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Abstract. We provide lower bounds on the number of periodic Finsler billiard trajectories
inside a quadratically convex smooth closed hypersurface M in a d-dimensional Finsler
space with possibly irreversible Finsler metric. An example of such a system is a billiard in
a sufficiently weak magnetic field. The r-periodic Finsler billiard trajectories correspond to
r-gons inscribed in M and having extremal Finsler length. The cyclic group Zr acts on these
extremal polygons, and one counts the Zr-orbits. Using Morse and Lusternik–Schnirelmann
theories, we prove that if r ≥ 3 is prime, then the number of r-periodic Finsler billiard
trajectories is not less than (r−1)(d−2)+1. We also give stronger lower bounds when M is
in general position. The problem of estimating the number of periodic billiard trajectories
from below goes back to Birkhoff. Our work extends to the Finsler setting the results
previously obtained for Euclidean billiards by Babenko, Farber, Tabachnikov, and Karasev.
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1 Introduction

The study of mathematical billiards goes back to G.D. Birkhoff who wrote in [11]:

. . . in this problem the formal side, usually so formidable in dynamics, almost com-
pletely disappears, and only the interesting qualitative questions need to be conside-
red.
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One of the main motivations for the study of billiards has been their relation with mathematical
physics and statistical mechanics, namely, with the Boltzmann ergodic hypothesis. We refer to
the books [15, 31, 40, 42] for various aspects of mathematical billiards.

1.1 Billiards in Euclidean geometry

A Birkhoff billiard table is bounded by a smooth strictly convex closed hypersurface M in Rd.
The billiard dynamical system describes the motion of a free particle inside M with elastic
reflection off the boundary. That is, the point (billiard ball) moves with unit speed along
a straight line until it hits the boundary M ; at the impact point, the normal component of
the velocity instantaneously changes sign, while the tangential component remains the same,
and the point continues its rectilinear motion. In dimension two, this is the familiar law of
geometrical optics: the angle of incidence equals the angle of reflection.

An r-periodic billiard trajectory in M is an r-tuple of points (x1, . . . , xr) of M such that
xi 6= xi+1 and the billiard reflection in M takes segment xi−1xi to xixi+1 for i = 1, . . . , n (as
usual, the indices are understood cyclically, that is, xr+i = xi).

The Dihedral group of symmetries of a regular r-gon Dr acts naturally on the set of all
periodic billiard trajectories of period r by cyclically permuting the points and reversing the
orientation. Thus, when counting periodic orbits, it is natural to count such dihedral orbits.

Problem 1.1. Let d ≥ 2 and r ≥ 2 be integers, and let Md−1 ⊆ Rd be a smooth closed strictly
convex hypersurface. Estimate below the number NE

(
Md−1, r

)
of equivalence classes of periodic

billiard trajectories of period r inside Md−1 modulo the action of the dihedral group Dr.

The way we have formulated the problem, multiple trajectories are included into the count,
so that for example a 2-periodic trajectory traversed thrice and a 3-periodic trajectory traversed
twice, contribute to the number of 6-periodic trajectories. Of course, this issue is not a concern
if r is a prime.

The first progress in addressing the question posed in Problem 1.1 was made by Birkhoff in
1927 [11]. He considered the case d = 2, and proved that there exist at least two r-periodic
orbits with every rotation number coprime with r, which implies that NE

(
M1, r

)
≥ 2φ

(⌊
r
2

⌋)
,

where φ is the Euler totient function. We remark that this lower bound holds for the number
of prime periodic trajectories. Birkhoff deduced his result from Poincaré’s geometric theorem,
that Poincaré published without proof shortly before his death and that Birkhoff proved a year
later.

The concept of rotation number is not available in dimensions d ≥ 3, but one can use the
variational approach to the problem. Periodic billiard trajectories correspond to the critical
points of the length function on r-tuple of points (x1, . . . , xr), that is, on r-gons inscribed in M :

L(x1, . . . , xr) =
r∑
i=1

|xi − xi+1|. (1.1)

This function is Dr-invariant.
The first to address Problem 1.1 for d = 3 was Babenko [6], whose approach was based on

analyzing critical points of the length function L. Although his paper contained an error, the
main idea was rescued and refined by Farber and Tabachnikov who established several lower
bounds for NE

(
Md−1, r

)
.

When dealing with critical points of functions, one applies either the Morse theory or the
Lusternik–Schnirelmann theory. The former usually gives stronger lower bounds on the number
of critical points, but it applies to a more restrictive set of smooth functions, namely, Morse
(or Morse–Bott) functions; the latter sometimes gives weaker lower bounds on the number of
critical points, but it does not rely on genericity assumptions on the functions involved.
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The variational methods subsequently produced a number of improved lower bounds in a se-
quence of papers by a number of authors:

• Farber & Tabachnikov [22, Theorem 1(B), p. 555] and [21, Theorem 3]. Let d ≥ 3 be an
integer, let r ≥ 3 be an odd integer, and let Md−1 be a generic smooth closed strictly
convex hypersurface. Then

NE

(
Md−1, r

)
≥ (r − 1)(d− 1).

This is a Morse-theoretical result, that is why M is assumed to be generic. The next results
are Lusternik–Schnirelmann-theoretical, and they hold without the genericity assumption.

• Farber & Tabachnikov [21, Theorem 1(A), p. 554]. Let d ≥ 4 be an integer, let r ≥ 3 be
an odd integer, and let Md−1 be a smooth closed strictly convex hypersurface. Then

NE

(
Md−1, r

)
≥ blog2(r − 1)c+ d− 1.

• Farber [20, Theorem 2, p. 589]. Let r ≥ 3 be an odd prime, and let Md−1 be a smooth
closed strictly convex hypersurface.

– If d ≥ 4 is even, then

NE

(
Md−1, r

)
≥ r.

– If d ≥ 3 is odd, then

NE

(
Md−1, r

)
≥ r + 1

2
.

• Karasev [29, Theorem 1, p. 424]. Let d ≥ 3, let r ≥ 3 be prime, and let Md−1 be a smooth
closed strictly convex hypersurface. Then

NE

(
Md−1, r

)
≥ (r − 1)(d− 2) + 2.

Let us also mention Mazzucchelli’s paper [33] concerning the multiplicity of Birkhoff billiard
periodic trajectories whose period is a power of a fixed prime number.

1.2 Billiards in Finsler geometry

Our goal is to extend the above described results to periodic trajectories in Finsler billiards.
From the point of view of physics, Finsler geometry describes the propagation of light in

a medium that is not necessarily homogeneous or isotropic. The speed of light depends on the
point and the direction, and is given by a smoothly varying norm on the tangent spaces to the
medium thought of as a smooth manifold. We allow these norms to be asymmetric. These
norms need not correspond to inner products, which is the case when the metric is Riemannian.
To quote Chern’s description [14], “Finsler geometry is just Riemannian geometry without the
quadratic restriction”.

The distance f(A,B) between points A and B is defined as the least time it takes light to
travel from A to B; in general, f(A,B) 6= f(B,A). The trajectories of light are Finsler geodesics.
See Section 2.1 for precise definitions.

An example of a Finsler manifold is a Minkowski space, that is, a finite-dimensional normed
space. Another example is a projective metric in a domain in the projective space, a Finsler met-
ric whose geodesics are straight lines. Hilbert’s fourth problem asked to describe all projective
Finsler metrics (a projective Riemannian metric is a metric of constant curvature), see, e.g., [13].
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The first steps in the study of billiards in Finsler geometry were made by Gutkin and Tabach-
nikov in [27]. In this paper, the Finsler billiard reflection is defined (see Section 2.2 below) using
the variational approach, and Minkowski billiards are studied in some detail. Minkowski bil-
liards have close relations with convex geometry (Mahler’s conjecture) and symplectic topology
(symplectic capacities), see [4, 5].

We consider a domain in a Finsler manifold bounded by a smooth closed hypersurface Md−1,
a Finsler billiard table. We assume that M is strictly convex in the following sense:

• for every pair of points x, y inside M , there is a unique geodesic from x to y, and a unique
geodesic from y to x, both contained inside M and distance-minimizing;

• M is quadratically convex: every geodesic tangent to M has second order contact with M ,
and not higher order.

In particular, these conditions imply that M is diffeomorphic to the sphere Sd−1. The convexity
is an open condition. In the Minkowski setting, this condition is the same as in Euclidean space;
see the end of Section 2.3 for the geometric meaning of convexity in the case of planar magnetic
billiards.

We are interested in periodic Finsler billiard trajectories inside M . They still correspond to
critical points of the analog of the length function (1.1)

Λ(x1, . . . , xr) = f(x1, x2) + f(x2, x3) + · · ·+ f(xr, x1),

however this function has less symmetry than in the Euclidean case: it is invariant under the
cyclic permutations of the points, but not under the orientation reversal. Thus Λ(x1, . . . , xr)
is Zr-invariant, but not necessarily Dr-invariant. Accordingly, when counting periodic Finsler
billiard trajectories, we count Zr-orbits.

Denote by NF

(
Md−1, r

)
the number of equivalence classes of periodic Finsler billiard trajec-

tories of period r inside Md−1 modulo the action of the cyclic group Zr.

1.3 Statement of main results

Our main result is as follows.

Main Theorem 1.2. Let d ≥ 3 be an integer and r ≥ 3 be a prime. Consider Finsler bil-
liard inside a smooth closed hypersurface Md−1, satisfying the above formulated strict convexity
assumptions. Then

(A) NF

(
Md−1, r

)
≥ (r − 1)(d− 2) + 1.

(B) For a generic M ,

(1) if d is even, then NF

(
Md−1, r

)
≥ (r − 1)d;

(2) if d is odd, then NF

(
Md−1, r

)
≥ (r − 1)(d− 1).

The general position assumption in case (B) is the assumption that the length Λ(x1, . . . , xr)
is a Morse function. The latter condition is generic in the sense that it holds in an open
dense subset of strictly convex hypersurfaces, considered in the Whitney C∞ topology. For
Euclidean billiards, this is deduced in [22, Lemma 4.4] from an appropriate version of the multi-
jet transversality theorem. A similar argument works in the Finsler case; we do not elaborate
on it here.

Remark 1.3. The rate of growth of the numbers NF

(
Md−1, r

)
, provided by Theorem 1.2, is

the same as in the above described results for Euclidean billiards: it is, roughly, rd. Since we
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count Zr-orbits of periodic Finsler billiard trajectories, rather than Dr-orbits, one might expect
the numbers NF

(
Md−1, r

)
to be about twice as large as the numbers NE

(
Md−1, r

)
.

For example, consider Euclidean billiard inside a strictly convex closed smooth hypersurface,
and switch on a weak magnetic field. One may expect each periodic trajectory in absence of the
magnetic field to give rise to two periodic magnetic billiard trajectories, see Fig. 1.

Figure 1. A 3-periodic billiard trajectory giving rise to two 3-periodic magnetic billiard trajectories.

In dimension two, this is indeed the case: the Finsler billiard map is an area preserving twist
map, and it has two r-periodic trajectories for every rotation number k coprime with r. If the
metric is symmetric, then the orbits corresponding to the rotation numbers k and r − k differ
only by the orientation, and they are counted as one, but in the asymmetric case, these are
indeed different orbits.

We do not know how close the lower bounds of Theorem 1.2 are to being sharp. One may
expect a notable difference between the reversible and non-reversible cases. In the related
problem of closed geodesics, it is known that every Riemannian metric on the 2-sphere possesses
infinitely many geometrically distinct closed geodesics [7, 25], but a Finsler metric may have
precisely two distinct prime closed geodesics, as in the well known Katok example [30] (in which
the two closed geodesics are the inverses of each other). Do similar examples exist for Finsler
billiards?

2 From geometry of billiards to topology
of cyclic configuration spaces

2.1 Introduction to Finsler geometry

We begin with a very brief introduction to Finsler geometry. For a thorough treatment, see
[3, 8, 38].

A Finsler metric on a smooth manifold U is determined by a smooth non-negative fiberwise-
convex Lagrangian function L : TU −→ [0,∞), with the property that on each tangent spa-
ce TyU , L is positively homogeneous: L(y, tv) = tL(y, v) for non-negative t and positive off the
zero section. The restriction of L to any tangent space TyU gives the Finsler length of vectors
in TyU .

