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1 Introduction
In 1977 Airault, McKean and Moser studied in [2] some special solutions of the KdV equation,
U — 6uty + Ugze = 0,

like rational and elliptic ones. Then one year later Adler and Moser studied KdV rational
solutions of the KdV hierarchy by means of Darboux—Crum transformations, simplifiying the
proof of previous results for these solutions [1].

One of the goals of the paper is to study the invariance of the Galois group of the linear
system

0 1
<I>I_U<I>_<U_E 0><1>,

Oy, =V, = (_GI;%) _%E%) @, (1.1)

associated to the KdV hierarchy, with respect to the Darboux transformations and respect to
the KdV flow (i.e., to the time). In fact as a by-product we have obtained more than that:
the Galois group is also invariant with respect to generic values of the spectral parameters (see
Section 7).

This paper is a contribution to the Special Issue on Algebraic Methods in Dynamical Systems. The full
collection is available at https://www.emis.de/journals/SIGMA /AMDS2018.html
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Thus, in some sense this paper can be considered as a continuation of our previous paper [18],
where we studied the invariance of the Galois group of the AKNS systems with respect to the
Darboux transformations. But one of the essential differences here is that in general we can
not use the Darboux invariance result in [18], because the Darboux transformation here is not
a well-defined gauge transformation, i.e., it is not inversible. Thus we must use the classical
Darboux tranformation of the Schrodinger equation, we call it the Darboux—Crum transform;
and then to verify the compatibility of this transform with the complete linear system (1.1).

In Section 3 we study the action of the Darboux transformations over the recursive rela-
tions (2.1) inside the KdV hierarchy. We point out that the results in Section 3 hold not only
for rational KdV potentials but also for any arbitrary KdV potential.

Also, in Section 6 we study the action over the spectral curve of the Darboux transformations
for stationary KdV arbitrary potentials.

Brezhnev in three papers [5, 6, 7] also consider the Galois groups associated to spectral
problem for some KdV potentials. More specifically the so-called finite-gap potentials, where
the spectral curve is non-singular. Here we study a completely different situation, where the
spectral curves are cuspidal curves, corresponding to Adler—Moser rational type solutions.

In some articles, such as [19] and [25], the authors studied the general Schrédinger equation,
i.e., the potential u is a differential indeterminate which satisfies KdV; equation. This is not our
situation here, since we consider the family of Adler—-Moser rational potentials in 14+1 dimensions.
We would like to point out that in the stationary case the results in [4] for algebraically integrable
systems proved that the Galois group is contained in a torus at each generic point in the spectral
curve, when the field of coefficients is a formal field.

However, the general results obtained in Sections 3 and 6 open the door to study more general
families of KdV potentials, such as Rosen—Morse potentials or elliptic KAV potentials.

2 Basic facts on KdV hierarchy

Consider the derivations 0y, 0y,, Oy, - - . , 01, With respect to the variables z and t = (¢1,...,tm).
Let K, be a differential field with compatible derivations 0, and 0, with respect to the vari-
ables x and t,. Let us assume that its field of constants is the field of complex numbers C. Let
E € C be a complex parameter and u € K, be a fixed element of K.

Let us consider the differential recursive relations:

1 1
fo=1, Jie= _Efj—l,a:a:a: +ufj1.+ §Umfj—17 (2.1)

see [14], where the authors also provided an algorithm to compute 9, !(f;,). Functions f; are
differential polynomials in u, see [14, 23]. For the first terms one finds

1 1 3 1
fo=1, f1:§u+61, f2:—§um+§u2+501U+62,
1 5

5 5 1 3 1

3o tewer T qgttlae T 5y 16 8 8 2

for some integration constants c;.
It is well known that the time dependent KdV hierarchy can be constructed as zero curvature
condition of the family of integrable systems (see [15, Chapter 1, Section 2]):

¢, =Ud = 0 1 D,
u—FE 0

(2.2)
b 10— ( Gr(u)  Fy(u) ) o,
—H,(u) —Gr(u)

5r
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where F,, G, and H, € K, are differential polynomials of the potential u defined by

T
FT = ZfT*jEja (23)
=0

F,
Gy = ——2=, (2.4)

2

F,

H,=(E—u)F, — Gy =(E—u)F, + % (2.5)

Observe that the degree in F of the matrices V,. and functions H, is r + 1. We point out that
the first equation of (2.2) is equivalent to the Schrodinger equation

(L—E)p= (0 +u—E)p=0 (2.6)

with L = —0,, + u.
Its zero curvature condition

U, = Vew + U, Vi =0,

yields to the KdV, equation

1
KdV,: wu, = —ianm —2(E —u)Fp + ugF. (2.7)

Using expressions (2.1) and (2.3), this equation can be rewritten as
KdV,: i, =2fr11.. (2.8)

We recall that the equation (2.8) is called the level r equation of the KdV hierarchy. Varying
r € N we get the KAV hierarchy. Whenever we want to specify the dependence on the poten-
tial u, we will write f;(u), Fj(u), G;(u) and H;(u) to emphasize this fact.

2.1 Adler—Moser rational potentials

In this section we review the KdV, rational potentials that Adler and Moser constructed in [1].
These are a family of rational potentials u,, for Schrodinger operator —0,, + u of the form
up, = —2(logbp)ze, where 6, are functions in the variables x, ¢, defined by the differential
recursion

bo=1, br=2,  Opi120n1—Ony10n 1. = (2n+1)02. (2.9)

The solutions of this recursion are polynomials in = with coefficients in the field F' = C(¢,).
This is an straighforward consequence of the next result, which is an easy extension of the proof
of Lemma 2 in [1].

Lemma 2.1. Let be F' = C(t,), and a € C*, b € C. Let (Flx],0s) be the ring of polynomials
with derivation 0, whose field of constants is F'. Let consider the sequence defined recursively
by

Py =1, Py = ax + b, Ppi12Po-1— Pos1 Py, = (2n+1)P2.

Then P,, € F[z] for all n.
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Now, applying Lemma 2.1 for a = 1 and b = 0, we obtain that functions 6, are polynomials
of & with coefficients in C(¢,) for all n. We call these polynomials Adler—-Moser polynomials.
The first terms of the recursion are

n 0,

0 1

1 T

2 .%'3 + To

3 28 + 53 + mr — 57'22

with 7; € C(t,) and 0,7; = 0.
Definition 2.2. The functions

Up = —2(log On) 2 (2.10)
defined by means of Lemma 2.1 are called KdV rational solitons.

Adler and Moser proved in Theorem 2 of [1] that, for each fixed level r of the KdV hierarchy,
there exist expressions for 7; € C(t,), j = 2,...,n, such that each potential u, defined by
means of the formula (2.10) for 6, is a solution of the KdV, equation (2.7), for constants ¢; = 0,
i =1,...,r. Hence, the functions 7o,...,7, must be adapted in order to get a solution of the
KdV, equation. When this is the case, i.e., when u,, is a solution of the KdV,. equation, we will
denote this adjusted potential as u, , and the corresponding Adler-Moser polynomial as 6,.,, to
stress this fact.

Definition 2.3. The functions

Uy p = _2(10g er,n)xx

in C(z,t,) defined by means of Lemma 2.1 and with the corresponding adjustment of 7; € C(t,),
7 =2,...,n, are called KdV, rational solitons.

Example 2.4. As an example of adjusted potentials, we show the first Adler-Moser potentials
for r = 1 with the explicit choice of functions 7o,...,7,. These potentials are solutions of the
KdV; equation for ¢; = 0: u, = %uum — %uxm. The computations were made using SAGE. We
have

n Ulp (T, ...y Tn)
0
1 2
22
6:L‘(:E3 — 6t1)
2 _ 3t
(23 + 3t1)2 (31)

6z (22" + 675213 + 1350¢3)

3 (3t1,0)
(26 + 1523, — 45¢2)°

10 ,t

4 p4(m 1) 2 (3t1)0)0)
(210 4 4527, + 4725xt3)

30xps(x,t1) 3

5 _— 3t1,0,0,33075¢t
(05)2 ( 1, Y, Y, 1)
where

pa(x,t1) = 2218 + 7225t + 28352123 — 6615027t — 119070025t + 44651259,
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ps(z,t1) = 227 + 12624, + 75602212 4 5655825251 + 5000940002 2¢3
+ 4313310750278 + 1125211500025¢] + 2953680187502°t5 — 5907360375001,
05 = x'° + 10522t + 15752%% + 330752543 — 99225023t — 1488375¢5.

We notice that the adjustment of 7; is not linear in ¢;.

2.2 Spectral curves for KdV hierarchy

be an arbitrary

Next, we consider the stationary KdV hierarchy. Let u(9(z) = u(z,t, = 0)
(2.2), will be

stationary potential. The associated linear system, corresponding to system

0 1
—UOp =
3, =0 (u<0>— . o> 3,

_ g ((Gr@®) B (u®)

To simplify the notation, from now on we write FT§0)7 GSP) and H,EO) instead of Fi. (u(o)), G, (u(o))
and H, (u(o)). The zero curvature condition of this system is now the stationary KdV, equation

SKdV,: 0=—2FO _ 2(E—u)FQ + O FO. (2.12)

9" naTT
After applying expressions (2.1) and (2.3), this equation can be rewritten as

S—KdVri 0= 2fr+1,x (U(O)) = 2f(3-)1,z

T

When the potential u(?) is a solution of the zero curvature condition (2.12) we will say that
it is a s-KdV, potential. Under this assumption, the spectral curve of system (2.11) for this

potential is the characteristic polynomial of matrix ﬂ/}(o):

0 det (ulo — V) = p2 + (G©)? — FO H®

(0) jo(0) 202
_ M2 _ Fr 2}77",1:1: + (U(O) _ E) (FT(O))Q + ( r;lx)
= u? — Ry 1 (E) =0. (2.13)

(see for instance [15] for a general definition of spectral curve). We denote by p,(E,u) =
p? — Ro,.1(F) the equation that defines the spectral curve. We will use the following notation

2r+1 A
Rypi1(E) =) GiE,
i=0
where C; are differential polynomials in u(?) with constant coefficients.
Lemma 2.5. We have the following equality 0,Co = —2f fr41,2-
Proof. Replacing £ =0 in (2.13) we find

_fr,:cfr,x frfr,;mc
4 + 2

Ror11(0) = Cp = —uf, f,.

By derivating with respect to  and using formula (2.1) we arrive to the required expression. W
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With this matrix presentation it is easy to prove the following result due to Burchnall and
Chaundy [8]:

Proposition 2.6 ([8, Section II, p. 560]). Let u = u(x) be solution of equation (2.12), we have
that p(E, u) = p? — Rop41(E) € Clu, E]. Moreover, Ro,+1(E) is a polynomial of degree 2r + 1
in C[E].

Remark 2.7. A potential u can be a solution of several equations of the KdV hierarchy. There-
fore, for each level considered, there would be a different spectral curve for the same potential.
This ambiguity is clarified when the corresponding Schrodinger operator’s centralizer is consi-
dered. Furthermore, this centralizer is isomorphic to the ring of rational functions of an algebraic
plane curve: the spectral curve that corresponds to the first level of the hierarchy of which the
potential u is a solution. See [22].

This proposition together with Lemma 2.5 and relation (2.1) yields to the following result.

Corollary 2.8. Let > — Ro,11(E) = 0 be the spectral curve for potential w9 If the degree of
Roy41(E) is 2r + 1 in E then, w9 4s solution of a s-KdV, equation.

Now, we consider the Adler-Moser potentials u,,. We have the following result in the
stationary case [1]:

Lemma 2.9. For7; =0, j = 2,...,n, the Adler-Moser polynomials and potentials become

00 (z) = 0,,(x,0) = 2" T1/2 and ul®) (2) = Upp(z,t, = 0) = n(n+ a2

n
For a fixed n, potential ugo,%(a:) = n(n+1)z~2 defined in the aforementioned lemma is solution
of the level n equation of the stationary KdV hierarchy, the s-KdV,, equation. This implies that
in the stationary case we will have r = n, i.e., for these s-KdV potentials the iteration level of
the recursion (2.9) is the same as the s-KdV level. For this reason, from now on we will denote
the stationary Adler—-Moser potentials just by uq(lo) (z) and we will refer to level n stationary KdV
equation (instead of level 7):

sKdV,: 0=2f7, .

It is well known that the spectral curve associated to system (2.11) for these Adler—Moser
stationary potentials are

Iy pn(Euu) = l’['2 - B =0.

