proofs of the results on (V)

Let (fo, f+,9+) be the solution given by Theorem 2.1 or 2.8, which has been obtained by con-
structing (¢>°, 9%, 1) that solves (5.1) in Section 2.3. Then, by (1.2),

_ 9+(fo+60/2)
f+(g0 +02/2)

is a solution of (V).

go = —fo — b0 /2 (6.1)

6.1 Proofs of Theorems 2.18 and 2.21
We begin with the following:

Proposition 6.1. The solution y depends on the parameters o and ¢ = cy/co (respectively,
d =cp/cy) only.

Proof. Note that the coefficients of each asymptotic series [z71] in (5.1) are in Q[8g, 0z, 0o, 7).

We may suppose that 79,7 # 0. Set o = 9@, vy =5y, oo =220, Y ="¢_.
Then (5.1) becomes

P =275 (12”27 (1 4+ =) (1+94) +9975 (Dee™ a7 (14 @4) (14 9-)
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- 4I[797i(1)xe x? (1 P-)(1+04) =997 (D "2 7 2p(1+¢4) (1 + 1/;_)]

+Z[14 2273 ) (1+ s0+)(1 +¢-) +ﬂvxw’3([1] + 1) (1+94) (1 +9-)],
g1 =—2I[p(z 1(1) ( +90+) (%/%) 27 ( +14))],
¢+:21[ (=~ (1)w(1+¢+) (’Y+/’Y+) Do (14 ¢4))],
b =2T[p(a (1)a(1 + ¢ ) + (7 /AY)e e T D) (14 9))],
Yo = =2ZL[p(a M (Va1 +9-) + (V2 /72) e (D)o (1 +¢-))]. (6.2)

This implies that, for (gpoo, 0, 1/1@?), the corresponding solution (@OO, o, 1210) of (6.2) depends
on o and ¢ = ¢g/cg only, since Y2 v%, VL%, 4% /4%, 4% /7 (respectively, 7942, v7 4" ) are written
in terms of o and ¢ (respectively, ) only. From (4.7) it follows that

Jo=—90—0/2 = (0 = b0)/4+ ¢,

go _ (acea? (14 5) — (o + )2+ o ])o (14 65)

o (1 +62) = ((0 = 0)/2 + [271] ) eemao 1 (1 + )

and hence the proposition follows immediately. |

Suppose dist({—26p + 0,20, — 00}, Bix) = dp > 0, that is, ‘72/00}, ”y_’ﬁ/cx‘ > dy/4 for every
0 € By. Then, by Theorem 2.1 combined with the expression of ©> in Section 5.4,

btz st (o) (e )7,
90 +62/2 Y /ce — @™ 0%+ s
x(0+000)/2g =7 exl‘g(l);p(l + (Vi)_ngr)’

(x(a+9 /2f+) _ (%)71(1)33(1 — (fyg)*lﬂr)*l,

I

provided that ‘e x’~ 1‘ and |e -7 *1‘ are sufficiently small, where

g = Z’y+ P2y 7] (%27 )" =A% ((0 + 0s0) /2 + [27 ] )e P!

. (73_)275(1) e Ty 0~ 1 _1_2,)/_’_ ’Y—&-’Y —n+2]( —ccx—a—l)n7
f+:7fi((0— )/2+[ etz 1+7 (w) (1) (e"2771)?
+Z’Y+ 'Y ,Y+ fn+2]( T, .0— 1 +27+ ")/Jr’)/f)n[l'in] (efxxfafl)n.
n=1
Furthermore
(1—e(v?) ™) = (1 —x0) (1 -2 (1 — x0) )
-0 ) =) e - xa) )
where
X0 = o (75) T (AL (Dae"a” T 400" (e a7,
2712 = e (v2) T (9™ Tz

— Y2 (D)2 = 4347 (1), _””w_”_l),
x1=(09) 7 (5 ((0 = 0s0) /24 [271]) ez + 42 (43)* (1) ("2
v = (1) T (=15 ((0 = 00)/2+ [271]) 277 = 2 (7 )* (1) (e"2771)?).

\/
/—\
H
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By Proposition 3.3 with Examples 3.5 and 3.6, substitution of these expressions into (6.1) yields
y(c,0,x) as in Theorem 2.18.