The vectors in TyU of unit Finsler length form a strictly convex hypersurface I ⊂ TyU , called
the indicatrix, which plays the role of the unit sphere in Riemannian geometry. We make the
additional assumption that each indicatrix is quadratically convex. Specifying a smooth field of
indicatrices on U is an equivalent method of defining a Finsler metric on U .

The Finsler metric on TU induces a notion of distance on the base manifold U . The length
of a smooth curve γ : [a, b] −→ U is given by the integral

Length(γ) =

∫ b

a
L(γ(t), γ′(t)) dt.
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The length of γ is independent of the parametrization, and a Finsler geodesic is an extremal of
the length functional. In particular, a Finsler geodesic γ satisfies the Euler–Lagrange equations:

Lvv
(
γ(t), γ′(t)

)
· γ′′(t) + Lvy

(
γ(t), γ′(t)

)
· γ′(t) = Ly

(
γ(t), γ′(t)

)
.

In this formula we use a shorthand notation, so that Lv is the vector (Lv1 , . . . , Lvn) and Lvv is
the matrix (Lvivj ), etc.

For each pair of points x and y there is a corresponding Finsler distance f(x, y), equal to
the length of the shortest oriented geodesic from x to y. We stress that since geodesics are not
necessarily reversible, this distance function f need not be symmetric, and therefore f is not
a genuine metric on U .

The figuratrix J ⊂ T ∗yU is the “unit sphere of the cotangent space”, defined as follows: for a
vector v in the indicatrix I ⊂ TyU , there is a unique covector Dv, defined by the properties that
Ker(Dv) = TvI and Dv(v) = 1. The map D : I −→ T ∗yU which maps v to Dv is the Legendre
transform, and the image is the figuratrix J . The dual transform D∗ : J −→ I is defined
similarly. The Legendre transform is an involution: the composition of D and D∗ is the identity
map. Rightfully, the Legendre transform is a smooth bundle map from the indicatrix bundle to
the figuratrix bundle, but we will often use the notation D : I −→ J when the basepoint y is
understood.

2.2 The Finsler billiard map

Let U be a smooth d-dimensional Finsler manifold. Let X ⊂ U be a compact d-dimensional
submanifold with boundary M = ∂X. We assume that X and M satisfy the strict convexity
assumptions formulated in Section 1.2. We will refer to X as a billiard table.

Let xy and yz be two oriented geodesic segments, where x, z ∈ X are in the interior of the
billiard table, and y ∈ M is on the boundary. We say that yz is the Finsler billiard reflection
of xy if y is a critical point of the distance function f(x, ·) + f(·, z) : M −→ [0,∞). This relation
is not symmetric, so it does not imply that yx is the billiard reflection of zy.

We describe the reflection law in the context of the Finsler setup following the treatment
in [27]. Although the Finsler metric there is assumed to be symmetric, the reflection law is the
same.

For each y ∈ M , let p ∈ J ⊂ T ∗yU be the conormal, defined as the unit cotangent vector
which vanishes on TyM and is positive on the outward vectors. Let xy be an incoming geodesic
and yz the reflected outgoing geodesic, corresponding respectively to tangent vectors u and v
in I. The reflection xy to yz manifests as the following relation in the cotangent space.

Lemma 2.1 (Finsler billiard reflection law). The covector Du − Dv is conormal to TyM ; in
particular Du −Dv = tp for some t > 0, see Fig. 2.

Proof. The point y ∈M is a relative extremum of the function f(x, ·)+f(·, z), so the differential
of this function is conormal to the tangent hyperplane TyM . Let us compute this differential to
show that it is Du −Dv.

Fix a point x ∈ X, and consider the wave propagation from x. Let c be a non-singular point
of the wave front Ft0 such that the oriented geodesic segment xc of length t0 is contained in the
interior of X. The Finsler length function f(x, ·) extends to a smooth function in a neighborhood
of c. More precisely, for every point d sufficiently close to c, there exists a t near t0 such that
d ∈ Ft. Let I and J represent the indicatrix and figuratrix at c, and let u ∈ I be the Finsler
unit vector along xc.

We claim that, at the point c, df(x, ·) = Du. The wave front Ft0 is a level set of f(x, ·).
Hence df(x, ·) annihilates the tangent space to Ft0 . By the Huygens principle, Du is conormal
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Figure 2. The Finsler billiard reflection in dimension two.

to this plane, hence proportional to df(x, ·). It also follows from the Huygens principle that
df(x, ·)(u) = 1, which is true of Du by definition. Hence df(x, ·) = Du.

Since the Finsler distance function is non-symmetric, we also need to understand df(·, z).
Consider the oriented geodesic segment yz. Although zy is not necessarily a geodesic with
respect to the Finsler structure L, it is a geodesic with respect to the “reverse” Finsler struc-
ture on M defined by the Lagrangian L̄(v) := L(−v). For the corresponding Finsler distance
function f̄ we have the equality f̄(z, y) = f(y, z), and for the corresponding Legendre trans-
form D̄ we have the equality D̄−v = −Dv (by definition of the covector Dv). Therefore we have
df(·, z) = df̄(z, ·) = D̄−v = −Dv, where the middle equality follows from the paragraph above.
This completes the proof. �

2.3 Magnetic billiards as Finsler billiards

A popular billiard model that has been extensively studied in the last decades are magnetic
billiards [9, 10, 26, 35, 41, 43, 44].

On a Riemannian surface, a magnetic field is given by a function B(x), and the motion of
a charged particle is described by the differential equation ẍ = B(x)Jẋ, where J is the rotation of
the tangent plane by π/2. This equation implies that the speed of the particle remains constant
(the Lorentz force is perpendicular to the direction of motion). In the Euclidean plane, if the
magnetic field is constant, the trajectories are circles of a fixed radius (Larmor circles).

In general, a magnetic field on a Riemannian manifold M is a closed differential 2-form β,
and the magnetic flow is the Hamiltonian flow of the usual Hamiltonian |p|2/2 on the cotangent
bundle T ∗M with respect to the twisted symplectic structure ω + π∗(β), where ω = dp ∧ dq is
the standard symplectic form and π : T ∗M −→M is the projection.

Magnetic billiard describes the motion of a charged particle confined to a domain with elas-
tically reflecting boundary. The reflection law is the same as for the usual billiards, with zero
magnetic field: the angle of incidence equals the angle of reflection. Following [41], one can
interpret magnetic billiards as Finsler ones.

Let us assume that the magnetic 2-form is exact: β = dα for some differential 1-form on
a Riemannian manifold Mn. Then the magnetic flow admits a Lagrangian formulation with the
Lagrangian function

L̄(x, v) = 1
2 |v|

2 + α(x)(v),

where x ∈M , v ∈ TxM , and |v| is the Riemannian norm of the tangent vector v.



8 P.V.M. Blagojević, M. Harrison, S. Tabachnikov and G.M. Ziegler

We want to consider the motion with unit speed, that is, to fix an energy level. Following
the Maupertuis principle, replace the Lagrangian L̄ with

L(x, v) = |v|+ α(x)(v). (2.1)

Assume that the magnetic field is weak enough so that L(x, v) > 0 for all non-zero tangent
vectors v and all points x, that is, we assume that |α(x)| < 1 everywhere. Then formula (2.1)
defines a non-symmetric Finsler metric.

Lemma 2.2 (magnetic billiard reflection law). The indicatrix of the magnetic Finsler met-
ric (2.1) is an ellipsoid of revolution with a focus at the origin, and the Finsler billiard reflection
law coincides with the usual one: the angle of incidence equals the angle of reflection.

Proof. Fix a point x and consider the tangent space at this point. The tangent space is
Euclidean, and the indicatrix I is given by the equation |v| + α(v) = 1. Let e be the tangent
vector dual to the covector α, that is, α(v) = e · v. We can choose an orthonormal basis so that
e = (t, 0, . . . , 0) with t < 1.

The equation of the indicatrix is L(x, v) = 1, or x2
1 + · · ·+ x2

n = (1− tx1)2, that is,

(
1− t2

)2(
x1 +

t

1− t2

)2

+
(
1− t2

)(
x2

2 + · · ·+ x2
n

)
= 1.

This is the equation of an ellipsoid of revolution obtain by revolving the ellipse

(x1 + c)2

a2
+
x2

2

b2
= 1,

where

a2 =
1

(1− t2)2
, b2 =

1

(1− t2)
, c =

t

1− t2
,

and hence c2 = a2 − b2. Therefore this ellipse has a focus at the origin.

Figure 3. Point A is a focus of an ellipse; then ∠BAC = ∠BAD.

The second statement of the lemma reduces to a known geometric property of conics depicted
in Fig. 3, see, e.g., [2]. Compare with the Finsler reflection law, Fig. 2. �

We assume that the convexity conditions of Section 1.2 hold for magnetic billiards. This
implies that the magnetic field is weak enough. For example, if the billiard table is a planar
domain bounded by a smooth strictly convex curve and the magnetic field is constant, then the
Larmor radius is greater than the greatest radius of curvature of the boundary curve. This is
one of the three regimes in magnetic billiards described in [35], in which “motion is qualitatively
similar to the field-free case”, albeit not time-reversible.
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2.4 Morse-theoretic approach to Finsler billiards

We now discuss the necessary Finsler geometry and topology to apply results from Morse and
Lusternik–Schnirelmann theories to the problem of periodic Finsler billiard trajectories. Similar
preparation work is easier to do in the Euclidean case; it was the content of [22, Section 4].

The ordered cyclic configuration space of r consecutively distinct points on M is the space

G(M, r) :=
{

(x1, . . . , xr) ∈M×r : xi 6= xi+1 for all i
}
,

where by convention xr+1 = x1. As mentioned in the Introduction, we consider the length
function

Λ: G(M, r) −→ R, Λ(x1, . . . , xr) = f(x1, x2) + f(x2, x3) + · · ·+ f(xr, x1).

The function Λ is smooth and Zr-equivariant, but in contrast with Euclidean billiards, Λ need not
be Dr-equivariant. By definition of the Finsler billiard reflection for geodesic rays (Section 2.2),
the r-periodic Finsler billiard orbits are precisely the critical points of Λ.

We would like to use this fact by applying Morse and Lusternik–Schnirelmann theories to
obtain a lower bound for the number of periodic Finsler billiard orbits; however, these theories
cannot be applied directly because G(M, r) is not a closed manifold. We will show that for
sufficiently small ε we can replace G(M, r), without affecting the topology, by the following
compact manifold with boundary:

Gε(M, r) :=

{
(x1, . . . , xr) ∈M×r

∣∣∣∣ r∏
i=1

f(xi, xi+1) ≥ ε > 0

}
,

where again the indices are understood cyclically. Similar to the Euclidean case [22, Proposi-
tion 4.1], we establish the following proposition in the Finsler setup.

Proposition 2.3. If ε > 0 is sufficiently small, then

(1) Gε(M, r) is a smooth manifold with boundary;

(2) the inclusion Gε(M, r) ⊂ G(M, r) is a Zr-equivariant homotopy equivalence;

(3) all critical points of Λ: G(M, r) −→ R are contained in the interior of Gε(M, r);

(4) at every critical point of Λ
∣∣
∂Gε(M,r)

, the differential dΛ is positive on inward vectors.

This proposition makes it possible to apply Zr-equivariant Morse and Lusternik–Schnirel-
mann theories to the length function Λ on the manifold with boundary Gε(M, r). We shall
restrict ourselves to the case when r is prime. Then the group Zr acts freely on Gε(M, r), and
Zr-equivariant Morse theory reduces to Morse theory on the quotient manifold Gε(M, r)/Zr.

Due to item (4) of Proposition 2.3, the topological lower bounds on the number of critical
points of Λ, such as the sum of Betti numbers or the Lusternik–Schnirelmann category, come
from the topology of Gε(M, r)/Zr. This space has the same topology as the cyclic configuration
space G

(
Sd−1, r

)
/Zr, due to item (2), and the fact that M is topologically the sphere. We refer

to [32] for the Morse theory on manifolds with boundary.