Therefore, we will associate these curves corresponding to the stationary situation, to sys-
tem (2.2) for Adler-Moser potentials ..

Remark 2.10. If we take the potential w,.,, solution of KdV, equation, then the potential uglo) (z)
is a solution of the s-KdV,, equation. Thus, we can link the level r of the time-dependent KdV
hierarchy with the level n of the stationary KdV hierarchy.

3 Darboux transformations for f;

In this section we establish a series of results that will allow us to perform Darboux transforma-
tions to KdV differential systems (2.2) in the case we have particular solutions at energy level
zero. In this way, we can extend the techniques to compute matrix Darboux transformations
developed, for instance, in [16] to the only case where they are not valid: E = 0.
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For that, we will consider the classical Darboux—Crum transformations for the Schrodinger
equation and we will present the behaviour of these transformations acting on the differential
polynomials f;(u).

Let us consider the Schrédinger equation

(L = Eo)¢p = (=0 +u— Ep)¢p =0, (3.1)

where Fj is a fixed energy level. Let ¢g be a solution of such equation. Recall that a Darboux
transformation of a function ¢ by ¢g is defined by the formula

¢O,x

DT<¢O)¢ = ¢x - ¢0

o.

Then the transformed function 5 = DT(¢p)¢ is a solution of the Schrodinger equation for
potential & = u — 2(log ¢g)zz, Whenever ¢ is a solution of Schrodinger equation for potential u
and energy level E # Ey [10, 11, 12, 20]. We will denote by DT(¢g)u the potential @ to point
out the fact that it depends on the choice of ¢g.

Next we can observe that the Riccati equation

0, =u— Fy— o? (3.2)
has o¢ = (log ¢p), as solution, and then
DT((b())u =Uu-— 20’0@. (33)

In this way, we retrieve a Riccati equation for u:

2

ﬂ:u—an:(Ux+Eo+02)—2ax:U — oy + Ep.

Moreover, whenever we have a solution ¢ of the Schrédinger equation (2.6), the formula o =
(log ¢). gives a solution of the Riccati equation (3.2). Hence, o satisfies the nonlinear differential
equation

Opx = Uz — 200,. (3.4)

Next, we consider the matrix differential system (2.2). Then we perform a Darboux transfor-
mation, DT(¢g), on it obtaing a new differential system, say ®, = U o P, = 177@, whose zero
curvature condition is still equation (2.7). Let F.(u), Gr(u) and H,(u) be the corresponding
entries of the matrix V,. These differential polynomials are given by expressions (2.3), (2.4)
and (2.5) in terms on f;(u). We will establish the relation between f;(w) and fj(u) in the next
theorem.

Theorem 3.1. Let ¢ be a solution of Schridinger equation (3.1). Let be o = (log¢), and
u = u — 20, the Darboux transformed of u by ¢. Then, we have

fj(ﬂ):f](u)—i_Ajv fO?” j:O>1’27"'7

where A; is a differential polynomial in w and o. Moreover, A; satisfies the recursive differential
relations

1) Aj = —3Aj 100 +udj1 — 50041 — 0nfi1(u) and
2) Aja+204;+2fj2(u) =0.
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Proof. We will proceed by induction on n.

First, we prove by induction that f;(u) = fj(u) + A;. For j = 0 we have fy(u) = 1 =
fo(u) + Ao, where Ag = 0. We suppose it is true for j and we prove it for j + 1. By applying
equation (2.1) and induction hypothesis we find

" 1 _ - _ 1. -
fiv1e(U) = — ij,:m(u) +ufj.(u) + §urfj(u)
_ i Fawa () + wfja(u) + %u £(u) - iAj,m Fudj, — 2f;0(u)os

1
- 2Aj,xax + 5“9614] - fj(u)amx - AjUII = fj+1,x(u) + Aj+1,x7

for

A;j U A
Aj1z = —% +udj, —2fjo(u)oy — 24,0, + ) [i(W)oge — Ajogy. (3.5)

2

Thus, fj+1(w) = fj+1(u) + Aj41 as we wanted to prove.

Now, we prove statements 1 and 2. We do it by induction and simultaneously. Since Ay = 0
and fo(u) = fo(uw) = 1, the case j = 0 is the trivial one. So, we start the induction process in
j = 1. For this, by using recursion formula (2.1) we have

fie(w) = —%fo,m(ﬂ) + U for(u) + %ax fo(@) = %a

u_

Hence, fi1(u) = % +c =5 —o0z+c1 = fi(u) — og, then A; = —0,. For j = 1 statements 1
and 2 read

1) —%Ao,m + uly — %O'on — oz fo(u) = —o, = Ay and
2) —2f1.(u) — A1 p = —Uy + Opg = —200, = 204,

by equation (3.4). Now, we suppose the both statements are true for j and we prove them for
j + 1. Derivation with respect to = in the right hand side of statement 1 yields to

A; 3 3
T ey udie = S0u Ay = S0 Aje = 0un fi(u) = 0ufja(u)
A Oxx A 3
= _7]Zxx + UAJ‘J; — amfj(u) — szAj — x:; J + U$Aj — §GxAj7z — Uggfj,x(’u,).

Applying equality (3.4) to the term o,,A;/2 we get

A; ugzA; — 200, A; 3
—$ Fuldjy — 0pefi(u) = 0pp Aj — = 5 = g Ay — 503 Aja = 0afia(u)
A; uzA; 3
= _$ +udjy — 0 fj(u) — 0gzAj + 00, A5 + x2 . 5‘71“4]}96 — 0xfj2(w)
Aj,mac;t u;tA

= == Fudie — 0w fi(0) — 0w A+ =5 = 200450 — 00 fia(u) + 0x(0 4 + 5 Aj0).

Applying induction hypothesis for statement 2 we have

Aj,CC$$ Uy Aj

_T + UAj,x - Uarxfj(u) - Uxa:Aj +

— 20'xAj,x - Umfj,:c (U) - Umfj,df (u)

A Uyp A
= —7J’Z$$ + uAjw — amfj(u) — UgmAj + $2 S 20'3514]‘73c — 2axfj7$(u),
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which is exactly expression (3.5) for Aj;1,. So, we can assume that
A, 3
AjJrl = —% + uAj — i%Aj — axfj(u).

Thus, statement 1 is proved.
Finally, by equations (2.1), (3.5), (3.4) and induction hypothesis we find for statement 2

. w A
e~ Age = B g ) )+ A g o,
Uz A;
-2 -+ 2Aj,x0'x + fj(u)am + AjO'xx
- (u A
= (D ) 2l - A - o) - i
xrxT
Uz A;
- 12 4 + Aj,xax + fj(u)amm + Ajgxw
oA; u
= — % +2ucA; + A <% - 793 - 2001) + fi(u)(0pe — ug)
A
= — % +2ucA; — 3400, — 2fj(u)oo,
9o (—Bimm ya, 354 =254
= 20 —T+u j 50'3[; j—axfj(u) =20 j+1
by statement 1. Therefore, statement 2 is also proved. This completes the proof. |

Example 3.2. To illustrate the previous theorem we will consider the following KdVs potentials
in the system (2.2).
Let us take

6(22'° + 2702t + 675t3)
x2 (:c5 — 45t2)2

u =

. Then u = 1%. Observe that

. 2
and the solution ¢y = 5=

3(221% 4 2702t + 675t3)

U Ugy 3 4596(:05 —|—30t2)
fl(u):f: ’ f2(u):_7+7u2:—7
2 x2 (w5 — 45t2)2 8 8 (ac5 — 45t2)2
and also
~ U 3 - Ugz 3 9
fl(u):§:P, f2(u):—?+§u =i

Hence, in this case

—3(2'% + 3602ty — 1350¢3)
2 (;U5 — 45252)2

—9 (420 4 24027ty — 2025t3)
x4 (x5 - 45752)2

Ay = fi(u) = fi(u) =

Az = fo(u) — fo(u) =

By a direct computation we can verify that the A; satisfy the relations 1 and 2 of Theorem 3.1.

Corollary 3.3. Fori > j we have the following equality

Z(QO’AZ‘,]' + in,j’m(u) + Ai*j,x)Ej =0.
=0
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Theorem 3.1 has several interesting consequences. The main ones are the relations that the
transformed potential u produce for functions F.(u). Next we stablish some of them, which will
be used in the following sections. In particular, Proposition 3.5 is specially interesting since it
gives a relation between o, and oy,.

Proposition 3.4. Let A; and o be as in Theorem 3.1. Fori=20,1,2,... we have

i .
1. Fi(u) = Fy(u) + P;, where P; = % EVA;_;.
j=0

2. Moreover P, + 20 P; + 2F; 5 (u) = 0.
Proof. It is an immediate consequence of Theorem 3.1. |

Proposition 3.5. Let u be a solution of KdV, equation. Let ¢ be a solution of Schrodinger
equation (2.6) for potential u and energy Ey. Let be 0 = (log @),. Consider A,41 as defined in
Theorem 3.1 and P, as defined in Proposition 3.4. Then, we have

1 1
oy —Ari1 = =Pryw + EP +0,F (u) + §PT(—2’U, + 30,). (3.6)

i = 4
Proof. We compare the zero curvature conditions for u and w:

1
Ug, = 2fr+1,x(u) = *iFr,MJE(U) +2(u — E)Fr,x(u) + ug Fr(u),

- - 1 - - — o~ -
Ug, = 2fr+1,x(u) = _§Fr,xﬂvx(u) +2(u — E)Fr,z(u) + Uy F ().

We prove the first equality. For this, we have
ﬂtr = (U — QUx)tr = Ut, — 20'357tr and 2fr+17x(&’) = 2f7«+1,x(u) + 2A7~+17x

by Theorem 3.1. Then

20x,tr = U, — ﬂtr = 2fr+1,x(u) - 2fr+1,x(a) = _2Ar+1,x-

Thus, o4, = —Ary1.
Now, we prove the second equality. Using expression (3.3) for u and applying 3.4 (1), we
obtain

- 1 1
Uy, = —ime(u) +2(u— E)F, z(u) + up Fr(u) — iPmm —2(E—u)P,,

— 40, Fy g (u) — 40, Py + g P — 205, Fp (u) — 2045 Py

Since 20, 4, = ut, — Ut,, we have
1
20,4, = ianx +2EP, 4 — 2uP, 5 + 40, F 5 (u) + 40, Py — U Pr + 2050 Fp (u) + 20, Py
Applying (2) of Proposition 3.4 to the expresion o, P, ., we find

1
20,4, = ithm +2EP, ; — 2uP, gz + 40, F, 2 (u) + 303 Py + 04(—20 P, — 2F; 5(u))

— Uy Py + 20, Fp(u) + 20,5 Py

1
= §PT7$$3: +2EP, 3 + 2(022Fr (u) + 02 Fp 2 (u)) + Prp(—2u 4+ 304)
+ P.(—200, — Uy + 2045).
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Moreover, for the coefficient of P, we have
200, — Uy + 2040 = (—02 —u+ QO'z)x = (—2u+30,),

by (3.2). Thus, we obtain

1
2044, = <2Pr7m +2EP, +20,F.(u) + P(—2u + 30x)>

x
Therefore, we have proved the statement. |

We finish this section with the following technical result. It makes a connection between
differential polynomials f,(u) and some differential polynomials g,.(o) defined by

1
gr(0) = —A, 1 = §Pr,m + 2EP, + 20, F.(u) + P.(—2u + 30,). (3.7)

Proposition 3.6. We have the following relations:

1) (20 + 92)gr(0) = 2fri1,0(u) = =2 Fy gon(u) + 2(u — E)F, 5(u) 4+ up Fy(u) and

’

2) (20— 02)gr(0) = 2fr11.0(T) = — L Fr s (@) + 2(0 — E)Fpp (W) + 0 Fo ().

’

Proof. The statement 1 is the statement 2 of Theorem 3.1 rewritten. For statement 2 we have

2f7"+1,x(77) = 2f7‘+1,:c (U) + 2Ar+1,z = 20’g7~(0') + g’r,a:(a) - 2gr,x(0) = QUQT(U) —9rz (U)
= (20 — 0x)g,(0)

by statement 1 and equation (3.7). [ |

4 Fundamental matrices for KdV, rational
Schrodinger operators

In this section we obtain a fundamental matrix for the system (2.2) depending on the energy
level E. The spectral curve is the tool that will allow us to understand why fundamental matrices
present different behaviours according to the values of the energy.

