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Abstract. In this paper, we provide a conceptual new construction of the algebraic struc-
ture on the pair of the Hochschild cohomology spectrum (cochain complex) and Hochschild
homology spectrum, which is analogous to the structure of calculus on a manifold. This alge-
braic structure is encoded by a two-colored operad introduced by Kontsevich and Soibelman.
We prove that for a stable idempotent-complete infinity-category, the pair of its Hochschild
cohomology and homology spectra naturally admits the structure of algebra over the operad.
Moreover, we prove a generalization to the equivariant context.
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1 Introduction

Let M be a smooth real manifold. Let T •M =
⊕

p≥0 ∧pTM and Ω•M =
⊕

q≥0 Ωq
M denote the

graded vector space of multivector fields and differential forms on M , respectively. By conven-
tion, T pM = ∧pTM has homological degree −p while Ωq

M has homological degree q: we adopt the
reverse grading. There are several algebraic structures on the pair (T •M ,Ω

•
M ). The graded vec-

tor space T •M has a graded commutative (associative) product given by ∧. Further, the shifted
graded vector space T •+1

M inherits the structure of a graded Lie algebra defined by the Schouten–
Nijenhuis bracket [−,−]. On the other hand, Ω•M has the de Rham differential dDR (we do not
consider the obvious graded commutative algebra structure on Ω•M because it is irrelevant to the
noncommutative context). Since Ωq

M is the dual vector space of T qM , the contraction morphisms

T pM ⊗ Ωq
M → Ωq−p

M give rise to a (T •M ,∧)-module structure on Ω•M :

i : (T •M ,∧)⊗ Ω•M → Ω•M ,

where we regard (T •M ,∧) as the graded algebra determined by ∧. The Lie derivative on M
defines a Lie algebra action of

(
T •+1
M , [−,−]

)
on Ω•M :

l :
(
T •+1
M , [−,−]

)
⊗ Ω•M → Ω•M .

The tuple (∧, [−,−],dDR, i, l) constitutes fundamental calculus operations on the manifold M .
These operations are subject under certain relations such as d2

DR = 0, the Cartan homo-
topy/magic formula, the compatibility between the Lie algebra action l and the de Rham
differential dDR, and so on. If X is a smooth algebraic variety over a field of characteristic
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2 I. Iwanari

zero, the pair (T •X ,Ω•X) of sheaves of multivector fields (given by the exterior products of the
tangent sheaf) and differential forms admit such an algebraic structure of calculus.

Let us shift our interest to noncommutative algebraic geometry in which stable∞-categories,
(pretriangulated) differential graded (dg) categories or the likes play the roles of fundamental
geometric objects. From the Hochschild–Kostant–Rosenberg theorem, an analogue of (T •X ,Ω•X)
is the Hochschild pair, that is, the pair of Hochschild cohomology (cochain complex) and Hoch-
schild homology (chain complex). In [23, Section 11.2], Kontsevich and Soibelman introduced
a two-colored topological operad which we shall refer to as the Kontsevich–Soibelman operad
and denote here by KS. It can be used to encode all the structures on the Hochschild pair,
which are analogous to the structure of calculus. The operad KS generalizes the little 2-disks
(cubes) operad, i.e., the E2-operad. It contains two colors, D and CM , such that the full
suboperad spanned by the color D is the E2-operad. In [11], it was shown that a combinatorial dg
operad KScomb, which is a certain dg version of KS, acts on the pair of the Hochschild cochain
complex and the Hochschild chain complex of an associative algebra (A∞-sense), and in [16]
an algebraic structure on the Hochschild pair over KS was constructed for a ring spectrum
by means of the Swiss-cheese operad conjecture [34].

In this paper, we provide a conceptual new construction of the structure of an algebra over
KS that yields the following result (see Theorem 7.14):

Theorem 1.1. Let R be a commutative ring spectrum. Let C be a small R-linear stable ind-
empotent-complete ∞-category. Let HH•(C) be the Hochschild cohomology R-module spectrum
and HH•(C) the Hochschild homology R-module spectrum. Then the pair (HH•(C),HH•(C))
is promoted to an algebra over KS, namely, it is a KS-algebra in the ∞-category of R-module
spectra ModR.

The structure of the KS-algebra on (HH•(C),HH•(C)) in Theorem 1.1 induces the action
morphism u : HH•(C)⊗HH•(C)→ HH•(C), which is a counterpart to i in the aforementioned
tuple. In the classical differential graded algebraic situation, we further prove that u can be
described by means of well-known algebraic constructions. Thus, u can be considered a non-
commutative contraction morphism, see Section 8, Theorem 8.2 and Proposition 8.8. In other
words, the underlying morphism given by actions is an expected one. By considering Cartan’s
homotopy formula built in KS, an analogue L : HH•(C)[1] ⊗ HH•(C) → HH•(C) of the Lie
derivative map l is also an expected morphism, cf. Remark 8.10.

In Section 2, we briefly describe the idea and approach of our construction, which is based
on a simple observation. To achieve this, we prove the following (see Corollary 4.21 for details):

Theorem 1.2. Let M⊗ be a symmetric monoidal ∞-category such that it admits small colimits
and the tensor product functor ⊗ : M×M → M preserves small colimits separately in each
variable. (The typical examples of M⊗ we should keep in mind are the ∞-category of spectra,
and the derived ∞-category of vector spaces.)

Let Fun
(
BS1,M

)
be the functor category from the classifying space BS1 of the circle S1 toM,

which inherits a pointwise symmetric monoidal structure from the structure on M⊗. Namely,
an object of Fun

(
BS1,M

)
can be viewed as an object M of M equipped with an S1-action. Let

AlgKS(M) be the ∞-category of KS-algebras in M. Let AlgE2
(M) be the ∞-category of E2-

algebras (i.e., algebras over the little 2-disks operad) in M. Similarly, AlgAs

(
Fun

(
BS1,M

))
denotes the ∞-category of associative algebras (E1-algebras) in Fun

(
BS1,M

)
. We denote

by LMod
(

Fun
(
BS1,M

))
the∞-category of pairs (A,M) such that A ∈ AlgAs

(
Fun

(
BS1,M

))
and M is a left A-module object in Fun

(
BS1,M

)
.

Then there exists a canonical equivalence of ∞-categories

AlgKS(M) ' AlgE2
(M)×AlgAs(Fun(BS1,M)) LMod

(
Fun

(
BS1,M

))
.

See Section 4 for the definition of the fiber product on the right-hand side.



Differential Calculus of Hochschild Pairs for Infinity-Categories 3

This result means that AlgE2
(M), AlgAs

(
Fun

(
BS1,M

))
and LMod

(
Fun

(
BS1,M

))
form

building blocks for KS-algebras. This allows us to describe the structure of a KS-algebra
as a collection of more elementary algebraic data involving associative algebras, left modules,
circle actions, and E2-algebras. As for E2-algebras, thanks to Dunn additivity theorem for
∞-operads proved by Lurie [25], a canonical equivalence AlgE2

(M) ' AlgAs(AlgAs(M)) exists.
While we make use of Theorem 1.2 in the construction process, it would be generally useful in
the theory of KS-algebras since the notion of KS-algebras is complicated as is. For example,
when M is the derived ∞-category D(k) of vector spaces over a field k of characteristic zero,
i.e., in the differential graded context, there is a quite elementary interpretation. One may
take Fun

(
BS1,D(k)

)
to be the ∞-category obtained from the category of mixed complexes

in the sense of Kassel (see, e.g., [24]) by localizing quasi-isomorphisms. Therefore, an object
of AlgAs

(
Fun

(
BS1,D(k)

))
may be regarded as an associative algebra in the monoidal (∞-)ca-

tegory of mixed complexes. Objects of LMod
(

Fun
(
BS1,D(k)

))
can be described in a similar

way. Moreover, dg E2-operad is formal in characteristic zero.

As we will describe in the following section, our method consists of only natural procedures.
In particular, by contrast with previous work, it does not involve/use complicated resolutions
of operads or genuine chain complexes. Thus, we hope that our proposed approach can be
applicable to other settings and generalizations such as (∞, n)-categories. Indeed, the method
allows us to prove an equivariant generalization of Theorem 1.1 (see Theorem 9.1):

Theorem 1.3. Let G be a group object in the ∞-category S of spaces, that is, a group-like
E1-space. Let C be a small R-linear stable idempotent-complete ∞-category. Suppose that G
acts on C (namely, it gives a left action). Then (HH•(C),HH•(C)) is promoted to a KS-algebra
in Fun(BG,ModR). Namely, (HH•(C),HH•(C)) is a KS-algebra in ModR, which comes equip-
ped with a left action of G.

We would like to invite the reader’s attention to the noteworthy features of our method:

� Our construction of the structure of an algebra on the Hochschild pair over KS starts with
an R-linear stable ∞-category C. Consequently, if we have an equivalence C ' C′, we have
a canonical equivalence (HH•(C),HH•(C)) ' (HH•(C′),HH•(C′)) as algebras over KS
(see Remark 9.4). Consider the situation that the associative algebra A and A′ in the
∞-category of R-modules have the equivalent module category LModA and LModA′ , that
is, A and A′ are (derived) Morita equivalent to one another. Here LModA and LModA′

denote the ∞-categories of left A-module spectra and left A′-module spectra, respectively
(cf. Section 3). Then LModA ' LModA′ induces the canonical equivalence of Hochschild
pairs as algebras over KS. In other words, our method provides a natural Morita invariant
structure. This invariance has a fundamental importance in noncommutative geometry and
is reasonable to expect, whereas the Morita invariant property of algebra structures in [11]
and [16] remains an open problem. We would like to mention a recent work [1] in which
the authors prove the Morita invariance of the calculus structure at the level of graded
vector spaces of homology.

� The base ring can be any commutative ring spectrum. Note that it is not possible to use
the dg operad KScomb in the generalization to the “spectral” setting.

� As stated Theorem 1.3, our functorial method allows us to generalize to equivariant situa-
tions. The∞-categories with group actions naturally appear in future applications (see be-
low).

� As revealed the outline in Section 2, our construction works well not with algebras but with
∞-categories. Thus, even when one is ultimately interested in algebras, it is important
to consider the ∞-category of their modules.
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We would like to view our results from the perspective of noncommutative algebraic geome-
try. As mentioned above, the notion of KS-algebra structures is a counterpart to the calculus
on manifolds. Thus, KS-algebras are central objects in “noncommutative calculus”. We refer
the reader to [12] and references therein for this point of view.

Recall the algebro-geometric interpretations of the Hochschild cohomologyHH•(C) and Hoch-
schild homology HH•(C) for stable ∞-categories C or dg categories (somewhat more precisely,
we assume that they are “linear” over a field of characteristic zero). The E2-algebra HH•(C)
governs the deformations theory of the stable ∞-category C in the derived geometric formula-
tion. The Hochschild homology HH•(C) (more precisely, the Hochschild chain complex) inherits
an S1-action that corresponds to the Connes operator. Then HH•(C) with S1-action gives
rise to an analogue of the Hodge filtration: the pair of the negative cyclic homology and
the periodic cyclic homology can be thought of as such a structure. (These algebraic struc-
tures are contained in the KS-algebra (HH•(C),HH•(C)).) As revealed in [20] in the case
of associative (dg) algebras A, the action of HH•(A) on HH•(A) encoded by the KS-algebra
structure at the operadic level is a key algebraic datum that describes variations of the (ana-
logue of) Hodge filtration along noncommutative (curved) deformations. Namely, the period
map for noncommutative deformations (of an associative algebra) is controlled by the KS-
algebra of the Hochschild cohomology and Hochschild homology. Therefore, the KS-algebra
(HH•(C),HH•(C)) will provide a crucial algebraic input for the theory of period maps for de-
formations of the stable ∞-category C. The significance of the generalization to the equivariant
context (Theorem 1.3) will be seen when one comes to consider fruitful examples. The moti-
vations partly come from mirror symmetry. For example, stable ∞-categories endowed with
S1-actions or some algebraic actions, that are interesting from the viewpoint of S1-equivariant
deformation theory, naturally appear from Landau–Ginzburg models in the context of matrix
factorizations. Its equivariant deformations together with the associated Hodge structure should
provide a categorification of the theory of Landau–Ginzburg models. As a second example,
if X is a sufficiently nice algebraic stack (more generally, a derived stack), one can consider
the derived free loop space LX = Map

(
S1, X

)
of X (see, e.g., [5]). The stable ∞-category

Perf(LX) of perfect complexes on LX comes equipped with the natural S1-action. Finally,
we would also like to mention that main results in this paper form the basis for our recent
work [19].

2 Strategy and organization

The purpose of this section is to outline the strategy of a construction of a KS-algebra structure
on the pair of Hochschild cohomology and Hochschild homology and to give the brief organization
of this paper. This section is something like the second part of introduction. We hope that the
following outline will be helpful in understanding the content of the sequel. However, this section
is independent with the rest of this paper so that the reader can skip it.

2.1. We will give an outline of the construction. Let C be a small stable ∞-category. If C
is not idempotent-complete, we replace C by its idempotent-completion: we assume that C
is idempotent-complete. While we work with stable ∞-categories over a commutative ring
spectrum R in the paper, for simplicity we here work with plain stable idempotent-complete
∞-categories (equivalently, we assume that R is the sphere spectrum). We let D = Ind(C)
denote the Ind-category that is a compactly generated stable ∞-category. The ∞-category D
is also equivalent to the functor category Funex

(
Cop,Sp

)
of exact functors, where Sp is the

stable ∞-category of spectra.
Let FunL(D,D) be the functor category from D to itself that consists of those functors which

preserve small colimits. This functor category is a compactly generated stable ∞-category
and inherits an associative monoidal structure given by the composition of functors. We de-
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note by End(D)⊗ the presentable stable∞-category FunL(D,D) endowed with the (associative)
monoidal structure.

Let AlgAs(Sp) denote the ∞-category of associative ring spectra. Given A ∈ AlgAs(Sp), we
define RModA to be the ∞-category of right A-module spectra. Let us regard A as a right
A-module in an obvious way. Then there is an essentially unique colimit-preserving functor
pA : Sp→ RModA which sends the sphere spectrum S in Sp to A. Let PrL

St be the ∞-category
of presentable stable∞-categories in which morphisms are colimit-preserving functors. The assi-
gnment A 7→ {pA : Sp → RModA} induces I : AlgAs(Sp) →

(
PrL

St

)
Sp /

. The right adjoint

E :
(

PrL
St

)
Sp /
→ AlgAs(Sp) of I carries p : Sp→ P in

(
PrL

St

)
Sp /

to the endomorphism (associa-

tive) algebra EndP(P ), where P is the image p(S). Note that AlgAs(Sp) has a natural symmetric
monoidal structure whose tensor product is induced by the tensor product A ⊗ B in Sp. The
∞-category PrL

St also admits an appropriate symmetric monoidal structure in which Sp is a unit
object, and I : AlgAs(Sp) →

(
PrL

St

)
Sp /

can be promoted to a symmetric monoidal functor.

Applying AlgAs(−) to I : AlgAs(Sp) �
(

PrL
St

)
Sp /

:E, we obtain

I : AlgE2
(Sp) ' AlgAs(AlgAs(Sp)) � AlgAs

((
PrL

St

)
Sp /

)
' AlgAs

(
PrL

St

)
: E,

where AlgE2
(Sp) is the ∞-category of E2-algebras, and AlgE2

(Sp) ' AlgAs(AlgAs(Sp)) and
the left equivalence follows from Dunn additivity theorem. Here we abuse notation by writing I
and E for the induced functors. Let us regard AlgAs

(
PrL

St

)
as the∞-category of monoidal pre-

sentable stable∞-categories. The left adjoint sends an E2-algebra A to the associative monoidal
∞-category RMod⊗A. The right adjoint carries a monoidal presentable stable ∞-category M⊗
to the endomorphism spectrum EndM(1M) of the unit object 1M, endowed with an E2-algebra
structure.

We define Hochschild cohomology spectrumHH•(C)= HH•(D) as E
(
End(D)⊗

)
∈ AlgE2

(Sp).
The underlying associative algebra HH•(C) is the endomorphism algebra of the identity functor
D → D in FunL(D,D).

Consider the counit map of the adjunction:

RMod⊗HH•(D) −→ End(D)⊗,

which is a monoidal functor. Since End(D)⊗ naturally acts on D, it gives rise to an action
of RMod⊗HH•(D) on D:

End(D)⊗ y D ⇒ RMod⊗HH•(D) y D.

In other words, D is a left RMod⊗HH•(D)-module object in PrL
St. Let RPerf⊗HH•(C) ⊂ RMod⊗HH•(D)

be the monoidal full subcategory that consists of compact objects. By the restrictions, it gives
rise to a left RPerf⊗HH•(C)-module object C:

RPerf⊗HH•(C) y C,

in the∞-category St of small stable idempotent-complete∞-categories in which morphisms are
exact functors (St also admits a suitable symmetric monoidal structure). Informally, we think
of it as a categorical associative action of HH•(C) on C. This is induced by the adjunction so
that it has an evident universal property.

Construct a functor St→ Sp which carries C to the Hochschild homology spectrum HH•(C).
In the classical differential graded context, Hochschild chain complex comes equipped with the
Connes operator. In our general setting, it is natural to encode such structures by means of circle
actions: Hochschild homology spectrum HH•(C) is promoted to a spectrum with an S1-action,
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that is, an object of Fun
(
BS1,Sp

)
. Thus we configure the assignment C 7→ HH•(C) as a sym-

metric monoidal functor

HH•(−) : St⊗ −→ Fun
(
BS1, Sp

)⊗
,

where Fun
(
BS1,Sp

)
inherits a pointwise symmetric monoidal structure from the structure

on Sp.
Applying the symmetric monoidal functor HH•(−) to the left RPerf⊗HH•(C)-module object C,

we obtain a left HH•
(
RPerfHH•(C)

)
-module HH•(C) in Fun

(
BS1, Sp

)
. Note that HH•(HH•(C))

' HH•
(

RPerfHH•(C)
)

is an associative algebra object in Fun
(
BS1,Sp

)
. In other words, it is

an associative ring spectrum equipped with an S1-action.
There is a topological operad (∞-operad) Cyl (defined in a geometric way). We have a cano-

nical equivalence AlgCyl(Sp) ' AlgAs

(
Fun

(
BS1,Sp

))
between∞-categories of algebras, where

AlgCyl(Sp) is the ∞-category of algebras over Cyl. There is another two-colored topological

operad (∞-operad) DCyl such that operads E⊗2 and Cyl are contained in DCyl as full subop-
erads: E⊗2 ⊂ DCyl ⊃ Cyl. Let i : E⊗2 ↪→ DCyl denote the inclusion, and let i! : AlgE2

(Sp) →
AlgDCyl(Sp) be the left adjoint of the forgetful functor i∗ : AlgDCyl(Sp)→ AlgE2

(Sp). Consider
the sequence

AlgE2
(Sp)

i!−→ AlgDCyl(Sp)
forget−→ AlgCyl(Sp) ' AlgAs

(
Fun

(
BS1,Sp

))
and denote by i!(HH•(C))C the image ofHH•(C) under the composite. We construct a canonical
equivalence i!(HH•(C))C ' HH•(HH•(C)) in AlgAs

(
Fun

(
BS1,Sp

))
.

Assembling the constructions, we obtain a triple

(HH•(C), i!(HH•(C))C ' HH•(HH•(C)),HH•(C)),

where HH•(C) is the E⊗2 -algebra, HH•(C) is the left HH•(HH•(C))-module (in Fun
(
BS1,Sp

)
).

As mentioned in Theorem 1.2, we prove that the triple exactly amounts to a KS-algebra
(HH•(C),HH•(C)), that is, the structure of an algebra over the Kontsevich–Soibelman operad
KS on the pair (HH•(C),HH•(C)). This completes the construction.

2.2. This paper is organized as follows: Section 3 collects conventions and some of the
notation that we will use. In Section 4, we discuss algebras over the Kontsevich–Soibelman
operad. The main result of Section 4 is Corollary 4.21 (= Theorem 1.2). Along the way,
we introduce several topological colored operads (∞-operads). In Section 5, we give a brief
review of Hochschild cohomology spectra that we will use. In Section 6, we give a construction
of the assignment C 7→ HH•(C) which satisfies the requirements for our goal (partly because
we are not able to find a suitable construction in the literature). The results of this section
will be quite useful for various purposes other than the subject of this paper. In Section 7, we
prove Theorem 7.14 (= Theorem 1.1). Namely, we construct a KS-algebra (HH•(C),HH•(C)).
In Section 8, we study the action morphisms determined by the structure of the KS-algebra
on (HH•(C),HH•(C)). In Section 9, we give a generalization to an equivariant setting (cf. Theo-
rem 1.3): C is endowed with the action of a group (a group object in the ∞-category of spaces).

3 Notation and convention

Throughout this paper we use the theory of quasi-categories. We assume that the reader is
familiar with this theory and operads. A quasi-category is a simplicial set which satisfies the weak
Kan condition of Boardman–Vogt. The theory of quasi-categories from the viewpoint of models
of (∞, 1)-categories were extensively developed by Joyal and Lurie [21, 25, 27]. Following [27],
we shall refer to quasi-categories as ∞-categories. Our main references are [25] and [27]. Given
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an ordinary category C, by passing to the nerve N(C), we think of C as the ∞-category N(C).
We usually abuse notation by writing C for N(C) even when C should be thought of as a simplicial
set or an ∞-category.

We use the theory of∞-operads which is thoroughly developed in [25]. The notion of∞-ope-
rads gives one of the models of colored operads. Thanks to Hinich [15], there is a comparison
between algebras over differential graded operads and algebras over∞-operads in values in chain
complexes. In particular, in characteristic zero, [15] establishes an equivalence between two
notions of algebras, see loc. cit.

Here is a list of some of the conventions and notation that we will use:

� Z: the ring of integers, R denotes the set of real numbers which we regard as either
a topological space or a ring.

� ∆: the category of linearly ordered non-empty finite sets (consisting of [0], [1], . . . ,
[n] = {0, . . . , n}, . . . ).

� ∆n: the standard n-simplex.

� N: the simplicial nerve functor (cf. [27, Section 1.1.5]).

� S: ∞-category of small spaces. We denote by Ŝ the ∞-category of large spaces (cf. [27,
Section 1.2.16]).

� C': the largest Kan subcomplex of an ∞-category C.
� Cop: the opposite ∞-category of an ∞-category. We also use the superscript “op” to indi-

cate the opposite category for ordinary categories and enriched categories.

� Cat∞: the ∞-category of small ∞-categories.

� Sp: the stable ∞-category of spectra.

� Fun(A,B): the function complex for simplicial sets A and B.

� FunC(A,B): the simplicial subset of Fun(A,B) classifying maps which are compatible
with given projections A→ C and B → C.

� Map(A,B): the largest Kan subcomplex of Fun(A,B) when A and B are ∞-categories.

� MapC(C,C
′): the mapping space from an object C ∈ C to C ′ ∈ C, where C is an ∞-

category. We usually view it as an object in S (cf. [27, Section 1.2.2]).

� Fin∗: the category of pointed finite sets 〈0〉, 〈1〉, . . . 〈n〉, . . . , where 〈n, 〉 = {∗, 1, . . . , n}
with the base point ∗. We write Γ for N(Fin∗). 〈n〉◦ = 〈n〉\∗. Notice that the (nerve of)
Segal’s gamma category is the opposite category of our Γ.

� Pact: If P is an ∞-operad, we write Pact for the subcategory of P spanned by active
morphisms.

� Triv⊗: the trivial ∞-operad [25, Example 2.1.1.20].

� As⊗: the associative operad [25, Section 4.1.1], we use the notation slightly different
from loc. cit. Informally, an As-algebra (an algebra over As⊗) is an unital associative
algebra. For a symmetric monoidal ∞-category C⊗, we write AlgAs(C) for the ∞-category
of As-algebra objects. We refer to an object of AlgAs(C) as an associative algebra object
in C⊗. We refer to a monoidal∞-category over As⊗ as an associative monoidal∞-category.

� LM⊗: the ∞-operad defined in [25, Definition 4.2.1.7]. An algebra over LM⊗ is a pair
(A,M) such that an unital associative algebra A and a left A-module M . For a symmetric
monoidal ∞-category C⊗ → Γ, we write LMod

(
C⊗
)

or LMod(C) for AlgLM⊗
(
C⊗
)
.

� E⊗n : the ∞-operad of little n-cubes. For a symmetric monoidal ∞-category C⊗, we write
AlgEn

(C) for the ∞-category of En-algebra objects.
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4 Operads

4.1. We will define several simplicial colored operads which are relevant to us. By a simplicial
colored operad, we mean a colored operad in the symmetric monoidal category of simplicial sets.
A simplicial colored operad is also referred to as a symmetric multicategory enriched over the
category of simplicial sets.

Definition 4.1. Let (0, 1) denote the open interval {x ∈ R | 0 < x < 1}. For n ≥ 0, let (0, 1)n

be the n-fold product, i.e., the n-dimensional cube. An open embedding f : (0, 1)n → (0, 1)n

is said to be rectilinear if it is given by

f(x1, . . . , xn) = (a1x1 + b1, . . . , anxn + bn)

for some real constants 0 < a1, . . . , an ≤ 1, 0 ≤ b1, . . . , bn < 1, provided that the formula
defines an embedding. An embedding f : (0, 1)n → (0, 1)n is said to be shrinking if it is given
by f(x1, . . . , xn) = (a1x1, . . . , anxn) for some 0 < a1, . . . , an ≤ 1.

Let S1 denote the circle R/Z which we regard as a topological space. A continuous map
f : (0, 1)n × S1 → (0, 1)n × S1 is said to be rectilinear (resp. shrinking) if f = (φ, ψ) such that
φ : (0, 1)n → (0, 1)n is rectilinear (resp. shrinking) and ψ : S1 → S1 is given by a rotation

S1 = R/Z 3 x 7→ x+ r ∈ R/Z = S1

with r ∈ R/Z. In particular, when n = 0, f : S1 → S1 is rectilinear if it is given by a rotation.
Let n ≥ 1. If a continuous map f : (0, 1)n → (0, 1)n−1 × S1 is said to be rectilinear if it

factors as (0, 1)n
g→ (0, 1)n−1 × R

h→ (0, 1)n−1 × R/Z, where h is the projection, and g is
given by f(x1, . . . , xn) = (a1x1 + b1, . . . , anxn + bn) for some real constants 0 < a1, . . . , an ≤ 1,
0 ≤ b1, . . . , bn−1 < 1, bn ∈ R, provided that the formula defines an open embedding.

Definition 4.2. Let Cyl be a simplicial colored operad defined as follows:

(i) The set of colors of Cyl has a single element, which we will denote by C.

(ii) Let I = 〈r〉◦ be a finite set and let {C}I be a set of colors indexed by I. By abuse
of notation, we write Ctr for {C}I , where r is the number of elements of I. We remark
that Ctr does not mean the coproduct. We define MultCyl({C}I , C) = MultCyl

(
Ctr, C

)
to be the singular simplicial complex of the space

Embrec
((

(0, 1)× S1
)tr

, (0, 1)× S1
)

of embeddings
(
(0, 1) × S1

)tr → (0, 1) × S1 such that the restriction to each component

(0, 1)×S1 → (0, 1)×S1 is rectilinear. Here
(
(0, 1)×S1

)tr
is the disjoint union of (0, 1)×

S1, whose set of connected components is identified with I. The space Embrec
((

(0, 1) ×
S1
)tr

, (0, 1) × S1
)

is endowed with the standard topology, that is, the subspace of the
mapping space with compact-open topology.

(iii) The composition law in Cyl is given by the composition of rectilinear embeddings, and
a unit map is the identity map.

The color C together with MultCyl({C}I , C) constitutes a fibrant simplicial colored operad.
By a fibrant simplicial colored operad we mean that every simplicial set MultCyl({C}I , C) is
a Kan complex. Note that the singular simplicial complex of a topological space is a Kan
complex.

Definition 4.3. Let Cyl be a simplicial colored operad defined as follows:



Differential Calculus of Hochschild Pairs for Infinity-Categories 9

(i) The set of colors of Cyl has two elements denoted by C and CM .

(ii) Let I = 〈r〉◦ be a finite set and let {C,CM}I be a set of colors indexed by I, which we
think of as a map p : I → {C,CM}. We also write Ctm tCtnM for {C,CM}I when p−1(C)
(resp. p−1(CM )) has m elements (resp. n elements). Let

Embrec
((

(0, 1)× S1
)tm t ((0, 1)× S1

)tn
, (0, 1)× S1

)
denote the space of embeddings

(
(0, 1)× S1

)tm t ((0, 1)× S1
)tn → (0, 1)× S1 such that

the restriction to each component is rectilinear (the topology is induced by compact-open
topology). We refer to it as the space of rectilinear embeddings. For n ≥ 1, let

Multt
Cyl

(
Ctm t CtnM , CM

)
:= Embrec

((
(0, 1)× S1

)
× p−1(C) t

(
(0, 1)× S1

)
× p−1(CM ), (0, 1)× S1

)
be its subspace that consists of those rectilinear embeddings f such that each restriction
to any component in

(
(0, 1)× S1

)
× p−1(CM ) is (not only rectilinear but also) shrinking.

Here
(
(0, 1) × S1

)
× p−1(C) t

(
(0, 1) × S1

)
× p−1(CM ) denotes the finite disjoint union

of (0, 1)× S1 indexed by p−1(C) t p−1(CM ) ' I, but we distinguish between components
indexed by p−1(C) and those indexed in p−1(CM ) since they play different roles. Notice
that Multt

Cyl

(
Ctm t CtnM , CM

)
is the empty space for n ≥ 2. We define MultCyl

(
Ctm t

CtnM , CM
)

to be the singular simplicial complex of Multt
Cyl

(
CtmtCtnM , CM

)
. When n = 0,

we define MultCyl

(
Ctm, CM

)
to be the empty simplicial set.

(iii) We set MultCyl(C
tm, C) = MultCyl

(
Ctm, C

)
. If n 6= 0, MultCyl

(
Ctm t CtnM , C

)
is the

empty set.

(iv) The composition law is given by the composition of rectilinear embeddings, and a unit
map is the identity map.

The colors C, CM together with simplicial sets of maps constitute a fibrant simplicial colored
operad.

Definition 4.4. Let DCyl be a simplicial colored operad defined as follows:

(i) The set of colors of DCyl has two elements, which we denoted by D and C.

(ii) Let I = 〈r〉◦ be a finite set and let {D,C}I be a set of colors indexed by I, that is, a map
p : I → {D,C}. By abuse of notation we write Dtl t Ctm for {D,C}I when p−1(D)
(resp. p−1(C)) has l elements (resp. m elements). We define MultDCyl

(
Dtl, D

)
to be the

singular simplicial complex of the space

Embrec
((

(0, 1)2
)tl
, (0, 1)2

)
of embeddings from the disjoint union (0, 1)2 × p−1(D) to (0, 1)2 such that the restric-
tion to each component is rectilinear, where the space comes equipped with the subspace
topology of the mapping space with compact-open topology.

If m ≥ 1, MultCyl

(
Dtl t Ctm, D

)
is the empty set.

(iii) We define MultDCyl

(
DtltCtm, C

)
to be the singular complex of the space of embeddings

Embrec
(
(0, 1)2 × p−1(D) t

(
(0, 1)× S1

)
× p−1(C), (0, 1)× S1

)
such that the rescriction to a component (0, 1)2 is rectilinear, and the restriction to a com-
ponent (0, 1)× S1 is rectilinear.



10 I. Iwanari

(iv) The composition law and the unit are defined in an obvious way.

The colors D, C together with simplicial sets of maps constitute a fibrant simplicial colored
operad.

Definition 4.5. Let DCyl be a simplicial colored operad defined as follows.

(i) The set of colors of DCyl has three elements, which we denote by D, C, and CM .

(ii) Let I = 〈r〉◦ be a finite set and let {D,C,CM}I be a set of colors indexed by I, that
is, a map p : I → {D,C,CM}. By abuse of notation, we write Dtl t Ctm t CtnM for
{D,C,CM}I when p−1(D) (resp. p−1(C), p−1(CM )) has l elements (resp. m elements, n
elements). We set MultDCyl

(
Dtl, D

)
= MultDCyl

(
Dtl, D

)
. If m+ n ≥ 1, MultCyl

(
Dtl t

Ctm t CtnM , D
)

is the empty set.

(iii) We set MultDCyl

(
Dtl t Ctm, C

)
= MultDCyl

(
Dtl t Ctm, C

)
. If n ≥ 1,

MultDCyl

(
Dtl t Ctm t CtnM , C

)
is the empty set.

(iv) For n 6= 1, MultDCyl

(
Dtl t Ctm t CtnM , CM

)
is the empty set. For n = 1,

MultDCyl

(
Dtl t Ctm t CM , CM

)
is the singular simplicial complex of the space of embeddings

(0, 1)2 × p−1(D) t
(
(0, 1)× S1

)
× p−1(C) t

(
(0, 1)× S1

)
× p−1(CM )→ (0, 1)× S1

such that the restriction to a component in (0, 1)2 × p−1(D) is rectilinear, the restriction
to each component in

(
(0, 1)× S1

)
× p−1(C) is rectilinear, and the restriction to

(
(0, 1)×

S1
)
× p−1(CM ) ' (0, 1) × S1 is shrinking. By definition, if l = 0, MultDCyl(C

tm t
CM , CM ) = MultCyl(C

tm t CM , CM ).

(v) The composition law and the unit map are defined in an obvious way.

The colors D, C, CM together with simplicial sets of maps constitute a fibrant simplicial colored
operad.

Remark 4.6. There is a commutative diagram of inclusions of simplicial colored operads:

Cyl //

��

Cyl

��
DCyl // DCyl.

Each inclusion determines a simplicial colored full suboperad.

We obtain an ∞-operad from a fibrant simplicial colored operad. We recall the construction
from [25, Notation 2.1.1.22].

Definition 4.7. Let P be a simplicial colored operad. Let Pcol be the set of colors of P .
We let P∆ be a simplicial category defined as follows:

(i) The objects of P∆ are maps a : 〈n〉◦ → Pcol, that is, pairs (〈n〉, (C1, . . . , Cn)), where
〈n〉 ∈ Fin∗ and (C1, . . . , Cn) is a finite sequence (a(1), . . . , a(n)) of colors.
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(ii) Let C = (〈n〉, (C1, . . . , Cn)) and C ′ = (〈m〉, (C ′1, . . . , C ′m)) be two objects. The hom
simplicial set MapP∆

(C,C ′) is given by∐
α : 〈n〉→〈m〉

∏
j∈〈m〉◦

MultP
(
{Ci}i∈α−1(j), C

′
j

)
.

(iii) Composition is determined by the composition laws on Fin∗ and on P in an obvious way.

There is a canonical simplicial functor P∆ → Fin∗ which sends (〈n〉, (C1, . . . , Cn)) to 〈n〉. If P
is fibrant, the map of simplicial nerves P := N(P∆) → N(Fin∗) = Γ constitutes an ∞-operad
(cf. [25, Proposition 2.1.1.27]). We shall refer to N(P∆) → N(Fin∗) = Γ (or N(P∆)) as the
operadic nerve of P . We shall denote by P〈n〉 the fiber P×Γ {〈n〉} over 〈n〉. We usually identify
colors with objects in P〈1〉.

Definition 4.8. We apply the construction in Definiton 4.7 to Cyl, Cyl, DCyl, and DCyl
to obtain ∞-operads.

� Let Cyl be the operadic nerve of Cyl.

� Let Cyl be the operadic nerve of Cyl.

� Let DCyl be the operadic nerve of DCyl.

� Let DCyl be the operadic nerve of DCyl.

We now recall Kontsevich–Soibelman operad [23].

Definition 4.9. Let KS be the simplicial colored full suboperad of DCyl which consists of col-
ors D, CM . We refer to KS as Kontsevich–Soibelman operad. Let KS be the operadic nerve
of KS (the notation is slightly diffrent from Introduction). We abuse terminology by referring
to it as Kontsevich–Soibelman operad. In a nutshell, KS ⊂ DCyl is the maximal simplicial
subcomplex spanned by vertices correponding to those tuples which do not contain the color C.
It is not difficult to check that KS is equivalent to that of [16] or [23, Section 11.2]. In [11],
a version of KS is called the cylinder operad.

Remark 4.10. We note that DCyl has a simplicial full suboperad 〈D〉 ⊂ DCyl which consists
of the single color D. This operad 〈D〉 is a version of the little 2-cube operad (e.g., [25, Defi-
nition 5.1.0.1]). Let E⊗2 be the operadic nerve of 〈D〉, which we shall refer to as the ∞-operad
of little 2-cubes.

Remark 4.11. We have the diagram in Remark 4.6 and inlusions KS ⊂ DCyl, 〈D〉 ⊂ DCyl.
These inclusions determine the following diagram of ∞-operads:

E⊗2

""

Cyl

zz ##
DCyl

$$

Cyl

{{
KS // DCyl.

Let E1 be the simplicial operad of little 1-cubes. The definition is similar to the case of little
2-cubes (see, e.g., [25, Proposition 5.1.0.3]). Namely, E1 has a single color D1, and for a finite
sequence (D1, . . . , D1), the simplicial set MultE1

(
Dtn1 , D1

)
is defined to be the singular simplicial

complex of the space Embrec
(
(0, 1)tn, (0, 1)

)
of rectilinear embeddings. The composition law and

the unit are defined in the obvious way. Let E⊗1 denote the ∞-operad of little 1-cubes, that is,
the operadic nerve of E1.
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Definition 4.12. Let E1 be a simplicial colored operad defined as follows.

(i) The set of colors of E1 has two elements which we denote by D1 and M .

(ii) Let I = 〈r〉◦ be a finite set and let {D1,M}I be a set of colors indexed by I, which is
a map p : I → {D1,M}. We write Dtm1 tMtn for {D1,M}J when p−1(D1) (resp. p−1(M))
has m elements (resp. n elements). Let Embrec

(
(0, 1)tm t (0, 1), (0, 1)

)
be the topological

space of embeddings (0, 1)tm t (0, 1)→ (0, 1) such that the restriction to each component
is rectilinear. We define MultE1

(
Dtm1 tM,M

)
to be the singular simplicial complex of the

subspace

Embrec
(
(0, 1)× p−1(D1) t (0, 1)× p−1(M), (0, 1)

)
⊂ Embrec

(
(0, 1)tm t (0, 1), (0, 1)

)
.

The subspace consists of those rectilinear embeddings such that the restriction to (0, 1)×
p−1(M) ' (0, 1) is shrinking. If n 6= 1, MultE1

(
Dtm1 tMtn,M

)
is the empty set.

(iii) We set MultE1

(
Dtn1 , D1

)
= MultE1

(
Dtn1 , D1

)
. If m 6= 0, MultE1

(
Dtn1 tMtm, D1

)
is the

empty set.

(iv) The composition law is given by the composition of embeddings, and a unit map is the
identity map.

Let E
⊗
1 be the operadic nerve of E1.

Remark 4.13. There is an equivalence from the ∞-operad E⊗1 to the associative ∞-operad
Assoc⊗, see [25, Definition 4.1.1.3]. Indeed, if f : (0, 1)tn → (0, 1) is a rectilinear map, then it
determines a linear ordering on the set of connected component π0

(
(0, 1)tn

)
such that I1 > I2 for

two components I1 and I2 in (0, 1)tn if a < b for any a ∈ f(I1) and any b ∈ f(I2). It gives rise to
a map from Embrec

(
(0, 1)tn, (0, 1)

)
to the set of linear ordering on π0

(
(0, 1)tn

)
. It is a homotopy

equivalence so that we have an equivalence E⊗1 → Assoc⊗ (for details, see [25, Example 5.1.0.7]).

This equivalence E⊗1
∼→ Assoc⊗ is extended to an equivalence E

⊗
1
∼→ LM⊗ of ∞-operads,

where LM⊗ is the ∞-operad (having two colors) which we use to describe pairs of associative
algebras and left modules [25, Definition 4.2.1.7]. Indeed, as above, any map (0, 1)tn t (0, 1)→
(0, 1) in (ii) Definition 4.12 determines a linear ordering on π0((0, 1)tnt(0, 1)) such that the black
component is the maximal element. It is easy to see that this ordering induces an equivalence
E
⊗
1 → LM⊗ which extends E⊗1

∼→ Assoc⊗.

4.2. Following [25], we recall the notion of algebras over an ∞-operad. Let O → Γ be an ∞-
operads. Let M⊗ → Γ be a symmetric monoidal ∞-category whose underlying ∞-category is
M =M〈1〉. An O-algebra in M is a map f : O →M⊗ over Γ which preserve inert morphisms,
that is, a map of∞-operads. We define AlgO

(
M⊗

)
⊂ FunΓ

(
O,M⊗

)
to be the full subcategory

of FunΓ

(
O,M⊗

)
spanned by O-algebras. We often write AlgO(M) for AlgO

(
M⊗

)
when the

structure onM is clear. We refer to AlgO
(
M⊗

)
as the ∞-category of O-algebra objects inM,

cf. [25, Definition 2.1.3.1]. When O is Γ, we write CAlg
(
M⊗

)
for AlgΓ

(
M⊗

)
.

Let E⊗1 → Γ be the ∞-operad of little 1-cubes with the natural projection. Let
(
BS1

)
∆

be the simplicial category having a single object ∗ and Hom simplicial set Hom(BS1)∆
(∗, ∗).

The simplicial set Hom(BS1)∆
(∗, ