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Abstract. In this paper, we provide a conceptual new construction of the algebraic struc-
ture on the pair of the Hochschild cohomology spectrum (cochain complex) and Hochschild
homology spectrum, which is analogous to the structure of calculus on a manifold. This alge-
braic structure is encoded by a two-colored operad introduced by Kontsevich and Soibelman.
We prove that for a stable idempotent-complete infinity-category, the pair of its Hochschild
cohomology and homology spectra naturally admits the structure of algebra over the operad.
Moreover, we prove a generalization to the equivariant context.
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1 Introduction

Let M be a smooth real manifold. Let Ty, = @50 A\PTy and Q3 = @5 2], denote the
graded vector space of multivector fields and differential forms on M, respectively. By conven-
tion, T]’\)/[ = APT; has homological degree —p while Q?M has homological degree ¢q: we adopt the
reverse grading. There are several algebraic structures on the pair (T, €3,). The graded vec-
tor space Ty, has a graded commutative (associative) product given by A. Further, the shifted
graded vector space T]le inherits the structure of a graded Lie algebra defined by the Schouten—
Nijenhuis bracket [—, —]. On the other hand, Q}, has the de Rham differential dpr (we do not
consider the obvious graded commutative algebra structure on 23, because it is irrelevant to the
noncommutative context). Since Q?M is the dual vector space of T’ ]‘\IJ, the contraction morphisms
T, @ Q1 — Q1,7 give rise to a (T, A)-module structure on Q3

it (T3, A) ® Qy — Oy,

where we regard (T3;,A\) as the graded algebra determined by A. The Lie derivative on M

defines a Lie algebra action of (Tjjl, [—,—]) on Q3;:

I (T = —]) ® Q3 — QY
The tuple (A, [—, —],dpRr,%,!) constitutes fundamental calculus operations on the manifold M.
These operations are subject under certain relations such as d]%R = 0, the Cartan homo-

topy/magic formula, the compatibility between the Lie algebra action [ and the de Rham
differential dpr, and so on. If X is a smooth algebraic variety over a field of characteristic
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zero, the pair (7T¢,Q%) of sheaves of multivector fields (given by the exterior products of the
tangent sheaf) and differential forms admit such an algebraic structure of calculus.

Let us shift our interest to noncommutative algebraic geometry in which stable co-categories,
(pretriangulated) differential graded (dg) categories or the likes play the roles of fundamental
geometric objects. From the Hochschild-Kostant-Rosenberg theorem, an analogue of (7y, %)
is the Hochschild pair, that is, the pair of Hochschild cohomology (cochain complex) and Hoch-
schild homology (chain complex). In [23, Section 11.2], Kontsevich and Soibelman introduced
a two-colored topological operad which we shall refer to as the Kontsevich—Soibelman operad
and denote here by KS. It can be used to encode all the structures on the Hochschild pair,
which are analogous to the structure of calculus. The operad KS generalizes the little 2-disks
(cubes) operad, i.e., the Eg-operad. It contains two colors, D and Cjy, such that the full
suboperad spanned by the color D is the Ey-operad. In [11], it was shown that a combinatorial dg
operad KScomh, Which is a certain dg version of KS, acts on the pair of the Hochschild cochain
complex and the Hochschild chain complex of an associative algebra (As-sense), and in [16]
an algebraic structure on the Hochschild pair over KS was constructed for a ring spectrum
by means of the Swiss-cheese operad conjecture [34].

In this paper, we provide a conceptual new construction of the structure of an algebra over
KS that yields the following result (see Theorem 7.14):

Theorem 1.1. Let R be a commutative ring spectrum. Let C be a small R-linear stable ind-
empotent-complete co-category. Let HH®(C) be the Hochschild cohomology R-module spectrum
and HHe(C) the Hochschild homology R-module spectrum. Then the pair (HH®(C), HHe(C))
1s promoted to an algebra over KS, namely, it is a KS-algebra in the co-category of R-module
spectra Modg.

The structure of the KS-algebra on (HH®*(C), HH«(C)) in Theorem 1.1 induces the action
morphism u: HH®*(C) @ HHe(C) — HHe(C), which is a counterpart to i in the aforementioned
tuple. In the classical differential graded algebraic situation, we further prove that u can be
described by means of well-known algebraic constructions. Thus, u can be considered a non-
commutative contraction morphism, see Section 8, Theorem 8.2 and Proposition 8.8. In other
words, the underlying morphism given by actions is an expected one. By considering Cartan’s
homotopy formula built in KS, an analogue L: HH*(C)[l] ® HHe(C) — HHe(C) of the Lie
derivative map [ is also an expected morphism, cf. Remark 8.10.

In Section 2, we briefly describe the idea and approach of our construction, which is based
on a simple observation. To achieve this, we prove the following (see Corollary 4.21 for details):

Theorem 1.2. Let M® be a symmetric monoidal co-category such that it admits small colimits
and the tensor product functor ®: M x M — M preserves small colimits separately in each
variable. (The typical examples of M® we should keep in mind are the co-category of spectra,
and the derived co-category of vector spaces.)

Let Fun (BSl, /\/l) be the functor category from the classifying space BS' of the circle S to M,
which inherits a pointwise symmetric monoidal structure from the structure on M®. Namely,
an object of Fun (BSl,M) can be viewed as an object M of M equipped with an S'-action. Let
Alggg(M) be the oo-category of KS-algebras in M. Let Algg,(M) be the oo-category of Eao-
algebras (i.e., algebras over the little 2-disks operad) in M. Similarly, Alga (Fun (BSI,M))
denotes the oo-category of associative algebras (Ej-algebras) in Fun (BSl,M). We denote
by LMod (Fun (BSI, M)) the oo-category of pairs (A, M) such that A € Alg,q (Fun (BSI, M))
and M is a left A-module object in Fun (BSl, /\/l)

Then there exists a canonical equivalence of co-categories

Alggs(M) ~ Algg, (M) X alg,_(Fun(Bs!,m)) LMod (Fun (BS', M)).
See Section 4 for the definition of the fiber product on the right-hand side.
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This result means that Algg, (M), Algy, (Fun (BS*, M)) and LMod ( Fun (BS*, M)) form
building blocks for KS-algebras. This allows us to describe the structure of a KS-algebra
as a collection of more elementary algebraic data involving associative algebras, left modules,
circle actions, and Es-algebras. As for Es-algebras, thanks to Dunn additivity theorem for
oo-operads proved by Lurie [25], a canonical equivalence Algg, (M) ~ Alg, (Alga,(M)) exists.
While we make use of Theorem 1.2 in the construction process, it would be generally useful in
the theory of KS-algebras since the notion of KS-algebras is complicated as is. For example,
when M is the derived oo-category D(k) of vector spaces over a field k of characteristic zero,
i.e., in the differential graded context, there is a quite elementary interpretation. One may
take Fun (BSI,D(k:)) to be the oo-category obtained from the category of mixed complexes
in the sense of Kassel (see, e.g., [24]) by localizing quasi-isomorphisms. Therefore, an object
of Alga, (Fun (BS!, D(k))) may be regarded as an associative algebra in the monoidal (co-)ca-
tegory of mixed complexes. Objects of LMod (Fun (BS L D(k))) can be described in a similar
way. Moreover, dg Eq-operad is formal in characteristic zero.

As we will describe in the following section, our method consists of only natural procedures.
In particular, by contrast with previous work, it does not involve/use complicated resolutions
of operads or genuine chain complexes. Thus, we hope that our proposed approach can be
applicable to other settings and generalizations such as (oo, n)-categories. Indeed, the method
allows us to prove an equivariant generalization of Theorem 1.1 (see Theorem 9.1):

Theorem 1.3. Let G be a group object in the oco-category S of spaces, that is, a group-like
E1-space. Let C be a small R-linear stable idempotent-complete oco-category. Suppose that G
acts on C (namely, it gives a left action). Then (HH®(C), HHe(C)) is promoted to a KS-algebra
in Fun(BG,Modg). Namely, (HH®*(C), HHe(C)) is a KS-algebra in Modpg, which comes equip-
ped with a left action of G.

We would like to invite the reader’s attention to the noteworthy features of our method:

e Our construction of the structure of an algebra on the Hochschild pair over KS starts with
an R-linear stable co-category C. Consequently, if we have an equivalence C ~ C’, we have
a canonical equivalence (HH®*(C), HHo(C)) =~ (HH*(C'), HH4(C')) as algebras over KS
(see Remark 9.4). Consider the situation that the associative algebra A and A’ in the
oo-category of R-modules have the equivalent module category LMod4 and LMod 4/, that
is, A and A’ are (derived) Morita equivalent to one another. Here LMody and LMod 4/
denote the oo-categories of left A-module spectra and left A’-module spectra, respectively
(cf. Section 3). Then LMod4 ~ LMod 4/ induces the canonical equivalence of Hochschild
pairs as algebras over KS. In other words, our method provides a natural Morita invariant
structure. This invariance has a fundamental importance in noncommutative geometry and
is reasonable to expect, whereas the Morita invariant property of algebra structures in [11]
and [16] remains an open problem. We would like to mention a recent work [1] in which
the authors prove the Morita invariance of the calculus structure at the level of graded
vector spaces of homology.

e The base ring can be any commutative ring spectrum. Note that it is not possible to use
the dg operad KScomp in the generalization to the “spectral” setting.

e As stated Theorem 1.3, our functorial method allows us to generalize to equivariant situa-
tions. The oco-categories with group actions naturally appear in future applications (see be-
low).

e Asrevealed the outline in Section 2, our construction works well not with algebras but with
oo-categories. Thus, even when one is ultimately interested in algebras, it is important
to consider the co-category of their modules.
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We would like to view our results from the perspective of noncommutative algebraic geome-
try. As mentioned above, the notion of KS-algebra structures is a counterpart to the calculus
on manifolds. Thus, KS-algebras are central objects in “noncommutative calculus”. We refer
the reader to [12] and references therein for this point of view.

Recall the algebro-geometric interpretations of the Hochschild cohomology HH®(C) and Hoch-
schild homology HH.(C) for stable co-categories C or dg categories (somewhat more precisely,
we assume that they are “linear” over a field of characteristic zero). The Eg-algebra HH*(C)
governs the deformations theory of the stable co-category C in the derived geometric formula-
tion. The Hochschild homology HH(C) (more precisely, the Hochschild chain complex) inherits
an Sl-action that corresponds to the Connes operator. Then HH,.(C) with Sl-action gives
rise to an analogue of the Hodge filtration: the pair of the negative cyclic homology and
the periodic cyclic homology can be thought of as such a structure. (These algebraic struc-
tures are contained in the KS-algebra (HH®(C),HHe(C)).) As revealed in [20] in the case
of associative (dg) algebras A, the action of HH®*(A) on HH4(A) encoded by the KS-algebra
structure at the operadic level is a key algebraic datum that describes variations of the (ana-
logue of) Hodge filtration along noncommutative (curved) deformations. Namely, the period
map for noncommutative deformations (of an associative algebra) is controlled by the KS-
algebra of the Hochschild cohomology and Hochschild homology. Therefore, the KS-algebra
(HH®(C), HH4(C)) will provide a crucial algebraic input for the theory of period maps for de-
formations of the stable co-category C. The significance of the generalization to the equivariant
context (Theorem 1.3) will be seen when one comes to consider fruitful examples. The moti-
vations partly come from mirror symmetry. For example, stable oo-categories endowed with
Sl-actions or some algebraic actions, that are interesting from the viewpoint of S'-equivariant
deformation theory, naturally appear from Landau—Ginzburg models in the context of matrix
factorizations. Its equivariant deformations together with the associated Hodge structure should
provide a categorification of the theory of Landau—Ginzburg models. As a second example,
if X is a sufficiently nice algebraic stack (more generally, a derived stack), one can consider
the derived free loop space LX = Map (Sl,X) of X (see, e.g., [5]). The stable co-category
Perf(LX) of perfect complexes on LX comes equipped with the natural S'-action. Finally,
we would also like to mention that main results in this paper form the basis for our recent
work [19].

2 Strategy and organization

The purpose of this section is to outline the strategy of a construction of a KS-algebra structure
on the pair of Hochschild cohomology and Hochschild homology and to give the brief organization
of this paper. This section is something like the second part of introduction. We hope that the
following outline will be helpful in understanding the content of the sequel. However, this section
is independent with the rest of this paper so that the reader can skip it.

2.1. We will give an outline of the construction. Let C be a small stable co-category. If C
is not idempotent-complete, we replace C by its idempotent-completion: we assume that C
is idempotent-complete. While we work with stable oco-categories over a commutative ring
spectrum R in the paper, for simplicity we here work with plain stable idempotent-complete
oo-categories (equivalently, we assume that R is the sphere spectrum). We let D = Ind(C)
denote the Ind-category that is a compactly generated stable oco-category. The oo-category D
is also equivalent to the functor category Fun®* (COp,Sp) of exact functors, where Sp is the
stable co-category of spectra.

Let Fun®(D, D) be the functor category from D to itself that consists of those functors which
preserve small colimits. This functor category is a compactly generated stable oo-category
and inherits an associative monoidal structure given by the composition of functors. We de-
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note by £nd(D)® the presentable stable co-category Fun(D, D) endowed with the (associative)
monoidal structure.

Let Alga.(Sp) denote the oo-category of associative ring spectra. Given A € Alg,.(Sp), we
define RMod4 to be the oco-category of right A-module spectra. Let us regard A as a right
A-module in an obvious way. Then there is an essentially unique colimit-preserving functor
pa: Sp — RMody which sends the sphere spectrum S in Sp to A. Let PrIgt be the co-category
of presentable stable co-categories in which morphisms are colimit-preserving functors. The assi-
gnment A — {p4: Sp — RMody} induces I: Alg,(Sp) — (Prlgt)sp/. The right adjoint
E: (PrISJt )Sp/ — Alga4(Sp) of I carries p: Sp — P in (Plr]SJt )Sp/ to the endomorphism (associa-
tive) algebra Endp(P), where P is the image p(S). Note that Alg,.(Sp) has a natural symmetric
monoidal structure whose tensor product is induced by the tensor product A ® B in Sp. The
oo-category PrIS“t also admits an appropriate symmetric monoidal structure in which Sp is a unit
object, and I: Algs.(Sp) — (Prlgt)sp ) can be promoted to a symmetric monoidal functor.

Applying Alga(—) to I: Alga.(Sp) = (Pré‘t) : B, we obtain

Sp/
I: Algg, (Sp) = Algs(Alga.(Sp)) = Algys ((Prsy)g, ) = Algac (Pr, ) : E,

where Algg, (Sp) is the oo-category of Eg-algebras, and Algg,(Sp) ~ Alga(Alga(Sp)) and
the left equivalence follows from Dunn additivity theorem. Here we abuse notation by writing I
and E for the induced functors. Let us regard Algy (P]rISJt ) as the oco-category of monoidal pre-
sentable stable co-categories. The left adjoint sends an Es-algebra A to the associative monoidal
oo-category RMod% The right adjoint carries a monoidal presentable stable co-category M®
to the endomorphism spectrum End (1) of the unit object 14, endowed with an Eq-algebra
structure.

We define Hochschild cohomology spectrum HH®*(C) = HH*(D) as E(End(D)®) € Algg, (Sp).
The underlying associative algebra HH*®(C) is the endomorphism algebra of the identity functor
D — D in Fun®(D, D).

Consider the counit map of the adjunction:

RMod$,

HH® (D) — 5nd(D)®,

which is a monoidal functor. Since End(D)® naturally acts on D, it gives rise to an action

® .
of RMOdHH‘(D) on D:
End(D)® ~D = RMody,,. >y~ D.
In other words, D is a left RMod%H. (D)—module object in Pr]§t. Let RPerf%H. © C RMod%H. (D)

be the monoidal full subcategory that consists of compact objects. By the restrictions, it gives
rise to a left RPerf%H.(c)—module object C:

RPerf?

HH @) Y C,

in the co-category St of small stable idempotent-complete oo-categories in which morphisms are
exact functors (St also admits a suitable symmetric monoidal structure). Informally, we think
of it as a categorical associative action of HH®(C) on C. This is induced by the adjunction so
that it has an evident universal property.

Construct a functor St — Sp which carries C to the Hochschild homology spectrum H7H4(C).
In the classical differential graded context, Hochschild chain complex comes equipped with the
Connes operator. In our general setting, it is natural to encode such structures by means of circle
actions: Hochschild homology spectrum H#H,(C) is promoted to a spectrum with an S*-action,
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that is, an object of Fun (BS*,Sp ). Thus we configure the assignment C — HH4(C) as a sym-
metric monoidal functor

HHo(—): St® — Fun (BS?, Sp)®,

where Fun (BSl,Sp) inherits a pointwise symmetric monoidal structure from the structure
on Sp.

Applying the symmetric monoidal functor HHe(—) to the left RPerng.(c)—moduIe object C,

we obtain a left HH, (RPerfz e ¢))-module HH,4(C) in Fun (BSY, Sp). Note that HHe(HH®(C))
~ HH, (RPeerHo(c) ) is an associative algebra object in Fun (BSl, Sp). In other words, it is
an associative ring spectrum equipped with an S'-action.

There is a topological operad (co-operad) Cyl (defined in a geometric way). We have a cano-
nical equivalence Algey(Sp) =~ Alga (Fun (BS',Sp)) between co-categories of algebras, where
Algcy1(Sp) is the oo-category of algebras over Cyl. There is another two-colored topological
operad (co-operad) DCyl such that operads EY and Cyl are contained in DCy]l as full subop-
erads: EY € DCyl D Cyl. Let i: E < DCyl denote the inclusion, and let i Algg, (Sp) —
Algpcy1(Sp) be the left adjoint of the forgetful functor i*: Algpey1(Sp) — Algg, (Sp). Consider
the sequence

2 forge
Algg, (Sp) 5 Algpeyi(Sp) 55 Algey(Sp) = Alg,, (Fun (BS',Sp))

and denote by 41 (HH®(C))c the image of HH®(C) under the composite. We construct a canonical
equivalence ii(HH*(C))c ~ HHo(HH*(C)) in Algy, (Fun (BS!,Sp)).
Assembling the constructions, we obtain a triple

(HH®(C), is(HH®(C))c ~ HHo(HH®*(C)), HH(C)),

where HH®(C) is the ES-algebra, HH4(C) is the left HHo(HH*(C))-module (in Fun (BS!, Sp)).
As mentioned in Theorem 1.2, we prove that the triple exactly amounts to a KS-algebra
(HH®(C),HHa(C)), that is, the structure of an algebra over the Kontsevich-Soibelman operad
KS on the pair (HH*(C), HH+(C)). This completes the construction.

2.2. This paper is organized as follows: Section 3 collects conventions and some of the
notation that we will use. In Section 4, we discuss algebras over the Kontsevich—Soibelman
operad. The main result of Section 4 is Corollary 4.21 (= Theorem 1.2). Along the way,
we introduce several topological colored operads (co-operads). In Section 5, we give a brief
review of Hochschild cohomology spectra that we will use. In Section 6, we give a construction
of the assignment C — HHe(C) which satisfies the requirements for our goal (partly because
we are not able to find a suitable construction in the literature). The results of this section
will be quite useful for various purposes other than the subject of this paper. In Section 7, we
prove Theorem 7.14 (= Theorem 1.1). Namely, we construct a KS-algebra (HH*(C), HHe(C)).
In Section 8, we study the action morphisms determined by the structure of the KS-algebra
on (HH®*(C), HHe(C)). In Section 9, we give a generalization to an equivariant setting (cf. Theo-
rem 1.3): C is endowed with the action of a group (a group object in the co-category of spaces).

3 Notation and convention

Throughout this paper we use the theory of quasi-categories. We assume that the reader is
familiar with this theory and operads. A quasi-category is a simplicial set which satisfies the weak
Kan condition of Boardman—Vogt. The theory of quasi-categories from the viewpoint of models
of (00, 1)-categories were extensively developed by Joyal and Lurie [21, 25, 27]. Following [27],
we shall refer to quasi-categories as co-categories. Our main references are [25] and [27]. Given
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an ordinary category C, by passing to the nerve N(C), we think of C as the oo-category N(C).
We usually abuse notation by writing C for N(C) even when C should be thought of as a simplicial
set or an oo-category.

We use the theory of co-operads which is thoroughly developed in [25]. The notion of co-ope-
rads gives one of the models of colored operads. Thanks to Hinich [15], there is a comparison
between algebras over differential graded operads and algebras over co-operads in values in chain
complexes. In particular, in characteristic zero, [15] establishes an equivalence between two
notions of algebras, see loc. cit.

Here is a list of some of the conventions and notation that we will use:

e 7Z: the ring of integers, R denotes the set of real numbers which we regard as either
a topological space or a ring.

e A: the category of linearly ordered non-empty finite sets (consisting of [0], [1], ...,
[n] ={0,...,n}, ...).
e A™: the standard n-simplex.

e N: the simplicial nerve functor (cf. [27, Section 1.1.5]).

e S: oo-category of small spaces. We denote by S the oo-category of large spaces (cf. [27,
Section 1.2.16]).

e C~: the largest Kan subcomplex of an co-category C.

e (C°P: the opposite co-category of an oo-category. We also use the superscript “op” to indi-
cate the opposite category for ordinary categories and enriched categories.

e Catoo: the co-category of small co-categories.
e Sp: the stable co-category of spectra.
e Fun(A, B): the function complex for simplicial sets A and B.

e Func(A, B): the simplicial subset of Fun(A, B) classifying maps which are compatible
with given projections A — C and B — C.

e Map(A, B): the largest Kan subcomplex of Fun(A4, B) when A and B are co-categories.

e Map,(C,C"): the mapping space from an object C € C to C' € C, where C is an oco-
category. We usually view it as an object in S (cf. [27, Section 1.2.2]).

e Fin,: the category of pointed finite sets (0),(1),...(n),..., where (n,) = {,1,...,n}
with the base point *. We write I' for N(Fin,). (n)° = (n)\*. Notice that the (nerve of)
Segal’s gamma category is the opposite category of our I'.

o Pt If P is an oc-operad, we write P2 for the subcategory of P spanned by active
morphisms.

e Triv®: the trivial oo-operad [25, Example 2.1.1.20].

e As®: the associative operad [25, Section 4.1.1], we use the notation slightly different
from loc. cit. Informally, an As-algebra (an algebra over As®) is an unital associative
algebra. For a symmetric monoidal co-category C%, we write Alg,.(C) for the co-category
of As-algebra objects. We refer to an object of Alg,.(C) as an associative algebra object
in C®. We refer to a monoidal co-category over As® as an associative monoidal co-category.

e LM®: the oo-operad defined in [25, Definition 4.2.1.7]. An algebra over LM® is a pair
(A, M) such that an unital associative algebra A and a left A-module M. For a symmetric
monoidal co-category C® — T, we write LMod (C®) or LMod(C) for Alg, e (C®).

e E?: the co-operad of little n-cubes. For a symmetric monoidal co-category C%, we write
Algg, (C) for the co-category of E,-algebra objects.
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4 Operads

4.1. We will define several simplicial colored operads which are relevant to us. By a simplicial
colored operad, we mean a colored operad in the symmetric monoidal category of simplicial sets.
A simplicial colored operad is also referred to as a symmetric multicategory enriched over the
category of simplicial sets.

Definition 4.1. Let (0,1) denote the open interval {x € R|0 < z < 1}. For n > 0, let (0,1)
be the n-fold product, i.e., the n-dimensional cube. An open embedding f: (0,1)" — (0,1)
is said to be rectilinear if it is given by

n
n

flxi,... xp) = (121 + b1, ..., anzy + by)

for some real constants 0 < ai,...,a, < 1, 0 < by,...,b, < 1, provided that the formula
defines an embedding. An embedding f: (0,1)" — (0,1)™ is said to be shrinking if it is given
by f(x1,...,zn) = (@121, ..., apxy) for some 0 < ay,...,a, < 1.

Let S' denote the circle R/Z which we regard as a topological space. A continuous map
f:(0,1)" x 81 — (0,1)" x S! is said to be rectilinear (resp. shrinking) if f = (¢,%) such that
¢: (0,1)™ — (0,1)" is rectilinear (resp. shrinking) and ¢: S' — S is given by a rotation

S'=R/Z>zx+—x+rcR/Z=25"

with » € R/Z. In particular, when n = 0, f: S — S! is rectilinear if it is given by a rotation.
Let n > 1. If a continuous map f: (0,1)" — (0,1)"~! x S! is said to be rectilinear if it
factors as (0,1)" % (0,1)"! x R LN (0,1)""! x R/Z, where h is the projection, and g is
given by f(z1,...,2,) = (a121 + b1, ..., anx, + by) for some real constants 0 < ay,...,a, <1,
0<by,...,bp_1 <1, b, € R, provided that the formula defines an open embedding.