For stationary rational potentials u%o) = n(n+1)z~2, it is well known that the spectral curve
associated to the following system

0 1
o, =UVp = P,
(u&o) —F 0)

(0) (0)
oy, =V = G”(“”(Og 5 ”(“"(8) o
—Hp(un’) —Gp(un’)

is the algebraic plane curve in C? given by
Ty po(p, E) = p? — B> = 0.

Whenever an Adler-Moser potential w,,(x,t) is time dependent, we will consider I',, as the
spectral curve associated to its corresponding linear differential system (2.2). Observe that
(E,p) = (0,0) is the unique affine singular point of I',. It turns out that for E # 0 the
behaviour of the fundamental matrix associated to the system

0 1
O, =Ud = (UM_E 0) D,
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& u
) m(Qm) F(urn) (4.1)
tr = Vr¥ = E)E — u - |
) ()] (u’r’n ) T(uT’n) r,za:z(u ,n) 'r,:v(2u ,n)

presents the same algebraic structure since the point P = (F, i) is a regular point of I';,. A fun-
damental matrix for £ = 0 can be also computed. However, it is not obtained by a specialization
process from the fundamental matrix obtained for a regular point. We include some examples
in this section.

4.1 Fundamental matrices for £ = 0

In this section, we compute explicitly fundamental matrices of system (2.2) when the potential u
is up, = —2(log 0;.p,)z and E = 0. Recall that u,,, is a solution of KdV,. Hence, we study the
system

<I>x:U<I>:<O 1>q>,

Urp 0O
fr,ac Uy n
b — Vb — - (2 ) fv"(ur,n) P (4 2)
b PR fr,mc(ur,n) fr,x(ur,n) ) ’
Ur,nfr(ur,n) - 5 5

It is obvious that the zero curvature condition of this system is the KdV, equation for ¢; = 0,
t=1,...,m

atr (ur,n) = 2fr+l,x(ur,n)-

From now on we will denote wy .+, = O, (Ur ).
We have the following result:

Theorem 4.1. Let n be a non negative integer. For E =0 and u = u,,, a fundamental matrix
for system (4.2) is

r ¢1,r,n ¢2,r,n
B;V()) = < )

(bl,r,n,x ¢2,r,n,x

9r,n+1
er,n

0,
le,r,n (55, tr, 0) = ol and ¢2,r,n (l'a tr, O) =
Orn

For n = 0 we define 6,,_; := 1. We notice that ¢2,, = (¢1.rn+1) '

Proof. We prove it by induction on n. For n = 0 the definition 6,9 = 1 gives u, o = 0. So, the
system (4.2) reads

<<Z51,r,o,a: <252,r,0,x) _ <0 1> <¢1,r,0 ®2,r,0 > _ <¢1,r,0,z ¢2,r,o,a;)
¢1,r,0,:1::1: ¢2,r,0,:c:1: 0 0 le,r,O,x ¢2,r,0,x 0 0 ’
(d)l,r,o,tr ¢>2,r,0,tr> _ <0 0) <¢1,r,0 ¢>2,r,0> _ <0 0)

¢1,r,0,xtr ¢2,r0,$t7~ 00 ¢1,r,0,m ¢2,r,0,x 00

Thus, ¢1,.0 = 1 and ¢2,9 = x generate Bg:g. Since 6,1 = x we have that ¢1,0 = 05”1

r,0
— 97",1
¢2,'r,0 = 00"

and
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Now, we suppose the statement is true for n and prove it for n + 1. For n we know that
Pron = GTT# and @2, = 0’%“ generate B( r) Therefore, ¢1,, and ¢2,, are solutions of
Schrédinger equation ¢y, = urnqb We apply a Darboux transformation with ¢z, , to this

Schrédinger equation and we obtain

DT(¢2,r,n)ur,n = Urmn — Q(IOg ¢2,r,n)mm = _2(10g Hr,n)xx - 2(10g ¢2,T,n)xz

= _2(10g ¢2 r,n rn)xz = _2(10g 9r,n+1)zx = Urmn+1, (43)
¢
T(¢2,r,n)¢1,r,n = d)l,r,n,x - 2, I¢1 rm — _(2n + 1) —(2TL + 1)¢1,r,n+1- (44)
¢2 rn 6r,n+1
SO, ¢1,r,n+1 = g,elml is a solution of Grz = Ur,n+1¢ and, ObViOUSIY> (¢1,r,n+17 ¢1,r,n+1,a¢)t is

rn+1
a column solution of the first equation of the system for u, 1.

Now we verify that this column matrix is also a solution of the second equation

fr,x (ur,nJrl)
<¢177’,”+17tr ) _ B 2 fr(ur,nJrl) < ¢1,r,n+1 )
¢1,r,n+1,xtr Ur,n+1fr (Ur,n+1) _ fr,m: (Zr,n—l—l) fr,x (U2r,n+1) d)l,’hn-i-l,x
. fr,:p (Ur,nJrl)

¢1,r,n+1 + fr (ur,n+1 ) ¢1,r,n+1,z

rae(Urni1 Jra (Ui
<Ur,n+1fr(ur,n+1) - 7“33:13(27"n+) ¢1,r,n+1 + W¢l,r,n+1,x

We notice that the second row is just the partial derivative with respect to x of the first one.
Hence, we just have to verify that expressions (4.3) and (4.4) satisfy the equation

fr,x (unn—i-l )
2

Applying expression (4.4) and the induction hypothesis we obtain for the left hand side of
this equation

d)l,r,n—i-l,tr = - ¢1,7’,n+1 + fr(ur,n+l)¢1,r,n+l,x- (45)

1 U
¢1,r,n+1,tr — 2 + 1 <¢1 TnQiZ;’:;x - ¢1,r,n,x> <W - fr(ur,n)m> 5 (46)
and for the right hand side
Uu
_Wd)l,r,nJrl + fr (ur,n+1)¢1,r,n+1,x
1 ¢2rn:{: frw(urn-i-l) ¢2rnx

— AR iad] _ . _ 3 i _ AR iad) . 4'7
m n 1 <¢1,r,n ¢2,r,n ¢1,r,n,w> ( 2 — fr (Ur,n+1) QZ)Q,T,n ( )

Now, we prove that both expressions are equal. By applying the statement 2 of Theorem 3.1

for o = % expression (4.7) turns into

A
_fr,m(Ur,n+1) _ fr(uT7n+1)¢2,T,n,:p _ _fr,x(ur,n) + rnT (fr(ur,n) + Ar) ¢2,T,n,z
2 ¢2,7‘,n 2 ¢2,r,n
_ _fr,a:(ur,n) . f ( )¢2,r,n,$ _ A'I‘LE —A, ¢2T7L$
2 " " ¢2,7‘,n 2 (ZSQ r,n
o fr,x(ur,n) ¢27r,n,x Ar,ac Ar,x
- 2 - fr(ur,n) ¢27r7n - 2 5 (ur7n) + 2
. fra(trn) P2,
= 9 fr(ur,n) ¢2,r,n >

which is equal to expression (4.6). Therefore, both sides of expression (4.5) coincide.
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Now we proceed as in [1]. We take another column solution (g2, n+1,P2rn+1,.)" of this
system for potential u, 11 which is linearly independent of the one we have just computed, i.e.,

det B,(Lr_zl o is a nontrivial constant. We take ¢, 41 such that

det BY) g =2(n+1) + 1.

n

We notice that with this condition we have

(r) Orn
det Bn+1,0 = ¢2,r,n+1,x 0
rn+1

er,n,xer,TH»l - gr,ner,n+l,az
- ¢2,7“,n+1 92
rn+1

=2(n+1)+1,

multiplying both sides by Hfjn +1 and using the recursion formula (2.9) we get

¢2,r7n+1,x0r,n9r,n+l - ¢2,r,n+1(0r,n,x9r,n+l - Hr,nar,n-I—lJ:) = 0r,n+2,x‘9r,n - 9r,n+20r,n,x‘

o
Setting ¢2 41 = —2rntl yields to

ar,n—i—l
a?,r,n—i—l,x@r,n - a2,r,n+10r,n,x = 9T,n+2,x0r,n - 0r,n+20r,n,x)

Or ni2
thus, A2 rn+1 = 9r,n+2 and ¢2,r,n+1 = 9: :Jrl .

This concludes the proof. |

Adler and Moser proved in [1] that matrix BXE) is a fundamental matrix for the Schrédinger
equation (2.6) for £ = 0. But they did not prove there that this matrix is also a fundamental
matrix for the second equation of the system (4.2). To do that, it is necessary to control the
action of the Darboux transformations over the differential polynomials f;, as we did in Section 3.

Remark 4.2. Since ¢1,, = 9’5"‘1 and ¢2 .y = 93?:1 are solutions of Schrodinger equation (2.6)

T,M

for E = 0, this translate into the following equation for polynomials O n:

Orni1,220rn + Orni10rnz0 — 2000207 n1,0 = 0. (4.8)
Theorem 4.3. We have that

det B} = 2n + 1.

Example 4.4. To illustrate the results, we present explicit computations using SAGE of fun-
damental solutions of the system for the first values of n.
1. First, we show the first examples of unadjusted fundamental solutions

n (bl,r,n ¢2,T,n Uy n
0 1 T 0
1 3+ Ty
1 x 2
z z x
5 T 28 + 52379 + 173 — 572 62 (2% — 27)
x3+7'2 {L'3+7'2 (.’ES +7'2)2
) p1(x, 72,73, T4) p2(w, 72, 73)

28 + 5x37y + wm3 — 513 28 + 53 + a3 — 578 (28 + BTy + w3 — 573)2
where
7
p1(x, T2, 73, T4) = 2104+ 153:77'2 + 7m57'3 — 353:27'27'3 + 175x723 — ng + 230+ ToT4,

pa(w, 72, 73) = 12210 — 362773 + 4502* 73 + 300275 + 273.
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2. Next, we compute fundamental solutions for potentials which are solutions of the first level
of the KAV hierarchy, KdV; equation: u;, = %uum — %uwm. We also show the explicit choice of
the functions 7;

n P1,1,n $2,1.n Uy p (7253 Tn)
0 1 x 0
1 3 + 3t 2
1 - - = 3t
x x x2 (3t1)
6 1 1523t — 45¢2 6z (x> — 6t
P B vt o 1 bx(z” — 6t1) (3t1,0)
a3 + 3ty a3 + 3ty (23 4+ 3t1)?
z® + 3t 20+ 4527t 4+ 4725213 62(22° 4+ 67527 + 1350¢7) (361,0.0)
o6 + 1523t — 45t2 26 + 1523t — 45¢2 (26 + 1523t; — 45@)2 b

4.2 Fundamental matrices for E # 0

In this section, we compute explicitly fundamental matrices of system (2.2) when v = u,, =
—2(log 0, )22 and E # 0. In this case, the system is

Urp — 0
Fr o (urn,

o, = V,d - $(2 = Frlirn) (4.9)

b= VrE = Frpe(u F,.(u :

(ur,n - E)Fr(unn) - me( ml) r’x(2 ml)
The zero curvature condition of this system is still the KdV, equation for ¢; =0,i=1,...,r:
Urn,t, = 2fr+1,m (ur,n)-
When E # 0, we take A € C a parameter over K such that E + A% = 0.
Next, we consider the differential systems

+ —+ 01" n,xr + 01" n,xr 07’ n,rx

Qe = Qna | =20+ 275 | +Qp (24575 — === ), (4.10)
rn Tn rn
Qns, = Qo Fr(ury)
0 F 0
+QI (_(_1)r)\2r+1 +)‘F’r<ur,n) + e r,x(ur,n) _ Fr(ur,n)w> , (4'11)
07"771 2 97",71
0 0 0
noe = Qna (2/\ - 29”> - Q, <2/\ 9’”" + 0"”) : (4.12)
n n rn
Qut, = QnoFr(trn)
0 F 0
+ Q; (_1)7‘)\27‘—1-1 o )\Fr(u'rn) + Tt r,m(ur,n) _ Fr(urn) T N,T ' (4'13)
, 07“,” 2 ’ Hr,n

We have the following relations for the solutions of the differential systems (4.10)—(4.11) and
(4.12)~(4.13).

Lemma 4.5. Functions Q;" and Q,, recursively defined by

)‘Q;tgr,n—i-l + Qrtzer,n-‘rl - Q:er,n—l—l,m

4.14
97.7” Y ( )

+ _ +
QO_l’ n+1 —
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)‘Qggr,n—l—l - Qr_hxer,n-‘rl + Qy_Lgr,n—l—l,m

4.1
. (4.15)

Q6 =1, Q;-H =

are solutions of the differential systems (4.10)—(4.11) and (4.12)—(4.13).

d
d

Proof. We prove it by induction on n. For n = 0 we have 6,0 = 1, hence, u,0 = 0 a
Fr(urp) = (—1)"A?". So, Q¢ = 1 and @, = 1 are solutions of the systems (4.10)—(4.11) a
(4.12)—(4.13).