If we set 0 = 09 = —20, — 0, that is, ¥* = 0, then the coefficients of the solution in Theo-
rem 2.18 are such that b, = 0 for n > 2, and we obtain the solution y, (¢, z). If 0 = o{, = 20p+0n,
that is, 7° = 0, then

202 a0 (1), (1 (42) 7 L),
(x(06+900)/29+)_1 = ('yf_) 1e_$$ 6(1)90(1 + (Vi)_ngr)_l’

from which the solution y_(¢/, ) follows. Thus Theorem 2.21 is obtained.

6.2 Proofs of Theorems 2.26 and 2.27

To discuss the poles and zeros of y(c, o, r), under the condition 7%,v% # 0 we write
e—xx—(a—eoo)/ngr _ 7-916- - (73/2) (U 40 )e—a:x—a—l _ (73_)2,}/9: (e—xx—a—l

= () (e = o) (e~ 02) + 027

:U(U+9°°)/2f+ _ ,Yg _ (71/2)( _ Goo)exxa_l _79( ) ( T o— 1)2 —|—O(:U
)

=2 () (€7 = a) (€7~ o) + O(a7!
with
Cy —4c gt —4c(o— 20, + 0)
0l=——FG="—""%57""7 > 02="—"4 5 = ;
vy o+ 200 — O cVIYE (0420, + 050) (0 + 200 — 0)
o _ —1 N —4(0 + 260 — f0)
or= 75 (00— 20, +0s)’ 02 = cw%f; (o — 200 — 0s0)(0 — 20, 4+ 050)’

provided that ‘ewa:"*l‘, ‘e*xx*"*l‘ < e. Furthermore, for e !|z|~! < ‘efc"x*‘jfl‘ <e, }emx"*l‘
<elz|,

fo+60/2 =17 (e 27" —03) + O(a™"),

9o +05/2 =09 (e "z 7  — go) + O(z71),
and for et z|7t < [e®2? 7| < g, [e T2 | < elz| T,

fo+00/2=7° w (e®27™ — &2) + O(a™"),

go+0:/2 = =245 ("27 ! = g3) + O(a7),

where
_ 1 _ —4c - 1 _ —4
0= oyt o +20,+ 0 03_%79 (o0 —20) — 0s)

If 6,(00 £ 0, — 05) # 0 (respectively, 0y(£0y — 0, + 0s) # 0), 01, 02, 03 (respectively, 91, 02,
93) are distinct. By the expressions above, in the domain ¢~ !|z|~! < ‘e Tx 0_1’ < &, where ¢
is a positive number such that

(23] + PR | + PR+ 2]+ ]+ Pz +1)
X (W3] + P2+ ]+ 2]+ 1)e < ro(6) (6.3)

(cf. Remark 2.3), y(c,o,x) admits a zero (9 such that S (:U(O))fail ~ 01 (respectively,
~ 03), if |o1| < € (respectively, o3| < €). Let (co,cz) = (1,¢) with 0 < |¢| < Rp. If |[v*| = |(o +
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205 + 050)/(4c)| < Ro/4, then |o + 20, + 00| < R% and |72, [v%| < Rs, Re = Ry(00, 64,050, Ro)
being some number depending on (6, 0., 0, Ry) only. Choose € = ¢ in such a way that (6.3)
is valid uniformly in (vi,fyi) satisfying !’yi , fyi‘ < Ry, ’yf‘ < Rp/4. Then there exists
a domain consisting of (¢, o) such that |(c + 20, + 0 )/c| < Ro, 0 # £200 + 0o, 20, — 0
and |o1| = [4¢/(0 + 200 — 0x)| < €o, since 6y — 0, — 0 # 0. For such (¢, o), y(c,0,x) has
a sequence of zeros {x(mo)} with po(o) = p1/c = —4/(0 4+ 20y — 0). For (cp,cz) = (1/c,1) with
0 < |c¢| < Ry, we obtain another sequence of zeros with po(c) = p3/c = —4/(0 + 20, + 0).
Thus the assertion (1) of Theorem 2.26 has been verified. The second assertion is shown by an

analogous argument about a pole 2() such that =™ (w(oo))ail ~ 01 or ~ g3 in the domain
ezt < ‘ezx"_l‘ < e. By putting 0 = 09 = =20, — 0 or o = 26y + 0, and observing
e tg(0=0)/2g — % —(71/2) (00+bsc)e 271 +O0(2!) and so on, we deduce Theorem 2.27.