2.5 Technical bounds for Finsler billiards

We start with a number of technical lemmas working toward the proof of Proposition 2.3.
The boundary ∂Gε(M, r) is the level set (at ε2) of the smooth function

F : M×r −→ R, F (x1, . . . , xr) =
r∏
i=1

f(xi, xi+1)2,
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and F−1(0) = M×r \G(M, r) is a critical level. The first two items are therefore a consequence
of the following lemma.

Lemma 2.4. There exists a constant δ > 0 such that the interval (0, δ) consists of regular values
of F .

We offer some geometric intuition for this statement. As indicated above, the critical points
of the length function Λ are precisely the periodic Finsler billiard orbits. Similarly, we may
think of the critical points of the function F as the periodic orbits of some “unusual” billiard
trajectory, which we will call the F -billiard trajectory, and for which the reflection law is given
by Lemma 2.7 below. In this terminology, Lemma 2.4 claims the existence of δ such that any
r-periodic F -billiard orbit (x1, . . . , xr) satisfies F (x1, . . . , xr) ≥ δ.

Assume that no such δ exists. Then we can find a closed F -billiard orbit such that one of
the edge lengths `i := f(xi−1, xi) is arbitrarily small. The contradiction will arise in Section 2.7,
where we show the following two statements:

(1) If one edge of a closed F -orbit is “arbitrarily short”, then all of the edges are “arbitrarily
short”.

(2) A closed F -orbit cannot have all edges “arbitrarily short”.

We will not explicitly define arbitrarily short, but a suitable quantity could be determined
in terms of the period r and certain “curvature” quantities, which depend on the Finsler geo-
metry of M and on the geometry of the indicatrix bundle. A similar shortness statement was
proven in the Euclidean case [22]; however, those curvature estimates rely on symmetry of the
inner product, symmetry of the unit tangent spheres, and also some trigonometry; none of
which we have at our disposal in the Finsler setting. We treat these subtleties in the following
Sections 2.5.1–2.5.3.

2.5.1 A “curvature” bound for Finsler manifolds

In the Finsler setting, we would like to formalize the intuitive idea that for y ∈M , “a geodesic
segment yz is short if and only if the corresponding tangent vector at y is almost tangent to M”.

This is easy to establish in the Euclidean case [22] as follows. The boundary M of the billiard
table is a strictly convex hypersurface in Euclidean space Rd. By strict convexity of M , there
exist positive numbers ρ < R such that for every y ∈ M , there exist two spheres tangent to M
at y, of radii ρ and R, such that the sphere of radius R contains M , and the sphere of radius ρ
is contained in M . Let n be the outward unit normal at y and let v ∈ TyRd be a unit tangent
vector with 〈v, n〉 < 0, and follow the geodesic from y in the direction of v until colliding again
with the boundary, say at z ∈M . Then the numbers ρ and R satisfy

ρ <
|y − z|
−2〈v, n〉

< R.

In particular, the measurements g(v) := |y − z| and −p(v) = −〈v, n〉 are of the same order. We
will use the notation g ∼ p for such a statement.

Now let U be a Finsler manifold and M a smooth, closed hypersurface, quadratically convex
with respect to the Finsler geodesics. For y ∈M , let p ∈ J represent the unit covector which is
conormal to M at y and positive on outward vectors. Given v ∈ I ⊂ TyU such that p(v) < 0,
let z ∈M be the first collision with M of the geodesic ray emanating from y in the direction v.
Define g(v) = f(y, z).

Similarly, given u ∈ I ⊂ TyU such that p(u) > 0, let x ∈ M be the point such that the
oriented geodesic ray xy enters y with direction u. Define g(u) = f(x, y).
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Remark 2.5. To verify that such a point x exists, note that the oriented ray xy is a geodesic
if and only if the oriented ray yx is a geodesic with respect to the “reverse” Finsler structure
defined by the Lagrangian L̄(u) := L(−u). The point x can be defined as the first collision
with M of the reverse geodesic ray emanating from y in the direction −u.

Lemma 2.6. There exist positive constants ρ < R such that, for all y ∈ M , all v ∈ I ⊂ TyU
with p(v) < 0, and all u ∈ I ⊂ TyU with p(u) > 0, we have

ρ <
f(y, z)

−p(v)
< R and ρ <

f(x, y)

p(u)
< R.

Equivalently, the functions g and p have the same order, g ∼ p.

The following proof is due to Sergei Ivanov.

Proof. We will show the left inequalities, corresponding to vectors v emanating from y. The
right inequalities follow similarly.

By compactness of M , it suffices to show existence for a single point y ∈ M . In fact, it is
enough to show that the lemma holds near y: that is, for v ∈ I ⊂ TyU with p(v) near 0. This is

due to the following fact: for all v such that p(v) is sufficiently away from 0, the quantity f(y,z)
−p(v)

is bounded away from zero. Indeed, as f(y, z) tends to zero, that is, point z tends to point y,
the vector along the geodesic yz tends to a tangent vector to M at y, that is, p(v) also tends to
zero.

Consider smooth coordinates (y1, . . . , yd) near y, such that a neighborhood of y in M is
given by the equation yd = 0. Let γ(t) = (γ1(t), . . . , γd(t)) be the unit-speed geodesic passing
through y at time 0 and with unit tangent vector v ∈ I (see Fig. 4, left).

M = y−1

d
(0)

γ(t)

v

y

z

t

yd
γd(t)

t0 ∼ p(v)

Figure 4. (Left): The unit speed geodesic γ(t) = (γ1(t), . . . , γd(t)) passes through y ∈M at time 0 with

tangent vector v and again at z ∈M at time t0 ∼ p(v). (Right): The dth component of γ, shown to the

second order.

In case v ∈ I ∩ TyM , we have γd(0) = 0 and γ′d(0) = 0, so by quadratic convexity, γ′′d (0) is
bounded away from 0 for all v ∈ I ∩ TyM . Therefore, for v almost tangent to M (i.e., with
p(v) < 0 sufficiently near 0), we have γ′′d (0) ∼ 1. In addition, for v almost tangent to M , we
have p(v) ∼ γ′d(0) < 0.

Now writing γd(t) up to second order yields

γd(t) = γd(0) + γ′d(0)t+ 1
2γ
′′
d (0)t2,

as depicted in Fig. 4, right. Thus γd(t) will meet zero again at a time

t0 = −2
γ′d(0)

γ′′d (0)
∼ p(v).

Since t0 is the length f(y, z) = g(v), we conclude that g ∼ p, completing the proof. �
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2.5.2 Reflection law for the F -billiard

Just as the critical points of the length function Λ correspond to periodic orbits of the Finsler
billiard, we think of the critical points of F as the periodic orbits of some “unusual” billiard
trajectory determined by the function F . In fact, what we are really interested in are the critical
points of F ; we use this billiard terminology because it is intuitive and suggestive.

So suppose that x, y, z ∈ M are points such that the oriented geodesic segment yz is the
F -reflection of the oriented geodesic segment xy. Let u, v ∈ I ⊂ TyU be the tangent vectors
which correspond, respectively, to xy and yz. Let p ∈ J ⊂ T ∗yU represent the outward-pointing
unit conormal, and let n = D∗p represent the outward pointing unit normal. Then the F -billiard
has the following reflection law.

Lemma 2.7. The F -billiard reflection law is given by the following cotangent relation:

Du

f(x, y)
− Dv

f(y, z)
= tp, t > 0.

Proof. The point y ∈ M is a relative extremum of the function F (·) := f(x, ·)2f(·, z)2, so the
differential of this function at y is conormal to the tangent hyperplane TyM . Therefore the
differential of the function

1
2 lnF (·) = ln f(x, ·) + ln f(·, z)

at y is also conormal to the tangent hyperplane TyM . We compute

1
2d
(

lnF (·)
)

= d
(

ln f(x, ·) + ln f(·, z)
)

=
df(x, ·)
f(x, ·)

+
df(·, z)
f(·, z)

.

Recall from the proof of Lemma 2.1 that at the point y, df(x, ·) = Du and df(·, z) = −Dv.
Therefore, at the point y, we have

Du

f(x, y)
− Dv

f(y, z)
= tp,

as desired. �

We will also make use of the following consequence.

Lemma 2.8. If v ∈ I ⊂ TyM is the F -reflection of u ∈ I ⊂ TyM , then either the linear
subspaces TuI, TvI, TyM ⊂ TyU are equal, or they intersect in a subspace of codimension 2.

Proof. First of all, we clarify the statement. The indicatrix I is a hypersurface in the vector
space TyU , hence its tangent spaces can be considered as vector subspaces of TyU . It is in this
sense that we intersect them, and TyM , in the ambient space TyU . This remark applies to other
similar arguments elsewhere in the paper.

Now, by the reflection law, the covectors Du, Dv, and p are linearly dependent, hence span
a subspace of at most two dimensions. Therefore, the intersection of their kernels, TuI ∩ TvI ∩
TyM , has codimension at most two. �

Given u ∈ I ⊂ TyU with p(u) > 0, let v be the F -reflection of u. Suppose that u 6= n, so that
the hyperplanes TuI, TvI, and TyM are not parallel. Then, from Lemma 2.8, the intersection of
the linear hyperplanes TuI ∩ TvI is a codimension 1 subspace of TyM , hence there is a unique
vector w = w(u) ∈ TyM ∩ I for which the kernel of Dw contains TuI ∩ TvI and such that
Du(w) > 0. Now applying the (cotangent) relation of Lemma 2.7 to the vector w yields:

Du(w)

f(x, y)
=
Dv(w)

f(y, z)
. (2.2)

Note that Dv(w) > 0, since the denominators are positive and Du(w) > 0 by assumption.
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2.5.3 Global indicatrix bound

Since the Finsler norm need not arise from an inner product, it is useful to develop some method
of comparing two vectors u, v ∈ I. One non-symmetric idea is to apply the Legendre transform
to obtain a covector Du which then acts on v. We have a general lower bound by compactness
and a specific upper bound by strict convexity of the indicatrices.

Lemma 2.9. There exists a positive constant K ≥ 1 such that, for every triple y ∈ M , u, v ∈
I ⊂ TyU , one has −K ≤ Du(v) ≤ 1. In particular, Du(v) = 1 if and only if u = v.

We will also require a more refined bound. For y ∈ M , consider u ∈ I ⊂ TyU such that
p(u) > 0 and u 6= n. Let v ∈ I ⊂ TyU be the F -reflection of u and let w be as described
in Section 2.5.2. Although w = w(u) is not defined when u = n, any sequence ui −→ n has
Dui(wi) −→ 0 and Dvi(wi) −→ 0, so that the maps u 7−→ Du(w) and u 7−→ Dv(w) extend
continuously to u = n.

Lemma 2.10. There exists a positive constant k < 1 such that for all y ∈M and all u ∈ I ⊂ TyU
with p(u) > 0,

k < Du(w) + p(u) and k < Dv(w)− p(v).

Proof. The numbers Du(w), Dv(w), p(u), and −p(v) are all positive. The first two are bounded
away from 0 except when u is almost parallel to n, and the last two are bounded away from 0
except when u is almost tangent to M . �

2.6 The F -billiard reflection preserves shortness and almost-tangency

With all of the technical bounds obtained in Section 2.4, we are ready to study the F -billiard
reflection in more detail. We show that short geodesics F -reflect to short geodesics, and that
almost-tangent vectors F -reflect to almost-tangent vectors.

In particular, suppose that u ∈ I ⊂ TyU , let v ∈ I ⊂ TyU be the F -reflection of u, and
let x and z be points in M such that u and v correspond, respectively, to the oriented geodesic
segments xy and yz. In this sense, we may consider v, x, and z as functions of u. Let p ∈
J ⊂ T ∗yU be the outward pointing unit conormal and let n = D∗p be the outward pointing unit
normal. Our goal is to show the following:

p(u) ∼ f(x, y) ∼ f(y, z) ∼ p(v).

Note that the outer equivalences were already established in Lemma 2.6.

We make use of the positive constants ρ and R defined by Lemma 2.6, as well as the positive
constants K and k determined in Lemmas 2.9 and 2.10.

Lemma 2.11. If v ∈ I ⊂ TyU is the F -reflection of u ∈ I ⊂ TyU , with p(u) > 0, then

kρ

K(ρ+R)
≤ f(x, y)

f(y, z)
≤ K(ρ+R)

kρ
.