Now, we suppose it is true for n and prove it for n + 1. We have to prove that expressions

)‘Q;rer,nJrl + Q;xar,nJrl - Q;{Qr,nJrl,z
)

11
11

+
Qn+1 - 0
rn
_ . )‘QgQT,n—FI - Q7;73307‘,7L+1 + Qggr,n—l—l,m
Qn—i—l B 97“ n

satisfy equations (4.10), (4.11), (4.12) and (4.13) respectively, for n + 1. First, we prove that
Q' satisfies (4.10) and (4.11). By induction hypothesis, we know that Q,} satisfies (4.10),
using this expression and (4.8) we have

+ . )‘Qze’ﬁn-ﬁ-l,l‘ - AQrtxer,n—l-l ()\Q;rgr,n—l-l + Qrtgcer,n—l—l - Q:Lrer,n—i-l,zt)er,n,x
e 97"7” " 072‘,71 ’
Qx Q;
sz_—i—l,;tx = G;,L’xpl(im lr, )\) + GTnPQ(-'L'a tr, )\)7
rn rmn
and
0 0 0
+ rn+1l,x + rn+1l,x rn+1l,zx
=2\ + 2> + (2)\ — )
Qn+1,r < ‘9T,n+1 QnJrl 9r,n+1 9r,n+1
Qx Qi
= egl’mpl(xy t?"a >\) + HTHPQ(xa tT‘, >\)7
rn rn
where

p1 ($, tr, >\) = 2)\293,n0r,n+1 - 2)\9r,n0r,n,10r,n+l + 29r,n9r,n,xer,n+1,x - 037n9r,n+1,xx7
D2 («777 tm )‘) = _2)\26r,n0r,n,w9r,n+1 + 2)\0T,n9r,n,mx9r,n+1 + eg,ner,n—l—l,azx - er,ner,n,mxgr,n-l—l,x‘
Thus, both expressions coincide and @, ; is solution of equation (4.10).

On the other hand, by induction hypothesis, we know that Q; satisfies (4.11). Using this
equation, expressions

9r,n+1,mer,n - 0r,n+10r,n,x

02.rn = (108 P2.rn)e =

Gr,ner,n+1 ’
o9 o er,n—i—l,xtr ar,n,xtT + er,n,xgr,n,tr ar,n—i—l,xer,n-l—l,tr
Tt — - - )
w Orn+1 Orn 07 n 93,n+1
Fr.(u 0 0
thr — Q:x _(_1)r)\2r+1 o AFT(Ur,n) + r,:t:( r,n) + Fr(ur,n) T,M,T + Nt
’ ’ 2 er,n er,n
+ er,n,z Gr,n,x:v eg,n,x
+ Qp | 2AEr (ur ) ——— + AFy 2 (Ur ) — 2F (Urp) + FT(UTJZ)T
Orn Orn 05

Fr,xx (Ur,n) er,n,x ar,n,xgr,n,tr 9r7n,xtT
- - Fr,x (ur,n) 9 - 02 + 9 s
2 rn n ™n
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the derivative with respect to x of statement 2 of Corollary 3.4 and expression (3.6) for o2 .54,
we obtain

P3 xvt 7)\ p4(x7t 7)‘
QZ+1tT:Q7-iz_,x ( QT ) +sz_ QT )’
' er,n er,n

where

p3($7 tr, )\) = _(_1)T)\2T+19r,n0r,n+1 + Fr(ur,n)gr,n,xgr,n+l - Fr(ur,n)gr,ner,nJrl,x

0y 0
+ Frg(tny) %”“

p4(377 t'ra )\) = _(_1)T)\2T+29r,n9r,n+1 + (_1)r>\2r+19r,n0r,n+l,z + )\QFT(UT,n)er,ner,n—l-l
+ Azprer,ner,n+l + >\0T,n97‘,n+1,tr + )\Fr(ur,n)er,n,xer,n+1

+ Hr,ner,n—s—l,tr ;

0.0 0.0
+ )‘Fﬁx (ur,n)%’nﬂ - )\Fr (ur,n)er,nar,nJrl,x + Fr,x (Ur,n)%w

gr,ner,n—&—l,z‘gr,n—kl,n

- Prer,n,wer,n—l-l,:c - - F, (ur,n)er,n,zgr,n—i-l,:c

Hr,n—l—l
2 2
e'f,ner,n—i-l,x eTaner,n—&-l,x er,nar,n—i-l,:c
+ Fr (uryn) 9 T 0 + Pr,a} — .
r,n+1 r,n+1 2

Finally, using relation (4.10) for Q;" and statements 1 and 2 of Corollary 3.4, the right hand
side of equation (4.11) for Q:{ 41 reads

0 tr F, (v 1 0
QZJA xFr(Ur,n+l) + Q:+1 <)\3 4 )\Fr(uﬁnJrl) + rle r,x( T,n+ ) . Fr(ur,n+1)w)
’ er,n 2 er,n
_ O+ p3($7t7"a>\) +p4($7tr7>\)
m 0, S
Therefore, both expressions coincide and QZ 41 is a solution of equation (4.11).
The proof for @, is analogous. |
As a consequence, we have the following result:
Theorem 4.6. Let n be a non negative integer, then, for E = —\? # 0 and u = u,p, a funda-

mental matriz for system (4.9) is
B — (aﬁ,n qb:,n)
A qb;j:n,a: ;n,ac
where
TA2rtlg Q;tn('xa t?"7 )\)
97",71 7

a1z, Qrn (58, A)
Hr‘,n ’

G (@, te, N) = X7 HCD

G (T, tr, ) =€

where Qj{n and Q,.,, are functions in x, t,, A defined by means of Lemma 4.5.

Proof. We prove it by induction on n. For n = 0 the definition 6,9 = 1 leads to u,o = 0. So,
the system (4.9) becomes

<E0,x ¢r,o,z):(02 1)(50 ¢r,0>
d)r,O,xx gbr,O,mz A 0 ¢r,0,:p ¢T,O,x ’
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<¢:0,tr (z)?:O,tr) _ ( 0 (_1)7»)\27») (‘?Sj,o ¢;0 ) |
¢:Oaxtr (z)?:O,xtr (_1)TA2T+2 0 (z);“’:O,x (ZS':,O,I

Hence, ¢:0 = AeHE N and G0 = e Aa—(=1)TAT ey generate B(()T/)\. Since 6,9 = 1, we find
Qifo =1, as in Lemma 4.5.
Next, we suppose it true for n and prove it for n + 1. Since

ry2r Q+ o Q-
(@, ty, N) = DT ZIL g (g, A) = e A (ST
’ er,n ’ er,n

are solutions of Schrodinger equation ¢, = (Ur,n + )\2)<Z>, we apply a Darboux transformation

. 0 . . .
with ¢g,, = %:1 to this equation and we obtain

DT(¢2,r,n)ur,n = Urn — 2(10g ¢2,r,n)xz = Uprmn — 202,r,n,x = Urn+1,

¢27 ) )
DT(¢2,T,H)¢:71 = Qﬁ;tn,x - qu;j:n

¢2,r,n
ry2r+1
B eAm+(—1) A2rtie, )‘Q;’:ner,n‘*‘l + Q'r—tn,xer,nﬁ-l — Q;tngr,n—i-l,x
er,n—&—l 97’771
2741 Q+ +1
A )"\ Y _
— et(-1) = 1 (T, N), (4.16)
r,n+1
DT - = ¢2,r,n,r _
<¢2,Tﬂ‘b)¢r,n = Prmax T ¢7‘,n
¢2,T,n
B e Aa—(=1)T A2, —AQy i1 + Qi abrnt1 — QrpOrnt1a
07‘,71-{-1 gr,n

_ e_m_(_nu?r“tww = (Tt N), (4.17)
9r,n+1 ’

by Lemma 4.5. Hence, DT(¢27T,n)¢;fn = gbj’nﬂ(:c,tr,)\) and DT(¢2,rn) 0y = =@y py1(2, e, A)

generate BEQI - This ends the proof. |

As far as we know, a general expression for fundamental matrices for system (4.9) has never
been computed when F # 0. In the stationary case, i.e., in the case we only have the Schrédinger
equation with Adler—-Moser potentials, P. Clarkson showed in [9] an expression for the funda-
mental solutions of this equation when E # 0. However these expressions are not explicit, so it
is not convenient for studying the Galois groups.

As in Theorem 4.1, the key to compute these solutions is to control the action of the Darboux
transformations over the differential polynomials f;, as we showed in Section 3. In Section 5
we will give some examples of these fundamental solutions both in the general framework of
unadjusted functions 7; and in the particular case r = 1, in the same line as in Example 4.4.

Proposition 4.7. The functions Q:{n, Q;, and the solutions qb?:n, ¢y, defined in Theorem 4.6
satisfy the relations

,T,n(x,tr, —A) = (—1)”Q;n(cc,t,,,)\) and ¢;fn(x,tr, -\ = (—1)"<Z>7T7n(x,t7«,)\).
Proof. We notice that

+
“Ar—(—1 ’”>\27"+1trQ , ($7tra _)\)
¢:’:7’l($7t7'7 _)\) =€ r ( ) TnT?
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since 0, does not depend on A. So, both relations are equivalent and it suffices to prove that
Qb (z,t,, =) = (=1)"Q. (7, tr, A). We prove it by induction on n. For n = 0, we have that

::0 =1= Qy:() Hence, Q:O(x7t7“a _)\) = (—1)0Q;0($,t7», )‘)
Using the expresions (4.14) and (4.15), we obtain

(=MOrni1 = Orni1,0) Qi (2 te, —=X) + QfF (2, b, = A)0r 1
Or.n
. (*1)n((*>‘9r,n+l - Hr,nJrl,x)Qr_,n(xv try A) + Qr_,n,a: (z,tr, )‘)gr,nJrl)
b
- (_l)nJrl(()‘gT,n—&-l + er,n—l-l,r)Q;,n(xy tr, /\) - Q;,mac(x? tr, /\)HT,n—H)
Orn

Qr n—&—l(x’ tT? _)‘) =

= (_1)n+1Q;n+1(‘T, tT‘a )\)7
as we wanted to prove. |

This corollary allows us to compute the determinant of Bq(g\. First observe that

det B\ = W (5, 6r) = (—1)"W (97,2, tr, N), 67 (@ £, =N) (4.18)
. ( 1)n+1 2)‘Q7—tn($7t7"))‘)Qj:n(x7t7’a_)\) +W( ;tn(xatr7_>‘)7Q:tn(x7t7’a)\))
T 62, ’

where W (¢1, p2) = ¢p1¢2,2 — ¢1 202 denotes the Wronskian of ¢; and ¢s.

Theorem 4.8. We have

det B} = —2%+1,
Proof. We proceed by induction on n. For n = 0 we obtain QJrO =1land 0,0 =1, sodet Bér/)\ =
—2X. Now, we suppose it is true for n and prove it for n + 1. Replacing expression (4 14)

for anﬂ(:c tr,A) and Q) nﬂ(x,tr, A) in formula (4.18) and using Proposition 4.7 and the
induction hypothesis, we get

det 67(21 L= o203 _ _9)2(n+1)+1
As we wanted to prove. |

Remark 4.9. Theorem 4.8 implies that the matrix B g\ is not a fundamental matrix of sys-
tem (2.2) for A = E = 0, since it is not invertible for that value of E. The reason of this is
that, by Proposition 4.7, when A = 0 we have ¢}, (z,t,,0) = (=1)"¢, (2, t,,0), so, both column
solutions are linearly dependent. We will detail this phenomenon in Section 6. In fact, we will
show that it is not the same to set £ = 0 in (2.2) and then solve the system, than to solve
the system for a generic EF and then replace £ = 0 in the solution obtained, i.e., there is not
a specialization process in this sense.

Example 4.10. For n = 0 and n = 1 we obtain by direct computations the following solutions:

+ —
" gb?“v" ¢r,n
6>‘$+(_1)T')\27'+1tr €_>\$_(_1)7->\27-+1tr
1 Aat(—razriy, AT — 1 oA (—1yazy, AT+ 1

T x
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In next section we will show a method to compute functions Q,J,f n and Q. more efficient than
solving explicitly equations (4.10), (4.11), (4.12) and (4.13). This allow us to obtain fundamental
matrices BT(ZTZ\. In particular qﬁ:l and ¢, ; are linearly independent solutions for the Schrodinger

operator —0% + ur1 — E = 0 where u,; =2/ z? is the constructed rational KdV, potential, as
long as E # 0.