7 Proofs of the results on the monodromy data

To show Theorem 2.10 we compute the monodromy matrices My, M, with respect to solu-
tion (2.1) of linear system (1.1) by matching perturbed solutions as x — oo. Note that, by
Theorem 2.1,

1
Ag(c,0,1) ~ 1(0 —Ooo)J + A OO 2N A0 g (o HO) 2N
1
Ay(c,o,z) ~ _Z(J +000)J + Vf_em-f(a_gw)/QA_;_ _|_,yfe—a:x—(a—eoo)/2A_’

if 2971 e 27771 = o(1). In what follows we suppose that argz ~ 7/2 and that

‘exwg , efxxf"‘ <1 (7.1)

as x — 00. By Y = e/ 3=0=/97y system (1.1) is changed into

dy A A, T\ -
= (0 + + ) Y (7.2)

dax - \x Tz 2
with

Ay = ((0 = 00)/4+0(z7))J

+ (79_ + O(J:_l))e_z/2m_a/2A+ + (79 + O(J:_l))e:”/Qaca/QA,,
Ay = (—(0+00)/4+0(z7Y))J

+ ('yf_ + O(x_l))ex/zaz”/zA_,_ + ('yf + O(x_l))e_m/2x_g/2A_.

7.1 Approximate equation

As long as |A| > |z|Y/2, A — x| > |#]|'/2, the eigenvalues of A, = Ayg/\+ A./(\ — x) + J/2 are
+u(x, \) with
1 (0-0x)/4+0(z7') (0+40)/4+0(z7)

_ 1 _ —2 -2
,u(w,)\)—z—i- 3 R + O(IN 2+ A —2[7?),

and by Y = (u(z,\)J + A,)Z = (J+O(INt+ X —2[71))Z system (7.2) is reduced to

az

o = (@ N+ H@0)Z,  Hz,A) = (hij(@,A) < A 724+ A=z 2 (7.3)
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Lemma 7.1. Let X )5(x) be a sector given by

larg A — /2| <, larg(A — z) — /2| < w/4, A —z| > |z|'/2,
and Y3 /2(0) one given by

larg A — 3m/2| < 7 /4, |\l > |z|Y2
Then (7.2) admits the matriz solution

Zip(@, ) = (J+ O(A "+ A = 2| 71)) eI N@T (x — g)@)]
with

oz(:v)z(a—@oo)/4+0(:v_1), ﬁ(w):—(a+9w)/4+0(x_1)

uniformly in sufficiently large x as A — oo through X 5(z), and the solution Z%p(w, \) having
an asymptotic representation of the same form as A\ — oo through 2371—/2(0).

\/\}T/Z

.x L]

_n

371'/2(0)

(x) .

*0
Figure 7.1. Sectors ¥ /5(z) and Y3, /5(0).

Proof. By Z = (I + pA;)Z, system (7.2) is taken to

dZ.
T (u(z,\)J + H(x,\) — hoipJ + hAy) Z,

with
hy = 2u(z, \)p — dp/dX + (h11 — ho2)p — ho1p”.

From every point in ¥ /5(z) one may draw a line in ¥, /5(z) in such a way that Re A — oo,
and hence there exists p = p(z, \) such that his + he = 0 and that p(z, \) < [A|72 + |\ — 2|72
(cf. Lemma 4.1 and Remark 4.3). As a result the coefficient matrix becomes of lower-triangular
form. We apply a suitable further transformation of the form Z, = (I 4+ ¢A_)Z.. with ¢ =
q(z, ) < [A|72 + |A — 2|72 to get the diagonal system

dZs
dA

= (u(x,\)J + diag [h1(z, \), ha(2, \)]) Zux

with hy (2, \), ho(z, A) < [N 724 |A — 2|2, from which the desired solution immediately follows.
|

Remark 7.2. In the sector ¥_/5(0): |arg A\ +7/2| < 7/4, [A] > |2|1/2 as well, (7.2) admits the
solution Z&,KB (z,A) with an asymptotic representation of the same form.
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Remark 7.3. The matrix function Zyp(z,A) or Wkp(x, A), which corresponds to Wg(\)
given by [2, equation (7.10)], is essentially a WKB solution. The representation for it remains
valid also in a suitably extended sector with opening angle m — §. Furthermore, e.g., the first
column of Wi§ kg (x,A) is a vector solution in a domain with the properties:

(i) larg(A — )|, [arg Al < 37/2 = 4, A, [A — 2| > |«|'/?;

(ii) from every point in the domain one may draw a line contained in it and satisfying
Re A — oo.