In particular, the measurements f(x, y) and f(y, z) are equivalent: f(x, y) ∼ f(y, z).

Proof. We prove by contradiction. Assume that the left inequality fails, so that

f(x, y)

f(y, z)
<

kρ

K(ρ+R)
. (2.3)
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Then the F -reflection law applied to w (2.2), combined with (2.3) and then Lemma 2.9 twice,
yields

Du(w) =
f(x, y)

f(y, z)
Dv(w) <

kρ

K(ρ+R)
Dv(w) ≤ kρ

K(ρ+R)
≤ kρ

ρ+R
. (2.4)

On the other hand, Lemma 2.6, combined with (2.3) and then Lemma 2.9, yields

p(u) < − kR

K(ρ+R)
p(v) <

kR

ρ+R
. (2.5)

But the sum of (2.4) and (2.5) gives a contradiction; the right side is equal to k, while the
left side is greater than k by Lemma 2.10.

The right inequality of Lemma 2.11 can be shown similarly. �

Lemma 2.12. The F -billiard reflection u 7−→ v can be extended continuously to I ∩ TyM .
Moreover, this extension is the identity map on I ∩ TyM .

Proof. This lemma clearly holds for the ordinary Finsler billiard reflection law in Lemma 2.1.
In the F -billiard case, by Lemmas 2.6 and 2.11, we have p(u) ∼ f(x, y) ∼ f(y, z) ∼ p(v), so if
a sequence un ⊂ I tends to TyM , so does the sequence of F -reflections vn.

From Lemma 2.8, we have KerDun ∩ TyM = KerDvn ∩ TyM for every n. Therefore, if
un −→ u ∈ I∩TyM , then lim

(
KerDun

)
∩TyM is some codimension 1 subspace W ⊂ TyM , and

we must have W = KerDv∩TyM for any continuously-defined F -reflection v of u. Since we also
must have v ∈ I∩TyM , there are only two candidates for v: u itself and the “opposite” vector u′,
for which Du(u′) < 0. Now, by definition of the unit vector wn ∈ TyM (see Section 2.5.2),
u = limwn. We have Dvn(wn) > 0 for all n, so Dv(u) must be nonnegative. Hence v = u. �

We are now ready to prove Lemma 2.4.

2.7 Nonexistence of short periodic F -billiard trajectories

Proof of Lemma 2.4. Assume that (x1, . . . , xr) is an r-periodic F -billiard orbit. Let ui, vi ∈
I ⊂ TxiU represent the tangent vectors which correspond, respectively, to the oriented geodesic
segments xi−1xi and xixi+1. Let pi ∈ J ⊂ T ∗xiU be the outward pointing unit conormal and let
ni = D∗pi be the outward pointing unit normal. Let `i = f(xi−1, xi). We aim to show that no `i
can be arbitrarily small. From Lemma 2.11 we obtain the edge comparison for any i and j:

`i
`j
<

(
K(ρ+R)

kρ

)r
.

In particular, this establishes that `i ∼ `j , so that if `i is small for any i, every `j is also small.

Now, seeking a contradiction, we assume that a critical r-gon (x1, . . . , xr) has all edges
arbitrarily short. Then each ui is almost tangent, so by Lemma 2.12, ui ∼ vi in any auxiliary
metric on M . In particular, for any auxiliary Euclidean metric on M , (x1, . . . , xr) is an r-gon
with all exterior angles small. The contradiction will arise once we show the following statement
which is a discrete analog of the theorem that the total curvature of a spacial closed curve is
not less that 2π (see, e.g., [23]):

The sum of the exterior angles of an r-gon in Euclidean space Rq is at least 2π.

Let a1, . . . , ar be oriented vectors representing the edges of the polygon. The Gauss map sends
these vectors to some points A1, . . . , Ar on Sq−1, and the great circle segment connecting Ai
and Ai+1 has length equal to the exterior angle at the vertex connecting ai and ai+1 (here
the indices are cyclic). Thus it is enough to show that the perimeter of this spherical polygon
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(A1, . . . , Ar) is at least 2π. By the Crofton formula, for this it is enough to show that the polygon
intersects every great sphere Sq−2.

Choose a great sphere S = Sq−2 ⊂ Sq−1 and let P = Rq−1 ⊂ Rq be the corresponding
hyperplane. If some vector ai is contained in P , then S contains Ai. Otherwise, translate
P ⊂ Rq so that it sits as a supporting hyperplane to the polygon (a1, . . . , ar), say at the vertex
connecting edge ai to edge ai+1. In this case the points Ai and Ai+1 are separated by the great
sphere S, so the great circle segment connecting Ai to Ai+1 must intersect S. �

2.8 Critical points of the restricted length function

With the proof of Lemma 2.4 complete, we turn our attention to the fourth item of Propo-
sition 2.3, that if some r-gon x = (x1, . . . , xr) ∈ ∂Gε(M, r) is a critical point of Λ

∣∣
∂Gε(M,r)

,

then dΛx is positive on inward vectors. Since ∂Gε(M, r) is a level set of F , the differential dF
vanishes precisely on vectors tangent to ∂Gε(M, r). Then, since dFx = t dΛx on Tx Gε(M, r),
the sign of dΛx is the same for all inward pointing tangent vectors at point x. Therefore, it is
enough to show that dΛx is positive on a single inward vector V ∈ Tx Gε(M, r).

For the remainder of this section we let x = (x1, . . . , xr) be a critical point as discussed above,
and we let ui, vi ∈ TxiU be unit vectors tangent to the geodesic rays xi−1xi and xixi+1. We will
drop the subscript on the differentials dΛ and dF , since we will only be discussing them at the
point x. We will continue to use the notation ni for the outward-pointing unit normal vector
at xi and pi = Dni . We will use `i to represent the Finsler distance f(xi−1, xi).

We recall the differentials:

dΛ = (Du1 −Dv1 , . . . , Dur −Dvr),

and

1
2d(lnF ) =

(
Du1

`1
− Dv1

`2
, . . . ,

Dur

`r
− Dvr

`1

)
.

To show that there exists V ∈ Tx Gε(M, r) for which both differentials are positive, it is
enough to find a vector ν ∈ TxiM , for some i, such that Dui(ν) > 0 and Dvi(ν) < 0. Indeed, we
can then let V ∈ Tx Gε(M, r) be the vector whose only nonzero component is ν.

The structure of this section is to assume that no such ν exists and analyze the consequences.
The following lemma is the first step of this process.

Lemma 2.13. Suppose that for some fixed i, there is no ν ∈ TxiM satisfying Dui(ν) > 0 and
Dvi(ν) < 0. Then there exist ai and bi, both positive or both negative, such that

aiDui − biDvi = pi. (2.6)

Proof. The hypothesis implies that ker(Dui)∩TxiM = ker(Dvi)∩TxiM , hence the covectors Du

and Dv are positive-proportional when restricted to TxiM . That is, there exist ai and bi, both
positive or both negative, such that either

aiDui − biDvi = 0 or aiDui − biDvi = pi.

The former is impossible since it implies that ui = vi. �

It follows from Lemma 2.13 that the three covectors Dui , Dvi , and pi span a 2-plane P , hence
there exists a unique vector wi ∈ TxiM ∩ I such that Dwi ∈ P and Dui(wi) > 0. In the next
lemma we develop a universal constant, which allows us to compare Dui with pi(ui) and Dvi

with pi(vi), for any ui and vi satisfying a reflection law as in (2.6). We observe the similarities
in (2.6) to both the Finsler reflection law and the F -reflection law, and we note that wi is an
analogue of the vector w introduced after Lemma 2.8 for the F -billiard reflection.
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Lemma 2.14. There exist constants C > 0 and m ∈ N, such that, for all x ∈ M , and for all
w ∈ TxM ∩ I, if P = Span {p,Dw}, and if u ∈ I is any vector with Du ∈ P and Du(w) > 0,
then

1

C
p(u)2m ≤ 1−Du(w) ≤ Cp(u)2m.

Proof. By compactness of M and TxM ∩ I it is enough to show the existence of C at a single
point x and for a single 2-plane P . Let Γ ⊂ I be the open curve consisting of those points
u described in the statement of the lemma. We claim that p|Γ : Γ −→ R is injective. Indeed,
suppose that p(u) = p(v) for u, v ∈ Γ. We may write aDu − bDv = p; here a and b have the
same sign, since Du(w) and Dv(w) are both positive and p(w) = 0. Applying this relation to u
and v yields

a− bDv(u) = p(u) = p(v) = aDu(v)− b,

therefore a(1−Du(v)) = −b(1−Dv(u)), contradicting that a and b have the same sign.
Now consider the map h : p(Γ) −→ R given by p(u) 7−→ Du(w). Then h(0) = Dw(w) = 1,

and h′(0) = 0 since Du(w) is maximized at u = w. Therefore the first nonzero derivative of h
has even order and is negative; in particular, 1−Du(w) ∼ p(u)2m for some m. �

It follows from quadratic convexity of the indicatrix that m = 1, but we omit the details
here. We are most interested in the following form of Lemma 2.14.

Corollary 2.15. For any x ∈ M and any u, v ∈ I ⊂ TxU such that p(u) > 0, p(v) < 0, and
aDu − bDv = p, where a and b have the same sign, the following inequality holds:

p(v)2m

C2p(u)2m
≤ 1−Dv(w)

1−Du(w)
≤ C2 p(v)2m

p(u)2m
,

where w ∈ TxM is the unique unit vector with Dw ∈ Span {Du, Dv} and Du(w) > 0.

We will show the existence of an appropriate vector ν in two separate cases: the first, when
all side lengths of the r-gon are sufficiently short; and the second, when there is at least one
long side. The following lemma treats the first case.

Lemma 2.16. There exists η > 0 such that, if pi(ui) < η and −pi(vi) < η for all i ∈ {1, . . . , r},
then there exists an index i and a vector ν ∈ TxiM , such that Dui(ν) > 0 and Dvi(ν) < 0.

Proof. Assume that no such ν exists, then equation (2.6), with ai and bi both positive or both
negative, holds at every vertex i. We will use the “all small” hypothesis of the lemma to arrive
at a contradiction. We first focus on a single vertex and drop the subscript i. Apply (2.6) to
vectors u and v to obtain

a− bDv(u) = p(u), (2.7)

aDu(v)− b = p(v). (2.8)

Suppose that η = δ
2+2K , where δ > 0 is a small unspecified number and K ≥ 1 is the constant

determined in Lemma 2.9. We claim that Du(v) and Dv(u) cannot be negative.
First, if a and b are negative, then Du(v) and Dv(u) are both positive because p(u) > 0,

p(v) < 0. Otherwise, if a and b are positive, and also if Dv(u) is negative, then

a = p(u) + bDv(u) < p(u),

b = −p(v) + aDu(v) < −p(v) + p(u)Du(v) < −p(v) + p(u),

and so a and b are both less than 2η. The same bounds hold if Du(v) is negative.
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Now apply (2.6) to the vector n to obtain

1 = aDu(n)− bDv(n) < a− bDv(n) < 2η + bK < 2η(1 +K) = δ,

contradicting the assumption that Dv(u) or Du(v) is negative. Now, solve for a and b using
equations (2.7) and (2.8) to obtain

a =
p(u)− p(v)Dv(u)

1−Du(v)Dv(u)
<

2η

1−Du(v)Dv(u)
,

b =
−p(v) + p(u)Du(v)

1−Du(v)Dv(u)
<

2η

1−Du(v)Dv(u)
.

Again we apply (2.6) to the vector n to obtain

1 = aDu(n)− bDv(n) <
2η(1 +K)

1−Du(v)Dv(u)
=

δ

1−Du(v)Dv(u)
.

Therefore, 1−Du(v)Dv(u) = δ, and so both Du(v) ≥ 1− δ and Dv(u) ≥ 1− δ. It follows that
u and v are sufficiently close.

The conclusion of the proof follows the lines of the discussion in Section 2.7 (the proof of
Lemma 2.4). Namely, the above analysis holds at every vertex i, and this contradicts the
existence of a large exterior angle in an auxiliary Euclidean metric. �

We are now equipped to prove Proposition 2.3.

2.9 The proof of Proposition 2.3

Proof of Proposition 2.3. The first two items follow immediately from Lemma 2.4. The
argument for the third item is similar. In particular, we apply the same logic of Lemma 2.4 to
the length function Λ, instead of the function F , to obtain a similar statement: if one edge of
an r-periodic Finsler billiard trajectory is short, then so are all its edges. Therefore there exists
some ε > 0 such that all critical points of Λ are contained in the interior of Gε(M, r).

Let η be a fixed number satisfying Lemma 2.16, and let R and ρ be the constants from
Lemma 2.6. To satisfy the fourth item of the proposition, choose ε small enough so that
η > A

ρ ε
1
2r , where A > 0 is a constant we will specify shortly. Assume that all lengths `i satisfy

`i < ηρ. Then, by Lemma 2.6, all corresponding ui and vi are η-tangent, so the conditions of
Lemma 2.16 are satisfied, confirming the existence of an appropriate vector ν. Otherwise, there
exists an index j such that `j ≥ ηρ > Aε

1
2r . Using the fact that the product of the squared

lengths is ε, we write

ε
1
2 =

∏
1≤i≤r

`i > Aε
1
2r

∏
i 6=j

`i.

Therefore, there exists an index k such that `k < ε
1
2rA−

1
r−1 . It follows that

A
r

r−1 <
`j
`k

=
`j
`j−1

· `j−1

`j−2
· · · `k+1

`k
,

where the indices are understood cyclically. There are at most r − 1 factors on the right side,
therefore, there exists some index i such that

A
r

(r−1)2 <
`i+1

`i
.
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Now let A =
(
R
ρ

) (r−1)2

r · C
(r−1)2

mr , where C and m are the constants determined in Lemma 2.14.
Then we have

R

ρ
· C

1
m <

`i+1

`i
≤ −R

ρ

pi(vi)

pi(ui)
,

where the second inequality is Lemma 2.6. It follows that

1 <
pi(vi)

2m

C2pi(ui)2m
. (2.9)

Assume there is no vector ν ∈ TxiM such that Dui(ν) > 0 and Dvi(ν) < 0, since otherwise, we
are done. Then the hypotheses of Corollary 2.15 hold, and we write

1−Dvi(w)

1−Dui(w)
≥ pi(vi)

2m

C2pi(ui)2m
> 1,

where the second inequality is (2.9). Therefore Dui(w) > Dvi(w), and since `i+1 > `i, we also
have Dui(w)`i+1 > Dvi(w)`i. Thus the vector V ∈ Tx Gε(M, r), whose only nonzero component
is w, satisfies dΛ(V ) > 0 and dF (V ) > 0, as desired. �

3 Topology of cyclic configuration spaces

Let r ≥ 2 be an integer, and let M be a topological space. The ordered configuration space of r
pairwise distinct points on M is the space

F(M, r) :=
{

(x1, . . . , xr) ∈M r : xi 6= xj for all i 6= j
}
.

The symmetric group on r letters Sr acts (from the left) on F(M, r) by permuting the points,
that is, for a permutation π ∈ Sr

π · (x1, . . . , xr) = (xπ(1), . . . , xπ(r)).

The unlabeled configuration space of r pairwise distinct points on M is the orbit space F(M, r)/Sr.
We refer to F. Cohen [16] and Fadell & Husseini [19] for background on configuration spaces.

Let us repeat that the ordered cyclic configuration space of r ≥ 2 consecutively distinct points
on M is the space

G(M, r) :=
{

(x1, . . . , xr) ∈M r : xi 6= xi+1 for all i
}
,

where by convention xr+1 = x1. Clearly, F(M, r) ⊆ G(M, r) ⊂ M r. The Dihedral group
Dr = 〈a, b : ar = b2 = 1, ab = bar−1〉 acts naturally on G(M, r) by

a · (x1, x2, . . . , xr−1, xr) = (xr, x1, . . . , xr−2, xr−1),

b · (x1, x2, . . . , xr−1, xr) = (xr, xr−1, . . . , x2, x1).

On the other hand, due to the geometric restriction coming from the Finsler distance being not
symmetric, we consider only the action of the cyclic subgroup Zr = 〈a〉 on G(M, r). Thus, in
this paper, the unlabeled cyclic configuration space of r consecutively distinct points on M is the
orbit space G(M, r)/Zr.

In this section we study the topology of the unlabeled cyclic configuration space G
(
Sd−1, r

)
/Zr

for r a prime. First, using an appropriate spectral sequence, we determine the cohomology of
the unlabeled configuration space with coefficients in the field Fr.
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Theorem 3.1. Let r ≥ 3 be a prime.

(1) Let d be an even integer, and let

A := {`(d− 2), `(d− 2) + 1: 1 ≤ ` ≤ r − 2},
B := {0, 1, . . . , (r − 1)(d− 2) + 1}\A.

Then

Hn
(

G
(
Sd−1, r

)
/Zr;Fr

)
=


Fr ⊕ Fr, n ∈ A,
Fr, n ∈ B,
0, otherwise.

(2) Let d be an odd integer, and let

C :=
{

2`(d− 2), 2`(d− 2) + 1: 1 ≤ ` ≤ r−3
2

}
,

D := {0, 1, . . . , (r − 1)(d− 2) + 1}\C.

Then

Hn
(

G
(
Sd−1, r

)
/Zr;Fr

)
=


Fr ⊕ Fr, n ∈ C,
Fr, n ∈ D,
0, otherwise.

Second, using the same spectral sequence we derive the following estimate of the Lusternik–
Schnirelmann category, which can be also deduced from the work of Karasev [29, Theorem 7].

Theorem 3.2. Let d ≥ 3 be an integer, and let r ≥ 3 be a prime. Then the Lusternik–
Schnirelmann category of the unlabeled cyclic configuration space G

(
Sd−1, r

)
/Zr is bounded

from below as follows:

cat
(

G
(
Sd−1, r

)
/Zr

)
≥ (r − 1)(d− 2) + 1. (3.1)

The estimate of the Lusternik–Schnirelmann category (3.1) of the unlabeled cyclic configu-
ration space G

(
Sd−1, r

)
/Zr, in the case when r is a prime, is obtained by exhibiting an element

of the cohomology H(r−1)(d−2)+1(B(Zr);Fr) that does not vanish along the homomorphism

H∗(B(Zr);Fr)
p∗ // H∗

(
G
(
Sd−1, r

)
/Zr

)
,

which is induced by the unique, up to a homotopy, map p : G
(
Sd−1, r

)
/Zr −→ B(Zr), see

Section 3.4. For this we substitute the map p with the projection map πG of the fibration

E(Zr)×Zr G
(
Sd−1, r

) πG // B(Zr)

and study the correspond Serre spectral sequence E∗,∗∗
(
E(Zr)×Zr G

(
Sd−1, r

))
, see Section 3.1.

The differentials of this spectral sequence are analyzed in Section 3.2 using the comparison of
spectral sequences induced by the morphism of fiber bundles

E(Zr)×Zr F
(
Rd−1, r

)
πF

��

id×Zr i // E(Zr)×Zr G
(
Sd−1, r

)
πG

��
B(Zr)

id // B(Zr).

In this way we identify an element of the cohomology u ∈ H(r−1)(d−2)+1(Zr;Fr) with the property
that π∗G(u) 6= 0, and consequently p∗(u) 6= 0. Using the classical concept of category weight of
an element of cohomology, and it properties summarized in Lemma 3.10, we establish the lower
bound (3.1).
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3.1 Setting up a spectral sequence

Now we set up a spectral sequence that converges to the cohomology of the unlabeled cyclic
configuration space H∗

(
G
(
Sd−1, r

)
/Zr;Fr

)
. We use the fact that the group Zr acts freely on

the cyclic configuration space G
(
Sd−1, r

)
.

Thus, since Zr acts freely on G
(
Sd−1, r

)
, the Borel construction E(Zr) ×Zr G

(
Sd−1, r

)
and

the quotient space G
(
Sd−1, r

)
/Zr are homotopy equivalent. Indeed, the map

E(Zr)×Zr G
(
Sd−1, r

)
−→ G

(
Sd−1, r

)
/Zr,

induced by the Zr-equivariant projection on the second factor E(Zr)×G
(
Sd−1, r

)
−→G

(
Sd−1, r

)
,

is a fibration with a contractible fiber E(Zr), and therefore a homotopy equivalence. Hence,

H∗
(

G
(
Sd−1, r

)
/Zr;Fr

) ∼= H∗
(
E(Zr)×Zr G

(
Sd−1, r

)
;Fr
)
,

and so we compute the cohomology of the Borel construction instead. An advantage of the Borel
construction is that it is the total space of the following fibration

G
(
Sd−1, r

)
// E(Zr)×Zr G

(
Sd−1, r

) πG // B(Zr), (3.2)

where πG is induced by the Zr-equivariant projection on the first factor E(Zr)×G
(
Sd−1, r

)
−→

E(Zr).
The Serre spectral sequence induced by the fibration (3.2) has the E2-term given by

Ep,q2

(
E(Zr)×Zr G

(
Sd−1, r

))
= Hp

(
B(Zr);Hq

(
G
(
Sd−1, r

)
;Fr
))

∼= Hp
(
Zr;Hq

(
G
(
Sd−1, r

)
;Fr
))
. (3.3)

Here H∗(·) indicates that the we have the cohomology with local coefficients; for more details
consult for example [28, Section 3.H]. The local system is determined by the action of the funda-
mental group of the base space π1(B(Zr)) ∼= Zr on the cohomology of a fiber of the fibration (3.2).
The second notation assumes that the coefficients we have for the group cohomology of Zr are
given in the Zr-module Hq

(
G
(
Sd−1, r

)
;Fr
)
. In the case when Fr is a trivial Zr-module we set

H∗(Zr;Fr) = Fr[t]⊗ Λ(e) where deg(t) = 2, deg(e) = 1, and Λ(·) denotes the exterior algebra.
All the cohomologies we work with are Fr vector spaces and therefore the Serre spectral se-

quence induced by the fibration (3.2) converges to the cohomology H∗
(
E(Zr)×Zr G

(
Sd−1, r

)
;Fr
)

as a vector space, that is

Hn
(

G
(
Sd−1, r

)
/Zr;Fr

) ∼= Hn
(
E(Zr)×Zr G

(
Sd−1, r

)
;Fr
) ∼= ⊕

p+q=n

Ep,q∞ ,

for every integer n ≥ 0. In turn, since G
(
Sd−1, r

)
/Zr is an open (r(d− 1))-manifold and has no

cohomology in dimensions ≥ r(d− 1), we have that Ep,q∞ = 0 for all p+ q ≥ r(d− 1). For more
details about Serre spectral sequences consult for example [34, Chapters 5–6] or [24, Chapter 3].

The first ingredient in the computation of the E2-term of the spectral sequence (3.3) is
a description of the cohomology of the fiber Hq

(
G
(
Sd−1, r

)
;Fr
)
. For that we use the results of

Farber [20, Theorems 18 and 19].

Proposition 3.3. Let d ≥ 3 be an integer, and let r be an odd prime.

(1) If d is even, then the cohomology ring H∗
(

G
(
Sd−1, r

)
;Fr
)

of the ordered cyclic configu-
ration space G

(
Sd−1, r

)
is generated by the elements

α, β1, β2, . . . , βr−2,
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of degrees

deg(α) = d− 1, deg(β1) = d− 2, deg(β2) = 2(d− 2), . . . ,

deg(βr−2) = (r − 2)(d− 2),

subject to the relations

α2 = 0, βiβj =


(i+ j)!

i! j!
βi+j , for i+ j ≤ r − 2,

0, otherwise,

for 1 ≤ i ≤ j ≤ r − 2. In particular, for every 1 ≤ k ≤ r − 2 we have that βk = ak · βk1
where ak ∈ Fr\{0}.