5 Examples of fundamental matrices for the case E # 0

Along this section we will prove that the funtions Q?Fn defined in Theorem 4.6 satisfy the
recursion formula (2.9). This implies in particular that they are polynomials of x with coefficients
in C(\, t,). Thus, they generalize the family of Adler-Moser polynomials 6,,.

For the following computations we do not suppose that functions ,, and Q;- and potentials u,,
are adjusted to any level of the KdV hierarchy.

5.1 Generalized Adler—Moser polynomials

In Lemma 4.5 we have obtained the recursive formulas (4.14) and (4.15) for Qﬂfn. As we have
seen in the proof of Theorem 4.6, these expressions are obtained by applying Darboux—Crum
transformations with ¢, to ¢,ﬂf and ¢, ,, see expressions (4.16) and (4.17). For our present
discussion, we consider the unadjusted relations given in Lemma 4.5:

)‘Q7J1r9n+1 + Qixen—i—l - Qgen—l-l,m

QnJrl 0,, (51)
_ AQy Ont1 — @y wOn+1 + Qp Onv1a
Qi1 = 7 : (5.2)

If we proceed in the same way performing Darboux transformations with ¢;, , we obtain
that functions

(¢1rn) ¢rnx ¢1Tﬂx¢rn

¢ 1,rn
B BASH_(_ )TA )\Q;Tngr,n—l + qu:n,gggr,n—l - gr,n—l,inn
er,nfl 97"7” 7
_ — (bl,r,n,a: —
T(¢1,7‘,n)¢r,n = ¢r,n,z - o ¢r,n
1,rn
. Q_Ax_(_l)r)\%Jrltr _)\Q;ngr,nfl + Q;’n,xer,nfl - Hr,nfl,mQ;,n
Hr,n—l er,n 7

are solutions of Schréodinger equation for F # 0 and potential

T(qblﬂ”,n)u?”,n = Urn — 2(10g ¢1,r,n)zx = Upn—1- (5.3)
In the same way that we did for the functions (4.14) and (4.15), we can prove that the expressions

)\Qr nern 1+ an zYrm—1 — Hr,nfl,xQ;tn
an 1- )\ 0 ’
r,n
_ )\Qr ngrn 1= Q;n@er,nfl + Qr,nfl,xQ;n
r,n— 1+ )\20rn

satisfy differential systems (4.10)—(4.11) and (4.12)—(4.13), respectively, for n — 1. So, we obtain

T(¢1,T,ﬂ)¢7‘, ¢rnw ¢(;Tnm¢ = ¢rn 1>
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(z)l,r,n,ac

(bl,r,n

For our present discussion, we just write

)\Q;anl + Q;L’—,menfl - gnfl,xQ;t

T(¢1,T,n)¢;n = ¢1T,n,m - ¢;,n = _)‘2¢r_,n—1'

+
2Q;, 0 9 +0 -
Qn 1= Onln- = Q"E ot On1Qn (5.5)
A0,
Now, we can prove the following result:
Theorem 5.1. Functions Q; (z,t,,\) and Q; (z,tr, \) satisfy the differential recursions
Q(_)‘— = 17 ii_ = Az — 17 n+1 T Qn—i—l n—lx = (2TL =+ ]‘)Q’VJ’L_27 (5-6)
Qa = 1’ Ql_ = Az + 1’ Qn—&-Lx 7:—1 - Qn—l—lQn—l,x = (27’L + I)QT_LQ (57>

Proof. In Remark 4.10 we have computed ¢, and ¢; for n = 0 and 1. We have obtained
Q(jf =1, Q]L = Az —1and Q] = Az +1. So, we just have to prove the recursion formulas. First,

we prove (5.6). For this, we compute Qn—i—l Land QF . using expressions (5.1) and (5.4):

Quile = 2 (()\Qn Ont1 FAQ Ot 2+ Q) 10Oni1 — Q) Ong1 20)On
+(Qn Ontre — AQy Ot — Q 0ns1)0nz),
.= AQQQ (ANQE 01+ AQ Onr0 + QF st — QO r00)00n
+ (QOn—12 — AQy 01— QF L0n_1)0n2).
Replacing this expressions in the recursion formula (5.6) we get

()‘2th + 2)‘Q:Q;~L_ Q+Qn xz)( n+1,a:0n—1 - 9n+10n—1,a:)

Qrt—i—l T n Qn—i—l n—lax — )\292
()\6’22_2 + Q?L_Q;li-,x) (9n+10n—1,zx - 0n+1,zx0n—1)
i \203
+ Qq——tz(gnJrl,xmen—l,x - 0n+1,x9n71,:m:)
202 :

We want to compute the expressions for 6,1 and 6,_1 in brackets in terms of 6,. The first
expression is just the relation (2.9). Now, if we derivate with respect to x expression (2.9), we
find the second one

9n+1,xmenfl - 9n+19n71,xz = 2(27’L + 1)911971,96 (58)
In order to compute
9n+1,a:ac0n—l,:c - 0n+1,x9n—1,xa: (59)

we use relation (4.8). We have

Hn—i-l,a:en,z . 9n+19n,xx and en—l o = 2071—1,1:971,:0 . gn—len,a:m )

Ot100 = 27 o ’ 6 o

Replacing both expressions in (5.9) we get the third one

gn TT
9n+1,a:ac0n—l,:c - Hn—l—l,acgn—l,:m: = 97 (gn—i-l,:v@n—l - 6n+19n—1,x) = (2n + 1)0n0n,xz- (510>
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Applying the expressions (2.9), (5.8) and (5.10) we get

+ + + ot _
Qn—l—l,.th—l - Qn—l—lQn—l,z -

(AQQIQ + 2)\627—562?{@ + Q;Q?{,m)en - 2>‘Q7—|{29n,x - QQ:{Q;@en,x + szen,m
20, '

=(2n+1)

+

n,TT

Q:H,:cQ:f—l - QZHQ:—LI = (2n+1)Q; >

Analogously, the second recursion formula can be proved. So we have established our result. H

Finally, the expression (4.10) for yields to

Remark 5.2. By Lemmas 4.5 and 2.1 for ' = C(\,t,) and a = A\, b = —1, we can conclude
from this theorem that the functions Q;F(x,t,, \) are polynomials of x and A with coefficients
in C(t,) for all n. Indeed, their degree as polynomials of A is n. Thus, Theorems 4.6 and 5.1
determine the algebraic structure of gb;f nand ¢,

Since polynomials Q; are not adjusted to any level of the KdV hierarchy, when we iterate
the recurrences (5.6) and (5.7) we will obtain integration constants of x which may depend on A

and 7o,...,7,. We will denote such integration constants by TQi, o T

Example 5.3. For the first polynomials we find

n QF Qn
0 1 1
1 Az —1 Az +1
2 N3 — 322 + 3z + 7y N3 4+ 3022 + 3z + 7y
3 Q3 Q3
where

QF = N2 — 6X%® + 150a* — 152 + 52’y — 15277 — (A3 + 5(7;)2)36 + 75,
Q5 = X204+ 6X%2° + 15Xz + 152° + 5Aa’ry + 152°my + (A1 +5(m5)*)z + 75 . (5.11)

5.2 Examples of fundamental matrices for the case E # 0

We can compute fundamental matrices for system (4.9) for any n using recursion formulas (5.6)
and (5.7).

Example 5.4. We present explicit computations using SAGE for the fundamental solutions of
the system (4.9) when E = —\? # 0 for same potentials as in Example 4.4.
1. We first expose examples of unadjusted fundamental solutions:

e>‘x+(_1)7'/\2"+1tr e—Ax—(—l)T'A2T+1t7.
1 e)\m‘*‘(—l)”kgﬂ'ltr Az —1 e_)\w_(_l)r)\zm-ltr Ar+1
x T
9 ArH(=1)TATH, N223 — 3\x? + 3z + 7'2+ o= Aa— (=1 AT, A223 + 3 \x? + 32 + Ty
3+ Ty 3+ 1y
+ _
3 eATH(=1)" A, Qs (A, tr) o Aa—(—1)TAZ e, Qs (N, z,t)

26 + 537y + 273 — 572 28 + 537y + 173 — 572

where Q4 and Q3 are the ones given in (5.11).
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2. Next, we expose fundamental solutions for potentials which are solutions of the first level
of the KAV hierarchy, KdV; equation: u;, = %uum — %uwm. We also show the explicit choice of
the functions Ti:t. The choice of functions 7; is the same as in Example 4.4:

n i'—n (bin (T;:,...,Tflt)
e/\atf)\:‘tl e*)\x+)\3t1
1 s A1 e~ A+ Az+1l
x x
T NP =3 e 43x43N%t ey, AP0PH3A2 432430 )
€ 3 € 3 (33%t1)
z° + 3ty x° + 3t
T\ 2.t 5 (\, ot
3 ¥ At erwnn__Qs Mot (3A2t1,—45(X313+11))

28 + 1523ty — 45¢3 28 + 1523ty — 45¢3
where

Q;()\, x,ty) = A28 — 6022 + 1502 — 1523 + 1503234 — 450222t + 45ty
— 450312 — 45t

Qs (A, w,t1) = X328 +6222° 4+ 15Xz 4+ 1523 + 15\323t, + 450722t + 450ty
— 45313 4 45t,.

6 Spectral curves and Darboux—Crum transformations
Let T',, C C? be the spectral curve associated to the stationary Schrodinger operator —0,,+u—E

where u is a s-KdV,, potential. Next we consider the Zariski closure of I',,, say I',, in the complex
projective plane P2. Let be

2n+1
P(E.p) = i = Ror (B) = i* = ) CiE =0
j=0

an equation for I',,. Then an equation for I, is
_ 291 _ P _
ph(Evu)V)_MV _R2n+1(E7V)_07
where

R E 2n+1 o
Roni1(E,v) = V" Ryppq <y> = Z Cij*r I B

J=0

is an homogeneous polynomial of degree 2n+1. Moreover, observe that the singular points of T',,
are

Sing(T) = {(E,0): E is a multiple root of Rop+1} U{ P =[0:1:0]},
and also

L,N{E=0}={[0:p:v]€P?: p?*" 1 = Cor* '} (6.1)
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6.1 Extended Green’s function

Following [15], we define the Green’s function on I';, x C as

192
g Ea ) = o T v
B, 1, ) W(¢1, $2)

where ¢ and ¢o are two independent solutions of Schrédinger equation

(L—E)p= (-0 +u—E)p=0. (6.2)
for the same value of E and W (¢1, ¢2) stands for their Wronskian.

Let
i+ Fy /2 —ip+ Fp gz /2
or = o(Bp) = W Inal2 o (g, gy = T Thal (6.3)

be functions defined over the spectral curve. We recall the following result:

Lemma 6.1 ([15, Lemma 1.8]). Let u be solution of s-KdV,, equation (2.8). Let ¢1 and ¢2 be
solutions of Schrodinger equation (6.2) for this potential and with corresponding functions over
the spectral curve o4 and o_ defined by (6.3). Then o4 and o_ are solutions of the Riccati type
equation

o’ +o,=u—E. (6.4)

Moreover, the following identities are satisfied

o Fn,a: o (¢1¢2)x . . 227/1 o _W(¢1)¢2)
T T e T TR T T i
o Hn o ¢1,x¢2,x
Tt T R T o (6.5)

where W (o1, ¢2) = dp1¢024 — ¢1.002 denotes the Wronskian of ¢1 and ¢s.