7.2 Local equation

If |\ < 2|z|Y/2, system (7.2) is written as

vy [J A ) o

under (7.1). This is equivalent to
dU J A 1 _
o <2 + 5 + E(x, A)) U, A= 1(0 —0x)J + ’ygco AL +4%A_ (7.4)
with E(z,\) < z~! for |\| < 2|z|'/?, in which

U= e(ac/4)Jx(o—/4)JCaJ/2Y

System (7.4) is a perturbation of the Whittaker system

dW_(J

A
WLy ) W, (7.5)

2 A

which admits the matrix solution
Woo(A) = ([ + O()\—l))e(A/Q)JA((U—Goo)M)J (7.6)

as A — oo through the sector |arg A — 7/2| < m —§. By WX (N\) and WX () we denote the
solutions of (7.5) having an asymptotic representation of the same form in the neighbouring
sectors |arg A + /2| < m — 4§ and |arg A — 37/2| < m — ¢, respectively.

Lemma 7.4. In the domain | arg \— 37 /2| < 7/4, log |z|'/* < || < 2|z|Y/2, system (7.4) admits
the matrixz solution

Uout(I’ )‘) = (I + Ugut (SU, )‘))e(A/2)J)‘((07000)/4)J
with Uy (2, A) < (log []) 7.

Proof. Write W2 (\) = W(A)eW2IN(e=b)/ DT with W(X) = I+ O(A7!) as A — oco. Since
W = W()\)AVAV reduces (7.5) to dW /dX = (1/2 4 (0 — 0s5)/(4X))JW, it is easy to see that, by
U =W(A)U, (7.4) becomes

AU ({1 o0—0x PR
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and W(A) = I+ O((log|z|)™1), if |arg X — 37/2| < 7/4, log|z|*/* < |\ < 2|z|*/2. By the
same argument as in the proof of Lemma 7.1, we may find a transformation of the form U =
(I + O(xil))U such that this system is changed into

dU 1 o0—04 . ~
dA—((2+ - )J+d1ag[e1<m,x>,e2<m,m>U

with e1(z,\), e2(z, \) < x~1, which has a matrix solution given by
U = diag [é1(z, N), éx(z, )\)]e()‘/z)‘])\((”_ew)/4)‘]
with & (z, \) — 1,éa(z,\) — 1 < Az~! < 27 /2. Thus we obtain the lemma. [

Lemma 7.5. In the domain |arg X — 37/2| < 7/4, 1 < |\| < log|z|'/3, system (7.4) admits the
matriz solution

with U} (x,\) < x4,

Proof. By U = W*(\)U system (7.4) is reduced to
dU _
T W:J()\)_IE(JC, MW (NU.

Here W (A" E (2, WX (\) < 27234 for 1 < || < log|z|'/3, € being any positive number,
since WX (\)* < x_l/ b+e, Using Gronwall’§ inequality, we may show that there exists a matrix
solution such that U = I + U*(z, \) with U*(x, \) < z~2/3+¢. Then

U=WZNI+T*(x,N\) = (I +WZENT*(x, VW) HWEN)

solves (7.4). Since WZ(A\)U*(z, W2 (A\) ™t < 271/3+¢ this is a desired solution as in the
lemma. |

Remark 7.6. In the domain |argA + 7/2| < 7/4, log|z|Y* < |\ < 2|xl1/2 (respectively,
1 < |\ < log|z|'/?) as well, we have the solution Uyy(z,\) (respectively, Up,(z,\)) with an
analogous property, which is obtained by using W ().
7.3 Whittaker system
The right-hand side of W () (cf. (7.6)) is given by
e7ri(¢.7—9c>o+2)/4w(0_000+2)/4’90/2(e—ﬂ'i)f) — 04 W (50, 12)/4,00/2(A) \-1/2
OO DIW o oy ja00/2(6TTA) W (0mb00-2)/4.00/2(N)

where ¥ = (0—0+26p)/4, V- = (0 —0—26p) /4, and W, ,(2) is the Whittaker function such
that Wy, (2) ~ e */22% as z — oo through the sector |arg z| < 37/2 (cf. [1, formula (13.1.33)],
[5, Section 6.9], [14, equation (3.10)]). Around A = 0, (7.5) admits the matrix solution

Wo(A) = Go(I + O(N)AG/DT\Ax (7.7)

where Gy € GLy(C), and A, denotes 0 if 6y ¢ Z, Ay if §p € NU {0}, and A_ if —0y € N.
Let us compute connection formulas and Stokes multipliers. Using the formula

I'(—2v)z” I'(2v)z™"
T/a—v—m O+ T, =

near z = 0 (cf. [1, formulas (13.1.2), (13.1.32), (13.1.34)]), we have

VW, (2) = (1+0(2))
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Proposition 7.7. If 0y & Z, then W (X) = Wo(A\)Vo, where Vi is the matriz as in Theo-
rem 2.10.

Furthermore, if 2v € Z \ {0},

(_1)1+|2V\Zl/2+|u\

Wiw(z) = T (/2= =) (14 0(2)logz+¢(1/2 + |v] — k)
(|2v] — 1)!12/27(1 + O(2))
—V) v+ )+ O + i
and
S1/2
Weo(z) = —m((l + 0(2))logz + ¥(1/2 — k) — 2¢(1) + O(2))

near z =0 (cf. [1, formulas (13.1.6), (13.1.7), (13.1.33)]). From these formulas we have

~

Proposition 7.8. If 6y € Z, then Wao(\) = Wo(A\)Vp, where Vi is the matriz as in Theo-
rem 2.11.

To calculate the relation between Weo(A) and W2 (X), we use

1 — ™) (—2v)

M(v — 1/2,20 +1,e™\
T(1/2—v— &) (v—r+1/2,20+1,e")

Wi (e7™N) = o i HL/2) /2 \vi/2 ((
+e™U (v -k +1/2,20 + 1,e’“A)>,
which is obtained from [I, formulas (13.1.10), (13.1.33)] with n = —1. Here, by [1, formu-

las (13.5.1), (13.5.2)]

P(QI/ + 1))\7(1/7n+1/2)
T(v+rt1/2)

e e T o),

Uy — 5 +1/2,20 +1,¢™2) = (7A) 2 1o ),

M(Z/—/<a+1/2,21/—|—1,e7ri)\) = (1+O()\_1))

in the sector —37/2 < arg A < w/2. From [1, formulas (13.1.10), (13.1.33)] with n = 1, it follows
that

o) = o1 )

I1/2—-v—k)

M(v—rk+1/2,2v 4 1,e72™))
+ e (v — Kk +1/2,20 + 1, e—%A)>,

which yields the relation between Wi () and WX ().

Proposition 7.9. We have W (X)) = W (AN)Ss and W (X) = WZF(A)Sws, where Sy and Sy
are the matrices as in Theorem 2.10.

7.4 Completion of the proofs of Theorems 2.10 and 2.11

Recall the solution Y (z, \) = (I+O(A‘l))e(’\/g)J)\_(GOO/Q)J of (1.1) as A — oo through the sector
|arg A — 7/2| < 7 and the monodromy matrices My, M, defined by the analytic continuation
of Y(x,\) along the loops ly, I, as described in Section 2.2. Furthermore, for the solutions
Yi(xz,\) and Ya(x, A), respectively, in |arg A\ + 7/2| < 7 and |arg A\ — 37/2| < 7, the Stokes
multipliers S; and Sy are given by Y (z, \) = Yi(x, \)S1, Ya(z,\) =Y (2, X)Sa.
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7.4.1 Derivation of M,

To compute My let us examine the analytic continuation for Y (x,\) along ly by the matching
procedure carried out according to the following scheme:

Y (2, \) = Ya(z,\) S5 ! +— ZWkp (2, \) < Uout (2, A) <— Uin(z, \)

(cf. Lemmas 7.1, 7.4 and 7.5).

Suppose that z satisfies argx ~ m/2 and (7.1), and that the starting point Ag of Iy has the
properties arg Ay ~ 7/2, arg(Ayy — x) ~ /2 and |Ag| > 2|z|. Then the part of Iy from Ag up
to a point near A = 0 may be regarded as I'og; U L_ with Tiege: A = |Agle? (7/2 < t < 371/2)
and L_: A =it (—|Ag| <t < —1).

1-st step: Continue Y (x, \) along the arc T'ef; entering into X /5(0) N {|A] > 2|z[}, in which
|arg(A — x) — 37/2| < 7/4 (cf. Lemma 7.1 and Fig. 7.2(a)).

>\st
27r/2 (1‘)

(b) L

Figure 7.2. Iy, I, and I} ol,.

Let us match Ya(z, \) with Z% g (2, \) in this domain. Since Z%p(z, A) solves (7.2) that
follows from (1.1) by Y = e(®/4)/ z=(/97Y e have

Ya(z, A) = el@/ DI =0/ 0T 70 o (2, \) T () (7.8)
with Y;(x) € SLy(C). By Lemma 7.1, the right-hand side is
@/ 5= O/ (] 1 O(X71))eN2DINA@ (X — 2)B@I Y ()
— 1+ O()\fl/2))e()\/Q)J)\f(HOO/ZJrO(x_l))Je(a:/4)fo(900/4)JJT1(x)7
provided that, e.g., |\|1/2 > |z|(olH0=)/2 > |ex/23:_9°°/2‘i1 (
which implies A° (+7) = 1+ 0(1), from (7.8) we conclude
Ty (z) = e @/ 0/NI (] 1 (1)),

2-nd step: The line L_ is contained in the sector |\ — 37/2| < 7w/4. Recall that U =
e($/4)‘]1:("/4)‘]ca”]/217 takes (7.2) to (7.4). Suppose that

cf. (7.1)). Under |\| < exp (\ZU|1/2),

oo/ /DT T2 79 (@, N) = Upnt(, A) Yo () (7.9)
in the domain |arg A — 37/2| < 7/4, |z|/? < |\| < 2|z|'/2. By (7.1) the left-hand side is
e(:p/4)Jx(a/4)JCO*J/2(J_’_ O(Afl))e(A/Q)J)\a(:v)J(ewix(l o )\/x))ﬁ(w)J
— I+ O()\fl))e(/\/2)J)\((07000)/4+O(:Jc_l))J(l M) @) By

o @/ (0o /2+0(271) )JCEJ/QJ’
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since |arg(A — z) — 37/2| < w/4, argx ~ 7/2. Using Lemma 7.4, we derive

To(z) = ef((0'+900)7ri/4)Je(x/4)fo(Goo/4)JcaJ/2(J +o(1)).

3-rd step: In the domain |arg A\ — 37/2| < 7/4, log|z|/* < |A| < log|z|'/3, by Lemmas 7.4
and 7.5, we have

Uout (2, A) = Un(x, \) T3(z) (7.10)
with Y3(x) = I + o(1). By Lemma 7.4 and Propositions 7.7 through 7.9,

Un(z,\) = (I +0(27 1)) W (NS = (I +0(z71))Wo(N) VeSS (7.11)
in the domain |arg A\ — 37/2| < w/4, 1 < || < 2, where V, =V} if 6y ¢ Z (respectively, Vs = Vj

if 0y € Z). From (7.8), (7.9), (7.10) and (7.11), as a result of the matching procedure we obtain
the following connection formula:

Y (2, A) = 2~ (@FH0=0/DT 2 (T 1 O(271)) Go(T + O(N)AC=/DTNA 1 ()
with
Yo(z) = VaSo Ta(a) Ya(2) Y1 (2)Sy "t = VaSte o+ /0T /2T 4 5(1)) 85!
around A = 0 as |z| — oo, argx ~ 7/2. Since My does not depend on x, we derive
My = 52(03)—1e7ri90J0352—1’ C2 = %S);le—ﬂi((0'+eoo)/4)JcaJ/2

if 6y & Z, which is the second relation in (2.3). The case 6y € Z is treated similarly, and that
of (2.5) follows.

7.4.2 Derivation of MQJMOM:B_1

The curve I'yigne UL issuing from Ag, where Tyjghe: A = \)\St\ei(“/ 2-1) (0<t<m)and L' : A =it
(—|Ast] <t < —1), corresponds to the part of I;1lgl, from g up to A = —1 (cf. Fig. 7.2(c)). In
this case the matching scheme

Y (x,)) = Yi(x,\)S] +— Zohpp (2, A) ¢ Uui (2, ) <— Uin(z, A)
(cf. Remarks 7.2 and 7.6) yields the monodromy matrix ZWAIMOM;l. Note that ﬁout(x, A) = (I+
o(1))Wz (A\)(I+0(1)), and in matching Zp (2, A) with Ugyt (2, A), that A—z = e ™z(1—\/z),
since |arg(A — z) + 7/2| < w/4, argx ~ 7/2. Then we obtain

MIMOM;l — Sl—l (Col)*leﬂieoJC(%Sh C(:)[ — %S;leﬂi((o—+9w)/4)JC(;J/2
if 0y ¢ Z. In this way the first relations in (2.3) and (2.5) are verified.

7.4.3 Derivation of M,

In the domain |\ — z| < 2|z|"/2, we write (7.2) in the form

av (J A, ) e
d)\_<2+)\—l‘+0(x ))Y,
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which is changed into

2+>\—l‘

w _ (1, A
dx

< 1
+O(m_1)> U, A= —Z(o+9m)J+yf_c;1A++vfch, (7.12)
by U = e (@/VI 3=/ =72y Then instead of (7.5) we treat
aw  (J A
a (2 s m> "

which has the matrix solution

WEN) = (I+0((A—2)71))eM2I(\ — z)~(et+b)/D)] (7.13)

as A — oo through the sector |arg(A —x) —7/2| < m—J. Around A\ = z there exists the matrix
solution

WEA) = GoI + O\ —2))(A — 2) /DT (X — z)A+

with G, € GLy(C) and A, as of (7.7). Then the connection formula is given by WZ (\) =
W§(A\)V; (respectively, = WEF(\)V,) if 8, ¢ Z (vespectively, 8, € Z). In the sector |arg(A —z) —
7/2| < 7/4 equation (7.12) has the solution UZ  (x, ) = (I + U= (z, X))eP/ DI N(7=0<)/DJ with
UZ (z,\) < (log |z])~" for log [z|/* < |\ — x| < 2|z[*/2, and UZ (x,\) = (I + UZ*(z, \))WZ(\)
with UZ*(x,\) < 2~/ for 1 < |\ — z| < log |z|"/3.
Consider the line joining As; with a point near x contained in this sector (cf. Fig. 7.2(b)).
Then M, is obtained by the matching scheme
Y(z,\) «— Zykp(z,\) «— U3,

out

(2, \) «— U (x,\)

(cf. Lemma 7.1). Since argz, arg A ~ 7/2, we may write A = z(1 4+ (A — z)/x) in the domain
|z|'/2 < |\ — z| < 2|z|'/2. Using this fact we derive M, as in Theorem 2.10 or 2.11.

)\st )\st
.0
X
0
X
(a) lo (b) I, (c) loluly?

Figure 7.3. Iy, I, and lol 5"

7.5 On Remark 2.15

In the case argx ~ —7/2, the monodromy matrices are obtained in the same way as above. In
the matching procedure to compute Mé_l), we note the fact that A — 2 = e™x(1 — \/z) in the
domain |arg A — 7/2| < 7/4, |z|/? < |A| < 2|z|'/2, since arg(A — x) ~ 7/2 (cf. Fig. 7.3(a)). The
matrix Ma(c_l) is obtained by using a curve on the right-hand side of A = 0 entering into the
domain |arg(\ — z) + 7/2| < 7/4, |z|'/? < |\ — 2| < 2|22, in which A = z(1 + (\ — z)/z),
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since |arg A + 7/2| < w/4 (cf. Fig. 7.3(b)). A curve on the left-hand side of A = 0 entering into
the domain |arg(A — z) — 37/2| < /4, |z|/? < |A — x| < 2|z|"/? (cf. Fig. 7.3(c)) corresponds to
the expression of (Mé‘l))—lMgE‘l)Mé‘l), which is derived by using A = e?™z(1+ (A — z)/z) in
this domain, since |arg A — 37/2| < w/4.
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