(2) If d is odd, then the cohomology ring H∗
(

G
(
Sd−1, r

)
;Fr
)

of the ordered cyclic configuration
space G

(
Sd−1, r

)
is generated by the elements

γ, δ1, δ2, . . . , δ r−3
2
,

of degrees

deg(γ) = 2(d− 2) + 1, deg(δ1) = 1 · 2(d− 2), deg(δ2) = 2 · 2(d− 2), . . . ,

deg
(
δ r−3

2

)
= r−3

2 · 2(d− 2),

subject to the relations

γ2 = 0, δiδj =


(i+ j)!

i! j!
δi+j , for i+ j ≤ r−3

2 ,

0, otherwise,

for 1 ≤ i ≤ j ≤ r−3
2 . In particular, for every 1 ≤ k ≤ r−3

2 we have that δk = bk · δk1 where
bk ∈ Fr\{0}.

Transforming the previous information on the cohomology ring of the ordered cyclic confi-
guration space G

(
Sd−1, r

)
into an additive language we get the following corollary.

Corollary 3.4. Let d ≥ 3 be an integer, and let r be an odd prime.

(1) If d is even and A = {`(d− 2), `(d− 2) + 1: 1 ≤ ` ≤ r − 2} ∪ {0, (r − 1)(d− 2) + 1}, then

Hn
(

G
(
Sd−1, r

)
;Fr
)

=

{
Fr, n ∈ A,
0, otherwise.

(2) If d is odd and B =
{

2`(d− 2), 2`(d− 2) + 1: 1 ≤ ` ≤ r−3
2

}
∪ {0, (r − 1)(d− 2) + 1}, then

Hn
(

G
(
Sd−1, r

)
;Fr
)

=

{
Fr, n ∈ B,
0, otherwise.

From Proposition 3.3 and its consequence Corollary 3.4 we can detect the action of the fun-
damental group of the base space π1(B(Zr)) ∼= Zr on the cohomology of the ordered cyclic
configuration space and compute the E2-term of the Serre spectral sequence (3.3); for an illus-
tration of the E2-term in the case of even d see Fig. 5.
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(r − 1)(d− 2) + 1

(r − 2)(d− 2) + 1

(r − 2)(d− 2)

d− 1

d− 2

0

Figure 5. The E2-term of the Serre spectral sequence (3.3) in the case when d ≥ 4 is even.

Corollary 3.5. Let d ≥ 3 be an integer, and let r be an odd prime. The E2-term of the Serre
spectral sequence (3.3) has the following description.

(1) If d is even and A = {`(d− 2), `(d− 2) + 1: 1 ≤ ` ≤ r − 2} ∪ {0, (r − 1)(d− 2) + 1}, then

Ep,q2
∼= Hp

(
Zr;Hq

(
G
(
Sd−1, r

)
;Fr
))

∼= Hp(Zr;Fr)⊗Hq
(

G
(
Sd−1, r

)
;Fr
) ∼= {Hp(Zr;Fr), n ∈ A,

0, otherwise.

(2) If d is odd and B =
{

2`(d− 2), 2`(d− 2) + 1: 1 ≤ ` ≤ r−3
2

}
∪ {0, (r − 1)(d− 2) + 1}, then

Ep,q2
∼= Hp

(
Zr;Hq

(
G
(
Sd−1, r

)
;Fr
))

∼= Hp(Zr;Fr)⊗Hq
(

G
(
Sd−1, r

)
;Fr
) ∼= {Hp(Zr;Fr), n ∈ B,

0, otherwise.

Proof. In the fibration (3.2), the cohomology groups of the fiber Hq
(

G
(
Sd−1, r

)
;Fr
)

are
isomorphic either to 0 or to Fr. Thus the group π1(B(Zr)) ∼= Zr can only act trivially on
Hq
(

G
(
Sd−1, r

)
;Fr
)
: Indeed, if f : Fr −→ Fr is an Fr-linear map induced by the action of a ge-

nerator of Zr, and f(1) = a ∈ Fr, then by Fermat’s little theorem 1 = idFr(1) = f r(1) = ar = a
and so f = idFr . Consequently, the cohomology Hq

(
G
(
Sd−1, r

)
;Fr
)

is a trivial Zr-module for
every q, and the statement of the corollary follows. �

Remark 3.6. It is important to point out that the previous corollary also implies that the
differentials of the Serre spectral sequence (3.3) are not only H∗(Zr;Fr)-module morphisms, but
even more, they satisfy the Leibniz rule; see [34, Definition 1.6 and Proposition 5.6].

3.2 Computing the spectral sequence

In this section, before making explicit computation, we consider the ordered configuration space
F
(
Rd−1, r

)
as a subset of the ordered cyclic configuration space G

(
Sd−1, r

)
. The Zr-equivariant
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inclusion i : F
(
Rd−1, r

)
−→ G

(
Sd−1, r

)
induces the following morphism of Borel construction

fibrations:

E(Zr)×Zr F
(
Rd−1, r

)
πF

��

id×Zr i // E(Zr)×Zr G
(
Sd−1, r

)
πG

��
B(Zr)

id // B(Zr).

(3.4)

The morphism of fibrations (3.4) induces a morphism of associated Serre spectral sequences

E∗,∗∗ (id×Zr i) : E∗,∗∗
(
E(Zr)×Zr F

(
Rd−1, r

))
E∗,∗∗

(
E(Zr)×Zr G

(
Sd−1, r

))
,oo (3.5)

which is the identity homomorphism on the zero row of the E2-term, that is E∗,02 (id×Zr i) = id.
The Serre spectral sequence E∗,∗∗

(
E(Zr)×Zr F

(
Rd−1, r

))
has been completely described first

by F. Cohen in his seminal paper [16, Sections 8–10], and much later, from the point of view of
the equivariant Goresky–MacPherson formula, in [12, Theorem 6.1]. For an illustration of the
E2-term of this spectral sequence see Fig. 6. In particular, we will use the following facts proved
in [12, 16].

Proposition 3.7. Let d ≥ 3 be an integer, and let r be an odd prime. The Serre spectral
sequence associated to the Borel construction fibration

F
(
Rd−1, r

)
// E(Zr)×Zr F

(
Rd−1, r

) πF // B(Zr), (3.6)

with the E2-term

Ep,q2 = Hp
(
B(Zr);Hq

(
F
(
Rd−1, r

)
;Fr
)) ∼= Hp

(
Zr;Hq

(
F
(
Rd−1, r

)
;Fr
))

has to following properties:

(1) For all p ≥ 1 and 1 ≤ q ≤ (r − 1)(d− 2)− 1, we have that

Ep,q2

(
E(Zr)×Zr F

(
Rd−1, r

))
= Ep,q∞

(
E(Zr)×Zr F

(
Rd−1, r

))
= 0.

(2) For all p ∈ Z and q ≥ (r − 1)(d− 2) + 1, we have that

Ep,q2

(
E(Zr)×Zr F

(
Rd−1, r

))
= Ep,q∞

(
E(Zr)×Zr F

(
Rd−1, r

))
= 0.

(3) For all p ≥ 0 and 2 ≤ s ≤ (r − 1)(d− 2), the differential

∂s : Ep,s−1
s

(
E(Zr)×Zr F

(
Rd−1, r

))
−→ Ep+s,0s

(
E(Zr)×Zr F

(
Rd, r

))
vanishes. Consequently, for 0 ≤ p ≤ (r − 1)(d− 2), we have that

Hp(Zr;Fr) = Ep,02

(
E(Zr)×Zr F

(
Rd−1, r

))
= Ep,0∞

(
E(Zr)×Zr F

(
Rd−1, r

))
.

(4) The only non-zero differential of the spectral sequence is

∂(d−2)(r−1)+1 : E
p,(d−2)(r−1)
(d−2)(r−1)+1

(
E(Zr)×Zr F

(
Rd−1, r

))
−→ E

p+(d−2)(r−1)+1,0
(d−2)(r−1)+1

(
E(Zr)×Zr F

(
Rd−1, r

))
,

and is an isomorphism for all p ≥ 0. Consequently, for all p ≥ (r− 1)(d− 2) + 1, one has

Ep,0(d−2)(r−1)+2

(
E(Zr)×Zr F

(
Rd−1, r

)) ∼= Ep,0∞
(
E(Zr)×Zr F

(
Rd−1, r

))
= 0.
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(r − 1)(d− 2)

(r − 2)(d− 2)

2(d− 2)

d− 2

0

0

Figure 6. The E2 = E(r−1)(d−2)-term of the Serre spectral sequence of the fibration (3.6).

From the existence of the morphism E∗,∗∗ (id×Zr i) of the Serre spectral sequences (3.5), the
fact that E∗,02 (id×Zr i) is the identity, and the following equality from Proposition 3.7:

Ep,0∞
(
E(Zr)×Zr F

(
Rd−1, r

))
= Ep,02

(
E(Zr)×Zr F

(
Rd−1, r

))
= Hp(Zr;Fr),

which holds for 0 ≤ p ≤ (r − 1)(d − 2), we deduce an important property of the Serre spectral
sequence E∗,∗∗

(
E(Zr)×Zr G

(
Sd−1, r

))
stated in the next corollary.

Corollary 3.8. Let d ≥ 3 be an integer, and let r be an odd prime. For 0 ≤ p ≤ (r− 1)(d− 2),
one has

Ep,0∞
(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= Ep,02

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= Hp(Zr;Fr).

In particular, all the differentials

∂s : Ep,s−1
s

(
E(Zr)×Zr G

(
Sd−1, r

))
−→ Ep+s,0s

(
E(Zr)×Zr G

(
Sd−1, r

))
vanish for p ≥ 0 and 2 ≤ s ≤ (r − 1)(d− 2).

Combining the previous fact about the Serre spectral sequence E∗,∗∗
(
E(Zr)×Zr G

(
Sd−1, r

))
with the observation that Ep,q∞

(
E(Zr)×Zr G

(
Sd−1, r

))
= 0 for all p+ q ≥ r(d− 1), we have that

for some s ≥ (r − 1)(d− 2) + 1 the differential

∂s : Ep,s−1
s

(
E(Zr)×Zr G

(
Sd−1, r

))
−→ Ep+s,0s

(
E(Zr)×Zr G

(
Sd−1, r

))
does not vanish. In particular,

Ep,0∞
(
E(Zr)×Zr G

(
Sd−1, r

))
= 0

for all p ≥ r(d− 1).
Now the properties of the Serre spectral sequence E∗,∗∗

(
E(Zr) ×Zr G

(
Sd−1, r

))
, derived so

far, will be used to completely compute it. The computation proceeds in two separate steps,
depending on the parity of d.
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3.2.1 d is an even integer, d ≥ 4

The Serre spectral sequence E∗,∗∗
(
E(Zr) ×Zr G

(
Sd−1, r

))
has a multiplicative structure, and

differentials satisfy the Leibniz rule. Thus, to compute the spectral sequence completely it
suffices to determine values of the differentials only on the generators of the cohomology ring
of the fiber. In this particular case, we need to evaluate the differentials on the elements
1⊗ α, 1⊗ β1, . . . , 1⊗ βr−1. It is important to notice that

(1⊗ β1)i = 1⊗ βi1 = ai · (1⊗ βi)

for 1 ≤ i ≤ r − 1 and some ai ∈ Fr\{0}.

(r − 1)(d− 2) + 1

(r − 2)(d− 2) + 1

(r − 2)(d− 2)

d− 1

d− 2

0 1⊗ 1

1⊗ β1

1⊗ α

1⊗ βr−2

1⊗ αβr−3

1⊗ αβr−2

0 21

t⊗ 1 t2 ⊗ 1

t⊗ β1 t2 ⊗ β1

t⊗ α t2 ⊗ α

t⊗ αβr−3 t2 ⊗ αβr−3

t⊗ βr−2 t2 ⊗ βr−2

t⊗ αβr−2 t2 ⊗ αβr−2

∂2

∂2

Figure 7. For d ≥ 4 even the E2-term with differentials of the Serre spectral sequence (3.3).

Consider the differential ∂2. The degrees of the cohomology generators β1, . . . , βr−1 are
(d − 2), . . . , (r − 2)(d − 2), respectively. Since H i

(
G
(
Sd−1, r

)
;Fr
)

= 0 vanishes for all i ∈
{(d− 2)− 1, . . . , (r − 2)(d− 2)− 1}, one has

∂2(1⊗ β1) = ∂2(1⊗ β2) = · · · = ∂2(1⊗ βr−1) = 0. (3.7)

Thus, to completely determine the second differential we need to find the value

∂2(1⊗ α) ∈ E2,d−2
2

(
E(Zr)×Zr G

(
Sd−1, r

))
.

Let us assume that ∂2(1 ⊗ α) = 0. Then, due to the multiplicative property of the Serre
spectral sequence, we have that the second differential ∂2 vanishes, implying that

E∗,∗2

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= E∗,∗3

(
E(Zr)×Zr G

(
Sd−1, r

))
.

The vanishing of cohomology groups H∗
(

G
(
Sd−1, r

)
;Fr
)

in appropriate dimensions implies that
the next possible non-zero differential is ∂d−1. More precisely, ∂d−1(1 ⊗ β1) might be non-zero
while we know that ∂d−1(1 ⊗ α) = 0. Since d − 1 ≤ (r − 1)(d − 2), using Corollary 3.8, we get
that ∂d−1(1⊗ β1) = 0, and consequently the differential ∂d−1 vanishes. For the next differential
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we know that ∂d(1 ⊗ β1) = 0, and since d ≤ (r − 1)(d − 2) from Corollary 3.8, we have that
∂d(1⊗ α) = 0. Hence, the differential ∂d also vanishes. In particular this means that

E∗,∗2

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= · · · ∼= E∗,∗d+1

(
E(Zr)×Zr G

(
Sd−1, r

))
.

Since for s ≥ d+ 1 all differentials ∂s(1⊗β1) and ∂s(1⊗α) are zero, the multiplicative property
of the Serre spectral sequence implies that all the differentials ∂s vanish. Thus

E∗,∗2

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= E∗,∗∞
(
E(Zr)×Zr G

(
Sd−1, r

))
.

This is a contradiction to the fact, observed after Corollary 3.8, that at least one of the differ-
entials

∂s : Ep,s−1
s

(
E(Zr)×Zr G

(
Sd−1, r

))
−→ Ep+s,0s

(
E(Zr)×Zr G

(
Sd−1, r

))
,

for s ≥ (r − 1)(d− 2) + 1, does not vanish. Therefore, ∂2(1⊗ α) 6= 0.
Set ∂2(1⊗ α) = a · (t⊗ β1) where a ∈ Fr\{0}; for illustration see Fig. 7. The multiplicative

property of the Serre spectral sequence, combined with (3.7), yields that

∂2(1⊗ αβi) = ∂2((1⊗ α)(1⊗ βi)) = ∂2(1⊗ α)(1⊗ βi) + (−1)d−1(1⊗ α)∂2(1⊗ βi)
= ∂2(1⊗ α)(1⊗ βi) = a · (t⊗ β1)(1⊗ βi)

=


(
a

(i+ 1)!

i!1!

)
· (t⊗ βi+1), 1 ≤ i ≤ r − 3,

0, i = r − 2.

(r − 1)(d− 2) + 1

(r − 2)(d− 2) + 1

(r − 2)(d− 2)

d− 1

d− 2

0 1⊗ 1

1⊗ β1

1⊗ βr−2

1⊗ αβr−2

0 21

t⊗ 1 t2 ⊗ 1

t⊗ β1

t⊗ βr−2

t⊗ αβr−2 t2 ⊗ αβr−2

Figure 8. For d ≥ 4 even the E3-term of the Serre spectral sequence (3.3).

Thus the E3-term, illustrated in Fig. 8, is given by

Ep,q3

(
E(Zr)×Zr G

(
Sd−1, r

))
∼=


Hp(Zr;Fr), q ∈ {0, (r − 1)(d− 2) + 1},
Fr, p ∈ {0, 1}, q ∈ {(d− 2), . . . , (r − 2)(d− 2)},
0, otherwise.
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Moreover the multiplicative property of the Serre spectral sequence implies that all the differ-
entials ∂3, . . . , ∂(r−1)(d−2)+1 vanish. Therefore

E∗,∗3

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= · · · ∼= E∗,∗(r−1)(d−2)+2

(
E(Zr)×Zr G

(
Sd−1, r

))
.

The differential ∂(r−1)(d−2)+2 is the only remaining differential that can be non-zero. Since

Ep,02

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= · · · ∼= Ep,0(r−1)(d−2)+2

(
E(Zr)×Zr G

(
Sd−1, r

))
,

and we know that

Ep,02

(
E(Zr)×Zr G

(
Sd−1, r

))
6= 0 = Ep,0∞

(
E(Zr)×Zr G

(
Sd−1, r

))
for all p ≥ r(d − 1), we conclude that ∂(r−1)(d−2)+2 6= 0. The multiplicative property of the
Serre spectral sequence again yields that ∂(r−1)(d−2)+2 is completely determined by its image at
1⊗ αβr−2, which has to be non-zero. Set

∂(r−1)(d−2)+2(1⊗ αβr−2) = b ·
(
t
(r−1)(d−2)+2

2 ⊗ 1
)

for some b ∈ Fr\{0}, as illustrated in Fig. 9. Consequently, the differentials

∂(r−1)(d−2)+2 : Ep,(r−1)(d−2)+1
s

(
E(Zr)×Zr G

(
Sd−1, r

))
−→ Ep+(r−1)(d−2)+2,0

s

(
E(Zr)×Zr G

(
Sd−1, r

))
are isomorphisms for all p ≥ 0.

(r − 1)(d− 2) + 1

(r − 2)(d− 2) + 1

(r − 2)(d− 2)

d− 1

d− 2

0 1⊗ 1

1⊗ β1

1⊗ βr−2

1⊗ αβr−2

0 21

t⊗ 1 t2 ⊗ 1

t⊗ β1

t⊗ βr−2

t⊗ αβr−2 t2 ⊗ αβr−2

t
(r−1)(d−2)+2

2 ⊗ 1

∂(r−1)(d−2)+2

(r − 1)(d− 2) + 2

Figure 9. For d ≥ 4 even the differential ∂(r−1)(d−2)+2 of the Serre spectral sequence (3.3).

Hence, the E∞-term is given by

Ep,q∞
(
E(Zr)×Zr G

(
Sd−1, r

))
∼=


Hp(Zr;Fr), q = 0, 0 ≤ p ≤ (r − 1)(d− 2) + 1,

Fr, p ∈ {0, 1}, q ∈ {(d− 2), . . . , (r − 2)(d− 2)},
0, otherwise,

(3.8)
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and illustrated in Fig. 10. Moreover, we have obtained that the map π∗G induced by the projection
map of the fibration (3.2) in cohomology

π∗G : Hp(Zr;Fr) −→ Hp
(
E(Zr)×Zr G

(
Sd−1, r

)
;Fr
)

(3.9)

is an injection for 0 ≤ p ≤ (r − 1)(d− 2) + 1.

(r − 1)(d− 2) + 1

(r − 2)(d− 2) + 1

(r − 2)(d− 2)

d− 1

d− 2

0 1⊗ 1

1⊗ β1

1⊗ βr−2

0 21

t⊗ 1 t2 ⊗ 1

t⊗ β1

t⊗ βr−2

(r − 1)(d− 2) + 1

Figure 10. For d ≥ 4 even the E∞-term of the Serre spectral sequence (3.3).

3.2.2 d is an odd integer, d ≥ 3

The Serre spectral sequence E∗,∗∗
(
E(Zr)×Zr G

(
Sd−1, r

))
has a multiplicative structure. Hence,

to compute it completely, we will determine values of the differentials on the generators of the
cohomology ring of the fiber. In this particular case, we need to evaluate the differentials on the
elements γ, δ1, . . . , δ r−3

2
. Observe that

(1⊗ δ1)i = 1⊗ δi1 = ai · (1⊗ δi)

for 1 ≤ i ≤ r−3
2 and some ai ∈ Fr\{0}.

Similarly to Section 3.2.1, we consider first the values of the differential ∂2 on the generators.
Since the generator δ1 is of degree 2 and H1

(
G
(
Sd−1, r

)
;Fr
)

= 0 we have that ∂2(1⊗ δ1) = 0.
Further, the Leibniz rule implies that

∂2(1⊗ δi) = ai · ∂2

(
(1⊗ δ1)i

)
= (iai) · ∂2(1⊗ δ1) = 0

for 1 ≤ i ≤ r−3
2 and some ai ∈ Fr\{0}. Thus, in order to determine the second differential ∂2,

we need to determine

∂2(1⊗ γ) ∈ E2,2(d−2)
2

(
E(Zr)×Zr G

(
Sd−1, r

))
.

Assume that ∂2(1⊗ γ) = 0. Then the multiplicative property of the Serre spectral sequence
implies that the second differential ∂2 gives

E∗,∗2

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= E∗,∗3

(
E(Zr)×Zr G

(
Sd−1, r

))
.
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The vanishing of cohomology groups H∗
(

G
(
Sd−1, r

)
;Fr
)

in appropriate dimensions implies that
the next possible non-zero differential is ∂2(d−2)+1. More precisely, ∂2(d−2)+1(1⊗δ1) might be non-
zero, while we know that ∂2(d−2)+1(1⊗γ) = 0. Since 2(d−2)+1 ≤ (r−1)(d−2) from Corollary 3.8,
we have that ∂2(d−2)+1(1 ⊗ δ1) = 0. Consequently, the differential ∂2(d−2)+1 vanishes. About
the next differential we know that ∂2(d−2)+2(1 ⊗ δ1) = 0. Since 2(d − 2) + 2 ≤ (r − 1)(d − 2),
again Corollary 3.8 implies that ∂2(d−2)+2(1⊗ γ) = 0. Therefore, the differential ∂2(d−2)+2 also
vanishes. This means that

E∗,∗2

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= · · · ∼= E∗,∗2(d−2)+3

(
E(Zr)×Zr G

(
Sd−1, r

))
.

For s ≥ 2(d− 2) + 3, all differentials ∂s(1⊗ δ1) and ∂s(1⊗ γ) are zero. Hence, the multiplicative
property of the Serre spectral sequence implies that, for s ≥ 2(d− 2) + 3, all the differentials ∂s
vanish. Thus

E∗,∗2

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= E∗,∗∞
(
E(Zr)×Zr G

(
Sd−1, r

))
,

which is a contradiction to the fact, observed after Corollary 3.8, that at least one of the
differentials

∂s : Ep,s−1
s

(
E(Zr)×Zr G

(
Sd−1, r

))
−→ Ep+s,0s

(
E(Zr)×Zr G

(
Sd−1, r

))
,

for s ≥ (r − 1)(d− 2) + 1, does not vanish. Hence, ∂2(1⊗ γ) 6= 0.
Now set ∂2(1⊗ γ) = a · (t⊗ δ1) where a ∈ Fr\{0}. The multiplicative property yields

∂2(1⊗ γδi) = ∂2((1⊗ γ)(1⊗ δi)) = ∂2(1⊗ γ)(1⊗ δi) + (−1)d−1(1⊗ γ)∂2(1⊗ δi)
= ∂2(1⊗ γ)(1⊗ δi) = a · (t⊗ γ1)(1⊗ γi)

=

{(
a (i+1)!

i!1!

)
· (t⊗ γi+1), 1 ≤ i ≤ r−3

2 ,

0, i = r − 2.

Consequently, the E3-term is

Ep,q3

(
E(Zr)×Zr G

(
Sd−1, r

))
∼=


Hp(Zr;Fr), q ∈ {0, (r − 1)(d− 2) + 1},
Fr, p ∈ {0, 1}, q ∈

{
2(d− 2), . . . , (r−3)

2 2(d− 2)
}
,

0, otherwise.

Further, the multiplicative property implies that all the differentials ∂3, . . . , ∂(r−1)(d−2)+1 vanish.
Thus,

E∗,∗3

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= · · · ∼= E∗,∗(r−1)(d−2)+2

(
E(Zr)×Zr G

(
Sd−1, r

))
.

The differential ∂(r−1)(d−2)+2 is the last remaining differential that can be non-zero. Since for
all p

Ep,02

(
E(Zr)×Zr G

(
Sd−1, r

)) ∼= · · · ∼= Ep,0(r−1)(d−2)+2

(
E(Zr)×Zr G

(
Sd−1, r

))
,

and we know that

Ep,02

(
E(Zr)×Zr G

(
Sd−1, r

))
6= 0 = Ep,0∞

(
E(Zr)×Zr G

(
Sd−1, r

))
for p ≥ r(d−1), we have that indeed ∂(r−1)(d−2)+2 6= 0. The multiplicative property again yields
that ∂(r−1)(d−2)+2 is determined by its image at 1⊗ γδ r−3

2
and has to be non-zero. Set

∂(r−1)(d−2)+2

(
1⊗ γδ r−3

2

)
= b ·

(
t
(r−1)(d−2)+2

2 ⊗ 1
)
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for some b ∈ Fr\{0}. Thus, the homomorphisms

∂(r−1)(d−2)+2 : Ep,(r−1)(d−2)+1
s

(
E(Zr)×Zr G

(
Sd−1, r

))
−→ Ep+(r−1)(d−2)+2,0

s

(
E(Zr)×Zr G

(
Sd−1, r

))
are isomorphism for all p ≥ 0. Hence, the E∞-term is given by

Ep,q∞
(
E(Zr)×Zr G

(
Sd−1, r

))
∼=


Hp(Zr;Fr), q = 0, 0 ≤ p ≤ (r − 1)(d− 2) + 1,

Fr, p ∈ {0, 1}, q ∈
{

2(d− 2), . . . , (r−3)
2 2(d− 2)

}
,

0, otherwise.

(3.10)

Furthermore, we have obtained again that the map π∗G, induced by the projection map of the
fibration (3.2) in cohomology

π∗G : Hp(Zr;Fr) −→ Hp
(
E(Zr)×Zr G

(
Sd−1, r

)
;Fr
)
, (3.11)

is an injection for 0 ≤ p ≤ (r − 1)(d− 2) + 1.

3.3 Proof of Theorem 3.1

Recall that for every n ∈ N we have isomorphisms of vector spaces

Hn
(

G
(
Sd−1, r

)
/Zr;Fr

) ∼= Hn
(
E(Zr)×Zr G

(
Sd−1, r

)
;Fr
) ∼= ⊕

p+q=n

Ep,q∞ .

Since Hp(Zr;Fr) = Fr for all p, the relations (3.8) for the case of d ≥ 4 even, and (3.10) for the
case of d ≥ 3 odd, imply the statement of the theorem.

3.4 Proof of Theorem 3.2

In order to use the results of Section 3.2 for a proof of an estimate on the Lusternik–Schnirelmann
category of the unlabeled cyclic configuration space G

(
Sd−1, r

)
/Zr, we first recall some basic

notions and results concerning the Lusternik–Schnirelmann category.
The Lusternik–Schnirelmann category of a topological space X, denoted by cat(X), is the

smallest integer k for which the space X can be covered by k + 1 open subsets U1, U2, . . . , Uk+1

with the property that all inclusions Ui −→ X are nullhomotopic. Some key properties of the
Lusternik–Schnirelmann category that we will use are given in the next lemma, see, e.g., [17].

Lemma 3.9.

(1) If X is homotopy equivalent to Y , then cat(X) = cat(Y ).

(2) If p : X −→ Y is a covering, then cat(X) ≤ cat(Y ).

(3) If X is a (k − 1)-connected CW -complex, then cat(X) ≤ 1
k dim(X).

Let X be a topological space, and let R be a commutative ring with unit. We need the
notion of the category weight of an element u ∈ H∗(X;R). Originally introduced by Fadell
and Husseini [18], we use the homotopy invariant version of this notion due to Rudyak [37] and
Strom [39]. See [17, Section 2.7, p. 62; Section 8.3, p. 240] for details.

In the next lemma we list properties of the category weight that we will use in the proof
of Theorem 3.2. For more details on this lemma consult for example [17, Proposition 8.22,
pp. 242–243, p. 259] and [36, Proposition 2.2(3)].
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Lemma 3.10. Let R be a commutative ring with unit.

(1) If 0 6= u ∈ H`(X;R), then wgt(u) ≤ cat(X).

(2) Let f : X −→ Y be a continuous map, and let u ∈ H`(Y ;R). If 0 6= f∗(u) ∈ H`(X;R),
then wgt(u) ≤ wgt(f∗(u)).

(3) If G is a finite group and 0 6= u ∈ H`(BG;R), then ` = wgt(u).

In the following we combine previously established results to give a proof of Theorem 3.2.
Recall that the group Zr acts freely on the cyclic configuration space G

(
Sd−1, r

)
and consider

the following diagram, which commutes up to a homotopy

E(Zr)×Zr G
(
Sd−1, r

) p //

πG

**
G
(
Sd−1, r

)
/Zr

c //B(Zr), (3.12)

where the map p is induced by the projection on the second factor E(Zr) × G
(
Sd−1, r

)
−→

G
(
Sd−1, r

)
and is a homotopy equivalence, the map πG is the projection in the Borel construction

fibration (3.2) induced by the projection on the first factor E(Zr) × G
(
Sd−1, r

)
−→ E(Zr),

and c is a classifying map associated to the free Zr action on G
(
Sd−1, r

)
. Uniqueness of the

classifying map up to a homotopy implies that the diagram (3.12) commutes up to a homotopy;
for background see for example [1, Section II.1].

Applying the cohomology functor H∗( · ;Fr) to the diagram (3.12), we get the following
diagram of abelian groups that commutes up to an isomorphism

H∗
(
E(Zr)×Zr G

(
Sd−1, r

)
;Fr
)

H∗
(

G
(
Sd−1, r

)
/Zr

)p∗oo H∗(B(Zr);Fr)
c∗oo

π∗
G

rr

∼= H∗(Zr;Fr). (3.13)

Let

u := t
(r−1)(d−2)

2 e ∈ H(r−1)(d−2)+1(Zr;Fr).

Then, according to (3.9) and (3.11), we have that π∗G(u) 6= 0. Consequently, from diagram (3.13),
we get c∗(u) 6= 0. Now Lemma 3.10 yields that

wgt(u) = (r − 1)(d− 2) + 1, wgt(u) ≤ wgt(c∗(u)),

wgt(c∗(u)) ≤ cat
(

G
(
Sd−1, r

)
/Zr

)
.

Hence,

cat
(

G
(
Sd−1, r

)
/Zr

)
≥ (r − 1)(d− 2) + 1,

and the proof of Theorem 3.2 is complete. �

4 Proofs of the main results

According to Section 2.4, the number of Zr-orbits of the critical points of the length func-
tion on the cyclic configuration space G(M, r) is bounded below by the category of the space
G
(
Sd−1, r

)
/Zr (the Lusternik–Schnirelmann theory) or, in general position, by the sum of Betti

numbers of G
(
Sd−1, r

)
/Zr (the Morse theory). Thus item (A) of Theorem 1.2 follows from

Theorem 3.2, and item (B) follows from Theorem 3.1.
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[17] Cornea O., Lupton G., Oprea J., Tanré D., Lusternik–Schnirelmann category, Mathematical Surveys and
Monographs, Vol. 103, Amer. Math. Soc., Providence, RI, 2003,.

[18] Fadell E., Husseini S., Category weight and Steenrod operations, Bol. Soc. Mat. Mexicana 37 (1992), 151–
161.

[19] Fadell E., Husseini S., Geometry and topology of configuration spaces, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2001.

[20] Farber M., Topology of billiard problems. II, Duke Math. J. 115 (2002), 587–621, arXiv:math.AT/0006085.

[21] Farber M., Tabachnikov S., Periodic trajectories in 3-dimensional convex billiards, Manuscripta Math. 108
(2002), 431–437, arXiv:math.DG/0106049.

https://doi.org/10.1007/978-3-662-06280-7
https://doi.org/10.1090/mawrld/026
https://doi.org/10.1215/00127094-2794999
https://arxiv.org/abs/1303.4197
https://doi.org/10.1093/imrn/rns216
https://doi.org/10.1093/imrn/rns216
https://arxiv.org/abs/1111.2353
https://doi.org/10.1070/SM1992v071n01ABEH001273
https://doi.org/10.1142/S0129167X93000029
https://doi.org/10.1007/978-1-4612-1268-3
https://doi.org/10.1007/BF02183641
https://arxiv.org/abs/chao-dyn/9501009
https://doi.org/10.3934/era.2012.19.112
https://doi.org/10.3934/era.2012.19.112
https://arxiv.org/abs/1208.2455
https://doi.org/10.1007/BF02421325
https://doi.org/10.1112/jtopol/jtv002
https://arxiv.org/abs/1207.2852
https://doi.org/10.1090/surv/127
https://doi.org/10.1090/surv/127
https://doi.org/10.1007/BFb0080464
https://doi.org/10.1090/surv/103
https://doi.org/10.1007/978-3-642-56446-8
https://doi.org/10.1215/S0012-7094-02-11536-1
https://arxiv.org/abs/math.AT/0006085
https://doi.org/10.1007/s002290200273
https://arxiv.org/abs/math.DG/0106049


Counting Periodic Trajectories of Finsler Billiards 33

[22] Farber M., Tabachnikov S., Topology of cyclic configuration spaces and periodic trajectories of multi-
dimensional billiards, Topology 41 (2002), 553–589, arXiv:math.DG/9911226.

[23] Fenchel W., On the differential geometry of closed space curves, Bull. Amer. Math. Soc. 57 (1951), 44–54.

[24] Fomenko A., Fuchs D., Homotopical topology, 2nd ed., Graduate Texts in Mathematics, Vol. 273, Springer,
Cham, 2016.

[25] Franks J., Geodesics on S2 and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992),
403–418.

[26] Gutkin B., Hyperbolic magnetic billiards on surfaces of constant curvature, Comm. Math. Phys. 217 (2001),
33–53, arXiv:nlin.CD/0003033.

[27] Gutkin E., Tabachnikov S., Billiards in Finsler and Minkowski geometries, J. Geom. Phys. 40 (2002), 277–
301.

[28] Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002.

[29] Karasev R.N., Periodic billiard trajectories in smooth convex bodies, Geom. Funct. Anal. 19 (2009), 423–
428, arXiv:0905.1761.

[30] Katok A.B., Ergodic perturbations of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR
Ser. Mat. 37 (1973), 539–576.

[31] Kozlov V.V., Treshchev D.V., Billiards. A genetic introduction to the dynamics of systems with impacts,
Translations of Mathematical Monographs, Vol. 89, Amer. Math. Soc., Providence, RI, 1991.

[32] Laudenbach F., A Morse complex on manifolds with boundary, Geom. Dedicata 153 (2011), 47–57,
arXiv:1003.5077.

[33] Mazzucchelli M., On the multiplicity of non-iterated periodic billiard trajectories, Pacific J. Math. 252
(2011), 181–205, arXiv:1012.5593.

[34] McCleary J., A user’s guide to spectral sequences, 2nd ed., Cambridge Studies in Advanced Mathematics,
Vol. 58, Cambridge University Press, Cambridge, 2001.

[35] Robnik M., Berry M.V., Classical billiards in magnetic fields, J. Phys. A: Math. Gen. 18 (1985), 1361–1378.

[36] Roth F., On the category of Euclidean configuration spaces and associated fibrations, in Groups, Homotopy
and Configuration Spaces, Geom. Topol. Monogr., Vol. 13, Geom. Topol. Publ., Coventry, 2008, 447–461,
arXiv:0904.1013.

[37] Rudyak Yu.B., On category weight and its applications, Topology 38 (1999), 37–55.

[38] Shen Y.-B., Shen Z., Introduction to modern Finsler geometry, World Scientific Publishing Co., Singapore,
2016.

[39] Strom J.A., Category weight and essential category weight, Ph.D. Thesis, The University of Wisconsin,
USA, 1997.

[40] Tabachnikov S., Billiards, Panor. Synth. 1 (1995), vi+142 pages.

[41] Tabachnikov S., Remarks on magnetic flows and magnetic billiards, Finsler metrics and a magnetic analog
of Hilbert’s fourth problem, in Modern Dynamical Systems and Applications, Cambridge University Press,
Cambridge, 2004, 233–250, arXiv:math.DG/0302288.

[42] Tabachnikov S., Geometry and billiards, Student Mathematical Library, Vol. 30, Amer. Math. Soc., Provi-
dence, RI, 2005.
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