We remark that this lemma is essentially a reformulation of a classic result that goes back
to Hermite when he was studying closed form solutions for Lamé equation [17]. In [24] call
this approach the Lindeman—Stieljes theory but, as far as we know, this approach was used for
the first time by Hermite, and then by others: Halphen, Brioschi, Crawford, Stieljes, .... The
method used that the product of solutions X = ¢1¢2 is a solution of the second symmetric
power of the Schrédinger equation

(—Opzax — 4(u — E)0; — 2u,) X = 0. (6.6)

Then the relations (6.5) connect the solutions of the Riccati equation with that of the second
symmetric power. The fact that there is a connection between the solutions of the second
symmetric product and the Riccati equation of the Schrodinger equation is relevant for the
differential Galois theory, although we will not use explicitely this connection in this paper.
Furthermore it is interesting to point out that the solutions of the Lamé equation obtained by
Hermite in [17], are associated to other algebro-geometric solutions of KdV, finite-gap solutions
with regular spectral curves, see [21] and references therein. As far as we know, the relevance of
the equation (6.6) for the KdV equation was considered for the first time by Gel’fand and Dikii
in their fundamental paper about the asymptotic behaviour of the resolvent of the Schrédinger
equation associated to the KdV equation [14].
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By Lemma 6.1, the Green’s function can be rewritten as

iF,(E, ) 1

E == = : :
9(E, p,z) 2% p—— (6.7)

Observe that g is well defined whenever # 0, i.e., for energy levels such that Ro,11(E) # 0.
Next, let define a extension of g on I';, x C, as

Ww"F,(E /v, z)

gh(E,M, I/,I’) = 2/_1,Vn_1

, for [E:p:v]el,\ {u =0}

We call g;, the homogenized Green’s function. Next we will show that gy is well defined and also
that it extends g, that is g, (F, u, 1,2) = g(E, u, z) for (E, p,x) € 'y, x C,. To do that, observe
that

gh(E,,U,,].,JI) :g(Evuvr) and gh(CLE,a,U,,CLV,.’E) :gh(E,M,V,.T),

for any a € C, a # 0. Moreover, we have that
Fo(E,v,z) = V"F,(E/v, z) an V"I (6.8)

is an homogeneous polynomial in F of degree n and then

zﬁn(E, v, 1)

gh(Ehua V?‘T) = 2/U/n71

, for [E:p:v] €T,

Also, we get the following formula

A2 = P Ry (Bfv) = =" — (u— Bfv)F} = =%, (6.9)
where
F\n,x = I/nilme(E/V) and ﬁnm = I/nian’;m(E/V) (6.10)

are homogeneous polynomials in E and v of degree n — 1.
Now, consider equation (2.12)

F,
0= % —2(u— E)F . — ug Fy,

after multiplication by F;, and integration, this equation reads

2
c— FnFn,zx . (’LL—E)FT% . Fn,:p’
4
where c is a integration constant. By (6.7) we have the following differential relation for the
function g¢:
1 1 1
§ggm — (u E)Q - 19920 Ty

since g, = (04 +0-)g and gzp = 2(u — E+ 040_)g.
Now let define the extensions of o4 and o_ on I'), x C, as
i 4 yﬁn7z/2 (0) —ipu 4 yﬁn7z/2
fn 9 o— h - fs )
F, E,

(6.11)

(0 ) =
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where we have used previous notation. Notice that the functions (o4), and (o_)j are solutions
of the Riccati type equation

((0£)n)* + ((02)2)n = u— E/v.
Moreover we have that the function

iﬁn(E, v,x) 1
2w~ (0 )n— (o 1)n

9h =

is a solution of

1 1

igh(ga:w)h —(u—E/v)g — %(gg)h =7

6.1.1 Transformed Green’s functions

Now, we analyze how Darboux—Crum transformations change Green’s functions ¢ and g. For
that, we will use solutions of the Riccati type equation (6.4) as a esential tool.

Let u be solution of s-KdV,, equation (2.8). Let ¢; and ¢2 be solutions of Schrodinger
equation (6.2) for this potential and energy level E. Next we consider ¢ a solution of Schrédinger
equation for u and Fy, with Fy # E and choose as corresponding point of the spectral curve
(Eo, f10). Recall that after applying a Darboux—Crum transformation with ¢g to u, ¢1 and ¢,
we get

DT(¢o)u = u — 200 4, DT(¢o)p1 = 1,2 — 0001, DT(¢o)p2 = ¢2.0 — 0002,

where op = (log ¢), is a solution of the Riccati equation 02+ 0, =u— Ey. By Lemma 6.1, the
function o equals

0 o+ Fro/2

g = U(E(), UO) = F0 N (6.12)

where F = F,(Ejp), is a solution of the same Riccati equation for E = Ey. Thus, we conclude
that we can perform a Darboux transformation using ¢” instead of og. The transformed functions

¢ = ¢ — o' and G2 = 2 — 0o
are solutions of the Schrodinger equation for potential
U=u— 200

Now, we take the functions o1 = (log¢1), and o9 = (log ¢2),, which are solutions of the
Riccati equation (6.4) for E # Ey. Then, by equations (6.5), we get the equalities

2 W(g1,¢2) _ d12  ¢2a

HTUTE T T e b e O (6.13)

oyt o = Fanx _ ¢1¢2,:;;sj>1,x¢2 _ @21:5 i @fz; 01+ 09, (6.14)

of-0_ = ¢1;zzz = cb;lz ¢<;2x = 0109. (6.15)
Next we define the transformed Green’s function

B ) = 20

W((gl: 52)
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The relations (6.13)—(6.15) link the Green’s functions as follows

3B )= DN ) s [ovmo)lo-nT) g
o (£ — Ey) W1, ¢2) (E — Ey) o
Hence we obtain a rational presentation of g as a consequence of the formulas (6.12) and (6.3).
We write this formula in (6.16).

Proposition 6.2. The Green’s function associated to the transformed Schrddinger operator
explicitly reads

. 2 . Fanyx_FngWQ
Zgﬂm)_%ﬁ_mﬁuﬂﬂ@=%Jw+( 4’))

2(E — Eo)Fy (FO)°

9(E, p, ) = (6.16)

Remark 6.3. Observe that for Ey = 0 the formula (6.16) becomes

— 2
i (K212 = BBF2 = itt0 P fu oy — fuFu) + Pl
UEF, f2

9B, p,x) =

We will use the following result from [15].

Proposition 6.4 ([15, Lemma G.1]). Let u be solution of s-KdV,, equation, let (Ep, uo) and
(E, 1) be two different points of T'y,. Then the transformed Green’s function explicitly reads
(0+ - 00) (U, - 00) iF, Zﬁﬁ(E, x)

(E-Eo) 2 2n

9(E, p,x) =
where ﬁﬁ is_a polynomial in E of degree n and pi is such that I'z: o’ — §2ﬁ+1 = 0 for some
polynomial Rop 1 (F) of degree 2n+ 1, with 0 <n <n + 1.

Next, for the homogeneized Green’s function, choose the point of the spectral curve [Ey : po :
vp]. We define the extension of o®onT, xC, as

i,u,()l/g_l + Voﬁgx/?
Ja

n

where ﬁg = F,(Ey, vy, z) for F,(E,v, ) defined by (6.8) and F\g,w = F\n’z(Eo,Vo,l’), for F\n@
defined in (6.10). Notice that when vy = 0 function (O'O)h vanishes. So, whenever vy = 0 we
define

(0°),,(Eo, o, v0) =

9

(O—O)h(E(]:,uOv 0) =0, for [EO MO : 0] S fn
Using above notation we have the following results.

Proposition 6.5. Let assume Cy = Ra,11(0) # 0. For Eg = 0 and pg # 0, the homogeneized
Green’s function associated to the transformed Green’s function g for —0,, + u — E explicitly
reads

2 452 2fn fa
2uEvn—1
COVO(anﬁn,z - fn,zﬁn)
2uBEv" 2o f

where Fy(E,v,x) is defined by (6.8) and ﬁmx(E,I/,a:), ﬁmm(E, v,x) are defined by (6.10).

~ A 2 ~ ~
i (”2F o 4 (B — pu)F, 4+ Yoefn  Phnabus ucan>
(g)h(Ev s,V :E) =
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Remark 6.6. Formula
Vzﬁn,:cz

2

5 Vf'r%rﬁn Vanzﬁnm VCOﬁn
+(E—vu)F, + ’ - — =
T 2f, 72

is an homogeneous polynomial in F and v of degree n + 1.

Proof. First, consider the transformed Green’s function g given by (6.16). Then, the homoge-
nized Green’s function is obtained by the homogenization process as

B (J — 0‘0) (J, - 0‘0) iy,

~ Om ., F0 72
i <M2V2n2 (FT[L))Q + (vE, Fn,z :OFn’an) >
2uvn—Y(E /v — EO/VO)ﬁn(AS)Q
B iuougfl (uoug‘*lﬁ,f + zﬁn (VF,?ﬁnyx — l/gﬁg,xﬁn))
2uvn—Y(E/v — Eo/l/g)ﬁn (ﬁ?)z

I

where ﬁn(E, v,x) is defined by (6.8), ﬁn’m(E,y,:):) is defined in (6.10), F\S = ﬁn(Eo,yo,:v) and
FSJ = Iy, 2 (Eo, o, z). In particular, for Ey = 0, we get
o o \2
Z‘ (M2V2n_2fg + (anFn,:c4fn,an) )
2uEv—2F,, f2

. Z)u(%ﬁn MO(anﬁn,x - fn,xﬁn)
2uEv" =212 f2 2uEv"2u 2

(g)h(E7 H, v, .%') =

since F,(0,vp, ) = vi fn and ﬁn,m(O, vo, ) = 1)~ ! fn. Considering (6.9) we get the following
expression

. V2F\nxx - TQLCCF\TL v? n:cﬁnx
Z<2’+(E_”“)Fn+yf4},% — g )

(g)h(E> w, v, x) =

2uEvn—1
_ ’L,U;(%F\n MO(anﬁn,:p - fn,an)
2uBvn—212 f2 2uEv" 2y f2

Moreover, by (6.1) we have that p3 = Corg, and then

Z~ <V2Fn,g:1‘ + (E _ I/U)Fn + an,an _ 14 fn,an,z)

2 4f2 2fn

@)h(E’Ma v, ‘T) =

2uEvn—1
_iGoF, . Conolv FaFnae — faoFn)
2uBvn—2 f2 2BV 2o f2
And then the result follows. [ |

Proposition 6.7. Let assume Cy = Ra,41(0) = 0. For Eg = 0 and pg # 0, the homogeneized
Green’s function associated to the transformed Green’s function g for —0., +u — E explicitly
reads

7 (LFQ"’M +(E - yu)ﬁn>
2uEvn—1 ’

(g)h(E7 H, v, .%') =

where Fy,(E, v, x) is defined by (6.8) and ﬁmm(E, v,x) is defined in (6.10).
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Remark 6.8. Formula

~

2
v Fn,x:c

5 + (E —vu)F,
is an homogeneous polynomial in F and v of degree n + 1.

Proof. When Cy = 0 we have that vy = 0 by (6.1), since po # 0. So, (O’O)h = 0. Hence, the

homogeneized Green’s function in this case is

(B, ) = ZHInlO=dn_iFn

E/v  2uun—1
. u2l/2"*2+u2ﬁﬁyz/4 = ~
i ( 7 > i(= 4 (B - vu)Fy)
- 2uEyn—2 B 2uEyn—1 ’
by (6.11) and (6.9). [

6.2 Darboux—Crum transformations for the spectral curve

In this subsection we present how Darboux—Crum transformations affect the spectral curve IT',.
We observe that the action of the transformation DT(¢g) strongly depends on the type of point P
in the spectral curve we use to construct ¢g. In fact, if P is a regular point, the curve associated
with the transformed potential is the same; in the other cases the new curve is a blowing-down
or a blowing-up of I';,.

Theorem 6.9 (I). Let (Ep,po) € I'yy and u be a solution of s-KdV,, equation. Let ¢y be
a solution of Schridinger equation for energy Ey and potential u, i.e., ¢ozz = (u— Ep)po. Let
u = u—2(log ¢o)zs be the Darbouz—Crum transformation of u. Then, u is a solution of s-Kd V5
equation for

~ n if (Eo, o) is a regular point of I'y,
n =
n—1 if (Eg,uo) is an affine singular point of T'.

Furthermore, the spectral curve associated to U is I's : i — }§2ﬁ+1 =0, with

B Ropnt1 if (Eo, o) is a reqular point of I'y,
et (E — Eo)?Rons1  if (Eo,po) is an affine singular point of T'y,.

The idea of the proof is to compute the Green’s function (6.16) associated to @ and interpret
the result by means of Lemma 6.4.

Proof. First, we suppose that (Ep, 119) is a regular point and po # 0. In this case, we compute

2 . Fan,z_Fr(L)zF"Q
W2(ED)? — JRE2 = i P (FO e — B Fy) + hna—FuP

F2(FQ)*

(01— (o- — ") =

We use Corollaries A.1 and A.2 to rewrite the expressions FOF, , — Fg}an and p? (F,g)2 —pdF2.
This yields to the equality

2+ F,FY — P,o
(O‘+ —0‘0) (cr, —00) = (E — Ey)—2 ;né”? n
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Finally, we replace this expression in the Green’s function (6.16):

: Pn,a: P, 0 ~
i ) 1Fy (U+ — UO) (U_ - UO) ¢ (Fn + 3F0 — F§ ) 1F5
g\, i, ) = = = .
: 2u(E — Ey) 2p 2p

Since ﬁﬁ = F, + }23;,’3 — ngo is a polynomial in E of degree n, by means of Lemma 6.4, we

conclude that n = n and g = p. Thus, ]A?;%H = Ront1-
Now, we suppose that (FEy, uo) is a regular point and gy = 0. In this case, we have that
R8n+1 = R2n+1(Eo) =0 and RgnJrl’E = 8E(R2n+1)(E0) # 0, thus,

1 = Rony1(E) = (E — Eg) May,

where Ms,(FE) is a polynomial in E of degree 2n such that My, (Fy) # 0. Hence for py = 0,
u? = (E — Ey)Ms, and Corollary A.1, the equality (6.16) becomes

| Mo, | (E—Eo)P?
N i <(E . ED)MQn(FT[L))Q + (E_E;prT%) (4 ( F, + 4Fn(Fn0)2>
9(E, p,z) = 5 = 5 :
2u(E — Eo)F (FY) I

Now Corollary A.3 guarantees that

Ms, (E — Ey)P?
Fn  4F,(F9)*

is a polynomial in F of degree n. By Lemma 6.4, we obtain that n = n, g = p and
ﬁgﬁﬂ = Ropy1. Therefore, for regular points ﬁgﬁﬂ is a polynomial of degree 2n 4+ 1 in E.
By Corollary 2.8, we conclude that % is solution of a s-KdV,, equation. Thus, a Darboux—Crum
transformation with a regular point preserves the spectral curve and the level of the s-KdV
hierarchy.

Next, we suppose that (Ep, o) is a singular point of T'y,, i.e., ug = 0, R8n+1 = Ron+t1(Ep)
=0 and Rgn+1,E = 8E(R2n+1)(E0) = 0, thus,

1* = Roni1(E) = (E — Eg)*Zan—1,

where Zo, _1(E) is a polynomial in E of degree 2n — 1. Hence for pg = 0, p? = (E — Eo)?Zan_1
and A.1, the equality (6.16) becomes

2 | (E—Ey)%P2 i| o=t b
i (B = Bo)Zan1 (F9)? + =500 B ()

21(E — Eo)Fu(F?)* - 2AB-E)lu

9B, p,x) =

Now Corollary A.4 guarantees that

Zon—1 P2
Fo 4F,(F9)?

is a polynomial in E of degree n. By Lemma 6.4, we obtain that 7 = n—1 and 1 = (E — Eo) ' .
Therefore, ﬁ?ﬁ_;'_]_ = (E — Ep) 2Rg,11 is a polynomial of degree 2n — 1 in E. By Corollary 2.8,
we conclude that @ is solution of a s-KdV,_1 equation. So, a Darboux—Crum transformation
with a singular point induces a blow-up in the spectral curve in this singular point and reduces
the level of the s-KdV hierarchy in one. |
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Next, we will proceed to establish the situation at the point of infinity Py, = [0 : 1 : 0] of
the spectral curve. For that, we will need to work with the Zariski closure in P? of the spectral
curve to understand its behaviour under Darboux transformations for the energy level Fy = 0.
In addition, we will use the blowing-up map in P? to control the KdV level of the transformed
potential u.

Let 7: P2 — P? be the blowing-up of P? with center [0 : 0 : 1]. Hence, if [E : u : v] are
homegeneous coordinates in P2, then the new ones are denoted by [E : 1 : V], and 7 is given by

E:E, ul =, v="u.

Theorem 6.10 (II). Let Po, = [0:1: 0] be the infinity point of Ty, and u a solution of the s-
KdV,, equation. Let ¢o be a solution of Schriodinger equation for Ps (in particular Ey = 0) and
potential u, i.e., ¢oze —upo = 0. Let u = u — 2(log ¢g)eaz be the Darbour—Crum transformation
of u. Then, u is solution of the s-KdVyy1 equation. Futhermore, the spectral curve associated

to U is Tny1 : i2 — Ronys(E) = 0, with Ronss = E2Roni1(E).

Proof. First, consider the homogeneized Green’s function associated to the transformed Green’s
function g. Then, by Propositions 6.5 and 6.7, (¢)p is a well defined rational function on I'y.
But also we have

(9)n = Gpom on the spectral curve.

Moreover G}, is a Green function for the curve defined by fi2 — R, 3(E) = 0, where Ron3(E) =
E?Ro,11(E); that is, for I',4 1, the strict transform of I',,. Observe that Ro,y3 = E2Ro,.1 is
a polynomial of degree 2n + 3 in F. Then, by Corollary 2.8, we conclude that @ is solution of
a s-KdV, 41 equation. |

Finally we can rewrite Theorems 6.9 and 6.10 to establish how the spectral curve I';, behaves
under Darboux—Crum transformations.

Theorem 6.11. Let P = [Eq : ug : ] be a point in Ty, and u a solution of s-KdV,, equation.
Let ¢ be a solution of Schrodinger equation for Ey and potential u, say ¢o .. = (u — Ep)eo.
Consider u = u — 2(10og ¢0)zz the Darboux—Crum transformation of w. Then, u is solution of
s-KdVy equation for

n+1 fP=[0:1:0],
n=1<n if P is a regular point of I';,,

n—1 if P is an affine singular point of T'y,.
Futhermore, the spectral curve associated to U is I'z: i — EQ%H =0, with

E?Ropiq if P=10:1:0],
Rosiv1 = { Ront1 if P is a regular point of I'y,
(E — Eo)?Rony1  if P is an affine singular point of Ty,.

Example 6.12. Next we apply the previous theorem to a rational s-KdVs potential.
6

Take the s-KdVy potential v = -5 in the Schrodinger equation (6.2). The spectral curve
associated to this potential is T'y: u? — E5 = 0. When E = 0, we have the fundamental solutions
¢1 =22 and ¢ = x3. We consider the Darboux transformations of v with these solutions

2 12 _

DT(¢1)U =u-—- 2(10g ¢1)IZ‘ = 22 = U and DT(¢2)U =u-— 2(10g ¢2)a:ac = 2 = us.
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We have that potential u; is a solution of s-KdV; equation. It is well known that the spectral
curve associated to this potential is I'y : u?—E3 = 0, the blowing-up of I'y at (0,0). Furthermore,
potential g is a solution of s-KdV3 equation, and its associated spectral curve I's is the blowing-
down of I'y, that is I's: > — E7 = 0.

Now, we take a regular value of F in I'y, for instance, £ = —1. Then, a solution of the

e®(x2—3x43)
22

Schrodinger equation (6.2) for this value of E is ¢t = . The Darboux transformation

of v with this solution reads
6(x —1)(2® — 322 +32z—3
DT(¢T)u = u — 2(log ¢ gy = (z-1)(e” ~ 3z f ) _ .
2% (2% — 3z + 3)

Then this transformed potential is a solution of s-KdVy equation and the spectral curve associ-
ated to this potential is still I'y: u? — E°5 = 0.
We sum up this example in the following diagram:

therefore, ¢9 is

(2, Ts) a solution for P,
DT(¢2)
DT(¢%) ~ therefore, ¢+ is a solution
(u,T2) (i.1) .
for a regular point,
DT(¢1)

therefore, ¢7 is a solution

(@1, T') for the affine singular point (0, 0).

Remark 6.13. The importance of Theorem 6.11 lies in the fact that we need to introduce the
homogenized Green’s function to state it. This new function is the essential tool that allows us
to include in our study the point of infinity P, of the affine curve I',,. As far as we know, this
is a new approach to the understanding of the spectral curve under Darboux transformations.

Similar problems to our result 6.11 were treated by several authors, see [13, Theorem 5]
and [15, Theorem G.2]. In [13], F. Ehlers and H. Knorrer studied the action of the Darboux
transformations on the spectral curves by means of the eigenfunctions of the centralizer of the
Schrédinger operator.

6.3 Spectral curves and KdV hierarchy in 1 4+ 1 dimensions

In this section we will show how the points of the spectral curves in the stationary setting are
related with the solutions of the Schrodinger operator with rational potential in the 1 + 1 KdV
hierarchy.

Recall that the rational soliton wu,,, restricted to t, = 0 is the well known n-soliton u7(10) (x) =
n(n + 1)z~2. Let ', be its affine spectral curve. This complex plane curve has a defining

equation

pa(E,p) = p? — B>

Our goal was to obtain the algebraic structure of a fundamental matrix of the Schrédinger ope-
rator —0?2 + ., — E by means of the system (4.1). For this purpose we need to use a parametric
representation of the spectral curve I',,. Observe that I',, is a rational singular plane curve,
nevertheless we can have a global parametrization in the sense given in [3]. In fact, we have
considered the parametrization

X()‘) — (_)\2’ Z')\2n+1)
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and then £ = —\? as was taken since Section 4. Observe that the unique affine singular point
of the spectral curve is reached for A = 0. Hence, whenever A # 0 we obtain regular points
on I', and we can get the desired description of the fundamental matrix 87(3\ as is given in
Theorem 4.6. On the other hand, at the singular point x(0) = (0,0) the fundamental matrix
for the system (4.1) must be obtained in a specific way, see Theorem 4.1.

The fundamental solutions ¢1,,(x,t,), ¢2,n(x,t,) obtained in Theorem 4.1 were used as
source to perform Darboux transformations. In particular, for ¢, = 0, we get the functions

¢§?7)L(9C) = ¢1,r,n(xa tT = 0)7 ¢g,)7)1(x) = d)Q,r,n(xa tr — 0)

and the corresponding potentials are transformed as is indicated in the following diagram:

0 DT(¢§?,>L) (0) DT(¢§)ZL) (0)
n—1 Un Upt1

l l i (6.17)

Fn— 1 Fn Fn+1 .

This situation is a particular case of a more general one that has been obtained in Theorem 6.11.
The diagram (6.17) has its time dependent counterpart (see (4.3) and (5.3))

DT(¢1,7‘,n) DT(¢2,7‘,n)
Upr n—1 Uy n Uprn+1-

The fundamental matrix BT(:()) associated to the functions ¢1 ., and ¢z, , can not be changed by

the same Darboux transformations used for the potentials since there is a loss of independent
solutions; in fact we have the following diagram:

DT(¢2,r,n)
¢1,r,n > ¢1,r7n+1’

DT(¢1,r,n)
¢2,r,n71 < e ¢2,r,n-

On the other hand, whenever the point on the spectral curve is a regular point, that is A # 0,

)

we have obtained the behaviour of the fundamental matrices Bj(.r/\, forj=n—1,n,n+1, as it
is encoded in the following diagram:

+ DT(¢l,r,n) + DT(¢2,r,n) +

rm—1 (br,n ¢7~,n+1 ’

— DT((z)l,T,n) _ DT(¢)2,’V‘,H) —
¢r,n—1 r,n ¢r,n+1 .

All these situations are reflected in the time dependent frame coming from the stationary one,

as we have seen. In particular, in the lack of specialization process from ng\ to B,(:%. According

to Theorem 4.8, we have that det Bf:;\ = —2)\?"*1 whereas we have det BX()) =2n+1.

Remark 6.14. We notice then that, despite functions gbg?gb and qﬁg?)@ are fundamental solutions
of the Schrodinger equation for £ = 0, they are not solutions for the same point of the spec-
tral curve. Therefore, for each singular point of this spectral curve we can only compute one
fundamental solution by means of Darboux transformations.

On the other hand, the stationary functions corresponding to ,JF n and ¢, ,, namely,

) (2, A) = ¢ (2, Nt =0)  and  (6,)V(z,\) = ¢ (@, N 1, = 0),
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are fundamental solutions at regular points of the spectral curve, since they are solutions of the
Schrodinger equation for E # 0. In fact, one of them, say (¢, ) (z, ), is a solution for the
point (E, 1), and the other one, say (¢ )@ (z, \), is a solution for the conjugated point (E, —p)
of the spectral curve. Then, for each value of E = —\?, the fundamental matrix 87(172\ shows the
solutions at conjugated points on the corresponding spectral curve.

Next we have computed an explicit example to illustrate the relationship between spectral
curves and KdV hierarchy in 1 + 1 dimensions for rational solitons.

Example 6.15. Consider the case r = 1 and n = 2. Let uja(x,t;) = % be the

KdV; rational soliton obtained by taking (72, 73) = (3t1,0). Then, the corresponding stationary
potential is given by u(20) (x) = u(102)<x) =ur2(z,t, =0) = a% (see Lemma 2.9). Its spectral curve
is Ta: po(E, u) = u? — E°.

Futhermore, the stationary Schrédinger operator presents two types of solutions a priori. In
fact, when E = 0, the solutions are

(f)g?% = ¢171,2(3},t7~ = 0) = 11772, (bg?% = (;327172(33,&« = 0) = a:3,
where

6 3 2
z x° + 15z°t) — 45t7
7’ ,t =
Gy et 23 + 3t

bra2(x,t) =

as they were computed in Example 4.4. In this case, we have the following diagram:

DT () DT(¢5))
uﬁo) =2/z? - ug)) = 6/2> — ug)) =12/a?
P2 —E3—0 p?— E5 =0 ur—E"=0.

When energy FE # 0, in Example 5.4 we have computed the solutions

i, A2x® — 3Ax? 4 3z + 3X%Hy
€

Cxandy M@ 4 3Ax? 4 3z + 3M%Hy
(&
x3 + 3t

3 + 3tq

+
¢1,2 - ’

9 ¢i2 =

where we have adjusted parameters ’7'2+ =3\t = Ty . Next, take t1 = 0 to obtain
e A3 —3\2? + 3z

3
N3+ 302% + 3z
x3 ’

¢3 (2, 0) = ¢ y(z, £, =0,)) =€

9

(ZSQ_(‘TaA) = <f>1_,2(337tr - 0,)\) = e

These functions are solutions of the Schrodinger operator for the stationary potential ugo) = 6/x?
whenever E # 0. Observe that ¢3 (z,0) = 3/2? = ¢, (7,0), and then they are no longer
independent (see Example 4.10 for the general case).

Next, we will show how the Darboux transformations act on time dependent potentials and
solutions. First recall that for any potential u, we have defined the Darboux transformation as

DT(¢i,r,n)u =u—2 (IOg gbi,r,n)mx y 1= 17 2.

Next, we perform the Darboux transformations by means of ¢112 and ¢212 to our initial
potential u1 2. In these cases we have obtained

2 DT(¢1.1.2) 6z (23— 6t1) DT(¢2,1.2) 6z (22°+ 675237+ 1350t3)

U] = — <— " 1o = Uy 3 =
BT YT (134 31)° b (264 1523t; — 4512)°
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Then, we must consider the Schrédinger operators
02 +uy (v, 1) — B,  j=1,23.

Their solutions <Z>I j and ¢; ; were given in Example 5.4.

It should be noted that if the energy is not zero, these solutions inherit the same behaviour
as their corresponding potentials when the Darboux transformations DT(¢; 1 2) and DT(¢2 1 2)
act on them. Hence we obtain the following diagram:

ot = AN (N — 1) DT(¢1,1,2) o = AN (X2 — 3a22 4 3z + 3A2)
11~ - L2 — 3 + 3tq
DI@r12) iy _ AT NHQT (N, @, 1)
L3 26 1 1523t — 4512
b — e M (N\r 4 1) DT e MHAI(A208 4 32 4 a4+ 302y)
11~ - L2 ™ 3 + 3t
DT(¢2nz) ,_ e MHNLQE(N 2, t))
P13 =

S 26 4 1523t — 4562
where
QF (N z,t1) = Na® — 6222 + 152 — 152 + 15\32%; — 450222t + 45 aty
— 45313 — 451,
Qs (A, 2, t1) = X328 + 6022° + 15Xz + 152% + 15X32% + 450722t + 4500t
— 45313 + 45t,.

The zero energy case is essentially different from the point of view of the Darboux transfor-
mations. We only can partially obtain the previous diagram:

¢ N T DT(¢2,1,2) é _ 23+ 3t
b2 T84 3t BE3 T 061 1503t — 4582
2343t DT(¢1.12) 284 1523, — 4562
2,11 = P2,1,2 = :

x 3+ 3ty

To compute fundamental matrices associated to u;,; and u;3 we have to use Theorem 4.1 (see
Example 4.4).

7 Differential Galois groups

In this section we study the Picard—Vessiot extensions of the differential systems (4.2) and (4.9),
obtained for energy levels E = 0 and E # 0 respectively. We recall that the base differential
field is K, = C(z,t,) with field of constants C.

We point out that the behaviour that they present depend strongly on the affine point
P = (E,pn) of the corresponding spectral curve. They present a similar behaviour when the
point P = (E, u) is a regular point of T',,.

A fundamental matrix for £ = 0 can be also computed. However, it is not obtained by
a specialization process from the fundamental matrix obtained for a regular point.

We obtain the Picard—Vessiot extensions given by BS:()) and Bf:z\ and compute their corre-

sponding differential Galois group, say Q,(;;()) and gff; respectively.
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7.1 Case E=0

For this case we have the fundamental matrix

r ¢ ,rn ¢ , Ty
67(172) = < ! 2 > )

¢1,r,n,x ¢2,r,n,x

where ¢1,n, O1.rn2, P2rn, P2,rnq are rational functions in x, ¢, hence they are in K,. So,
the Picard—Vessiot field is again K,.. Thus, the differential Galois group is the trivial group,

G = {ids}.

7.2 Case E#0

In this case, we compute the differential extension given for each value of A # 0. For this, we
fix a value of A different from zero, A = Ao, then the point P = (Ep, o) is a regular point of T',,,
that is Eg # 0. The fundamental matrix is

Ao ¢7J"Cn,x()‘0) ¢7T,n7x()‘0) ’

AR,

for (Z)j,n()‘()% (bzn,x()‘O)? ¢7T,n()‘0) and ¢7T,n,:c()‘0) € KT(n'I’)7 with 7, = 6)\0$+(71)
Picard—Vessiot field is L, = K,(n,).

To compute the differential Galois group QT(LTE\O in this case, we just have to compute the

. Then, the

action of gfjio on 7. For this, let ¢ in gff&o be an automorphism of the differential Galois
group, then

(2l _ otion) oot _dnoln)~dootr) _
Nr z Nr Nr
(20)) (1" ) — (17X ()
M /4, MNr
_ (_1)T)‘3T+10(77r) - (_I)TA?)T+IU(77T) —0.
My
Therefore Z7) is a constant in K,. Hence o(n,) = ¢+ n, for some ¢ € C. As a consequence we

get that, for each Ao and every n, the differential Galois group is isomorphic to the multiplicative
group, say

r c 0 *
Qﬁ&ozcm:{@ Cl>:c€(C }

Remark 7.1. Since the Galois groups QT(LT;\O are obtained for a particular value of A by especial-
ization process, they do not depend on A. For a spectral study of the Picard—Vessiot extensions
see [21].

7.3 Global behaviour of the differential Galois groups

Let us consider the family of linear algebraic groups {fo;} yec: Then for each point in I'y, we
have found a linear algebraic group. As a result of our constructions we have a sheave structure
of groups on the regular points of I';,

T, \ Sing( T) 3 (=A%,iA2"+) — g1,
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For each A € C, the situation is encoded in the following diagram

gn— 1 gn gn+ 1

i | i

Blowing-up Blowing-up
* * *
anl I‘n I‘nJrl
A A A
0 0
DT(H{)) DT(9}))
Ln—l n Ln+1 .

We observe the invariance of the Galois groups with respect to:

e The time of each level r of the KdV hierarchy once it have been adjusted to the level of the
KdV hierarchy. Observe that we are constructing the field of coefficients K, .

e Generic values of the spectral parameter, i.e., moving along the regular points of the spectral

cCurve.

e Darboux transformations.

A Auxiliary results

We establish a series of easy corollaries of the result of Proposition 6.2. They are necessary in
the Section 6.2. We use the same notation as in Section 6.1.

Corollary A.1. We have
F)Fyq2— F)  Fy = (E — Eo)P,,
where Py, is a polynomial in E of degree at most n — 1. In particular for Ey = 0 we obtain

ann,z - fn,an = EPn

n n
Proof. Since F,, = Y f, 1E' and F? = > f,,_E}, we have that
1=0 1=0

n n
Fran,x - Fg,an — Z fnfifnfj,xEéEj - Z fnfifnfj,xE(])Ei

i,5=0 4,j=0

= (B{E — EJE") fu—ifnja- (A1)
i,j=0
i#j

We factor the term EéEj — EgEi:
EyE' — BJE' = (E — Eo)(EEo)™ ™) (~1)send) | N~ phgg=i=t=k )
k=0

and replace it in (A.1). We get

F)Fyo— F) Fy =

n l7—i|—-1

_ (E _ E(]) Z (EEO)min(iJ)(_1)sign(i7j) Z EkE!)j—i‘—l_k fnfifnfj,m
i,j=0 k=0
i#]

= (F — Ey) Py,

for P, a polynomial in E of degree at most n — 1, as it is stated. |
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Corollary A.2. We have

F, FOp P,(F,F° + F, ,F°
M2(F£)2_H%F3:(E_EO)< n g n,x+F5(F3)2_ n( n n,z4 n,T n) :

where Py, is the polynomial obtained in Corollary A.1. In particular for Ey = 0 we obtain

FofoP Py (F, F
©fr— upky =E (”f’; 2L+ F2(f)? — n ”f"’xf ”’”“"f")> .

Proof. By (2.13) we have

F2
1 = Ropy1 = Fnl;nm —(u— E)F? - %7
FOFY FO )2
1o = Rony1 (Bo) = == — (u = Eo)(F?)? - ( ”4f)
Hence,
F. FO 2(p0 2_F2 FO 2
1 (ER) =i F = = (P By =y F) + n(Fs) . naln)” | (5 ) p? (F0)?
F,F9
= n2 n (Fn’mFr? — Fngn) + (E - EO)F,% (FS)Q
N (FuFY, — FuoFY) (FuFY 4 FuoFY)
1 :

As FFy 0 — FY) 1o Fr = (F)Fno — FY) . Fy) e = (E — Eg)Pys, by Corollary A.1 we obtain

n,xxr- n

F,FOP, Po(F FY 4 F . FP
2 e = g (B gy BB g
Now, let (Ep, po) be a regular point of I, and pup = 0. In this case, we have that R8n+1 =
R2n+1(E0) =0 and 8E<R2n+1)(E0) 7& O, thus,
4 = Rony1(E) = (E — Eg)May, (A.2)

where My, (FE) is a polynomial in E of degree 2n such that Ms,(Ey) # 0.
Corollary A.3. Let (Ey, o) be a regular point of Ty, and pg = 0. We have that

My, (B — Ey)P?
+ 2

is a polynomial in E of degree n, with P, the polynomial obtained in Corollary A.1 and My, the
polynomial defined in (A.2).

Proof. We have
,UQ o FnFn,x:c (U*E>Fg . Fr%,x

T E-E, 20E-FE, E-E, 4E-E)

2 2 2
P2 (FaFne = FioFn)” () Fro + (FRo) Fi = 20 FaFn o By,
" (E — Ey)? (E — Ep)? ‘

M2n
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We replace these expressions in the formula and we get

My, | (B—E)P _ 2(F9)? Frzo — 4(u — B)(FQ)*Fy, + (FQ,) Fy — 2FOFD  Fr
Fn " 4F,(FY)? A(E — Ep) (FD)? '

The numerator of this function is a polynomial in E of degree n + 1 and has a root in £ = FEj
as can be easily verified replacing F by Ejy:

2(FO)*FO, — Al — EV)(FD)® — (FO,)*FO = 4F03 =0,

n,Tx

So, we get that

2(F0)Fpuw — 4(u — E)(F)?Fy + (F2 )’ Fy — 2FYFY  Fy o = (E — Eo)Qu,

nt n,x
where ), denotes a polynomial in F of degree n. Hence

Moy, (E - EO)Pg _ Qn
Fun © 4F,(FO)?  4(F9)°

and then the result follows. [ |

Next, let (Ep, po) be a singular point of I';,. In this case, pug = 0, RgnH = Ront+1(Ep) =0
and 8E(R2n+1)(E0) = 0, thus,

p#? = Roni1(E) = (E — Ey)*Zop-1, (A.3)
where Z,_1(FE) is a polynomial in E of degree 2n — 1 such that Za,_1(Ep) # 0.
Corollary A.4. Let (Ey, o) be a singular point of T',,. We have that

Zon-1 P2
Fun  4F,(F9)?

is a polynomial in E of degree n — 1, with P, the polynomial obtained in Corollary A.1 and
Zon—1 the polynomial defined in (A.3).

Proof. It follows by an analogous computation to that of Corollary A.3. |
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