Definition 4.2. Let Cyl be a simplicial colored operad defined as follows:

(i) The set of colors of Cyl has a single element, which we will denote by C.

(ii) Let I = (r)° be a finite set and let {C'}; be a set of colors indexed by I. By abuse
of notation, we write C-" for {C'};, where r is the number of elements of I. We remark
that C"" does not mean the coproduct. We define Multcy1({C'} 7, C) = Multcy (CV7, €)
to be the singular simplicial complex of the space

Emb™(((0,1) x $1)"",(0,1) x 1)

of embeddings ((0,1) x Sl)w — (0,1) x ST such that the restriction to each component
(0,1) x St — (0,1) x S* is rectilinear. Here ((0,1) x Sl)ur is the disjoint union of (0,1) x
S1, whose set of connected components is identified with I. The space Embrec(((O, 1) x
Sl)ur, (0,1) x Sl) is endowed with the standard topology, that is, the subspace of the
mapping space with compact-open topology.

(iii) The composition law in Cyl is given by the composition of rectilinear embeddings, and
a unit map is the identity map.

The color C' together with Multcy1({C'}r,C) constitutes a fibrant simplicial colored operad.
By a fibrant simplicial colored operad we mean that every simplicial set Multcy1({C}r, C) is
a Kan complex. Note that the singular simplicial complex of a topological space is a Kan
complex.

Definition 4.3. Let Cyl be a simplicial colored operad defined as follows:
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(i)
(i)

The set of colors of Cyl has two elements denoted by C and Cjy.

Let I = (r)° be a finite set and let {C,Cir}5 be a set of colors indexed by I, which we
think of as a map p: I — {C,Cys}. We also write V™ U CY{P for {C, Cpr}; when p=1(C)
(resp. p~1(Chs)) has m elements (resp. n elements). Let

Emb™ (((0,1) x $1)™™ 1 ((0,1) x $1)™,(0,1) x 8)

denote the space of embeddings ((0,1) x Sl)um L ((0,1) x Sl)un — (0,1) x S* such that
the restriction to each component is rectilinear (the topology is induced by compact-open
topology). We refer to it as the space of rectilinear embeddings. For n > 1, let

Multt; (C*™ U O, Cir)
:= Emb™(((0,1) x ') x p~*(C) U ((0,1) x S*) x p~*(Cm), (0,1) x S*)

be its subspace that consists of those rectilinear embeddings f such that each restriction
to any component in ((0,1) x S1) x p~*(Cy) is (not only rectilinear but also) shrinking.
Here ((0,1) x S') x p~}(C) U ((0,1) x S*) x p~'(Cps) denotes the finite disjoint union
of (0,1) x S! indexed by p~!(C) Up~1(Cys) ~ I, but we distinguish between components
indexed by p~!(C) and those indexed in p~!(C)y) since they play different roles. Notice
that Multg? (CH™ L CY, Chyr) is the empty space for n > 2. We define Multey (cHmu
C47, Car) to be the singular simplicial complex of Multé? (CHmuCyp,Car). When n = 0,

we define MUItcTzl (C'—’m, CM) to be the empty simplicial set.
We set Multg;(CH™, C) = Multgy (CV™, C). If n # 0, Multgy (CV™ U Cff, C) is the
empty set.

The composition law is given by the composition of rectilinear embeddings, and a unit
map is the identity map.

The colors C, Cjs together with simplicial sets of maps constitute a fibrant simplicial colored
operad.

Definition 4.4. Let DCyl be a simplicial colored operad defined as follows:

(i)
(i)

(iii)

The set of colors of DCyl has two elements, which we denoted by D and C.

Let I = (r)° be a finite set and let {D,C} be a set of colors indexed by I, that is, a map
p: I — {D,C}. By abuse of notation we write D' LI C“™ for {D,C}; when p~1(D)
(resp. p~1(C)) has [ elements (resp. m elements). We define Multpcy (D'—’l, D) to be the
singular simplicial complex of the space

Emb™(((0,1)%)™, (0,1)?)

of embeddings from the disjoint union (0,1)? x p~1(D) to (0,1)? such that the restric-
tion to each component is rectilinear, where the space comes equipped with the subspace
topology of the mapping space with compact-open topology.

If m > 1, Multgy; (DY U CY™, D) is the empty set.
We define Multpcy (Dul ueHm ¢ ) to be the singular complex of the space of embeddings
Emb™((0,1)* x p (D) L ((0,1) x S*) x p~(C),(0,1) x S*)

such that the rescriction to a component (0, 1)? is rectilinear, and the restriction to a com-
ponent (0,1) x S* is rectilinear.
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(iv) The composition law and the unit are defined in an obvious way.

The colors D, C together with simplicial sets of maps constitute a fibrant simplicial colored
operad.

Definition 4.5. Let DCyl be a simplicial colored operad defined as follows.

(i) The set of colors of DCyl has three elements, which we denote by D, C, and Cy;.

(ii) Let I = (r)° be a finite set and let {D,C,Ch}1 be a set of colors indexed by I, that
is, a map p: I — {D,C,Cy}. By abuse of notation, we write DY U CY™ L C{» for
{D,C,Cy}; when p~1(D) (resp. p~1(C), p~1(Cpr)) has [ elements (resp. m elements, n
elements). We set Multge; (DY, D) = Multpcy (DY, D). If m+n > 1, Multey (DY U
CY™ L CYr, D) is the empty set.

(iii) We set Multgey (DU CP™, C) = Multpgy (DY U CP™,C). Tfn > 1,
Multge (DY 0 CP™ L G, O)
is the empty set.
(iv) For n # 1, MultW (DUl uCcHmy cyn, C’M) is the empty set. For n = 1,
Multgegr (DY 1 CP™ LU Oy, Cir)
is the singular simplicial complex of the space of embeddings
(0,1)* x p" YD) U ((0,1) x S*) x p"HC) L ((0,1) x S*) x p~'(Camr) — (0,1) x S*

such that the restriction to a component in (0,1)% x p~1(D) is rectilinear, the restriction
to each component in ((0,1) x S') x p~1(C) is rectilinear, and the restriction to ((0,1) x
SY) x p~H(Cum) =~ (0,1) x S* is shrinking. By definition, if I = 0, MultWyl(Cum U
Cuw, CM) = Multc—yl(c*'—'m U Chuy, CM).

(v) The composition law and the unit map are defined in an obvious way.

The colors D, C, C'ys together with simplicial sets of maps constitute a fibrant simplicial colored
operad.

Remark 4.6. There is a commutative diagram of inclusions of simplicial colored operads:

Cyl Cyl
DCyl —— DCyl.

Each inclusion determines a simplicial colored full suboperad.

We obtain an oco-operad from a fibrant simplicial colored operad. We recall the construction
from [25, Notation 2.1.1.22].

Definition 4.7. Let P be a simplicial colored operad. Let P, be the set of colors of P.
We let Pa be a simplicial category defined as follows:

(i) The objects of Pa are maps a: (n)° — P, that is, pairs ((n),(C1,...,Cy)), where
(n) € Fin, and (C4,...,C,) is a finite sequence (a(1),...,a(n)) of colors.
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(ii) Let C = ((n),(Cy,...,Cy)) and C" = ((m),(C],...,C},)) be two objects. The hom
simplicial set Mapp, (C,C’) is given by

IT T Multe ({Cilica () Cl)-

a: (n)—(m) je(m)°

(iii) Composition is determined by the composition laws on Fin, and on P in an obvious way.

There is a canonical simplicial functor PA — Fin, which sends ((n), (C1,...,Cy)) to (n). If P
is fibrant, the map of simplicial nerves P := N(Pa) — N(Fin,) = I' constitutes an oo-operad
(cf. [25, Proposition 2.1.1.27]). We shall refer to N(Pa) — N(Fin,) = I' (or N(Pa)) as the
operadic nerve of P. We shall denote by P, the fiber P xr {(n)} over (n). We usually identify
colors with objects in P yy.

Definition 4.8. We apply the construction in Definiton 4.7 to Cyl, Cyl, DCyl, and DCyl
to obtain oco-operads.

e Let Cyl be the operadic nerve of Cyl.
e Let Cyl be the operadic nerve of Cyl.
e Let DCyl be the operadic nerve of DCyl.
e Let DCyl be the operadic nerve of DCyl.

We now recall Kontsevich-Soibelman operad [23].

Definition 4.9. Let KS be the simplicial colored full suboperad of DCyl which consists of col-
ors D, Cp;. We refer to KS as Kontsevich—Soibelman operad. Let KS be the operadic nerve
of KS (the notation is slightly diffrent from Introduction). We abuse terminology by referring
to it as Kontsevich—Soibelman operad. In a nutshell, KS C DCyl is the maximal simplicial
subcomplex spanned by vertices correponding to those tuples which do not contain the color C.
It is not difficult to check that KS is equivalent to that of [16] or [23, Section 11.2]. In [11],
a version of KS is called the cylinder operad.

Remark 4.10. We note that DCyl has a simplicial full suboperad (D) € DCyl which consists
of the single color D. This operad (D) is a version of the little 2-cube operad (e.g., [25, Defi-
nition 5.1.0.1]). Let ES be the operadic nerve of (D), which we shall refer to as the oo-operad
of little 2-cubes.

Remark 4.11. We have the diagram in Remark 4.6 and inlusions KS C DCyl, (D) c DCyl.
These inclusions determine the following diagram of co-operads:

AN

DCyl Cyl

~_ 7

KS — DCyl.

Let E; be the simplicial operad of little 1-cubes. The definition is similar to the case of little
2-cubes (see, e.g., [25, Proposition 5.1.0.3]). Namely, E; has a single color D, and for a finite
sequence (Dq, ..., D), the simplicial set Multg, (Dlun, D1) is defined to be the singular simplicial
complex of the space Emb"™°((0,1)"", (0,1)) of rectilinear embeddings. The composition law and
the unit are defined in the obvious way. Let E? denote the oo-operad of little 1-cubes, that is,
the operadic nerve of E;.
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Definition 4.12. Let E; be a simplicial colored operad defined as follows.

(i) The set of colors of E; has two elements which we denote by D and M.

(ii) Let I = (r)° be a finite set and let {D;, M} be a set of colors indexed by I, which is
amap p: I — {Dy, M}. We write DY™UM"" for {D1, M} ; when p~1(D;) (vesp. p~*(M))
has m elements (resp. n elements). Let Emb™°((0,1)"™ U (0, 1), (0,1)) be the topological
space of embeddings (0,1)"" LI (0,1) — (0,1) such that the restriction to each component
is rectilinear. We define Multg, (D‘l—'m UM, M ) to be the singular simplicial complex of the
subspace

Emb™((0,1) x p~ ' (D1) L (0,1) x p~ (M), (0,1)) € Emb™((0,1)"™ Ly (0,1), (0, 1)).

The subspace consists of those rectilinear embeddings such that the restriction to (0,1) x
p~ (M) ~ (0,1) is shrinking. If n # 1, Multg, (DY™ L MY, M) is the empty set.

(ii)) We set Multy, (D™, D1) = Multg, (D{™, D1). If m # 0, Multy, (DY™ U MY™, D) is the
empty set.

(iv) The composition law is given by the composition of embeddings, and a unit map is the
identity map.

Let E? be the operadic nerve of E.

Remark 4.13. There is an equivalence from the oco-operad E? to the associative oco-operad
Assoc®, see [25, Definition 4.1.1.3]. Indeed, if f: (0,1)"" — (0,1) is a rectilinear map, then it
determines a linear ordering on the set of connected component g ((O, 1)“”) such that I; > I for
two components 1 and I in (0,1)"" if a < b for any a € f(I;) and any b € f(I2). It gives rise to
a map from Emb**°((0,1)"", (0,1)) to the set of linear ordering on 7o ((0,1)""). It is a homotopy
equivalence so that we have an equivalence EY — Assoc® (for details, see [25, Example 5.1.0.7]).

This equivalence E? 5 Assoc® is extended to an equivalence E? 5 LM® of oo-operads,
where £LM® is the oo-operad (having two colors) which we use to describe pairs of associative
algebras and left modules [25, Definition 4.2.1.7]. Indeed, as above, any map (0,1)"" L (0,1) —
(0,1) in (ii) Definition 4.12 determines a linear ordering on mo((0, 1)~"1J(0, 1)) such that the black
component is the maximal element. It is easy to see that this ordering induces an equivalence
El — LM® which extends Ef = Assoc®

4.2. Following [25], we recall the notion of algebras over an co-operad. Let O — I' be an oco-
operads. Let M® — T be a symmetric monoidal co-category whose underlying co-category is
M = M. An O-algebra in M is a map f: O — M® over I" which preserve inert morphisms,
that is, a map of co-operads. We define Alg, (M®) C Funr ((’), M®) to be the full subcategory
of Funr (O, M®) spanned by O-algebras. We often write Alg, (M) for Alg, (./\/l®) when the
structure on M is clear. We refer to Alg, (M®) as the oo-category of (O-algebra objects in M,
cf. [25, Definition 2.1.3.1]. When O is ', we write CAlg (M®) for Algp (M®).

Let E‘? — I' be the oo-operad of little 1-cubes with the natural projection. Let (BSI)A
be the simplicial category having a single object * and Hom simplicial set Hompg1) A (%),
The simplicial set Hom gg1y, (*,*) is the simplicial complex of S !'= R/Z, and the composition
is induced by the ordinary multiplication S x S* — S'. We denote by BS! the simplicial nerve
of (BSl)A. It can also be regarded as the classifying space of S! in S. Let p: E x BS* - T

be the composite EY x BS? 2 EY — I'. We note that EY x BS? — T is not an oc-operad.
Let M® — T be a symmetric monoidal co-category. Though the above definition of algebra
objects is not applicable to E? x BS' — T, we define AlgE?stl (./\/l®) as follows (cf. [25,
Definition 2.3.3.20]). Let p;: (n) — (1) be the unique inert morphism which sends i € (n)
to 1 € (1). Then AlgE‘?stl (M®) is the full subcategory of Funr (Ef9 X BSl,M®) spanned
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by those maps F': E? x BS! — M® satisfying the condition: If C is an object of E? x BS! lying
over (n), and for 1 <i <n «a;: C — C; is a locally p-coCartesian morphism covering p;: (n) —
(1), then F (o) is an inert morphism in M®. Let A® — BS! be the natural functor which
induces E? — E? x BS'. By the construction of E? x BS', F belongs to AlgE?Xle (M®) if
and only if the composite E? — E? x BS' 5 M® carries any inert morphism in Ei@ lying over
(n) — (1) to an inert morphism in M®. As observed in [25, Remark 2.1.2.9], it is equivalent
to the condition that E? — Ei@ x BS' 5 M® carries any inert morphism in E? to an inert
morphism in M®.

Lemma 4.14. Let M® be a symmetric monoidal co-category whose underlying category we
denote by M. Let Fun (BSl,./\/l) denote the functor category (function complex) which is en-
dowed with the pointwise symmetric monoidal structure induced by that of M®. Namely, the
symmetric monoidal structure on Fun (BSl,M) is given by the projection Fun (BSl,M)® =
Fun (BSl,./\/l®) Xpun(Bst,r) I = I'. Then there is a canonical equivalence of co-categories

Altgo, s (M) = Algg, (Fun (BS", M)°).

Similarly, there is a canonical equivalence Algg . poi (M®) ~ Algg, (Fun (BSI,M)®).
Proof. We prove that there is an isomorphism of simplicial sets

AlgE?stl (M®) ~ Algg, (Fun (BSl,./\/l)).

Observe that the symmetric monoidal co-category Fun (BS I,M)® is defined by the following
universal property: for a simplicial set K, there is a natural bijection of

Homget (K, Fun (BSl, M)®)
with the set of pairs («, ) which makes the diagram commute

|

1 [0

The assignment («,3) — « induces Fun (BS 1,./\/l)® — T'. Therefore, for a simplicial set L,

amap L — Algg, (Fun (BSl,M)®) amounts to a map f: BS! x L x E® — M® over T such
that for any vertex (a,l) in BS! x L and for any inert morphism i in EY, the image f((a,1,17))
is an inert morphism in M® (note also that by construction BS! has a single vertex). Next,
we consider the universal property of AlgEi@X BS! (M®). By the observation before this lemma,

for a simplicial set L, a map L — AlgEi@X BS! (./\/l®) amounts to a map g such that the diagram

M®
/ l
LxEY x BS' —=E? x BS' —T

commutes and for any vertex (/,a) in L x BS! and for any inert morphism i in E?, the image
g((1,4,a)) is an inert morphism in M®. Comparing universal properties of Algg, ( Fun (B St M))
and AlgE? «BS! (M®), we have a canonical isomorphism of simplicial sets Algg, ( Fun (BS L M))

~ AIgE? < BS! (M®). The final assertion also follows from an argument similar to this proof. W
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Construction 4.15. We will define a functor E? x BS' — Cyl over I. To this end, we consider
the following simplicial categories (E1 X BS’l)A and Cyl,. Let (E1 X BSl)A be a simplicial
category defined as follows.

e The objects of (E; x BS?) , are objects (n) in Fin, (which we regard as formal symbols).

e For (n), (m) € (E1xBS') ., the Hom simplicial set Hom g, « pg1), ((n), (m)) is the singular
complex of the space

11 ( [] Emb™e((0,1) x a'(j), (0, 1))) x St
a: (n)—(m) ~1<j<m

e The composition is determined by the composition of embeddings and the multiplication
Stx st — 8t

There is a canoncial projection (E1 x BS 1)
N(Fin,) =T is p: E x BS! - T.

AT Fin,. The simplicial nerve N ((E1 X BSI)A) —

e The objects of Cyl, are objects (n) in Fin, (which we regard as formal symbols).

e For (n),(m) € Cyla, the Hom simplicial set Homgy, ((n), (m)) is the singular simplicial
complex of the space

11 [T Emb™((0,1) x S" x a7'(4),(0,1) x S*).
o (n)y—(m) 1<j<m

The composition is determined by the composition of embeddings.

Passing to simplicial nerves, we get N(Cylp) ~ Cyl — I'. Note that there is a canonical
homeomorphism of spaces

Emb™ ((0,1) x §* x a~1(j),(0,1) x S1) ~ Emb™((0, 1) x a~(4), (0,1)) x (5*)* @)
(each factor a € (S1)*# () determines the rotation of the restriction (0,1) x S* — (0,1) x S1).
—1/
The diagonal map S' — (S 1) 4D induces a map
Hom g, « ps1), ((n), (m)) = Homeyi, ((n), (m))

in the natural way. It gives rise to a functor Z: (E1 x BS 1) A — Cylp of simplicial categories.
Then it induces a map

z: E? x BS! — Cyl
over I'. Let M® be a symmetric monoidal co-category whose underlying category is M. The
restriction along E‘? x BS! — Cyl induces a functor z*: Algcyn (M®) — AlgE?X BSt (M®).
Proposition 4.16. The functor

2" Algey (M®) = Algge, gor (M7)
18 an equivalence of co-categories.

Observe that Multc—yl (Cu" U Ch, C’M) is the singular complex of the space which is home-
omorphic to Multg, (DIU” U M, M) X (Sl)xnﬂ. As in the case of E? x BS' — Cyl, using
Mult, (DP™ UM, M) x §* = Multy, (D™ UM, M) x ($1)*"
St — (Sl)xn+1 we obtain a morphism z: E? x BS' — Cyl over I'. The restriction along z
gives rise to z*: Algcfyl (M®) — AlgE‘?stl (/\/l®)

induced by the diagonal map
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Proposition 4.17. The functor
Z* Alg@ (./\/l®) — AlgE?stl (./\/l®)
18 an equivalence of co-categories.
Corollary 4.18. There are canonical equivalences of oo-categories
®
Algey (M®) = Algge, g1 (M?) = Algg, (Fun (BS', M)”)
®
~ Algpgsoc (Fun (BSI, M)7)
and
Alge (M®) ~ AIgE?xBSI (M®) ~ Algg, (Fun (BS', M)”7)
~ LMod ( Fun (BS*, M)®).
Here LMod (Fun (BS*, M)®) = Alg e (Fun (BS', M)®).
Proof. It follows from Lemma 4.14, Propositions 4.16 and 4.17, and Remark 4.13. |
The proof of Proposition 4.17 is similar to Proposition 4.16. We prove Proposition 4.16.

Proof of Proposition 4.16. We use the notion of a weak approximation in the sense of [25,
Definition 2.3.3.6] (since z: E? x BS' — Cyl is not an equivalence of co-operads, it is necessary
to use more delicate notion). According to [25, Theorem 2.3.3.23], if two conditions

(i) EY x BS! — Cyl is a weak approximation,

(ii) z: EY x BS! — Cyl induces an equivalence between the fiber over (1)

hold, then z*: Alggy, (./\/l®) — AlgE?stl (./\/l®) is an equivalence. We first prove (ii). Let
Z<1>: (E? X BSI)<1>
object (here we denote it by * whose mapping space Map(x, *) is (homotopy) equivalent to S*).
Taking into account our construction of Z: (E1 x BS 1) A — Cyla, we see that z(;y is a homotopy
equivalence BS' — BS!. This proves (ii). Next we will prove (i). Let p: EY x BS* — T be the
projection. Let Tup,, be the subcategory of I,y whose objects are active morphisms (m) — (n)
and whose morphisms are equivalences. According to a criterion [25, Proposition 2.3.3.14],
to prove (i), it is enough to prove that for any X € EY x BS! with (n) = p(X), » induces
a weak homotopy equivalence

— Cyl(yy be the map of fibers over (1). Both fibers consist of a unique

u: A(X) = (E x le)/X X1, Tup, = Cyl . (x) X1, Tup, =: B(2(X)).

Note that both domain and target are oo-categories. Consequently, it will suffice to show
that u is a categorical equivalence. Clearly, u is essentially surjective. We prove that wu is
fully faithful. The general case is essentially the same as the case n = 1 except for a more
complicated notation, so that we treat the case of n = 1. We think of D; as the unique object
of (EY x BS!) ay- Also, we write D" for the unique object of the fiber (EY x BS!) (m) OVeT (m)

(namely, Dy = D%) Let f: D" — D; be a map in E? x BS' lying over an active morphism
a: (m) — (1) of I'. We regard f as the product g x h: (0,1)"™ x St — (0,1) x St of a rectilinear
map ¢: (0,1)"™ — (0,1) and a rectilinear map h: S — S'. Let f': D* — D; be another map
in EY x BS! lying over a. We have

Map 4(p,)(f, f') = Mapglngsl (D1, DY) XMapys o1 (DFD1) {/}

~ (ST x ) X(51x5m) L1
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where Mapgl? (D{”, D{”) is the full subcategory of 1\/[aupE<1g>X BS! (D{”, DT) spanned by equi-

x BSt
valences, and Map‘;:q(?X Bs1 (D{”, D{”) — MapE?X BSt (D{”,Dl) is induced by the composition
with f’. Here X,,, denotes the symmetric group (which comes from permutations of components).
Thus, the mapping space is contractible because (S! x X,,) — (S bx Em) is an equivalence.
Next, we regard the color C in Cyl as an object in Cyl that lies over (1). We denote by C™ the
unique object of Cyl that lies over (m). Let z(f), 2(f"): C™ — C be the images of f and [,
respectively. Then we have equivalences in S

Mapg(cy (2(f), 2(f') = Mapgy; (C™, C™) Xapg, (cm 0y 12(f)}
~ (1) X Sin) X (s1yxmxs,y 12(H)}

where Mapiélyl (Cm, Cm) is the full subcategory of Mapcyl(Cm, C™) spanned by equivalences.

It follows from the canonical equivalence (S') K S — (Sh) M %y that Map gy (2(f), 2(f'))
is contractible. Thus, Map 4(p,)(f; f') = Mappc)(2(f), 2(f')) is an equivalence. We conclude
that u is a categorical equivalence. |

4.3. Let M® be a symmetric monoidal oo-category. If P® and Q® are small oo-operads
and ¢: P® — Q% is a morphism of oo-operads (over T'), then we denote by ¢*: Algg(M) —
Algp (M) the restriction/forgetful functor along c. If there exists a left adjoint of ¢*, we denote
it by ¢ Algp(M) — Algg(M). If M® admits small colimits and its monoidal multiplication
functor M x M — M preserves small colimits separately in each variable, then there exists
a left adjoint ¢, cf. [25, Corollary 3.1.3.5].

The diagram DCyl & Cyl LN Cyl induces a*: Algpcy(M) — Algey (M) and b*:
Algei(M) — Algeyi(M). Tt gives rise to the fiber product Algpcy;(M) xAlgCyl(M)Alg@(M).
We also have the inclusions DCyl — DCyl and Cyl — DCyl. Then the restriction/forgetful
functors induce

Algpey(M) = Algpcy1(M) X alge,, (M) Alggyr(M)-

Now suppose that M® admits small colimits and the tensor product functor M x M — M
preserves small colimits separately in each variable. Let ¢: E? — DCyl be the canonical
inclusion. We then have an adjoint pair

it Algg,(M) 2 Algpgy (M) 4%,

where 7y is fully faithful (indeed, the left adjoint is given by the operadic left Kan extension so that
the unit map of the adjunction is the identity). We write AlgBCyl(M) for the essential image

of 4. Note that Algg, (M) ~ Alggcyl(/\/l). We set AlggTyl(M) = Algpe1(M) X Algp (M)
AIgBCyl(M)

Proposition 4.19. Suppose that ¢: M® — T is a symmetric monoidal co-category such that the
underlying co-category M has small colimits and the tensor product functor @: M x M — M
preserves small colimits separately in each variable. Then the functor

Algpey1(M) = Algpcyi(M) X algg, (M) Alggyr(M)

18 an equivalence of co-categories. Moreover, it induces an equivalence of co-categories

AlgBCyI(M) = AlgBey1(M) X Alggy(M) Algayr(M).
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Proposition 4.20. The restriction along the inclusion KS — DCyl induces an equivalence
of co-categories

AlgBei(M) — Alggs(M).

Now we consider the diagram

Alggg(M) Algseyi(M) — Algpcy1(M) X Alggy (M) Alggyr(M)

and its restriction to AlgBTyl(M).
Corollary 4.21. We have canonical categorical equivalences

Algg, (M) X a1gq,, (M) Alggyr(M) ~ AlgBy1(M) X Alge, (M) Alggyr(M) ~ Algkg(M).
Moreover, by Corollary 4.18, the co-category on the left-hand side is equivalent to

Algg, (M) X alg, (Fun(Bst,my) LMod (Fun (BS*, M)),

where Algg, (M) — Algg, (Fun (BS*, M)) is the composite

Algg, (M) = AlgB ey (M) — Algey (M) ~ Algg, (Fun (BS*, M)).
In particular, we have an equivalence of co-categories
Alggs(M) = Algg, (M) Xalgy (Fun(Bs1,m)) LMod (Fun (BS', M)).

This equivalence commutes with projections to Algg, (M) in the natural way.

The proof of Proposition 4.19 requires Lurie-Barr-Beck theorem [25, Corollary 4.7.3.16]. Let
us consider the comutative diagram

U

Algse;1(M) Algpcy1(M) X alge,, (M) Alggyr(M)

AlgDCyl(M) X M.

The functor U is the functor in the statement in Proposition 4.19, and G is determined by the
forgetful /restriction functor Alggayy(M) — Algpcy1(M) and the functor Alggarg(M) — M
given by the evaluation at Cj;. The functor G’ is determined by the first projection and the func-
tor Algc—yl(./\/l) — M given by the evaluation at Cjs. According to Lurie-Barr-Beck theorem
[25, Corollary 4.7.3.16], U is a categorical equivalence if the following conditions are satisfied:

(i) The functors G and G’ admit left adjoints F' and F’, respectively.

(ii) Algw(/\/l) admits geometric realizations of simplicial objects, which are preserved by G.

(i) Algpcy1(M) X alge,, (M) Algeyi(M) admits geometric realizations of simplicial objects,
which are preserved by G’.

(iv) The functors G and G’ are conservative.

(v) For any object X in Algpcyi(M) x M, the unit map X — GF(X) ~ G'UF(X) induces
an equivalence G'F'(X) — GF(X) in Algpcy (M) x M.
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Proof of Proposition 4.19. We will prove the conditions (i), (ii), (iii), (iv), (v).

A morphism f in Algw(/\/l) is an equivalence if and only if the evaluations at D, C, Cj;
are equivalences. Similarly, a morphism f in Algpeyi(M) is an equivalence if and only if the
evaluations at objects D, C are equivalences. It follows that G is conservative. Similarly, we see
that G’ is conservative. Hence (iv) is proved. The conditions (ii) and (iii) follow from the
existence and the compatibility of sifted colimits [25, Proposition 3.2.3.1] and the conservativity
in (iv). (If M® is a presentably symmetric monoidal oo-category, the condition (i) follows from
adjoint functor theorem since G and G’ preserve small limit and filtered colimit. We prove (i)
in full generality below.)

We prove the conditions (v) and (i). For this purpose, we first consider the left adjoint F’
of G'. The values under I’ can be described in terms of operadic colimits if we assume the
existence of a left adjoint F’. Let j: Cyl — Cyl be the canonical inclusion. Let j’: Triv® — Cyl
be a morphism from the trivial co-operad to Cyl that is determined by Cj;. Let Cyl B Triv®
denote the coproduct of Cyl and Triv®. Namely, it is a coproduct of Cyl and Triv® in the
oo-category of oo-operads, but we use its explicit construction in [25, Construction 2.2.3.3].
By the universal property, the morphism j and j’ induces k: Cyl @ Triv® — Cyl. By [25,
Corollary 3.1.3.5], we have an adjoint pair

Here we use the canonical categorical equivalence Algp;, (M) = M. There are categori-
cal fibrations pry: Algey(M) x M — Alggy(M) and Algggi(M) — Alggy(M) induced
by the inclusion Cyl <+ Cyl. The right adjoint k* commutes with these projections to
Algey(M). Let YV: CylH Triv® — M® be a map of oo-operads, which we regard as an ob-
ject Y of Algeyimmiye (M). For A € Cyl, the evaluation of k(Y) at A is an operadic g-colimit
of the map

act

(Cyl A Triv® )/A = (Cyl A Triv® ) Xey1 Cyl?ﬁf — Cyl B Triv® R M,

lying over ((CylHﬂT1riv®)"/Lif)D — T'. See [25, Sections 3.1.1-3.1.3] for operadic left Kan extensions
and operadic colimits. Note that Multez (C“'” L Cy, C) is the empty set for m # 0. Hence
(Cyl H Triv®) xc—ylciylng ~ Cyl Xey1 Ciylj%t so that there is a final object determined by the
identity C' — C'. It follows that pry(Y) — prk*ki(Y') is an equivalence in Alggy(M) for each
Y € Algayimmive (M) = Algeyi (M) x M. Thus (ki, k*) is an adjunction relative to Algey;(M).
See [25, Definition 7.3.2.2] for the notion of relative adjunctions. The base change of (ki, k*)
along Algpcy1 (M) — Algey1 (M) gives rise to an adjunction

b Algpcy1(M) X alge, (M) (Algey1(M) x M) 2 Algpayi(M) X alge,, (M) Algggr(M) <1

relative to Algpcy1(M), where the right adjoint is G’. This shows that there exists a left
adjoint F’ of G'. In addition, F’ ~ [;. We denote informally by X = (A4, B, M) an ob-
ject of Algpcy1(M) x M =~ Algayimmiye (M), where (A4, B) € Algpcyi(M), M € M, A is
the restriction to E? C DCyl, and B is the restriction to Cyl C DCyl. We compute the
image of (A, B, M) under the left adjoint ;. The left adjoint F’ = [, is induced by ky so
that [y(A, B, M) = ((A, B), ki(B, M)), where ((A, B), ki(B, M)) indicates the object of the fiber
product on the right-hand side. The pair (B, M) is an object of Alggy(M) x M. Thus we
will compute ky(B, M) in terms of the operadic left Kan extension; we describe it as a colimit
of a certain diagram. Let (B, M): Cyl @ Triv® — M® be a morphism of oc-operads which
corresponds to (B, M) € Alggy (M) x M. Let Cyl B Triv® — Cyl be a morphism determined
by Cyl — Cyl and the morphism Triv® — Cyl classified by the object Cj in the fiber Ciylm
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(by using the same symbol Cj; we abuse notation). Let CylaCt be the subcategory spanned

by those morphisms whose images in I' are active (cf. [25, Definition 2.1.2.1]). Let us consider
~_qact

(Cyl B Triv® )jCCtM = (Cyl B Triv® ) X eyl Cyl,c,,- We have a morphism

act

o~ Cyl B Triv® EX)

p: K := (CylBTriv®)

that extends (CylEETriV®)7CCtM — I'. According to [25, Proposition 3.1.3.2], the operadic left Kan

extension ki(B, M): Cyl — M® of k carries Cjs to a colimit of p, that is, the image of the cone
point under an operadic ¢-colimit diagram p’: K* — M® that extends p. Let « denote the unique
object of Triv® lying over (1). Let Sub be a category defined as follows [25, Definition 2.2.3.2]:
The objects of Sub are triples ({(n),S,T) such that (n) € Fin,, and S,T C (n) are subsets such
that SNT = % and SUT = (n). A morphism ((n), S,T) — ((n),S’,T") is a morphism (n) — (n)
in Fin, such that f(S) ¢ §" and f(T) C T'. Let

((n), S, T,C" = (C,...,C),*)

be an object of Cyl H Triv® lying over (n) such that ((n),S,T) is an object of Sub, C"~! is
the unique object of Cyl,_;y (lying over (n — 1)), and % € Triv = Triv%. This presentation
is based on the explicit construction of the coproducts in [25, Construction 2.2.3.3]. For our
purpose below, we may assume that 7" C (n) is of the form T = {x,i} so that by default T
in the above object is of the form T = {x,i}. The mapping space from ((n),S,T,C"!, *)
to ((m), S, T',C™ !, ) is given by

( 11 [T Embe(((0,1) x ") x a™'(4),(0,1) x Sl)> X,

a: (ny—=(m)  je(mN\T’
a(S)cs’, a(T)CT’

which we regard as an object in &, and * indicates the contractible space which we regard
as the mapping space from * to . Using this description we consider mapping spaces in
(CylH Triv®)“/‘cctM. We abuse notation by writing ((n), S,T,C" !, *, (C",Cy) — Cu) for
an object of K, where (<n>,S, T, C”_l,*) € CylB Triv® and (C,...,C,Cy) = (C” 1 CM)

Cy is a morphism in Cyl' lying over the active morphism (n) — (1), where (C™1,Cy)
is a sequence of n — 1 (s and a single Cj; which we regard as an object in C7yl<n>. Now it

is easy to compute the mapping space from H = (<n>,S, T,C" 1 (C’”*1 CM) i) C’M) to
H' = ((m), 8", T',C™ ' %, (C™1 Chr) % Chy) in (CylBTriv® ) xgop lcyljgtM We think of f
as an embedding ((0,1) x Sl)un_l U (0,1) x St — (0,1) x S* that belongs to Multsgg (cHn=ty
Ca, Cu) (namely, the restricition to the “right component” (0,1) x S! is shrinking). Consider
the restriction ((0,1) x Sl)un_1 — (0,1) x S and its projection f: (0,1)""~ — (0,1) obtained
by forgetting the S'-factor, which is a rectilinear embedding. If we denote by D7 the unique
object in the fiber ( ®)< ) over (n) € I, we can regard f as a map D"_]L — Dy := D} in EY. Let
Map(E® (f ) be the discrete mapping space from f: D}~ ' 5 D tog: D"~ ' D;. Given

a morphlsm H — H', by applying the same procedure to the induced morphism C"~1 — ¢™~1,
we obtain a map MapK(H, H') — Map (ED), (f 7). Note that MapC P (Car, Chy) is con-

tractible. Consequently, the restriction to the component Chr gives rise to

Map s (H, H') = Mapy, (%) XMapgr(Car,Car) Machzl?CctM (Cwm,Cnr) = X g1 % =2
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Taking account of definitions of co-operads Cyl B Triv® and Cyl, we see that
Mapy (H, H') — Map(E® (f 9) X Z

is an equivalence in S. Let L be the full subcategory of K spanned by the single object
/ = (<2>7 S ~ <1>,T ~ <1>’ C’*’ (C’ CM) i> CM)

(a morphism j is uniquely determined up to homotopy). We now claim that L C K is cofinal.
It will suffice to prove that for each V € K, the oo-category L x i Ky, is weakly contractible,

see [25, Definition 4.1.3.1]. Let V = (<n>,S, T,C" 1 «, (C"il,CM) EN CM). By the above
discussion about mapping spaces, a morphism w: V — Z is uniquely determined by a € Z
since Map (E?), (f j) is contractible. Let u': V — Z be another object of L X Ky, that

is determined by a’ € Z. Note that Mapg(Z,Z) ~ Z and the composition Mapy(Z,Z) x
Mapy (V,Z) ~Z x Z — Mapy(V,Z) ~ Z can be identified with the additive operation +: Z X
Z — Z (up to automorphisms of Z). It follows that Map,, k., , (u,u") is a contractible space

so that the co-category L x i Ky, is contractible. Let p': K» — M® be the operadic g-colimit
diagram. Let p”: K* — M be the diagram obtained by a g-coCartesian natural transformation
from p’. Since we assume that ®: M x M — M preserves small colimits separately in each
variable, then by [25, Propositions 3.1.1.15 and 3.1.1.16], p” is a colimit diagram of p”|k:
K — M, and the image of the cone point under p” is naturally equivalent to the image of the cone
point under p’. Since L C K is cofinal, we have a canonical equivalence colim p” |k =~ colim p”|y,.

Indeed, colimp”|x is equivalent to B ® M ® S' (this computation is not necessary to the
proof so that the reader may skip this paragraph, but it may be helpful to get feeling for the
operadic left Kan extension F’). By construction, the composite L < K P M® s equivalent
to a contant diagram so that p”|p: L — M is a contant diagram taking the value B ® M.
Note that Mapy(Z,Z) = Z and there is a categorical equivalence L ~ BZ ~ S'. We deduce
that colimp”|;, ~ (B ® M) ® S'. Namely, the evaluation F'(A, B, M)(Cys) of F'(A, B, M)
at Oy is colimp”|gx =~ colimp”|, ~ (B ® M) ® S'. Another way to compute it is as fol-
lows. By Corollary 4.18, we have Alggy (M) ~ Algy, (Fun (BS', M)) and Algeyi(M) ~
LMod (Fun (BS L /\/l)) These equivalences commute with forgetful functors arising from the
inclusions As — LM and Cyl — Cyl. The adjunction (ki, k*) can be identified with the
composite of adjunctions

Algy, (Fun (BS', M)) x M 2 Alg, (Fun (BS', M)) x Fun (BS', M)
= LMod ( Fun (BS', M)),

where the left adjunction is induced by the adjunction M = Fun (B St M) which consists of the
forgetful functor Fun (B St /\/l) — M and the left adjoint free functor which sends M to S'®@ M.
The right adjoint in the right adjunction is given by the evaluation of the module objects
LMod (Fun (BS', M)) — Fun (BS', M) and LMod ( Fun (BS', M)) — Alg, (Fun (BS*, M))
induced by As — LM. The left adjoint functors carry (B, M) to

(B,B® S'® M) € LMod (Fun (BS', M)).

Next we will consider F(A, B, M). Let r: DCyl&# Triv® — DCyl be a morphism of co-ope-
rads induced by DCyl < DCyl and Triv® — DCyl determined by Cjs € DCyl;y correpond-
ings to the color Cjs (we slightly abuse notation again). By [25, Corollary 3.1.3.5], we have
an adjunction r: Algpgy (M) x M = Algge(M):r*. This shows that there exists a left
adjoint F' = r; of G. Consider

———act  pr @ (A BM)

e: P:=DCyl® Triv¥ xpe; DCyl)¢,, — DCyl B Triv M,
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where the right arrow classifies the algebra object (A, B, M) € Algpcy (M) x M. The evaluation
of r(A, B, M) at Cyy is a colimit of e, that is, the image of the cone point under an operadic
g-colimit diagram e’: P> — M® that extends e. The computation of the colimit of e is similar
to that of p. We infomally denote by ((n), S, T, D% C¢ *) an object of DCyl B Triv®, where
x € Triv, and (D%, C°) indicates the sequence of colors which consists of d D’s and ¢ C’s which
we regard as an object in DCyl;,,_qy (d + ¢ =n —1). By abuse of notation, we write

R= (<n>7S7T7Ddaccv*7 (decC;CM) i> CM)

for an object of P, where f: (Dd, Ce, CM) — C'jy is a morphism in DCylaCt that lies over the
active morphism (n) — (1). We compute the mapping space from R to another object

R = ((m),s", T, D" ,C %, (D*,C",Crn) % Chr).

Given a morphism ¢: R — R’ we have the induced morphism (Dd, Ce, CM) — (Dd/, ce, CM)
in Tylz}cctM. Notice that it is given by the union of (Dd,CC) — (Dd/,CC/) and Cp —
Chyr over Cyy. Moreover, we can think of (Dd,C’C) — (Dd/,CC/) as a rectilinear embedding
((0,1)2)ud L ((0,1) x Sl)uc - ((0, 1)2)udl L ((0,1) x Sl)ucl over (0,1) x S'. In this way, we
obtain the induced morphism

/ d d /
MapP(R,R)%MapDCyI(;CCt ((D 70‘3)7(D ,CC)).
As in the case of K, the restriction to C'y; gives rise to a morphism

Mapp (R, R) = Mapryiy (%, %) XMapgesi(Car,Cur) MaPW;chtM(CM, Cm) =~ Xg1 % =2

It gives rise to an equivalence in S:
d d/ /
Mapp(R, R') = Mappgye (D, C€), (DY, C7)) x 2.

Let Q C P be the full subcategory spanned by Z which we think of as an object of P in the
obvious way. As in the case of K, using the above description of Mapp(R, R’) we see that for
any V € P, Q xp Py, is weakly contractible so that () C P is cofinal. Let e: P> — M® be
an operadic g-colimit diagram that extends e. Let ”: P* — M = My be the diagram obtained
by a g-coCartesian natural transformation from ¢’. Then the image of the cone point under ¢’
is colime”|p ~ colime”|g. (We can also deduce that r(A, B, M)(Cy) = F(A, B, M)(Cy) is
B® M ® S' € M in the same way as described above.)

The projection of G'F'(A, B,M) — GF(A, B, M) to M is the canonical map colim p”|x —
colim ¢”|p. We note that the canonical functor K — P induces an equivalence L — Q. Conse-
quently, colim p”|f — colime”|p can be identified with the equivalence colim p”|;, = colim €”|q.
Next we consider the projection of G'F'(A, B, M) — GF(A, B, M) to Algpcyi(M). Taking into
account the equivalences DCyl B Triv® XBeyl DCyl%}t ~ DCyl X Byl DCyI%t and DCyl B

Triv® XWDCyI?CCE ~ DCyl XWDCylig and the presentation of F' in terms of operadic col-
imits, we see that the evaluations of unit maps A — GF(A, B, M)(D) and B — GF (A, B, M)(C)
are equivalence so that the evaluations A ~ G'F'(A,B,M)(D) — GF(A,B,M)(D) and B ~
G'F'(A,B,M)(C) = GF(A,B,M)(C) of G'F'(A, B, M) — GF(A, B, M) are also equivalences.
Consequently, G'F'(A, B, M) — GF(A, B, M) is an equivalence since evaluations at D, C, and
the projection to M are equivalences. This proves (v). We also have proved the existence of F'
and F’, that is, (i). The final assertion is clear. [
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Proof of Proposition 4.20. The inclusion j: KS — DCyl induces an adjunction
jgr: - Alggs(M) 2 Algger(M) 57

Since j is fully faithful, it is enough to prove that the essential image of j is AlggTyl(M). Let

X = (A,B,M): DCyl — M® be an object of Algpe;1(M) whose evaluations at D, C'and Cy
are A, B and M, respectively. Note that the forgetful functor Algw(./\/l) - MxMxM
induced by evaluations at D, C, and C); is conservative. Thus if we write g: M® — T for the
structure map, X belongs to AlggTyl(M) if and only if

P K”:= (EY xpcyl Dcyl*;gs)D — DCyl —» M®

is an operadic g-colimit diagram that extends p = p/|k, see [25, Definition 3.1.2.1]. Let Y : KS —
M® be an object of Alggg(M). Let us consider the image of C' under j(Y): DCyl — M®.
It is an operadic g-colimit of

e: L :=KS x5y DOyl)g — KS — M®.

In view of [25, Propositions 3.1.1.15 and 3.1.1.16], to prove the image of j is contained in
act

AlggTyl(./\/l), it is enough to observe that the natural functor ES xpeyl DCyIE — KS xpa3

DCyl?g is a categorical equivalence. It follows from the fact that if a sequence E = (D, ..., D,
C,...,C,Cpy,...Chy) (regarded as an object of DCyl) contains C)y, then there is no mor-
phism from E to C in DCylaCt. Consequently, we have a new adjunction ji: Alggg(M) &
AlggTyl(M) :7*. By the comparison of operadic g-colimit diagrams from K" and L", the
counit map of this adjunction is an equivalence. Therefore, we obtain a categorical equivalence
Alggg(M) ~ AlggTyl(M) induced by ji (or j*). |

5 Hochschild cohomology

In this section, we recall Hochschild cohomology spectra of stable co-categories C. The definition
is based on the principle that, under a suitable condition on C, Hochschild cohomology of C is
the endomorphism algebra of the identity functor C — C. Moreover, since Fun(C,C) has the
monoidal structure given by the composition, Hochschild cohomology is the endomorphism
algebra of the unit object of Fun(C,C) so that it comes equipped with the structure of an
Es-algebra, cf. [4, 22] (see also references cited in loc. cit. for Deligne conjecture concerning
Hochschild cochains). We establish some notation. Let R be a commutative ring spectrum. Let
Mod% be the symmetric monoidal co-category of R-module spectra whose underlying category
we denote by Modg. Let Algy.(Modg) be the oo-category of the associative algebra objects
in Modg. Let Pr" be the co-category of presentable oo-categories whose morphisms are those
functors that preserve small colimits. This category Pr admits a symmetric monoidal structure,
see [25, Notation 4.8.1.7 and Proposition 4.8.1.15]. The oo-category of small spaces S is a unit
object in Pr. For D, D’ € Pr", the tensor product D ® D' comes equipped with a functor
D x D' — D ® D’ which preserves small colimits separately in each variable and satisfies the
following universal property: for any F € Pr", the composition induces a fully faithful functor

Fun"(D @ D', F) — Fun(D x D', F)

whose essential image is spanned by those functors D x D’ — F which preserves small colim-
its separately in each variable, where Fun®(—, —) indicates the full subcategory of Fun(—, —)
spanned by those functors which preserves small colimits. The underlying associative monoidal
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oo-category Mod% can be regarded as an associative algebra object in Pr" since Modp is
presentable and the tensor product functor Modg x Modr — Modpg preserves small colimits
separately in each variable. We denote by LModMOd% (PrL) the oo-category of left Mod%—

module objects in Pr¥. Given A € Alg,,(Modg), we write RMod, := RMod 4(Modp) for the
oo-category of right module objects of A in Modgr. We remark that the forgetful lax symmetric
monoidal functor Modgp — Sp induces Mod4(Modgr) — Mod(Sp), where we use the same
notation A to indicate the image in Alg, (Sp). The functor Mod4(Modgr) — Mod4(Sp) is
an equivalence of oo-categories (for example, apply Lurie-Barr—Beck theorem to this functor en-
dowed with projections to Sp) so that the notation RMod 4 is consistent with that of [25]. The
category RMod4 has a natural left module structure Modg x RMod4a — RMod 4 informally
given by (M,N) — M ®g N. In what follows, when we treat the tensor product of objects
in Modpg (over R), we write ® for ®g. The assignment A — RMod 4 gives rise to a functor

Algs(Modg) — LModyoqe (PrY)

that sends A to RMod 4 and carries a morphism f: A — B to the base change functor RMod4 —
RModpg; N — N ®4 B, that is, a left adjoint of the forgetful functor RModg — RMod 4, see
[25, Section 4.8.3, Notation 4.8.5.10 and Theorem 4.8.5.11]. We have the induced functor

I: Alga,(Modg) = Algy(Modr) g — LMody,qe (Pr) \tody />

which sends A to the base change functor Modr = RModr — RMod 4. The functor [ is fully
faithful and admits a right adjoint £. A morphism f: Modr — D in LMOdMod% (PrL) is
determined by the image f(R) of R € Modp in an essentially unique way (up to a contractible

space of choices). Therefore, an object of LMod,, a2 (PrL)MO dn/ is regarded as a pair (D, D)

such that D belongs to LMod, a2 (PrL) and D is an object of D. The essential image of I can
naturally be identified with Alg,.(Modg). Namely, it consists of pairs of the form (RMod 4, A):
I carries A to (RMod 4, A). Put another way, the essential image is spanned by pairs (D, D) such
that D is a compactly generated stable co-category equipped with a single compact generator D.
The right adjoint E sends (D, D) to an endormorphism algebra object End(D) € Alg,(Modg)
[25, Theorem 4.8.5.11]. Since the left adjoint I is fully faithful, the unit map id — E o [ is
a natural equivalence. Namely, the adjunction (I, F) is a colocalization. If we denote A C
LMod,,, a® (PrL)MO dn/ by the essential image of I, then F induces a categorical equivalence

A S Alg (Modpg).

The functor I is extended to a symmetric monoidal functor. To explain this, note that
Alga(Modg) comes equipped with a symmetric monoidal structure induced by that of Mod%,
see [25, Section 3.2.4] or Construction 7.9. Since Mod% is a symmetric monoidal co-category
such that Modpg has small colimits and the tensor product functor Modg x Modr — Modpg pre-
serves small colimits separately in each variable, we define Modf\io a8 (PrL) to be the symmetric

monoidal oco-category of Mod%—module objects in Pr¥, cf. [25, Section 3.3.3]. If we denote the

underlying oo-category by Mod,, a2 (PrL), then Mod, a2 (PrL) ~ LMod,,, a2 (PrL). Hence
L ~ L ~ L\ ; .

LModMod% (Pr )MOdR/ ~ ModMod% (Pr )MOdR/ ~ AlgEgp (ModMOd% (Pr")) inherits a symmet-

ric monoidal structure. In summary, we have the adjunction

I: Alga(Modr) = LModyg,qe (Pr") o, ) B

whose left adjoint is symmetric monoidal and fully faithful, and whose right adjoint is lax
symmetric monoidal. It gives rise to an adjunction

I: Algp(Algas(Modg)) &= Alga, (ModMOd% (Pr* )MOdR/)
~ Algy, (Modyoqe (Pr¥)) < B,
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where we abuse notation by writing (I, E') for the induced adjunction. By virtue of the cano-
nical equivalence E? ~ As® and the co-operad version of Dunn additivity theorem [25, Theo-
rem 5.1.2.2], we have a canonical equivalence

AlgEz (MOdR) = AlgAs (AlgAs (MOdR))

(we can also use additivity theorem to the equivalence on the right-hand side).
We refer to an object of PrI§ := Mod,,, a2 (PrL) as an R-linear presentable co-category. Note

that the underlying oco-category of an R-linear presentable oo-cartegory is stable.

Lemma 5.1. Let D be an R-linear presentable co-category. Let ®p: Pri x Pri — Prl be
the tensor product functor. There exists a morphism object from D to itself (i.e., an internal
hom object) Morgr(D, D) € Pr%% equipped with e: Morg(D,D) @ g D — D for D. Moreover,
(Morg(D,D),e) is promoted to an object of £ € Alga, (Prljz) together with a left module action
EQrD — D.

Proof. According to [25, Corollaries 4.7.1.40 and 4.7.1.41], the second assertion follows from
the first assertion. We will show the existence of a morphism object Morg(D,D). Recall
that a morphism object for D and D’ is an R-linear presentable oco-category C together with
a morphism C ® g D — D’ such that the composition induces an equivalence

Mapprré (F,C) ~ MapPrIL% (ForD,D)

for each F € Pr%%, which informally carries F — C to F Qg D = C ®r D — D. We first
consider the case where R is the sphere spectrum S. Let FunL(D,D’) be the full subcategory
of Fun(D, D’) that consists of colimit-preserving functors. Then Fun™(D, D) together with the
evaluation functor Fun™(D, D’) x D — D’ exhibits Fun®(D, D’) as an internal hom object. Thus
we have a morphism object FunL(D,D’ ). Next, we consider the general case. Let F': prt =

ModMOd% (PrL) :U be an adjunction which consists of the forgetful functor U and the free

functor F' given informally by C — C ® Modp. Here ® indicates the tensor product in Pr”. If we
suppose that D is a free object, i.e. D = F(C) = C ® Modpg, then there is a morphism object for
D and D’. Indeed, we observe that Morg(D,D’) = Fun(C, D’) together with

Fun®(C,D') ®r (C ® Modg) ~ Fun™(C, D)@ C — D’
constitutes a morphism object for D and D’. To prove that
6: Mapp,, (P,Fun® (C,D’)) — Mapp,1 (P ®p (C ® Modg), D)

is an equivalence, we may and will assume that P is a free object since the tensor operation
functor ®p preserves small colimits separately in each variable (see the proof of [25, Propo-
sition 5.1.2.9]), and P is a (small) colimit of the diagram of free objects: for example, using
the adjunction (F,U) we have a simplicial diagram of free objects whose colimit is P. When
P = C' ® Modg, by the adjunction we see that # is an equivalence. We put D = colim;c; D;,
where each D; is a free object. Then for any P € PrIj{ there exist natural equivalences

Mapp,L (P @ (colimier D), D') ~ Mapp,s, (colimjer (P ®r D;), D')
~Y - . /
~ lzler? 1\/[apprrf2 (P ®rD;, D)
~ 1j1r11 Mapp,1, (P, Morg(D;, D))
1€

~ Mapp, (P, lim Morg(D;, D’)).
R iel

Hence there exists a morphism object Morgr(D,D’), that is, lim;e; Morg(D;, D). |
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Remark 5.2. Let Morg(D, D)™ be the largest Kan subcomplex of the underlying oo-category
of Morg(D,D’), which we regarded as an object in S. By the above proof, Morg(D, D)~
is equivalent to the mapping space Mapprrﬁ (D, D).

We shall write Endg(D) for £ € Alg,, (Prk).

Definition 5.3. Let D be an R-linear presentable co-category. Applying E: Alga, (PrIj%) —
Algg,(Modg), we define the Hochschild cohomology R-module spectrum of D to be

HH(D) == E(Endp (D))

in Algg,(Modg). We often abuse notation by identifying HH%(D) with its image in Modpg.
If no confusion can arise, we write HH®*(D) for HH%(D).

Let St be the oco-category of small stable idempotent-complete co-categories whose mor-
phisms are exact functors. Let C be a small stable idempotent-complete co-category and let
Ind(C) denote the oo-category of Ind-objects. Then Ind(C) is a compactly generated stable
oo-category. The inclusion C — Ind(C) identifies the essential image with the full subcategory
Ind(C)“ spanned by compact obejcts in Ind(C). Given C,C" € St, if we write Fun®(C,(C’) for
the full subcategory spanned by exact functors, the left Kan extension [27, Proposition 5.3.5.10]
gives rise to a fully faithful functor Fun®(C,C’) — Fun(Ind(C),Ind(C’)) whose essential im-
age consists of those functors that carry C to C'. We set Pr1§t = Modg,e (PrL), which can
be regarded as the full subcategory of Pr" that consists of stable presentable co-categories.
The assignment C — Ind(C) identifies St with the subcategory of PrISJt whose objects are com-
pactly generated stable co-categories, and whose morphisms are those functors that preserve
compact objects. The oo-category St inherits a symmetric monoidal structure from the struc-
ture on Prlgt. The stable oco-category of compact spectra is a unit object in St. Given two
objects C and C’ of St, the tensor product C ® C’ is naturally equivalent to the full subcategory
(Ind(C) ® Tnd(C"))* C Ind(C) ® Ind(C’) spanned by compact objects. If we let Cgtf, denote
the full subcategory of PrIS“t spanned by compactly generated stable co-categories, then we have
a sequence

St — Cgtl, C Pr,,

where Cgty, C Prf, is closed under the tensor product so that Cgtf, inherits a symmetric
monoidal structure from the structure on Pr, and the left arrow is a symmetric monoidal
faithful functor given by C — Ind(C). In CgtIgt, every object is dualizable. For more details,
we refer the readers to [6, Section 3], [25, Section 4.8].

Consider RMod4 for A € Alg, (Modg). We let RPerf4 be the full subcategory of RMod 4
spanned by compact objects. This subcategory is the smallest stable subcategory which contains
A (regarded as a right module) and is closed under retracts. When A belongs to CAlg(Modg),
we write Perf 4 for RPerf 4. In this case, Perf 4 is closed under taking tensor product so that it
inherits a symmetric monoidal structure from that of Mod%. We usually regard the symmetric
monoidal oco-category Perf% as an object of CAlg(St), and we write Str for Modperf% (St).

We refer to an object of Str as a small R-linear stable co-category. Since Mod% ~ Ind(Perfz)®,
there is a natural symmetric monoidal functor Stp — PrI;z = Mody; 4 (PrL) which carries C
R

to Ind(C).

Definition 5.4. Given C € Stg, we define the Hochschild cohomology R-module spectrum
HHE(C) to be HH%(Ind(C)). If no confusion can arise, we write HH®*(C) for HH%(C).
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6 Hochschild homology

Let R be a commutative ring spectrum. Suppose that we are given a small R-linear stable
oo-category C. In this section, we assign to C € Str the Hochschild homology R-module spec-
trum HHe(C) € Modpg. For the main purpose of this paper, we require the following additional
structures:

e the R-module spectrum H#H,(C) has an action of the circle S'. Namely, HH(C) is pro-
moted to an object of Fun (BS o ModR), and the assignment C — HH4(C) gives rise to
a functor Stz — Fun (BSl,l\/IodR)7

e if Fun (BS 1 Mod R) is equipped with a pointwise symmetric monoidal strcuture induced
by that of Modg, then the above functor Stz — Fun (BSI, ModR) is promoted to a sym-
metric monoidal functor from Str to Fun (BS17 Modg )

To this end, we will use enriched models of stable idempotent-complete co-categories, i.e., spec-
tral categories.

Symmetric spectra. We give a minimal review of the theory of symmetric spectra, introduced
and developed in [17]. This theory provides a nice foundation of the homotopy theory of highly
structured ring spectra as well as a theoretical basis for spectral categories. We let Sp™ be
the closed symmetric monoidal category of symmetric spectra. We write S for the unit object
which we call the sphere spectrum. We use the notation slightly different from [17, 32]: S is S
n [17]. We use a symmetric monoidal proper combinatorial model category structure on Sp™
satisfying the monoid axiom in the sense of [30, Definition 3.3], in which a weak equivalence is
a stable equivalence. There are several versions of such model structures. We here focus on two
model structures. One is described in [17, Theorems 3.4.4 and 5.4.2, Corollaries 5.3.8 and 5.5.2]
which is called the stable model structure. In [32], it is proved that there is another model
structure called the stable S-model structure. The difference (relevant to us) between stable
model structure and stable S-model structure is that cofibrations in the stable model structure
[17, Theorem 3.4.4] are contained in the class of cofibrations in the stable S-model structure
while both have the same class of weak equivalences. Let CAlg (sz) denote the category
of commutative algebra objects in Sp™. We refer to an object of CAlg (sz ) as a commutative
symmetric ring spectrum. The category CAlg (sz) admits a model category structure: we
use the model structure on CAlg ( Sp~ ), defined in [32, Theorem 3.2] in which a morphism is
a weak equivalence if the underlying morphism in Sp™ is a stable equivalence. The stable S-model
structure on Sp™ has the following pleasant property: if R is a cofibrant object in CAlg (SpE ),
then the underlying object R in Sp™ is cofibrant with respect to the stable S-model structure,
see [32, Section 4].

Let R be a commutative symmetric ring spectrum, which we think of as a model of R €
CAlg(Sp). Unless otherwise stated, we assume that R is cofibrant in CAlg (sz). We let
Sp™(R) denote the category of R-module objects in Sp*, which is endowed with the natural
symmetric monoidal structure induced by the structure on Sp>. In virtue of [32, Theorem 2.6]
(or [30, Theorem 4.1]), there is a combinatorial symmetric monoidal projective model structure
on SpE(R) satisfying the monoid axiom, in which a morphism is a weak equivalence (resp. a
fibration) if the underlying morphism in Sp” is a stable equivalence (resp. a fibration with
respect to stable S-model structure). We refer to this model structure as the stable R-model
structure.

Definition 6.1. Let R be a commutative symmetric ring spectrum. An R-spectrum category
is a category enriched over Sp*(R). More explicitly, a (small) R-spectrum category A consists
of the data:
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e A (small) set of objects,

e An R-module symmetric spectrum A(X,Y) € Sp*(R) for each ordered pair of objetcs
(X,Y),

e The composition law A(Y, Z) A A(X,Y) — A(X, Z) satisfying the standard associativity
axiom,

e S — A(X, X) for each object X that satisfies the standard unit axiom.

Here Ag denotes the wedge product over R, which defines the tensor product in Sp™ (R). A fun-
ctor of R-spectral categories is an enriched functor, that is, a functor as enriched categories.
We refer to them as R-spectral functors. We write Catg for the category of R-spectral categories
whose morphisms are R-spectral functors. We refer to an S-spectral category (resp. an S-spectral
functor) as a spectral category (resp. a spectral functor). We write A for As.

Thanks to works [6, Corollary 2.4], [28, Theorem 1.1], [33, Theorem 7.25], Catg admits
a combinatorial model structure whose weak equivalences are Dwyer—Kan equivalences (DK-
equivalences for short). See, e.g., [6, Definition 2.1] for DK-equivalences.

Let us recall the notion of Morita equivalences in the context of spectral categories, see
[6, Sections 2 and 4] for an excellent account. Let A be a small spectral category and let
Fung (AOP ) sz) be the spectral category of spectral functors. There is a combinatorial spectral
model structure where the class of weak equivalences (resp. fibrations) are objectwise stable
equivalences (resp. objectwise fibrations with respect to the stable S-model structure) [29, Ap-
pendix]|. The enriched Yoneda embedding A — Fung (AOP, sz) is contained in the full subcate-
gory of cofibrant objects. If we replace A by a fibrant object in Catg, the embedding lands in the
full subcategory Fung (AOp, SpE)Cf that consists of cofibrant and fibrant objects. Let F': A — B
be a spectral functor of spectral categories. Then we have a Quillen adjunction

F: Fung (AOp, sz) = Fung (BOP, sz) (B,

where F* is determined by the composition with A°P — B see [29, Appendix|. Let D(A) be
the homotopy category of D*(A) := Fung (.AOP, sz)d. It constitutes a triangulated category.
Let Dpe(A) be the smallest thick subcategory of D(A) that contains the image of A under the
Yoneda embedding. The subscript “pe” stands for “perfect”. We write DEQ(A) for the full

subcategory of Fung (AOP, sz)Cf spanned by those objects that belong to Dpe(A). If F': A — B
is a spectral functor, we have the induced (left-derived) functor LFi: D(A) — D(B). Since
LF} is an exact functor of triangulated categories, it follows that the restrcition of LF) induces
LF : Dpe(A) = Dpe(B).

Definition 6.2. We say that a spectral functor F': A — B is a Morita equivalence if the induced
functor LF}: Dpe(A) — Dpe(B) is an equivalence of categories. When F': A — B is an R-spectral
functor, F' is said to be a Morita equivalence if F' is a Morita equivalence as a spectral functor.

Let R be a commutative symmetric ring spectrum. Let us recall the tensor product of R-
spectral categories. Suppose that we are given A, B € Catg. The tensor product A Ag B is
defined by the following data:

e The set of objects of A Ag B is the set of pairs (A4, B), where A is an object of A, and B
is an object of B,

e AANg B((a,b),(a,V)) = A(a,d") Ar B(b,V) for (a,b), (a’,V) € ANg B.

This tensor product determines a symmetric monoidal structure on Catg. A unit object is
defined as follows: Let BR be the spectral category which has a single object * together with
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the morphism ring spectrum BR(%,%) = R. The composition R AR — R and the unit S — R
are determined by the algebra structure on R in an obvious way. Clearly, BR is a unit object
in Catg. Since R is commutative, we can also think of BR as a symmetric monoidal spectral
category. Namely, it is a commutative algebra object in the symmetric monoidal category Cats.
Note that an R-spectral category A is regarded as a BR-module in Sp”. Namely, there is
a canonical equivalence of categories Catg — Modpggr(Catg), where the target is the category
of BR-module objects in Cats.

For technical reasons, we use the notion of pointwise-cofibrant spectral categories, cf. [7, Sec-
tion 4]. We say that an R-spectral category A is pointwise-cofibrant if each morphism spectrum
A(X,Y) is cofibrant in Sp¥(R) with respect to the stable R-model structure. Using the same
argument as that in the proof in [7, Proposition 4.1], we have:

Proposition 6.3 ([7]).

(i) Ewery R-spectral category is functorially Morita equivalent to a pointwise-cofibrant R-spec-
tral category with the same objects.

(ii) The subcategory of pointwise-cofibrant R-spectral category is closed under the tensor pro-
duct.

(iii) If A is a pointwise-cofibrant R-spectral category, the tensor operation A Ar (—) preserves
Morita equivalences and colimits.

(iv) If A and B are both pointwise-cofibrant R-spectral categories, then the A A\r B computes
the derived tensor product.

We denote by Catgc the category of small pointwise-cofibrant spectral categories. By Propo-
sition 6.3, Catg® admits a symmetric monoidal structure given by tensor products, and the
tensor products preserves Morita equivalences in each variable. Similarly, we denote by Catﬂ%c
the category of small pointwise-cofibrant R-spectral categories.

Inverting morphisms. We recall the notion of oo-categories obtained from an oo-category
endowed with a set of morphisms. We refer the readers to [25, Sections 1.3.4 and 4.1.3] for
more details. Let C be an co-category. Suppose that we are given a set S of edges (morphisms)
(we assume all equivalences are contained in S). Then there exists an oco-category C[Sfl]
together with £: C — C [S _1] such that for any oo-category D the composition induces a fully
faithful functor

Map (C [S_l],D) — Map(C, D)

whose essential image consists of those functors F': C — D which carry edges in S to equiv-
alences in D. We shall refer to C[Sfl] as the oo-category obtained from C by inverting S.
We note that C[S _1] is generally not locally small even when C is so. When C is an ordi-
nary category, an explicit construction of C[Sfl] is given by the hammock localization [13].
Let C® be a symmetric monoidal co-category. Let S be a set of edges in C such that all equiv-
alences are contained in S. Assume that for any object C' € C and any morphism C7 — Cs
in S, the induced morphisms C' ® C; — C ® Cy and C; ® C — Cy ® C belong to S. Then
there exists a symmetric monoidal oco-category C [5’*1]® together with a symmetric monoidal
functor 5 :C® = C [S‘l]® whose underlying functor is equivalent to £&. There is a universal
property: for any symmetric monoidal oo-category D® the composition induces a fully faithful
functor Map® (C[S _1]®,D®) — Map® (C®,D®) whose essential image consists of those func-
tors F': C® — D® which carry morphisms in .S to equivalences in D. Here Map®(—, —) indicates
the space of symmetric monoidal functors.
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Example 6.4. Let SpE(]R)C be the full subcategory that consists of cofibrant objects. The
tensor product Ar given by the wedge product over R preserves cofibrant objects. In addi-
tion, if C' € Sp™(R)® and f: C; — Cy is a weak equivalence (i.e., stable equivalence), then
C NAr f is a weak equivalence. Comnsequently, we have the symmetric monoidal oco-category
Sp™(R)® [W‘l] ® obtained by inverting weak equivalence. In the case of R = S, by the character-
ization of Sp® [25, Corollary 4.8.2.19], there is a canonical (unique) symmetric monoidal equiv-
alence Sp™(S)° [W‘l] ©~ Sp?®. In addition, if we denote R by the image of R in CAlg(Sp), then
by [25, Theorem 4.3.3.17] there is a canonical symmetric monoidal equivalence Sp*(R)® [W_l] @
= Mod%(Sp™(S)¢[W1®) ~ Mod % (Sp®) = Mod%. Let Algy, (Sp™(R)¢) be the category of as-
sociative algebra objects in Sp*(R)¢, which is endowed with the symmetric monoidal structure
induced by that of Sp>(R)¢. Then if Alg,, (Sp™(R)¢) [W*1]® denotes the associated symmet-
ric monoidal co-category obtained by inverting weak equivalences, then we have equivalences
of symmetric monoidal co-categories

Alga, (SP™(R)) [W1]% = Algl, ((Sp™(R)) [W']) = Alg}, (Modg),

where the left equivalence follows from the rectification result [25, Theorem 4.1.8.4]. In par-
ticular, given an associative algebra A € Alg,,(Modg), there is an associative algebra A €
Algy, (Sp¥(R)°) together with an equivalence o: A ~ A in Algy (Modg). In this case, we say
that A (together with o) represents A.

Example 6.5. We use the symbol M to indicate the class of Morita equivalences in Catf®
or Caty’. By Proposition 6.3, we can invert the class of Morita equivalences M to obtain
symmetric monoidal oco-categories CatgC [M _1]® and Catﬂ%C [M _1]®. Thanks to multiplica-
tive Morita theory [7, Theorem 4.6], there is a canonical equivalence of symmetric monoidal
oo-categories

St® ~ Catt* [M_1]®.
Construction 6.6. There is a sequence of symmetric monoidal co-categories
Cath’ — Catf® — Catl® [M ]

such that Caty” and Catg® are ordinary symmetric monoidal categories, the left arrow is the for-
getful lax symmetric monoidal functor, and the right arrow is the canonical symmetric monoidal
functor. Consequently, if we write R for the image of R in CAlg(Sp), it gives rise to a lax
symmetric monoidal functor

m: Cath” — Modpg ( Cat§" [M_l]) ~ Modperf, (St).

To obtain Cath” — Catl®, we need to check that the essential image of Cath” — Catg is con-
tained in CatL’. It is enough to show that the forgetful functor Sp*(R) — Sp™(S) = Sp* carries
cofibrant objects to cofibrant objects in Sp™. For this purpose, we recall that cofibrations in Sp™
with respect to the stable S-model structure is the smallest weakly saturated class [27, Defini-
tion A.1.2.2] of morphisms that contains {S®1};cmon, where Mon is the class of monomorphisms
of symmetric sequences, and S ® ¢ denotes the morphism of symmetric spectrum induced by ¢,
namely, S® (—) is the left adjoint of the forgetful functor from Sp™ to the category of symmetric
sequences, see [32]. The class of cofibrations in Sp”(R) with respect to the stable R-model struc-
ture is the smallest weakly saturated class of morphisms containing {R®i =R A (S® %) }ieMon-
Note that we assume that R is a cofibrant object in CAlg (sz ) so that the underlying object R
is cofibrant in Sp™. It follows that the underlying morphisms R®i in Sp™ are cofibrations. Since
Sp™(R) — Sp” preserves colimits, Sp”(R) — Sp™ preserves cofibrations.
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The following is a rectification result for St%.

Proposition 6.7. w: Cath’ — Modpg (Cat§® [M~1]) in Construction 6.6 induces a symmetric
monotdal equivalence

Cath’ [M_l}@) ~ Mod%p (Catt” [M_l]).
In particular, we have a canonical symmetric monoidal equivalence
—-11®
Cath’ [M~1]" ~ Modg,,;  (St) = St .

Proof. The underlying functor is an equivalence of co-categories. In fact, there are sequence
of categorical equivalences

Cath® [M~] — Modpz(Cat2®) [M~'] — Modpg (Cat}® [M~]),

where the middle oco-category is obtained from the ordinary category Modpggr (Catgc) by in-
verting Morita equivalences (we do not claim that the middle oco-category admits a monoidal
structure). The right arrow is induced by Modgg (Catgc) — Modpggr (Catgc [M_l]). The left
arrow is induced by the inclusion Cath’ < Modpg (Catf®) C Modpg (Cats) ~ Catg. The
functorial cofibrant resolution Catp — Cath’ induces an inverse equivalence of Cath” [M ]
— Modpgr (Catgc) [M *1] (a cofibrant one is pointwise-cofibrant). It is proved in [9, Theo-
rem 5.1] that the right arrow is a categorical equivalence. Next, we prove that m: Cath —
Mod gr (Catgc [M *1]) is symmetric monoidal. Namely, we show that the natural morphisms
Perfp — m(BR) and m(A) ®p 7(B) — m(A Ag B) are equivalences in Modgg ( Caty” [M~1]) ~
Modperty, (St), where 7(A) ® g 7(B) indicates the tensor product in Modpef, (St). By construc-
tion, the morphism Perfr — 7m(BR) is an equivalence. We prove that 7(A)@p7w(B) — 7(AARB)

is an equivalence. We here write ﬁpe for the R-spectral full subcategory of Fung (AOP, Sp* (]R))Cf

that consists of cofibrant-fibrant objects lying over Dpe(A)gr (.Zpe is DK-equivalent to Dge(A)
as spectral categories, see the proof of Lemma 6.11 and Claim 6.12 for the notation). For any
other R-spectral category P, we define 73pe in the same way. By Claim 6.12 below, the im-
age of (mg)pe in Modgg (Caty” [M~1]) is equivalent to 7(A Ag B) in the natural way. Let
{Ax}xen be the filtered family (poset) of R-spectral full subcategories of A such that for any Ay,
D(A,) (or Fung (ASP, SpZ(R))Cf) admits a single compact generator (so that (./Zl}\)pe is Morita
equivalent to BA for some A € Alg,, (SpE(R)C), where BA has one object * with the morphism
ring spectrum Eﬂ*, %) = A). Then we have the filtered family (poset) of R-spectral full sub-

categories {(Ax Ar B),.}ycp Of (WB)pe. The filtered colimit of this family in Catl” [M ]
is (A//\ﬂ? B)pe. Indeed, from the categorical equivalence Cath’ [M *1] ~ Modpey, (St) and the

o —

conservative colimit-preserving functor Modpe, (St) — St, if we transfer {(A) Ar B)pe} AEA
into the filtered family of stable idempotent-complete co-categories, we are reduced to proving
that the colimit of the resulting diagram in St is a stable co-category obtained from the spec-

tral category (WB)pe. We think of {(‘A/\//EB)pe},\eA as a filtered diagram (poset) of full

subcategories of (WB)pe. Since Uxea (Ax Ar B)pe = (WB)pe,

in Cateo is naturally equivalent to (A Ag B)pe. Note that a filtered colimit of stable co-categories
in St naturally coincides with a colimit which is taken in Cats, [25, Proposition 1.1.4.6].

o — o —

It follows that (AARB),, is a colimit of {(Ax Ar B)pe})\eA in St. We then deduce that

colimyep (A Ar B)pe = (A AR B)pe is an equivalence in Modpef,, (St). In addition, we note that
the tensor product in Modpe,s,, (St) preserves small colimits in each variable since St® is a sym-
metric monoidal compactly generated co-category whose tensor product preserves small colimits

a colimit of this diagram
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in each variable (see [6, Corollary 4.25]). Therefore, taking into account Proposition 6.3(3), we
may and will suppose that A = BA for some A € Alg,, (SpE(R)C). Taking the same procedure
to B, we may and will suppose that B = BB for some B € Alg,, (sz (R)C). We write A and
B for the images of A and B in Alg,,(Modp), respectively. In this situation, we have a canon-
ical equivalence 7(A) @ 7(B) ~ (RMods ®r RModp)¥ ~ (RModag,p)" ~ (BmB)pe ~
m(AARrB) (cf. [5, Proposition 4.1(2)], [25, Theorem 4.8.5.16]), where (—)* indicates the full sub-
category of compact objects. Hence 7: Cath’ — Modpgg (Catgc [M *1]) is symmetric monoidal,
which induces a symmetric monoidal functor Cath’ [M _1]® — Mod%p (Caty® [M~']) whose

underlying functor is a categorical equivalence. Thus we have the desired symmetric monoidal
equivalence Cath’ [M_1]® = Mod$ (Catf® [M~1]). -

Using the equivalence in Proposition 6.7, we obtain equivalences of symmetric monoidal
oo-categories

0: St =Mod?

Perf R

(St) ~ Mod®,

-1 —-171®

Pert, (Caty” [M1]) = Cat” [M™]7,
Next, to an R-spectral category we assign Hochschild homology R-module spectrum en-
dowed with circle action. The construction is based on the Hochschild-Mitchell cyclic nerves

(cf. [7, 8)]).

Definition 6.8. Let A be a pointwise-cofibrant small R-spectral category. Let p > 0 be a non-
negative integer. Let

HH(A)y =\  AXp-1,Xp) Ar - Ar A(Xo, X1) Ar A(Xp, Xo).
(X0,.,Xp)

The coproduct is taken over the set of sequences (X, ..., X,) of objects of A. The composition
in A determines degeneracy maps do,...,dp: HH(A), = HH(A)p—1, and the unit map S —
A(X;, X;) determines face maps sg,...,sp: HH(A)p = HH(A)p+1. The cyclic permutation
(Xo,s...,Xp) = (Xp, Xo,...,Xp_1) gives rise to the action of the cyclic group Z/(p + 1)Z
on HH(A)p. The family HH(A)e := {HH(A)p}p>0 equipped with degeneracy maps and face
maps form a simplicial object in Sp™(R). If we take into account the action of Z/(p + 1)Z
on HH(A)p, then HH(A)e = {HH(A)p}p>0 is promoted to a cyclic object, that is, a functor
AP — Sp*(R) from (the opposite category of) the cyclic category of Connes such that the
composite A%? — AP — Sp* (R) is the simplicial object. Here A denotes the Connes’ cyclic
category, see [10, Section 2], [24] for the definition of the cyclic category.

We let Fun (AOP,SpZ(R)) denote the ordinary functor category from A°P to Sp>(R). The
category Fun (AOP,SpE(R)) inherits a symmetric monoidal structure given by the pointwise
tensor product F' ® G([n]) = F([n]) Ar G([n]).

From the definition of the tensor product of R-spectral categories and the construction
of HH(A)p, it is straightforward to check that the assignment A — H?H(A)s determines a sym-
metric monoidal functor

HH(—)e: Cath — Fun (AOP, SpE(R)).

The image of HH(—)a is contained in Fun (A°P, Sp*(R)¢) since the stable R-model structure sat-
isfies the axiom of symmetric monoidal model categories. Let SpE(R)C [W_l] be the symmetric
monoidal co-category obtained from Sp™ (R)¢ by inverting stable equivalences. The underlying
co-category is presentable since Sp™ (R) is a combinatorial model category. There is a canonical
symmetric monoidal functor Fun (A°, Sp¥(R)¢) — Fun (A°, Sp™(R)¢[W~!]) induced by the
symmetric monoidal functor Sp*(R)¢ — Sp*(R)¢[W~1].

We recall the following results from [10, 18, 24]:
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Lemma 6.9.

(i) Let A — A be the groupoid completion. Namely, it is induced by a unit map of the
adjunction Cato &= S :t, where v is the fully faithful inclusion. Then A is equivalent
to BS' in S.

(ii) LetC be a presentable co-category. Let F: A°P — C be a cyclic object inC. Let F': BS'— C
be a functor. Let A° — BS! be the map determined by the unique object of BS'. Consider
the commutative diagram

ACP . AOP

]

AV — BSt,

where we regard A° as the groupoid completion of AP (AP is sifted so that the groupoid
completion is given by the contractible space AY, cf. [27, Section 5.5.8]). Then F' is a left
Kan extension of F along A°® — BS' if and only if the composite A° — BS' — C is
a colimit of the composite A°P — A°P — C.

Proof. The first assertion is a result of Connes, see [10, Théoreme 10], [18, 24]. The second
assertion is proved in [18, Proposition 1.1]. [

~!) — Fun (A°P, SpE(R)C[W_l]) be the functor

Lemma 6.10. Let R: Fun (BS!, Sp™(R)[W
~ BSt. Let

induced by composition with AP — A
L: Fun (AP, SpE(R)C[W_ID — Fun (BS?, SpZ(R)C[W_l])

be a left adjoint (the existence of a left adjoint follows from the adjoint functor theorem [27] and
the fact that both co-categories are presentable). Then this left adjoint is symmetric monoidal.

Proof. Since the right adjoint is a symmetric monoidal functor, the left adjoint is an oplax
symmetric monoidal functor. Thus it is enough to show that L(F ® G) — L(F) ® L(G) is
an equivalence in Fun (BSl,SpE(R)C[W_l]) for F, G: A°P — sz(R)C[W_l]. To this end,
note first that L(F), L(G): BS' — Sp¥(R)® (W] are given by left Kan extensions of F and G,
respectively, along A°° — BS!. By Lemma 6.9(ii), F’: BS' — SpZ(R)C[Wfl] is a left Kan
extension of F': A°P — SpE(R)C[W_l] if and only if the image of the unique object * of BS?
under F’ is a colimit of the composite Fa: AP — AP — SpE(]R)C[W_l]. Let Ga be the
restriciton of G to A°P. Then L(F®G)(x) is a colimit of the composite A°P diag Aop ¢ pop Faxfa
Sp* (R)[W 1] x Sp™(R)¢[W 1] & Sp=(R)e [W=1]. On the other hand, L(F) ® L(G)(*) is
a colimit of A% x A% M52 gpRR)e[iy—1] x SpP(R) (W] & SpE(R)[W—!] since the
tensor product of SpE(R)C [W‘l] preserves small colimits separately in each variable. Note that

the diagonal functor A% — A°P x AP ig cofinal. Thus the canonical morphism L(F ® G)(x) —
L(F) ® L(G)(*) is an equivalence. This means that L is symmetric monoidal. [

Assembling these lemmata and constructions, we obtain a sequence of symmetric monoidal
functors

H: Catte "5 Fun (A% SpE(R)) — Fun (A%, SpE(R)S[W 1))

~ Fun (AOp, ModR) L fun (BSl, ModR).
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More explicitly, the composition of H and the forgetful functor Fun (BS 1 Mod R) — Modpg ~
Sp™(R)® [Wﬁl] sends a pointwise-cofibrant R-spectral category A to the homotopy colimit of the

. .. . HH(A)e
simplicial object AP — AP ) Sp*(R).
Next, we observe the invariance under Morita equivalences.

Lemma 6.11. Let A and B be pointwise-cofibrant R-spectral categories. Let F: A — B be
an R-spectral functor which is a Morita equivalence. Then H: Cath’ — Fun (BSl,ModR)
carries ' to an equivalence in Fun (BSl, ModR).

Proof. It will suffice to prove that H(F') is an equivalence in Modg. By [8, Theorems 5.9
and 5.11], the image of H(F) in Modgr ~ Sp™(R) (W] is an equivalence if F: A — B is
a Morita equivalence over R. We explain the notion of a Morita equivalence over R, which
we distinguish from the notion of Morita equivalences for the moment. Let Fung (AP, Sp* (R))
be the R-spectral category of R-spectral functors. As in the case of R = §, it admits a combina-
torial R-spectral model structure whose weak equivalences (resp. fibrations) are objectwise stable
equivalences (resp. fibrations). Let D(A)r denote the homotopy (triangulated) category of the
full subcategory Fung (A°P, Sp™ (]R))Clc spanned by cofibrant and fibrant objects. Let Dpe(A)r be
the smallest thick subcategory that contains the image of the Yoneda embedding A — D(A)g.
We define Dpe(B)g in a similar way. The functor F' induces (LF)r: Dpe(A)r = Dpe(B)r as F
induces LFi: Dpe(A) — Dpe(B). We say that F' is a Morita equivalence over R if (LFj)g is
an equivalence. Thus to prove our assertion, it is enough to show the following claim:

Claim 6.12. There exist equivalences Dpe(A)r =~ Dpe(A) and Dpe(B)r ~ Dpe(B) which identi-
fies (LEFY)r with LE} up to natural equivalence. In particular, F is a Morita equivalence over R
if and only if F' is a Morita equivalence.

Proof.  We let DEG(A)R be the full subcategory of Fung (A°P, SpE(R))Cf spanned by those
objects that belongs to Dpe(A)r. The Yoneda embedding I: A — DEG(A)R (after replacing A
by a fibrant one) induces I: D3, (A) — D (D3, (A)r). By [6, Proposition 4.11], we deduce that
the canonical functor DY (A)r — Di. (D (A)r) is a DK-equivalence. Thus we have D3, (A) —
DEE(A)R (in the homotopy category of Catg). By the correspondence between stable idempotent-
complete oo-categories and spectral categories up to Morita equivalences ([6, Theorems 4.22
and 4.23]), passing to stable (idempotent-complete) co-categories, we may replace DEG(A) —
DEB(A)R by the induced exact functor of stable idempotent-complete oco-categories which we
denote by f: Perf(A) — Perf(A)r. Namely, it is enough to show that f is an equivalence.
Taking account of the Yoneda embedding, we see that f is fully faithful on the full subcategory
spanned by the image of A. It follows that f is fully faithful on the smallest stable subcategory
of Perf(A), containing A. Note that Perf(A)g is the idempotent completion of the smallest
stable subcategory that contains the image of A under the Yoneda embedding. Then we conclude
that f is an equivalence. Similarly, Dpe(B)r =~ Dpe(B). Finally, using the construction of these
equivalences and the functoriality of left adjoints (—);, we identify (LF})g with LE. |

Corollary 6.13. The symmetric monoidal functor H: Cath’ — Fun (BSl, ModR) factors as

Cat]lfgc Fun (BSl, ModR)

i

Catl [M~1].

Proof. It follows from the universal property of Catp” — Cath’ [M '] and Lemma 6.11. W
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Composing with 6, we obtain a sequence of symmetric monoidal functors

Modpert, (St) ~ Modpe, (Cat2® [M~1]) — Cat2 [M~1] <L~ Fun (BS!, Modp ).

Definition 6.14. Let C be a small R-linear stable co-category. We denote by HHe(C) the image
of C in Fun (BS 1 Mod R) under the above composite H o §. We often abuse notation by wri-
ting HHe(C) for its image in Modg. We refer to HHe(C) as Hochschild homology R-module
spectrum of C. If A is a pointwise-cofibrant R-spectral category, we refer to the image H(A)
in Fun (BS 1 ModR) or Modpg as Hochschild homology R-module spectrum of A.

We record our construction as a proposition:

Proposition 6.15. There is a sequence of symmetric monoidal functors

Modpe ,(St) 5 Catl® [M~1] 2L Fun (BS', Modg ) 5" Modp,

which to R-linear stable co-categories or pointwise-cofibrant R-spectral categories assigns Hoch-
schild homology R-module spectra. In particular, for any oo-operad O it gives rise to

Alg (Modpert, (St)) — Algy (Cath’ [M])
— Algy (Fun (BS', Modg )) — Algp(Modp).

7 Construction

In this section, we prove Theorem 7.14. Namely, we construct the structure of a KS-algebra
on the pair of Hochschild cohomology spectrum and Hochschild homology spectrum. We main-
tain the notation of Section 6.

Definition 7.1. Let M and M’ be (possibly empty) finite disjoint unions of open interval (0, 1)
and the circle R/Z = S'. That is, M = (0,1)"™ U (Sl)un and M’ = (0,1)“" L (Sl)un/.
Let Emb™¢(M, M') be the space of rectilinear embeddings. A rectilinear embedding M — M’
is an open embedding such that any restriction (0,1) — (0,1), (0,1) — S! and S! — S!
is rectilinear, see Definition 4.1. The topology is induced from the compact-open topology
(or parameters of rectilinear maps).

Let Mfld*° be the the fibrant simplicial colored operad whose set (1\/H'ld1iec)col of colors consists
of (possibly empty) finite disjoint unions of (0,1) and S*. For a finite family {M;};c; of colors
and N € (Mﬂdﬁec)col, the simplicial hom set Multyigqree ({M; }ier, IV) is defined to be the singular
complex of the space Emb™(UL;c;M;, N) of rectilinear embeddings. The composition is defined
in the obvious way. Then from Definition 4.7, we obtain the associated oo-operad (Mfld}*)®
— I, which is a symmetric monoidal co-category by construction. Informally, objects of this
symmetric monoidal co-category are finite disjoint unions of (0,1) and S*', and the symmetric
monoidal structure is given by disjoint union. The empty space is a unit. The mapping spaces are
spaces of rectilinear embeddings. Let Mfld]*® denote the underlying oo-category. Let Diski* C
Mfld"™ be the full subcategory spanned by finite disjoint unions of (0, 1). It is closed under taking
tensor products so that Disk} is promoted to a symmetric monoidal co-category (Disk}¢)® (it is
equivalent to an ordinary symmetric monoidal 1-category).

Remark 7.2. There are several variants which are equivalent to Mfld}¢. Let MfldY be the
oo-category of framed (or oriented) 1-manifolds without boundaries whose mapping spaces are
spaces of embeddings of framed manifolds (see, e.g., [2, Section 2]). The symmetric monoidal
structure is given by disjoint union. It is easy to see that there is an equivalence Mfld}® =
I\/Ifldffr as symmetric monoidal oco-categories. If we write Diskffr for the full subcategory of Mﬂdgr
spanned by framed 1-disks, it also induces an equivalence Disk}*® = Diskgr of symmetric monoidal
oo-categories.
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From now on, for ease of notation, we write Mfld;, Disky, and Disk? for Mfldi*¢, Diski*,

and (Diskiec)®, respectively.

We set (DiSk]_)/Sl := Disk; Xmfid, (Mﬂdl)/s1. Let <Sl> be the full subcategory of Mfldy
that consists of S'. By the equivalence Emb™* (S 1,51) ~ S it follows that <S 1> is equiva-
lent to BS!, that is, the co-category which has one object * together with the mapping space
Mappggi (*,%) = S endowed with the composition law induced by the multiplication of S*.
Let Disk1/<5’1> be the full subcategory of Fun (Al,MfIdl) which consists of those functors
h: A — Mfld; such that h(0) € Disk; and h(1) € (S'). In other words, Disk;/(S') =
Disk; Xmfq, Fun (Al, Mfldl) X Mfldy <Sl>, where the functor from Fun (Al,l\/lfldl) to the left
Mfld; (resp. the right Mfld;) is induced by the restriction to the source (resp. the target). The
projection A” = {S'} — (S1) = BS! induces

(DiSkl)/sl ~ DiSkl X Mfld, Fun (Al, Mﬂdl) X Mfldq {Sl}
— DiSkl X Mfld, Fun (Al, Mﬂdl) X Mfld, <Sl> = DiSk1/<Sl>,

where the left categorical equivalence follows from [27, Proposition 4.2.1.5].

Lemma 7.3. Let Disk]{ be the full subcategory of Disky spanned by nonempty spaces (namely, the
empty space is omitted from Disk; ). We set Disk];/<Sl> = DiskJ{ X Disky (Disk1/<51>). Let A be the
cyclic category of Connes [10, Section 2]. There is an equivalence of categories A°P ~ Disk1/<51>,

Proof. This is a comparison between definitions which look different. We first recall that
objects of A are (p) for p > 0, which is denoted by A, in [10]. Let (Sl,p) be the circle
St = R/Z equipped with the set of torsion points ﬁZ/Z. The hom set Homy ((p), (¢)) is
defined to be the set of homotopy classes of monotone degree one maps ¢: S' — S! such that
(b(ﬁZ/Z) C qT11Z/Z' We denote points ]%, e z% € R/Z by 1'2, ..., xh, respectively. Let
I; = {3:2, << ZL‘;+1|."L‘ € [0, 1)} be the open set in S', where we use the obvious bijection
of sets [0,1) ~ R/Z. In what follows, we regard the superscripts in z, and I as elements
of Z/(p+ 1)Z. For u,v € [0,1), {u < = < v} means {z € [0,1)|u < x < v} if u < v,
{re0)|u<z<l,0<z<v}ifu>v>0 and {x € [0,1)|u <2 <1} ifu>v=0.
Given (p) € A, we think of j,: (R/Z)\(ﬁZ/Z) = (Ig U---UIp) < R/Z = S' as an object
of Disk}/<51>. We fix I} ~ (0,1) such that I’ < R/Z is equivalent to (0,1) =< R — R/Z.
We write J(p) for it. We note that every object of Diski/<Sl> is equivalent to J(p) for some p > 0.
Since each component of Mapygq, ((0,1)*1, S1) is naturally equivalent to S*, the computation
of mapping spaces shows that Diski / <5’ 1> is equivalent to the nerve of a 1-category. We may

and will abuse notation by identifying DiskJ{ / <S 1> with its homotopy category. Suppose that we
are given a monotone degree one map ¢: S' — S! such that QS(#Z/Z) C qT11Z/Z. Assume
that p > 1 and ¢(jp (II’,)) is not a one-point space. Let o (i, ¢) be an element of Z/(p+ 1)Z such

that xg(i’¢) = cb(:c;,). Consider a rectilinear embedding
tig: 100U IZEOT g9 (0, 1) U U (0,1) <5 (0,1) > I

such that ¢; ¢ (Ig(l’@) < <lig (Ig(l+1’¢)_1) in (0,1) (we here abuse notation: for two subsets
S, T c (0,1), S < T if s < t for any pair (s,t) € S xT). When p = 0, we define ¢; 4
by replacing 15" L 7G|y gLy po(0) ) et 2G0T gyen
a rectilinear embedding is unique up to equivalences. Given ¢ € Homx ((p), (¢)), we define the
class of a map ¢*: J(¢) — J(p) in DiskJ{/<Sl> such that the fiber of the induced morphism
Ig U---UIf — I]? U- - I} over the connected component I;; is (equivalent to') ti g if d)(IIi,) is not
a one-point space, and if otherwise there is no component which maps to I;,. Notice that such
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a class is unique. It is routine to check that the assignments (p) — J(p) and ¢ — ¢* determine
a categorical equivalence A°P = DiskJ{ / <Sl>, where the target is identified with the homotopy
category. |

Lemma 7.4. Let 7: DiskJ{/<Sl> — <Sl> be the projection. It is a groupoid completion
of Disk! /(S").

Proof. By Lemmas 6.9(i) and 7.3, there is a groupoid completion c¢: A°P ~ Disk1/<5’1> —
BS'. Thus, by the universal property, there is a canonical morphism from c: A°® — BS!
tom: AP ~ DiskJ{/<Sl> — (S1) in (Catog) por . It will suffice to show that the induced morphism
g: BS' — <S1> ~ BS! is an equivalence, equivalently, it is induced by an equivalence S' — S*
as Ej-monoid spaces. To this end, assume that g: BS' — <Sl> ~ BS' is induced by a map
St — St of degree n, where |n| = p+1, p > 0. We will show that this gives rise to a contradiction.
The automorphism group of (p) in A°P ~ DiskJ{/<Sl> is Z/(p+ 1)Z so that there is the functor
h: BZ/(p +1)Z — BS" induced by m. By the factorization A 5 BS! % (S') ~ BS! and
our assumption, h: BZ/(p + 1)Z — BS' factors through the canonical morphism A? — BS?.

Thus, the fiber product of BZ/(p + 1)Z 2 BST + A0 =« is B(Z xZ/(p+1)Z). On the other
hand, the space/oo-groupoid in (Disk;) g1 =~ Disk, /(S*) X (51 A" spanned by J(p): (0,1)-P*!
— S! (obtained by discarding non-invertible morphisms) is equivalent to BZ. It gives rise to
a contradiction B(Z x Z/(p + 1)Z) ~ BZ. [

Remark 7.5. There is another category relevant to the cyclic category: the paracyclic cat-
egory As. Let us recall the definition of the paracyclic category. We follow [14]. The set
of objects of Ass i8 {(0)oos (1)ocs- -5 (P)oos - - - }p>0. The hom set Homa__((p)oo, (¢)oo) is defi-
ned to be the set of monotonically increasing maps f: Z — Z such that f(i + k(p + 1)) =
f(@)+k(g+1) for any k € Z. We define a functor Ao, — A which carries (p)so to (p). The map
Homa__ ((p)oos (q)so) — Homy ((p), () carries f to ¢pp: S* — S, where ¢y is the class of a map
such that ¢(al) = xf;(l) € q%Z/Z for i € Z/(p + 1)Z. Here, we regard f(i) as belonging
to Z/(q + 1)Z. This determines a functor A, — A. Unwinding the definition of Ao — A,
we see that it is a (homotopy) quotient morphism Ay — As/BZ ~ A that comes from a free
action of BZ on A.,. This free action of BZ is determined by the natural equivalence from the
identity functor idy_ to itself such that for any p > 0, the induced map (p)os — (P)oo is the
map i — i+p+1 (see [14] for details). The paracyclic category also has a geometric description.
From the proof of Lemma 7.6 below, A°? — A is (left) cofinal so that it induces an equiva-
lence between their groupoid completions. Since the groupoid completion of AP is contractible
(note that it’s sifted), the groupoid completion Ay, of A, is a contractible space. It follows
that the geometric realization of A is equivalent to BBZ = BS! (see also Lemma 6.9(i)).
The composition with the opposite functor A — AP ~ DiskJ{/<S1> — <Sl> = BS! factors
through the groupoid completion ASY — KZS ~ A®. Consequently, we have the induced func-
tor AL — (DiskJ{)/S1 ~ Disk];/<51> X (1) AY. This is an equivalence. Clearly, it is essentially
surjective. The map Homyor((¢)oo, (P)oo) — Homper ((g), (p)) is a homotopy quotient map that
comes from a free action of Z. We see that Homyor((¢)oo, (P)co) is a (homotopy) fiber product

Homyor ((¢)so; (P)oo)/Z X Bz A° ~ Homper((q), (p)) x5z A°. It follows that AL — (Diskl{)
is fully faithful. Hence A% & (DiskJ{)

/St
/St

Lemma 7.6. Let C be a presentable oco-category. Let Ao be the paracyclic category, see [14]
or Remark 7.5. Let AL ~ (Disk];)/s1 — DiskI/<Sl> ~ A°P be the natural functor. Let
f: DiskJ{/<S1> — C and g: <Sl> — C be functors and let f — mo g be a natural trans-
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formation. Then g is a left Kan extension of f along m: DiskJ{/<S1> — <Sl> if and only if
AY - BS! ~ <Sl> 5 C determines a colimit of the composite (DiskJ{)/S1 — Diski/<51> i> C.
Moreover, the inclusion (Disk{)/sl — (Diskl)/s1 1s cofinal. Therefore, if we suppose that

f: Disk];/<51> — C s the restriction of a functor f: Disk1/<81> — C, the above condition
that g is a left Kan extension of f is also equivalent to the condition that A° — BS' — C

determines a colimit of the composite (Diski) g1 — Disky /(S*) ER C, where the first arrow
(Disky) /g1 — Disk /(S*) is the natural functor.

Proof. There is a faithful functor A — ASL that is (left) cofinal [26, Proposition 4.2.8]: it is
the same as the functor m in Remark 7.7. Thus, for any paracyclic object F': ASY — C, the
canonical morphism colimp,eaor F([p]) — colim,) cpow F((p)oo) is an equivalence. Our first
assertion now follows from this fact and Lemma 6.9(ii).

To prove the second assertion, it will suffice to prove that ((Diski)/sl)e/ = (Diski)/s1

X(DiSkJ{)/Sq ((Disk1)/s1)e; is weakly contractible, where e is the map e: ¢ — St from the empty
space to S'. Since e is an initial object in (Disky) /g1, we are reduced to proving that (DiskJ{)/S1
~ AL is weakly contractible. By Quillen’s theorem A, it is clear because AP is weakly
contractible and A° — AZY is (left) cofinal (it follows also from the fact that (DiskD I 18

sifted). [
Remark 7.7. We have the following commutative diagram of categories:

forget

{(0.1) = 8"} —— ((Disk]) ;1) g1yt ) = (Disk!) g — Disk] /(")

P T

{[07} AP - AR AP,

It is straightforward to observe that the composite ( (DiskD — A°P is a faithful

/Sl)(D,l)—>Sl/
and essentially surjective functor whose image is A°P contained in A°P.

Let Mfldi® be the colored simplicial full suboperad of Mfld:® (Definition 7.1) whose set
(Mﬂdif)co1 of colors is {(0, 1),51}. Namely, for M;, N € {(0,1),S'}, the simplicial Hom set
Multy;gqic ({M;}icr, N) is the singular complex of the space Emb™(U;er M;, N) of rectilinear em-
beddings. The superscript “ic” stands for the “interval” and the “circle”. Let Disk; be the full
suboperad whose set of colors is {(0,1)}. Notice that Disk; is identical with E; in Section 4. From
Definition 4.7, we obtain the associated co-operad (Mﬂdif) A — Fin, of simplicial categories con-

structed from Mfld. Also, to E; = Disk; € Mfldl® we associate (E;)a = (Disk;)a — Fin,.

Construction 7.8. We define p: (Ej)a X (Mﬂdif) A — DCyla which makes the following dia-
gram commute

(E1)a x (MAdY) , —" DCyl,

| |

. . AN .
Fin, x Fin, ——— Fin, .

Here DCyln — Fin, is the map of simplicial categories associated to DCyl. The lower hori-
zontal arrow A: Fin, x Fin, — Fin, that sends a pair ((m), (n)) to (mn) is defined in [25,
Notation 2.2.5.1]. Let X = ((m),(L1,...,Ln)) be an object of (Ej)a, where Ly = (0,1) for
each 1 < s <m. Let Y = ((n),(Mi,...,M,)) be an object of (Mﬂdif)A where M, is either
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(0,1) or St for each 1 <t < n. We define p((X,Y)) to be ((mn), (Ls x My))1<s<m, where we
1<t<n

abuse notation by the identifications (0,1)? = D and (0,1) x S! = C, see Definition 4.4.

X'=((m'),(L},...,L,)) be another object of (E1)a. Let Y = ((n'), (Mj, ..., M,,)) be ano-
ther object of (Mfld}")a. Given a pair of morphisms f: (m) — (m') and g: (n) — (n’), we define
a map

Embrec( I—lsef_l(s/) st L;,) x Em rec( |—|t€g—1(t’) Mta Mt//)

|

EmbreC( U(s,t)effl(sl)x.qil(t,) Ls X Mt7 L;/ X Mé’)

that sends (¢,1) to ¢ x . Taking the product parameterized by (s',¢') with 1 < ¢ < m/,
1 <t < n' and taking simplicial nerves, we obtain morphisms of hom simplicial sets. It gives
rise to a functor p: (E1)a x (MAdY) A — DCylp which makes the diagram commute. This
construction is a natural extension of that in [25, Construction 5.1.2.1]: Let (D) C DCyl be the
full suboperad whose set of colors is {D}. Let (D)a — Fin, be the correpsonding simplicial
full subcategory of DCyls. Then the restriction of p induces (E1)a X (E1)a — (D)a lying over
A: Fin, x Fin, — Fin,, which is defined in loc. cit.

Let Mfld; be the simplicial nerve of (Mﬂdif) A+ The simplicial nerves of the above diagrams
give rise to the commutative diagram

E} x EY

|

E? x Mfld; ~— DCyl,

E7

which lies over A: I' x I' = I'. We abuse notation by writing p for the associated map.

Given an oo-operad O® — T, there exist a symmetric monoidal co-category Env(O®) — T’
and a map O%® — Env ((’)®) of oco-operads such that for any symmetric monoidal oco-category D%,
the composition induces a categorical equivalence Fun® (Env ((’)®),D®) 5 Algos (D®), see
[25, Section 2.2.4]. Here Fun® (Env (O®), D¥) denotes the oo-category of symmetric monoidal
functors. We shall refer to Env ((’)®) as the symmetric monoidal envelope of O% (in loc. cit., it
is referred to as the I-monoidal envelope). Through the categorical equivalence, for a map of oco-
operads f: O® — D®. there exists a symmetric monoidal functor f: Env ((’)®) — D® which
is unique up to a contractible space of choices. We refer to f as a symmetric monoidal functor
that corresponds to f. Let Oper,, be the oo-category of (small) oo-operads [25, Section 2.1.4]
and let Cat2 be the oo-category of (small) symmetric monoidal co-categories whose morphisms
are symmetric monoidal functors. Then the construction of symmetric monoidal envelopes
gives a left adjoint Oper., — CatZ of the canonical functor Cat2 — Oper,,. Here are some
examples. The symmetric monoidal envelope E? of E? is equivalent to Disk(%<> as symmetric
monoidal oo-categories. Similarly, a symmetric monoidal envelope E? of E%z’ is equivalent to
the symmetric monoidal co-category Disks of (possibly empty) finite disjoint unions of (0,1)?
defined as in the case of Disk?: mapping spaces are spaces of rectilinear embeddings, and the

tensor product is again given by disjoint union. Another quick example of symmetric monoidal
envelopes is Mfld; — I\/Ifld?.

Construction 7.9. Let ¢: C® — T be a symmetric monoidal co-category. Let p: P® — T be
a symmetric monoidal co-category (resp. an oc-operad). We construct a symmetric monoidal
structure on the oo-category Fun® (P®,C®) of symmetric monoidal functors (resp. the oo-
category Algpe (C®) of algebra objects), see [25, Section 3.2.4] for more details of the case
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of Algpe (C¥). We define a map Fun® (P®,C®)® — T (resp. Alg%® (C®) — I) by the uni-
versal property that for any o: K — I, the set of morphisms K — Fun® (P®,C®)® over I’
(resp. K — Alg5, (C®) over I) is defined to be the set of morphisms f: K x P® — C® such
that

(i) the diagram

Kxpe L o

(avid)l lq

I xP® ——T

commutes; here the lower horizontal arrow is induced by A: I' x I' = T,

(ii) for any vertex k of K and any p-coCartesian edge ¢ in P®, f(k, ¢) is a g-coCartesian edge
(resp. for any vertex k of K and any inert morphism ¢ in P®, f(k, ¢) is an inert morphism
in C%).
The morphism Alg%® (C®) — I' is a symmetric monoidal co-category whose underlying oco-cate-
gory is Algpe (C), cf. [25, Proposition 3.2.4.3]. Similarly, Fun® (P®,C®)® — T' is a symmetric
monoidal co-category whose underlying co-category is Fun® (P®, C®): the proof of [25, Proposi-
tion 3.2.4.3] based on the theory of categorical patterns can also be applied to Fun® (73®, C®)®.
An edge A! — Fun® (P®, C®)® is a coCartesian edge if and only if for any X € P, the composite
A x{X} Cc A'xP® — C® determines a g-coCartesian edge (this means that the tensor product
F ® G of two symmetric monoidal functors F': P® — C® and G: P® — C? is informally given
by objectwise tensor products (F'® G)(X) = F(X) ® G(X)).
Let O® — I be an oc-operad and let O® - T be the symmetric monoidal envelope. The
composition with the inclusion O® — O® induces a map over I'

Fun® (0%,¢%)® — Alg%, (C°)

that preserves coCartesian edges, namely, it is a symmetric monoidal functor. Since the under-
lying functor is an equivalence [25, Proposition 2.2.4.9], it gives rise to a symmetric monoidal
equivalence. That is, the categorical equivalence Fun® (O®, C®) ~ Algps (C®) is promoted to
a symmetric monoidal equivalence in the natural way.

Let A be an Es-algebra in Modg. By definition, it is a map of oo-operads A: E? — Mod%
over I'. We denote by

i(A): DCyl — Mod%

the operadic left Kan extension of A along the inclusion 7: Eg’ — DCyl. If we think of the
color S' as an object in the fiber (Mfid;) ;) of Mfld; — T over (1), the full subcategory <Sl>
spanned by S' determines the inclusion v: BST ~ (S') < (Mfld;);y € Mfld;. Then we have
the following diagram

idxe (A
EY x BS' ‘L ES « Mfd; £~ DCyl L Mod?

| l L

Ix {(1)} ———=TxI—2~ r r.

See Construction 7.8 for p. The composite I' ~ I" x {(1)} — I' of lower horizontal arrows
is the identity map. Note that the composite p o (id x ¢): EY x BS! — DCyl is the map
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z: E? x BS' — Cyl ¢ DCyl which was defined in the discussion before Proposition 4.16.
Taking into account the above diagram, Proposition 4.16 and Lemma 4.14, we have the induced
functors

AlgDCyl(ModR) — Algcyl(ModR) = Algg, (Fun (BSl, Modg )),
and we write i)(A)¢ for the image of i1(A) in Algg, (Fun (BS', Modg )) ~ Algc,(Modg).
Remark 7.10. The image of C = (0,1) x S under i;(4): DCyl — Mod% can be viewed as
the factorization homology |, oA in Modp in this context, cf. [2, 25].

We continue to suppose that A is an Es-algebra in Modg. Let us consider the Hochschild
homology R-module spectrum of A defined as follows. Let Algy, (SpE(R)C) be the category
of associative algebra objects of Sp™(R)¢, where R be a (cofibrant) commutative symmetric ring
spectrum that represents R, and Sp™ (R)¢ is the full subcategory of Sp> (R) spanned by cofibrant
objects (cf. Section 6). The ordinary category Alg,, (SpE(R)C) admits a symmetric monoidal
structure given by A ® B = A Ar B. Define a symmetric monoidal functor Alg,, (SpE R)) —
Catl” which carries A to BA, where BA is the R-spectral category having one object * with the
morphism spectrum A = BA(x, x). We define HH(A) to be the Hochschild homology R-module

spectrum of BA. Namely, we use canonical symmetric monoidal functors

Alg s (SpE(R)c) — Cath® — Catl’ [M_l] 2 Fun (BSI, Modp ),
see Corollary 6.13. By inverting weak equivalences we obtain symmetric monoidal functors
Algy(Modg) ~ Algy, (Sp™(R)S) [W!] — Cath’ [M '] — Fun (BS*, Modg ),

see Example 6.4 for the first symmetric equivalence. This functor sends A € Alg,(Modpg) to
HHe(A). Note that there is a canonical categorical equivalence

Algg, (Modpr) ~ Algag Algas(Modpg)

that follows from the trivial fibration EY — As® and the equivalence E§ ~ EY ® EY (Dunn
additivity theorem). Thus, we have the induced functor

Algg, (Modg) ~ Algy, Alga(Modg) — Algs, (Fun (BS', Modg)).
Given A € Algg, (Modg), we define HH4(A) to be the image of A in Algy, (Fun (BS*, Modg)).
Proposition 7.11. There is a canonical equivalence

HHo(A) = iy (A)e
in Alg,(Fun(BS!, Modg)).

Let us consider Alg (Sp™(R)®) s Cath’ HHCDe pun (A°P, Sp¥(R)*), see Definition 6.8 for

HH(—)s. We write HHL(—) for the composite. Let As” be the symmetric monoidal envelope

~ . ~ T® . .
of As®. The equivalence Ei@ — As induces Dlsk(i9 — As . There is a canonical symmet-

ric monoidal equivalence Fun® (K/s®, (SpE(R)C)®) ~ Algas (Sp™(R)¢), see Construction 7.9.
We write Disky — Disk‘i9 for the inclusion of the fiber of the coCartesin fibration Disk‘i9 — T
over (1). Using Lemma 7.3, we have

£: A% ~ Diskl/(S") "2 Disk; < Disk? ~ As- .
The composition with £ induces
g: Algag (SpE(R)C) ~ Fun® (K/s(g, (SpZ(R)C)®) — Fun (A°P, SpE(]R)c),

which is a symmetric monoidal functor.
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Lemma 7.12. The functor HHY(=): Alga, (Sp™(R)¢) — Fun (A°P,Sp¥(R)¢) can be identified
with

g: Algy, (Sp™(R)") ~ Fun® (K/s®, (SpE(R)C)®) — Fun (AP, Sp™(R)°)

in the natural way. In particular, Algy (SpZ(R)C) [W*I} — Fun (AOP, SpZ(R)C[Wfl]) induced
by HH(—)e can be identified with

Algy, (Sp™(R)%) [W!] ~ Fun® (X;@), SpE(]R)C[Wfl]@) — Fun (AP, Sp™(R)¢[W1])
induced by the composition with &.

Proof. We use the notation in Lemma 7.3. Let ¢p,_1;: S1 — 8! be a monotone degree one
map which we think of as a morphism (p — 1) — (p) in A such that ¢,_;; (ac];_l) = af for
0<k<i-—1,and gbp_l,i(ac’;fl) = 3:’;“ for i <k < p—1 (in particular, x; does not lie in

the image of {z ). Let A be an object of Alg,, (SpE(R)C). Consider the composition

b}

pJSo<k<p—1
A°P ~ Diski J{SY)y — AT o Sp™(R)¢, where the final map is a symmetric monoidal functor
corresponding to A. By inspection, if {¢p—1;}o<i<p are regarded as morphisms (p) — (p — 1)
in A%, their images in Sp™(R)¢ define (p + 1) degeneracy maps APt — AP given by the
multiplication A A A — A. Let 1,;: S1 — S be a monotone degree one map which we think
of as a morphism (p) — (p — 1) such that 1, ; (:c’;) = x’;_l for k <141, and (:1;’;) = x];j for
k > i+1. Asin the case of {¢p—1,i }o<i<p, these maps give rise to p face maps AP — A"P*1 given
by the unit R — A. Consider the rotation 7,: S — S! which sends x’; to x’;H fork € Z/(p+1)Z.
We regard r, as an isomorphism (p) — (p). It yields the action of Z/(p + 1)Z on A"P*1 given
by the cyclic permutation of factors. It is straightforward to check that these maps constitute
a cyclic object that coincides with the cyclic object obtained from BA in Definition 6.8. |

Proof of Proposition 7.11. Taking into account Lemma 7.12 and SpE(R)C[W_l} © Mod%,
for an Es-algebra A, we consider the image of A under

h: Algg, (Modg) ~ Algs, (Fun® (As~, Mod$)) — Alg,, (Fun (A", Modp )),

where the right functor is induced by the composition with £: AP — Ks®. We abuse nota-
tion by writing ’HHI}(A) for the image of A under h. In the following discussion, we will use
the canonical identification Alg%l(—) ~ Alg% (—) which comes from the canonical equivalence
E‘? ~ As® of oo-operads. Let us consider

Algg,(Modg) ~ Algg, (Alg%s(ModR)) ~ Alga, (Alg%1 (ModR))
& Fun® (;Avs@, Alg%l(ModR)) — Fun (A°P, Algg, (Modg)).

The second equivalence follows from Construction 7.9, and the third functor is induced by &:

A°P — Es®. The composition is identified with h via the equivalence
Algg, (Fun (A", Modg )) ~ Fun (A°?, Algg, (Modpg)).

Let Ay: As® — Alg%1 (Modpg) be a map of co-operads that corresponds to A € Algg, (Modg) ~

Algy, (Algg, (Mod%)). We let A, AsY o Alg%l(ModR) be a symmetric monoidal functor

. . -~® .
from the symmetric monoidal envelope As that corresponds to A, (namely, the composite

As® & As” Alg%l(l\/[od r) is equivalent to A,). Observe that the composite A°P SasT A
Alg%1 (Modg) gives rise to a functor A°® — Algg, (Modg) which is equivalent to HHL(A) in
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Fun (A°P, Algg, (Modg)) =~ Alg,, (Fun (A°?,Modp )). Note that HHe(A) is defined to be the
image of HH.(A) under the functor Algs, (Fun (AP, Modg)) — Algy, (Fun (BS*, Modg))
induced by the symmetric monoidal functor L: Fun (AOP, Mod R) — Fun (BS L ModR) in Lem-
ma 6.10. Here L is a left adjoint of the symmetric monoidal functor Fun (BSl,MOdR) —
Fun (A°?,Modp ) induced by the composition with A°® — BS!. Thus, HH.(A) can also be
regarded as the image under the (left adjoint) functor Fun (AOp,AlgEl(ModR)) — Fun (BS 1
Algg, (Modg)) given by left Kan extensions along A°? — BS'. Consequently, HH4(A): BS' —

Algg, (Modg) is a left Kan extension of A°P LNV Algg, (Modg) along A°® — BSh

Next, we let A\b: Mfld; — Alg%l(ModR) be an operadic left Kan extension of A,: E‘? ~
As® — Alggp (Modg). Let A]: MfldY — Algh (Modg) be a symmetric monoidal functor
1 1

which corresponds to Xb. The composite Disk? — Mfld? — Alg%l(ModR) is equivalent to

Ay: Disk(i9 ~ Ké® — Alg%1 (Modpg). Consider the diagram of oo-categories:

Disky/({5") Disk, Algg, (Modg)

L7

(SY) Mfld;.

The upper left horizontal arrow is induced by the restriction to the source. The left verti-
cal arrow is induced by the restriction to the target. The upper right arrow is the underly-
ing functor of gb- The arrow Mfld; — Algg, (Modg) is the underlying functor of A{. The
right triangle commutes whereas the left square does not commute (but it admits a canonical
natural transformation induced by the evaluation map A! x Fun (Al, I\/Ifldl) — Mfldy). The

functor Mfld; — Algg, (Modg) carries S* to colimUﬁyG(Diskl)/s1 A,(U) which means a colimit

of EY xmad, (Mﬂd*iwt)/s1 =~ (Disky)/g1 — Disk; = Algg, (Modg). By Lemma 7.6, the compos-
ite (S*) — Algg, (Modp) is a left Kan extension of A% ~ Disk1/<51> — Algg, (Modpg). Since
A°P ~ DiskJ{/<Sl> — <Sl> ~ BS! is a groupoid completion by Lemma 7.4, it follows that the
composite BS' ~ (S1) — Algg, (Modg) is equivalent to HHe(A). In other words, HHe(A) is
equivalent to BS' ~ (S') — Mfld, KN Algg, (Modg).

Next, we relate i(A) ¢ with HHe(A): BST 5 Mfld; SN Algg, (Modg). For this purpose, we

consider the following setting. Let DCyl — DCyl be a symmetric monoidal envelope of DCyl.
Composing with maps into symmetric monoidal envelopes, we have the left diagram

EY x EY EY EY Algy, (EY)
E® x Mfld; —= DCyl, Mfld; — Alg§, (DCyl)

lying over A: I' x I' = I'. Then by the universal property of the tensor product of co-operads,
it induces the right comin\uﬁxtive diagram consisting of maps of oc-operads over I', where
Alg%1 (f}é@) and Alg%1 (DCyl) are symmetric monoidal oo-categories (defined over I'), and
the right vertical arrow is a symmetric monoidal (fully faithful) functor. In the following dis-
cussion, we replace Mod% by an arbitrary symmetric monoidal presentable co-category M®
whose tensor product M x M — M preserves small colimits separately in each variable. The
example of M® we keep in mind is Mod% Let A be an Es-algebra object in M®, that is,
a map A: Eg@ — M® of oc-operads over I'. The inclusion i: Eg@ — DClyl gives rise to the



Differential Calculus of Hochschild Pairs for Infinity-Categories 43

adjoint pair i: Algg, (M) = Algpoy(M) :i*. Let A: B — M® and ir(4): DCyl — M® be
symmetric monoidal functors that correspond to A and 4;(A), respectively. We have the diagram
of co-operads

~ _ Algg (A)
Ef Algf (Bf) ——Algg (M®)

Mfld, — Alg (DCyl).

As before, we let A,: E® — Algg, (/\/l®) be the composite of top horizontal arrows, which
amounts to A: EY — M® since E¥ @ E® ~ EY. Let A,: Mfld; — Algh (M®) be the
operadic left Kan extension of A, along E{ < Mfld;. Let Aﬂ: Mfid; — Alg%1 (M®) be
the composite. We note that ii(A)¢ is equivalent to BS' — Algg, (M®) determined by the

composite BST ~ <Sl> <y Mfid, ﬂ Alg%1 (M®). The universal property [25, Proposi-
tion 3.1.3.2] induces a canonical morphism /ib — flﬁ. It suffices to prove that the restriction
Ab|<31> — Aﬁ|<51> to (S') is an equivalence. (It gives rise to an equivalence HHa(A) ~ i(A)c
in Fun (BS 1,AlgE1(ModR)).) To this end, it is enough to show the following lemma, which
completes the proof of Proposition 7.11. [ |

Lemma 7.13. The induced morphism flb(Sl) — Aﬁ(Sl) is an equivalence in the co-category

Proof. We first consider flb: Mfld; — Alg%1 (M®) The operadic left Kan extension gives

A, (1) = colimUﬁsle(Diskl)/sl A,(U). Here, COth—>Sle(Disk1)/sl A, (U) means a colimit of E{ x

Mﬂdl(Mﬂdl)j'CStl =~ (Disky) /g1 — Disk; A4 Algg, (M®). By [2, Corollary 3.22] or [25, Proposi-
tion 5.5.2.15], (Disk1 ) /g1 is sifted (strictly speaking, in the statement in [25, Proposition 5.5.2.15],
mapping spaces between disks are spaces of (not necessarily rectilinear) open embeddings, but
the overcategory (Diski) g1 is equivalent to a nonrectilinear version in loc. cit.). The forget-
ful functor Algg, (./\/l®) — M preserves sifted colimits. Consequently, the image of A, (Sl)
in M is a colimit of (Disk;),s1 — Algg, (M®) — M. Given a topological r-manifold T,
we let Disj(T') be the poset that consists of open sets U C T such that U is homeomor-
phic to a finite disjoint union of (0,1)". We think of Disj(7T") as a category. Then according

to [25, Proposition 5.5.2.13], the natural functor Disj (5’1) — (Disk1) g1 is left cofinal. Thus,
colimyrepigj(s1) Ay (U) =~ ColimUﬁsle(Diskl)/Sl Ay (U) in M, where colimyepigjs1) 4»(U) is a co-
limit of Disj(S') — (Disky),/g1 — M (this equivalence also follows from the fact that (Diski),g1
is obtained from Disj (Sl) by localizing with respect to those inclusions U C U’ that are isotopic
to an isomorphism [2, Proposition 2.19]).

Next, we consider the image of Aﬁ(Sl) in M. If Disky denotes the underlying oo-category
of Disky and we set C = (0,1) x S, then the image of C' in M under the operadic left

act ~o

Kan extension #)(A) is colimy_,ce(Disky) . A(V), that is, a colimit of EY Xpcyl (DCyl)/C o~

(Diskg) o — Disks A M, where the latter functor is the underlying functor of the induced

symmetric monoidal functor A: Disky’ — M® (we abuse notation).

Let Disj**(C') be the full subcategory (poset) of Disj(C') spanned by those open sets V' C C
such that V is the image of a rectilinear embedding, and the composite V < C = (0,1) x S*
P% S is not surjective. By applying the argument of [25, Proposition 5.5.2.13] to Disj™*(C) —
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(Diskz) ¢, we see that Disj™**(C') — (Diskz) /¢ is left cofinal. It follows that there is a canonical
equivalence colimy ¢pjgjrec () E(V) =~ colimy _, ce(Disks) pe E(V)
To prove that /lb (S 1) — flﬁ(S 1) is an equivalence, it is enough to show that

COlimUGDiSj(Sl) Avb(U) — COhmVeDisjrec(C) A(V)

is an equivalence in M. Unwinding the definition, this morphism is the composite of

colimyepisj(s1) A,(U) = colimg 1yxpepisee(cy A((0,1) x U) = colimyepigjree(cy A(V),

where the right arrow is induced by the universal property of the colimit, and the left arrow is
an equivalence because A,(U) ~ A((0,1) x U). To see that the right arrow is an equivalence,
it will suffice to prove that Disj(S') — Disj"(C) that sends U to (0,1) x U is left cofinal:
for any V € Disj™(C), the category Disj(S') X pisjree(c) Disj™*“(C)y, is weakly contractible.
Consider the image W of V under the projection (0,1) x S* — S. Then W belongs to Disj (Sl)
since V< C — S' is not surjective. It follows that Disj(S") Xpigrec(c) Disj"*(C)y, has
an initial object so that the opposite category is filtered. Thus, by [27, Proposition 5.5.8.7],
Disj (S 1) X Disjree (C) Disj™“(C)y, is weakly contractible as desired. |
Theorem 7.14. Let R be a commutative ring spectrum. Let C be a small R-linear stable idem-
potent-complete co-category, that is, an object of Stgp = Modperty, (St). Let HH®*(C) be the Hoch-
schild cohomology R-module spectrum which belongs to Algg (Modg), see Definitions 5.3 and 5.4.
Let HHo(C) be the Hochschild homology R-module spectrum which lies in Fun (BSl, ModR), see
Definition 6.14. Then (HH®*(C), HHe(C)) is promoted to an object of Alggg(Modg) in a natural
way.

Remark 7.15. By Corollary 4.21, we have

Alggs(Modg) = Algg, (Modr) X Alg,, (Fun(BStModz)) LMod (Fun (BS*, Modg ))
— Algg, (Modg) x Fun (BS',Modg ).

Theorem 7.14 means that we can obtain an object of Alggg(Modg) which “lies over” the pair
(HH*(C), HH4(C)) € Algg,(Modg) x Fun (BS*,Modpg ).

The proof proceeds in Construction 7.16, Proposition 7.17 and Construction 7.18.

Construction 7.16. We write D for the Ind-category Ind(C), which is an R-linear com-
pactly generated stable oco-category. Let HH®*(C) = HH®*(D) be the Hochschild cohomology
R-module spectrum. Recall that HH®*(D) = E(Endgr(D)). The counit map of the adjunction
I: Algg, (Modg) = Alg,, (Prf ) : E induces to an associative monoidal functor

RMod$,

HH.(C) == RMOd® — 5nd%(D),

HH® (D)

that is, a morphism in Alg, (PrI;% ), where RMod%H.(C) = RMod%H.(C)(ModR) is the associa-
tive monoidal co-category of right modules of HH*(C). According to [25, Corollary 4.7.1.40],
the associative monoidal oo-category Snd%(D) naturally acts on D. More precisely, D is
a left module of End% (D), that is, an object of LModSnd%(D) (Prk) (this action is univer-

sal in an appropriate sense, cf. [25, Section 4.7.1]). Then the associative monoidal functor

RMod%H.(C) — End%(D) induces a left RMod%H.(c)—module structure on D. That is, D is

promoted to an object of LModpyy 4 (Prl).
HH®(C)

Let RPerfs3/+(c) be the full subcategory of RMode(c) spanned by compact objects. This
subcategory is the smallest stable subcategory which contains HH®(C) (regarded as a right
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module) and is closed under retracts. Hence RPerfyy3 (¢ inherits an associative monoidal struc-
ture from the structure on RModjys(c). We denote by RPerf%H. ©) the resulting associative

monoidal small R-linear stable idempotent-complete co-category which we regard as an object
of Alga(Str).

Proposition 7.17. We continue to assume that C is a small R-linear stable idempotent-complete
oo-category. If we think of D = Ind(C) as the left RMOd%H.(C)—module (as above), the restriction

ezhibits C as a left RPerf%H.(C)—module, that is, an object of LModpp,.® (Stg). In particu-
HH®(C)

lar, C is promoted to an object of LModRperf% (Stg).

He(C)

Proof. We may and will suppose that C is the full subcategory of compact objects in D. The
tensor product functor

RMOdHH- ©) X RMOdHH- ©) — RMOd’H’H'(C)

sends RPerfy 3¢ c) X RPerfyg(c) to RPerfy 30y C RModygsecy. It will suffice to prove that
the action functor

m: RMOdHH'(C) xD — D

sends RPerfsi3/¢(c) XC to C. Let P be the full subcategory of RMody () spanned by those
objects P such that the essential image of {P} x C is contained in C. Note that m preserves
the shift functors (X or Q) and small colimits separately in each variable. Moreover, the stable
subcategory C C D is closed under retracts. Thus, we see that P is a stable subcategory which
is closed under retracts. Since HH®(C) is a unit object, HH®(C) lies in P. Keep in mind
that RPerfyys () is the smallest stable subcategory which contains HH®(C) and is closed under
retracts. It follows that RPerfz e ) C P. |

Construction 7.18. Take O to be LM in Proposition 6.15. By definition, LMod(Modpef, (St))
is Algpp(Modpery, (St)), and LMod (Fun (BS',Modg)) = Algpy (Fun (BS',Modg)). We
then have

LMod(Modpe, (St)) — LMod ( Fun (BS*, Modp ))

| l

Alg s (Modpeytj, (St)) —— Alga (Fun (BSI, Modpg )),

where the vertical arrows are given by the restriction along As® < £M. By Proposition 7.17,
we think of C as an object of LModgp, @ ( )(MOdPerfR(St)). Applying the above functor
HH®(C

) (Fun (BSl,ModR)). The

®
HH(C)

of Algy, (Fun (BSl,ModR)). That is, HHe(RPerfyg0c)) is an associative algebra object in
Fun (BSl,ModR). Consequently, the Hochschild homology R-module spectrum HHo(C) is
a left HHq(RPerfz e c))-module object in Fun (BS',Modg ). Next, we set A = HH*(C) in
Algg,(Modg). By the invariance of Hochschild homology under Morita equivalences (cf. Lem-
ma 6.11), HHa(A) ~ HHe(RPerfzzec)) in Algs, (Fun (BS*, Modpg)). Let

to C, we obtain H?He(C) which belongs to LMody gy, (RPerfy 500 )

lower horizontal arrow carries the associative monoidal co-category RPerf to an object

Algg, (Modp) < AlgBCyI(Mod r) — Algey1(Modg) ~ Algg, (Fun (BS', Modg))

be a sequence of functors such that the first one is induced by left Kan extensions along
i E? — DCyl (cf. the discussion before Proposition 4.19), the second one is the restric-
tion along Cyl — DCyl, and the third functor (equivalence) comes from Corollary 4.18.
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By definition, the image of A in Algg, (Fun (BS', Modg)) is ii(A)c defined in the discus-
sion before Proposition 7.11. According to Proposition 7.11, we have the canonical equiva-
lence HHo(A) ~ iy(A)c in Algg, (Fun (BS',Modpg )) ~ Algy, (Fun (BS',Modpg )). Therefore,
HH*(C) = A € Algg,(Modg) and the left HHq(A)-module HHo(C) together with ij(A)c ~
HHe(A) determines an object of

Algg, (Modg) X Alg s (Fun(BS',Mod)) LMod (Fun (BSl, ModR)) ~ Alggg(Modpg),

where the equivalence comes from the canonical equivalences in Corollary 4.21. In other words,
it defines an object of AlggTyl(ModR) C Algpe;1(Modp) which induces a KS-algebra via the

restriction. Thus, we obtain the desired object of Alggg(Modg).

8 The action

In this section, we study the maps induced by the action of Hochschild cohomology spectrum
HH®(C) on HHe(C), constructed in Theorem 7.14.

8.1. Let R be a commutative ring spectrum. We let C be a small stable R-linear co-category.
We let A € Alg,(Modg) and suppose that C = RPerf4. In other words, we assume that
Ind(C) admits a single compact generator. In this setting, we can describe morphisms induced
by module actions by means of concrete algebraic constructions. For ease of notation, we write
HH®(A) for HH®*(RPerf,) = HH®*(RMody). We can safely confuse HHo(RMod,) with the
Hochschild homology R-module spectrum HHe(A) of A because of the invariance under Morita
equivalences. We do not distinguish between the notation HHe(RMod 4) and HHe(A): we write
HHo(A) for HHe(RMod 4) as well. Write A° for A ®p A. As before, by ® we mean the tensor
product over R when we treat the tensor products of objects in Modg or Alg,,(Modpg).

We define a morphism HH®(A) @ HHe(A) — HHe(A) which we refer to as the contraction

morphism:
Definition 8.1. Consider the functor
(=) ®4e (—): RModge x LMod e — Modpg

which is informally given by the two-sided bar construction (P,Q) — P ®4e Q. Note that
RMod 4e is left-tensored over Mod%. If we regard HH®(A) as an object of Modpg, there is
a morphism HH*(A)® A — A in RMod 4e, which exhibits HH®(A) as a morphism object from A
to itself in RMod 4e (i.e., hom R-module), see Corollary 8.6. Let (HH®*(A)RA)@4e A — AR e A
be the morphism induced by the morphism HH®*(A) ® A — A in RMod 4e. We identify HHe(A)
with A ® 4¢ A in Modpg, see Lemma 8.7. It gives rise to

o: HH*(A) @ HHe(A) = HH*(A) ® (ARac A) > ARae A =HHa(A).
We shall refer to it as the contraction morphism.

We denote by (HH®(C), HHe(C)) the pair endowed with the KS-algebra structure construc-
ted in Theorem 7.14: we will think that the pair is promoted to an object of Alggg(Modpg).
Let D and Cjs be colors in the colored operad KS. There is a class of an active morphism
fi: ((2), D, Chr)— ((1), Car) in KS lying over the active morphism p: (2) — (1) (with p~1(x) =x).
Such a morphism f; is unique up to equivalences. This is induced by an open embedding
41 (0,1)20(0,1) x St — (0,1) x St such that j;: (0,1)* — (0,1) x St is rectilinear and ja: (0, 1) x
S' — (0,1) x S' is a shrinking embedding, cf. Definition 4.1. If h: KS — Mod} denotes
a map of co-operads that encodes (HH®(C), HH(C)), passing to Modg via a coCartesian natural
transformation, the image of f; induces a morphism in Modpg:

w: HH(C) @ HHa(C) = H(D) @ h(Chr) — h(Car) = HHo(C).
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Theorem 8.2. Let A be an associative algebra in Modpg and let C be RPerf 4. Thenu: HH®*(C)®
HHe(C) — HHe(C) is equivalent to the contraction morphism o: HH®(A)QHHe(A) — HHe(A)
as a morphism in Modg.

Example 8.3. If C = RPerf4 has a Calabi—Yau structure of dimension d, then there is a mor-
phism w: 29R — HHe(A) in Modg (which we can think of as an analogue of a global section
of a volume form) such that the composite T¢I HH®*(A) ~ LR @ HH.(A) well HH®(A) ®
HHo(A) S HHo(A) is an equivalence. Here ¥ indicates the suspension. It follows from Theo-

rem 8.2 that X4 HH®*(A) — HHe(A) induced by w and u instead of o also gives an equivalence.

Construction 8.4. We set C = RPerf 4. Consider a morphism
e: Modr — Morr(RMod 4, RMod4)
in Prljz which carries R to the identity functor, cf. Lemma 5.1. Applying the adjunction

I Alga(Modg) = (Priz) o, ) B
(see Section 5) to the morphism Modr — Morgr(RModa, RMod,), we have the morphisms
: L
in (Pr)yjoa, /

RMOdHHO(A)®A o~ RMOdHHO(A) ®r RMod 4
— Morg(RMod 4, RMod ) ® g RMod4 — RMod 4,

where the right arrow is the canonical morphism, and the middle arrow is induced by the counit
map RModypeRMod,) — Morg(RModa, RMod ) of the adjunction. Here, RModygs (4 is
endowed with pyaye(4): Modgp — RModyge(4) which carries R to HH®(A). The morphisms

from Modp are omitted from the notation. Recall that I: Alg,,(Modgr) — (PrIj%)MOdR/ that
sends A to pa: Modr — RMody with ps(R) = A is fully faithful so that the full subcat-

egory of (PrI;%)MO dn/ spanned by objects of the form p4: Modr — RMody is equivalent

to Algys(Modg). Thus, the composite RModyye(4)ga — RModa in (Pr%—i)ModR/ gives rise
to a morphism of associative algebras

a: HH*(A)®@ A — A,
that is, a morphism in Algs,(Modg)). Since

RMod 4 ~ Modr ® g RMod 4 e@)d Morgr(RMod 4, RMod4) ® g RMod4 — RMod 4

is naturally equivalent to the identity functor, we have a homotopy from the composite A —
HH*(A) @ A > A to the identity morphism of A, where A — HH®(A) ® A is induced by the
morphism from the unit algebra R — HH*(A).

We can make the following observation:

Lemma 8.5. HH®(A) is a center of A. See [25, Section 5.3.1] or the proof below for centers
and centralizers.

Proof. The statement of this lemma is slightly imprecise. Given B € Alg,,(Modpg), we define
c¢(B, A) to be the fiber product Map(B® A, A) Xfap(4,4){ida}, where Map(—, —) means the map-
ping space in Alg,(Modg), and Map(B® A, A) — Map(A, A) is induced by the composition with
R®prA — BprA. The assignment B +— ¢(B, A) induces a functor ¢(—, A): Alg,,(Modg) — S.
A center of Ais Z € Algp(Modp) that represents ¢(—, A), that is, a centralizer of the identity
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morphism A — A (cf. [25]). Through the equivalence Map(Z, Z) ~ ¢(Z, A), the identity of Z
determines Z® A — A and a homotopy/equivalence from the composite A - Z® A — A to id 4.
Our lemma claims that HH*(A) together with a: HH®*(A) ® A — A and the homotopy induces
an equivalence in S:

O0p: Map(B, HH*(A)) — Map(B ® A, A) Xap(a,4) {ida}

for any B € Algs,(Modg). Here, Map(B, HH®*(A)) = Map(B® A, A) is the functor which sends

f: B — HH*(A) to the composite B ® A feila HH (A @ AS A

We will prove our claim. Namely, we show that 6p is an equivalence. For ease of nota-
tion, we set pgp: Modg — RModg = Mp and psa: Modr — RMody = My, Let X =
Mapprxé (Mp @ Ma, Ma) x pmz {A}, where A is the right A-module determined by the mul-
tiplication of A, and Mapp,L (Mp ®p Ma, Ma) — MapPrré(ModR,./\/lA) ~ M7 is induced

by the composition with Modr = Modr ® g Modpg pngA

Y = Mapp,r (M4, M) x mx {A}. Note that

R

Mp ®r M 4. Similarly, we define

X ~ Map(PrIé) (RModp ®r RMod 4, RMod4) ~ Map(B ® A, A).

Modp /

Similarly, ¥ ~ Map(Pr%) (RMod 4,RMod,4) ~ Map(A, A). The morphism Mapprré (MB®Rr

Modp /

My, My) — Mapprxé(MA,MA) given by the composition with Modr — Mp determines

X — Y. Let A - Y be the map determined by the identity functor M4 and the identity
morphism of A. We have a canonical equivalence

X xy A% ~ Map(B ® A, A) Xnjap(a,4) {ida} = (B, A).
By the universal property of Morg(Ma, M),
Mapp,1. (Mp, Morg(Ma, Ma)) ~ Mapp,r, (Mp @r Ma, Ma).
Using this equivalence, we deduce that
X xy A% = Mapp,1, (Mp, Morg(Ma, Ma)) X pmorg(Mamu)= {ida, }-

Moreover, taking into account the universal property of RModyge4) — Morg(M g, My) in
(Pr];%)ModR/ (we omit pype(ay: Modr — RModype(a) and e: Modg — Morg(Ma, My) from
the notation), we see that the composition gives rise to an equivalence

{HH®(A)}
~ Mapp,1, (Mp, Morg(Ma, Ma)) X porp(Ma,Ma)= {1dra

Mapp,1 (Mg, RMody e (4)) XRMoaz

HH®(A)

where the left hand side is naturally equivalent to Map(B, HH®*(A)). Unwinding the construc-
tion, we have the desired equivalence 6p: Map(B, HH®*(A)) ~ ¢(B, A). [

Corollary 8.6. Let us regard HH®*(A) ® A as a right A°-module induced by that of A (that is,
HH®(A)®(—) means the tensor product with HH®*(A) € Modg) and regard a: HH*(A)®A — A
as a morphism of right A°-moudles in the natural way. Then the morphism o: HH*(A)®A — A
exhibits HH®(A) as a morphism object from A to itself in RMod ge.

Proof. By Lemma 8.5, HH®*(A) (endowed with e and an identification o between A — HH®(A)
®A — A and the identity morphism) is a center of A. According to [25, Theorem 5.3.1.30], the
morphism HH®*(A) ® A — A of the right A modules, that is obtained from the center, exhibits
HH®*(A) as a morphism object from A to A. Thus, our claim follows. [
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We describe the bar construction P ® 4¢ A by means of symmetric spectra. Let R be a cofi-
brant commutative symmetric ring spectrum. Let A be a cofibrant associative symmetric ring
R-module spectrum which represents A, cf. Example 6.4. We write A for the wedge/tensor pro-
duct Ag over R. Let Bo(A, A, A) be a simplicial diagram A°? — Sp*(R)¢ of symmetric spectra
(called the bar construction), which is given by [p] — AA--- AA = AAAP A A, We refer
to [31, Definition 4.1.8] for the explicit formula of Be(A, A, A). The degeneracy maps A"\PT2 —
A"PFL is induced by the multiplication of AAA — A, and face maps A"P+2 — AP+3 is induced
by the unit map R — A. Each term A A AP A A is a free left A® := A°? A A-module generated
by A" = RAAM AR. In addition, Be(A, A, A) can be thought of as a simplicial diagram of left
A¢-modules. The homotopy colimit of Be(A, A, A) is naturally equivalent to A with respect to
stable equivalences [31, Lemma 4.1.9] so that the colimit of the induced diagram in LMod 4e is A.
Let P be a right A°~-module which is cofibrant as an R-module. Let PApe Bo(A, A, A) be a simpli-
cial diagram induced by Be(A, A, A) which carries [p] to PApe (AAAP AA) ~ PAA. Consider
the composition Alg, (SpE(R)C) B(—>_) ath’ HK% Fun (A°P, SpZ(R)C) — Fun (A°P, SpE(R)C),
where the final morphism is determined by the restriction A°° C A°. We write HH5 (—)
for the composite. Note that ’HH,A(A) gives rise to a simplicial diagram in Modgr whose col-
imit is HHe(A). The standard computation shows that A Ape Bo(A, A, A) can be identified
with HHS (A).

Lemma 8.7. Let P be a right A®-module symmetric spectrum which is cofibrant as an R-module.
We write P for the image of P in RMod ge. Then P ®ac A can be identified with a colimit of the
simplicial diagram induced by P Ape Bo(A, A, A). In particular, HHe(A) can be identified with
AQ®ye A in Modg.

Proof. Note that the two-sided bar construction preserves colimits in each variable. Moreover,
the colimit of Be(A, A, A) is A after passing to LMod 4¢, and each P Ape (AAAAP /\A) ~PAANP
computes P @ A®? ~ P @ (A ® A®P ® A). Therefore, lemma follows. [

Proof of Theorem 8.2. We use the notation in the discussion about the setting of Theo-
rem 8.2. We first consider an operadic left Kan extension h': DCyl — Mod% of h: KS — Mod%

over I along KS < DCyl, cf. Proposition 4.20. The open embedding 5: (0,1)21(0,1) x S* nbie
(0,1) x S! factors as the composition of two open embeddings (0,1)2U(0, 1) x S* duig (0,1)x S'L
(0,1) x St = (0,1) x S. See Definition 4.3 for the notation and convention. The embedding
d: (0,1)2 = (0,1) x St and r: (0,1) x S — (0,1) x S! are recti-linear embeddings such that
the composite r o d is j; (of course, the image of r does not intersect with that of the shrinking
embedding jo). Thus, f; factors as ((2), D,Cu) — ((2),C,Cym) — ((1),Cn) in DCyl, that lie
over (2) = (2) & (1). Tt follows that h(D) ® h(Cys) — h(Cyy) induced by f; factors as

h(D) ® h(Cr) ~ K (D) @ b (Chr) — B (C) @ W (Car) = 1 (Car) = h(Chp),

where h/(D) — h/(C) and W (C) ® B/ (Cpr) — W (Cyr) are induced by d and 7 U ja, respectively.

Next, we describe h/(D) — I/(C) in an explicit way. If HH®(A) is encoded by the map
of an oc-operads EY — Mod%, we let i(HH*(A4)): DCyl — Mod% be its operadic left Kan
extension along i: EY — DCyl. Let iy(HH*(A))(((1), D)) — 4(HH*(A))(((1),C)) be a mor-
phism in Modpg, that is determined by d. For simplicity, we set Z := HH*(A) and we
write i/(Z)(D) — i(Z)(C) for this morphism. If we think of Z as the underlying E;-algebra
given by the composite EY — ES — Mod%, we denote by )(Z): Mfld; — Mod% its ope-
radic left Kan extension along [: EY < Mfld;. A rectilinear embedding (0,1) — S! gives
rise to 1(Z2)((0,1)) — 4(Z)(S') in Modgr (we abuse notation as above). More explicitly,
L(Z)((0,1)) = W(Z)(SY) is Z = Z((0,1)) — colimy_,g1¢(pisky), .1 £(U), where Z means the

/st
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underlying R-module, and Z: Disk; — Modp is the underlying functor of the symmetric
monoidal functor Z: Disk} — Mod% corresponding to the composite EY — E§ — Mod%.
Since the forgetful functor Algg (Modg) — Modg preserves colimits over the sifted category
(Disky) /g1, it follows from Lemma 7.13 that i(Z)(D) — i(Z)(C) is naturally equivalent to
Z =1(Z2)((0,1)) = I(Z) (Sl) = colim(DiSkl)/S1 Z(U) as a morphism in Modg. Therefore, we
may identify h/(D) — h'(C) with Z = 1;(Z)((0,1)) — L(Z)(S!) = Colim(Diskl)/S1 Z(U). Hence-
forth, we regard Z as an associative algebra in Modpg, which is given by a symmetric monoidal

~& ~Q&
functor As — Mod% The map &: A°? — As (see the discussion proceeding to Lemma 7.12)
and A°P < A%Y — AP induces

Alga,(Modg) ~ Fun® (As”, Mod$ ) — Fun (A", Modp )
— Fun (Agg, ModR) — Fun (AOp, ModR).

It follows from Lemma 7.6 that the image of Z in Fun(ASS, Modg) is the composite AS) ~
(DiskJ{) 51 Disk; — Modg whose colimit is naturally equivalent to [;(Z) (S 1). Moreover, from
the cofinality of A°? — AZ5, ;(Z)(S!) is naturally equivalent to the colimit of c: A°P — AZY —
Modpg. Taking into account Remark 7.7, Z — 1)(Z)(S') can be identified with Z = ¢([0]) —
colimpye aor c([p])-

Next let us consider h'(C) ® h'(Chr) — B/ (Chy). According to Construction 7.18, its under-
lying morphism in Modp can naturally be identified with HHe(Z) @ HHe(A) ~ HHe(Z R A) —
HHe(A) induced by a: Z ® A — A. Let Z and A be cofibrant and fibrant associative ring
symmetric R-module spectra that represent Z and A, respectively (namely, they are objects
in AlgAs(SpE (R)) which are both cofibrant and fibrant with respect to the projective model
structure). Let @: Z A A — A be a morphism in Algs,(Sp™(R)¢) which represents a. The
composite A > RAA - Z A A — A induced by R — Z is equivalent to the identity morphism
of A. Let HHL(Z) A HHE(A) denote the bisimplicial diagram induced by the wedge product
and (HH.A(Z) A HH,A(A))dlag the associated diagonal simplicial diagram. The morphism &
induces the following morphism of simplicial diagrams

(HHD(Z) A HHD(A) T ~ HHD(Z A A) — HHD(A)

whose colimit is equivalent to HHe(Z) @ HHe(A) = HHo(Z @ A) — HHe(A) (notice that AP
is sifted).

Note that 1(Z)(S") = colimpjeper ¢([p]) ~ HHo(Z). If Zesy denotes the constant simpli-
cial diagram taking the value Z, {[0]} — A°P induces Zey; — HHE(Z) whose colimit is Z =
c([0]) — colimpjener c([p]) = HHo(Z). Consider Zg NHHE(A) — (HHE(Z) AHHE (A)) 58 —
HHE(A). Their colimits give Z @ HHo(A) — HHo(Z) @ HHo(A) — HHo(A), which is
equivalent to h'(D) ® h'(Cy) — R(C) @ '(Cyr) — B'(Chrr). Observe that the composi-
tion Zest A HHE(A) = (Z A A) Ape Bo(A A A) — A Age Bo(A, A A) = HHE(A) is induced
by a: Z N A — A. The contraction morphism (Z ® A) ®4e A - A ®4c A is obtained from
ZN (A Npe Be(A A JA)) = (ZNA) Ape Bo(Ay AL A) — A Ape Bo(A, A, A) by taking colimits. This
completes the proof. |

8.2. Let k be a field. We suppose that R is the Eilenberg—-MacLane spectrum of k. We write
k for R. In this context, we will give a concrete model of the contraction morphism

o: HH*(A) @ HHe(A) = HHe(A)

as a morphism of chain complexes of k-vector spaces. Let Comp® (k) be the symmetric monoidal
category of chain complexes of k-vector spaces, whose tensor product is given by the standard
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tensor product of chain complexes. There is a symmetric monoidal (projective) model structure
on Comp(k) such that a morphism is a weak equivalence (resp. a fibration) if it is a quasi-
isomorphism (resp. a termwise surjective), see, e.g., [25, Proposition 7.1.2.11]. Since k is a field,
every object is both cofibrant and fibrant. Let Comp(k) [W‘l] “ be the symmetric monoidal co-
category obtained by inverting quasi-isomorphisms. We fix a symmetric monoidal equivalence
Mod{ ~ Comp(k) [W‘1]®, see [25, Theorem 7.1.2.13]. Thus it gives rise to Alg,,(Comp(k)) —
Alg g (Comp(k)[W]) ~ Alga,(Mody). We here regard Algy,(Comp(k)) as (the nerve of)
the category of differential graded k-algebras in an obvious way. Let A be an associative (cofi-
brant) differential graded k-algebra, i.e., an object of Algs,(Comp(k)) that represents A €
Alg(Mody). Let A® := A°? @ A. The natural functor Comp(k)® — Comp(k) [W_l]@) ~ Mod}
induces

RMOdAe(COmp(k» X LMOdAe (Comp(k)) — RMod 4e (Modk) x LMod 4e (Modk) — Modk,

where the right functor is informally given by the bar construction (i.e., the relative tensor
product) (—) ® g4 (—). We describe the contraction morphism by using explicit resolutions. Let
Bﬁlg(A) = Biig(A7 A,A) be the right A°-module associated to the total complex of the simpli-
cial diagram of A®-modules [p] — A ® A®P? ® A (defined as in Be(A, A, A)). The associated
total complex Bﬁig(A) computes a homotopy colimit of the simplicial diagram, and there is
a canonical morphism of right A®-modules Bﬁig(A) — A which is a quasi-isomorphism. Let
Hompe (B‘.ig(A),Biig(A)) be the hom chain complex of right A°-modules. By Lemma 8.9 be-
low, Hompe (B(.ig(A),Bﬁlg(A)) represents/computes the (derived) hom complex from A to A
in RModae(Comp(k)). Let us consider an evaluation morphism of right A°-modules

Ev: Homa(B%(A), B&(A)) @ B3 (A) — BIE(A)

defined in the obvious way, where Hompe (Bﬂig(A),Bflg(A)) ® BY8(A) comes equipped with
the right A°-module structure induced by BZ(A). Let RModae(Comp(k)) [W~1] denote the
oo-category obtained by inverting quasi-isomorphisms (after restricting to cofibrant objects).
By the universal property of the morphism (HOmAe (Bﬁig(A), Bfg(A)) , EV) and the equivalence

RModae (Comp(k))[W '] =~ RMod ¢ (Mody,)

[25, Theorem 4.3.3.17] together with Lemma 8.9, it represents a morphism object from A
to A in RModge. Note that B(.ig(A) ®ae A is the chain complex associated to the simpli-
cial chain complex given by [p] — (A ® A®P ® A) ®ac A ~ A®P @ A so that the associated
complex is a model of A ®4e A = HHo(A). That is, its image in Mody is naturally equiv-
alent to BYE(A) @ac BeE(A) 5 A @ac BIE(A) = HH4(A). By the Morita theory (cf., e.g.,
[5, Section 4]), Morg(RMods,RMod4) ~ RModae, where the identity functor amounts to
A € RMod ge having the diagonal module structure. Consequently, Homae (Bﬁ1g (A), Bfg(A)) €
Comp(k) is a model of HH*(A) € Mody. Moreover, Ba8(A) — A induces a quasi-isomorphism
Hompe (BSE(A), Be¥(A)) — Hompe (B(.ig(A), A) (perhaps, the latter is more common Hochschild
cochain complex). We conclude:

Proposition 8.8. The above evaluation morphism induces
Homa. (BS5(A), BJ8(A)) @ BJE(A) @ac A — BIE(A) @ac A,

which is equivalent to the contraction morphism o: HH®*(A) @ HHe(A) — HHe(A). In parti-
cular, it is one of (explicit) models of u (cf. Theorem 8.2).
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Lemma 8.9. Let us consider RModae(Comp(k)) to be a category endowed with Comp(k)-
enriched projective model structure, where a morphism is a weak equivalence (resp. a fibration) if
it is a quasi-isomorphism (resp. a termwise surjective), see, e.g., [3, Theorem 3.3]. Then Be3(A)
is cofibrant with respect to this model structure.

Proof. Since BY2(A) is obtained from the simplicial chain complex [p] — A ® A®P @ A, there
is an increasing filtration of A°-submodules 0 = F__ (Bflg(A)) — Fy (Bﬁig(A)) — F (B(.ig(A)) —

- such that Up>oF) (B?g(A)) = B{®(A). The quotient Fpia (B(.ig(A))/Fp (Bfg(A)) is isomor-

phic to A ®K®p+1 ® A as a right A®-module, where A is the cokernel of a unit morphism k — A.

That is, FPH(Bilg(A))/Fp(Biig(A)) is a free right A°-module generated by A%t ¢ Comp(k).
By [3, Definition 9.17, Theorem 9.20], the existence of this filtration implies that B&(A) is cofi-
brant with respect to the r-model structure in [3, Section 4]. We deduce from the assumption
that k is a field that the projective model structure coincides with this r-model structure (the pro-
jective model structure is the same as the g-model structure in [3, Section 3]). This completes
the proof. |

Remark 8.10. There are other operations between HH®*(A) @ HHe(A) and HHe(A), which is
induced by the KS-algebra structure on (HH®(A), HH*(A)). We continue to work with the coef-
ficient field R = k. We further assume that £ is of characteristic zero. Observe first that the Kan
complex Multks({D,Cy}, Chs) is equivalent to the product of the circles S' x S! in S, where
St x S!is regarded as an object of S. The left factor S' is homotopy equivalent to the space
of configuration of one point on (0, 1) xS*, which we regard as the space of rectilinear embeddings
from (0, 1)? into (0, 1) xS*. The right factor S! can be identified with the mapping space from Cj;
to itself, that is, the space of shrinking embeddings (0,1) x S* — (0,1) x S*. The map of oco-
operads h: KS — Mod}’ encoding the KS-algebra (HH*(A), HHe(A)) in Theorem 7.14 induces
morphisms hp oy, y,0a) ¢ Multks({D, Cnr}, Cur) — Mapygoq, (HH®(A) @ HHe(A), HHe(A))
and hoyy.0n): Multks({Car}, Cur) — Mapyoq, (HHe(A), HHe(A)) in S. To discuss oper-
ations induced by these morphisms, we adopt the differential graded setting (we simplify the
problem). By taking the singular chain complex of the simplicial sets Multkxg(—, —) with coeffi-
cients in k, we obtain the differential graded (dg) operad Ce(KS) from KS, i.e., an operad in the
symmetric monoidal category Comp(k). We refer to [15] for the relation between dg operads and
oo-operads. By a rectification result of Hinich [15, Theorem 4.1.1], there is a canonical equiva-
lence between Algxg(Mody) and the oo-category of Co(KS)-algebras in Comp(k) in the “conven-
tional” sense so that the KS-algebra (HH®(A), HHe(A)) gives rise to a (an essentially unique)
Co(KS)-algebra in Comp(k) in the “conventional” sense: see [15, Section 2.2.4] (we here use
the assumption of characteristic zero). We denote this C,(KS)-algebra by (HH®(A), HH4(A)).
Then the C,o(KS)-algebra (HH®(A), HH4(A)) induces morphisms into hom chain complexes:

pde

D CaCany CoMultics({D, Car}, Car)) — Homy (HH*(A) @ HHa(A), HHa(A))

and

e ycn CoMultis({Car}, Car)) — Homy (H Ho(A), HH,(A))

in Comp(k)[W~!]. Given a simplicial set S, we write H.(S) for the homology H.(C4(S5))
of the singular chain complex C4(.S) of S with coefficients in k. Passing to homology, we obtain
a morphism of graded k-vector spaces

H, (hﬁ{gDycM}ch)) . H,(Multgs({D,Car}, Car))
— H.(Homy(HH®*(A) ® HHo(A), HH,(A)))
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from h?fD CarhCan)* Note that by definition the left-hand side is connective. This map can also
be obtained by taking homology of Ce(h({p,cy,},ch)) UP to isomorphisms. Since the mapping
space Multgs({D, Car}, Cas) is homotopy equivalent to S x S1. it follows that

Ho(Multh({D,CM},CM)) ~ k,
Hl(Multh({D, CM}, CM)) ~kdEk,
HQ(MUItKS({D’CM})CM)) = kv

and the other parts are zero.

Let [0,1] C R be the closed interval and let ¢: [0,1] x S' = [0,1] x R/Z — R/Z = S! be
the continuous map given by (¢, mod Z) — = + t mod Z. We think of ¢ as a homotopy from
the identity map S' — S! to itself. The product id(g,1) X¢ determines a homotopy ¢:[0,1] x

(0,1) x St — (0,1) x S* from the identity map of (0,1) x S* to itself. Let rq : [0,1] x (0,1)? g

[0,1] x (0,1) x St LA (0,1) x S be the homotopy from j; to ji, see discussion before Theorem 8.2
for the maps 7, ji, and jo. Let ra: [0,1] x (0,1) x S* 2 (0,1) x S* 23 (0,1) x S* be the trivial
homotopy from jo and ja. Define

Li=7r1Ure: [0,1] x ((0,1)*(0,1) x S*) — (0,1) x S*.

We think of [ as a homotopy from j to j. If we regard ¢ as a homotopy from the identity to
itself in Multxs({Cxr},Chr), it determines an element ep of Hy(Multxs({Car},Chr)). If we
think of [ as a homotopy from f; to itself in Multgs({D,Ch}, Chr), it determines an ele-
ment ey, of Hy(Multxs({D,Cx},Chr)). The Co(KS)-algebra (HH®(A), HH4(A)) (or equiva-
lently the KS-algebra (HH*(A), HHe(A)) in Theorem 7.14) defines L € Hy(Homy(HH*(A) Q4
HH,(A),HH{(A))) for er: L is defined to be the image of e, under H, (h?fD,CM},CM))' Simi-
larly, ep determines an element B in Hy(Homy(H He(A), HH4(A))).

The morphism f; arising from j = j; U j2 is a generator of the 0-th homology group. The
image of f; under h?g can be identified with u: HH®*(A) @ HHe(A) = HHe(A) which

. . {D.Cm},Cmr) ) . :
is equivalent to the contraction morphism, cf. Theorem 8.2. By a comparison result of Hoyois

[18, Theorem 2.3], B in H;(Homy(HH®(A), HH,(A))) may be viewed as the Connes opera-
tor: if A is an associative (cofibrant) differential graded algebra which represents A through
Algps(Mody) =~ Alga (Comp(k)[W 1)), the classical Connes operator b: BE(A) @ac A —
Bfg(A) ®pe A (see, e.g., [18, 24]) is equivalent to B, up to the multiplication by +1, through
BIE(A) @ac A ~ HHo(A) ~ HH,(A).

The homotopy ! and the composition ¢ o (idjg ;%) [0,1]x ((0,1)? U (0,1)xS5) — (0,1)xS?
generate the k-vector space k @ k ~ Hi(Multks({D,Cxr},Chr)). Let 1 denote the element
of Ho(Homy (HH®*(A), HH®*(A))) that corresponds to the identity morphism. By relations of ho-
motopies, we see that

L=Bou+uo(1®(—B))=Bou—uo(1® B)

in Hy(Homy(HH®*(A)® HHe(A), HH4(A))). Here “o” indicates the composition. This relation
is known as Cartan homotopy/magic formula. In the dg setting over k, the shifted complex
HH*(A)[1] inherits the structure of an Ly-algebra, i.e., an algebra over a (cofibrant) Lie operad
in Comp(k), from the Eg-algebra structure on HH®*(A) ~ HH*(A). The morphism

L: HH*(A)[1]® HH.(A) — HHJ(A)

induced by L appears as the Lie algebra action morphism on HH,.(A) (see, e.g., [11]). Since
u and B can be explicitly described (B is equivalent to Connes’ operator), thus L also has
an explicit presentation. Finally, Ho(Multks({D,Ch}, Car)) is generated by Bouo (1 ® B).
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9 Equivariant context

Our construction in Theorem 7.14 can easily be generalized to an equivariant setting: Let G
be a group object in § and BG € S the classifying space. Let C € Stg, that is, a small
stable R-lienar idempotent-complete oco-category. Suppose that G acts on C, i.e., an left ac-
tion on C. Namely, C is an object of Fun(BG,Str) whose image under the forgetful functor
Fun(BG,Str) — Stg is C. In this setting, we have

Theorem 9.1. The pair (HH®*(C), HH+(C)) of Hochschild cohomology and homology R-module
spectra has the structure of a KS-algebra in Fun(BG, Modg). In other words, (HH®(C), HH(C))
is promoted to Alggg(Fun(BG, ModRg)).

Remark 9.2. The forgetful functor Alggg(Fun(BG, Modg)) — Algkg(Modg) sends the KS-
algebra in Theorem 9.1 to a KS-algebra equivalent to the KS-algebra constructed in Theo-
rem 7.14.

Theorem 9.1 follows from the following:

Construction 9.3. The construction is almost the same as that of Theorem 7.14. Thus, we
highlight necessary modifications.
(i) Let D := Ind(C) be the Ind-category which is an R-linear compactly generated oco-category.
In particular, D belongs to Prlj%. Since C — Ind(C) is functorial, the left action of G on C in-
duces a left action on D. Namely, D is promoted to Fun (BG,PrIj%). The functor category
Fun (BG,PrIj;i) inherits a (pointwise) symmetric monoidal structure from that of PrIj;i. Let
Mor%(D, D) be an internal hom object in the symmetric monoidal co-category Fun (BG, Prljz )
This is explicitly described as follows: The internal hom object Morg(D,D) (Lemma 5.1)
in PrIé has the left action of G°P x G induced by the functoriality of the internal hom ob-
ject and the action of G on D (here G°P denotes the opposite group). The homomorphism
G — G°P x G informally given by g — (g_l,g) determines a left action of G on Morg(D, D).
By the universal property of Morg(D, D), Morg(D, D) endowed with the G-action is an inter-
nal hom object from D to D in Fun (BG, PrIj{). As in Lemma 5.1, Morg(D, D) is promoted to
Alg . (Fun(BG,Modg)) ~ Fun(BG, Algs,(Modg)). Here the equivalence follows from the defi-
nition of the pointwise symmetric monoidal strucutre on Fun(BG,Modpg) [25, Remark 2.1.3.4].
(ii) Recall the adjunction I: Algs,(Modg) = (Prlé)ModR/ : E induces an adjunction

Algg, (Modg) ~ Alg,, (Alga, (Modg)) = Algy, (Pr) ~ Algg, (Pr})
(see Section 5). Applying Fun(BG, —) to this adjunction we get an adjunction

Fun(BG, Algg, (Modg)) = Fun (BG, Algy, (Pr})) ~ Algy, (Fun (BG,Pry)).
We define the Hochschild cohomology R-module spectrum

HH®*(C) := HH*(D) € Fun(BG, Algg,(Modg)) ~ Algg, (Fun(BG, Modg))

to be the image of Mor%(D,D) under the right adjoint. For ease of notation, we write A for
HH®(C). Write RModi’® for the image of A = HH*(C) = HH*(D) € Fun(BG, Algg, (Modg))
under the left adjoint. Consider counit map RModi’® — Mor%(D, D) in Fun (BG yAlgag ( Prk ))
which we regard as a G-equivariant associative monoidal functor. As in the non-equivariant
case, the natural action of Morg(D, D) on D gives rise to a left action of RModi’® on D. More

precisely, D is promoted to an object of LMod (Fun (BG, PrI;z)). Let RPerfi’(X) be the

RMod§®
symmetric monoidal full subcategory spanned by compact objects. By definition, RPelrfi’® is
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the associative monoidal small R-linear co-category RPelrf‘i‘<> endowed with the G-action given
informally by the G-action on A. As in Proposition 7.17, the restriction exhibits C as a left
RPerfi’@)—module, that is, an object of LModyp, o0 (Fun(BG,Stg)).

A

(iii) Let HHo(—): Stg — Fun(BS!',Modg) denote the symmetric monoidal functor which
carries £ to HHe(E) (see Definition 6.14). Applying Fun(BG, —) to it, we have a symmetric
monoidal functor Fun(BG,Stg) — Fun(BG,Fun(BSY, Modg)). We define HH,(C) to be the
image of C in Fun(BG, Fun(BS*', Modg)). By the induced functor

LMod Fun(BG, Stg)) — LMod Fun (BG, Fun (BSl, Modpg ))),

RPert§ HHo (RPerf§®) (

we regard HHo(C) as a left HH, (RPerfi’® )-module. That is to say, HHe(C) is an object of
LMod Fun (BG, Fun (BS', Modg )))

) (Fun (BS', Fun(BG,ModR))).

HHo(RPerf§®) (

= LMOdHH. (RPerf§‘®
According to the Morita invariance, HH., (RPerfi@ ) can naturally be identified with HHe(A),
where HHe(A) comes equipped with a left action of G induced by the G-action on A = HH*(C).
Let i1(A): DCyl — Fun(BG,Modg)® denote the operadic left Kan extension of the map of oo-
operads A: ES — Fun(BG,Modg)® over I along i: Ef — DCyl where Fun(BG, Modg)® — T’
is the pointwise symmetric monoidal co-category induced by the structure on Mod%. Let i1(A) ¢
be the restriction to Cyl C DCyl which we think of as an object of Algcy(Fun(BG, Modg)).
If we replace Modr by Fun(BG,Modpg) in the proof of Proposition 7.11, the argument yields
a canonical equivalence HHe(A) ~ i/(A)c in Fun(BS!, Fun(BG, Modg)). Then A = HH*(C) €
Algg, (Fun(BG, Modg)), the left HH, (RPerffj’® )-module HH4(C), and HHae(A) 2= i1(A)c de-
termine an object of

Algg, (Fun(BG, ModR)) X A1, (Fun(BS! Fun(BG,Modg))) LMod ( Fun(BS”, Fun(BG, ModR))),

which is naturally equivalent to Alggg(Fun(BG,Modg)) (see Corollary 4.21). Consequently,
we obtain a KS-algebra in Fun(BG,Modg) having the property described in Remark 9.2.

Remark 9.4. The argument in Construction 9.3 can be applied to show other functorialities.
For example, suppose that we are given an equivalence f: C; — Cy in Str. Then it gives rise to
an equivalence

(HH®(C1), HHo(C1)) — (HH®(C2), HHo(C2))

in Alggg(Modpg). To see this, consider the oo-category I which consists of two objects {1,2}
such that for any 7,5 € {1,2}, the mapping space Map,(i, j) is a contractible space (so that I is
(the nerve of) an ordinary groupoid). The equivalence f amounts to a functor I — Str which
carries 1 and 2 to C; and Co, respectively, and carries the unique morphism 1 — 2 to f. Namely,
we have an object of Fun(/, Str) so that the construction of Ind-categories gives rise to an object
F € Fun (I , Prlé). Now apply the argument in Construction 9.3 by replacing BG with I: Namely,
we first consider the internal hom object from F' to F' in Fun (I , PrIj%). Note that by [27, Corol-
lary 3.3.3.2] and the fact that I is a Kan complex (i.e., oo-groupoid), Fun (7, PrIé) can be identi-

fied with a limit of the constant diagram I — Cat., with value Pr];%. There exists an internal hom
object from F to F that is given by the tensor product F® FV of F and its dual object F'V, where
FV is given by taking termwise dual objects. According to [25, Corollary 4.7.1.40], F® F is pro-
moted to an endomorphism algebra End(F') € Alg,, (Fun (I ,Prl )) equipped with a left action
on F'in an essentially unique way. The evaluation at each 1,2 € I gives us the endomorphism al-
gebras Endr(Ind(Cy)) and Endg(Ind(Cz)), respectively. Thus, replacing BG with I in the proce-
dure in Construction 9.3, we obtain an object in Alggg(Fun(Z, Modr)) ~ Fun(/, Alggxg(Modg)),
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which brings us an induced equivalence (HH*(C1), HHe(C1)) = (HH*(C2), HHe(C2)). Finally,
we remark that this argument can be applied to any diagram K — Stgr such that K is a Kan
complex (i.e., an co-groupoid). That is, if we are given a diagram/functor P: K — Stg from
an oo-groupoid K, it gives rise to a diagram Pkg: K — Alggg(Modpg) of KS-algebras such
that for any k € K, Pks(k) is equivalent to the KS-algebra constructed from P(k) € Str
in Theorem 7.14.
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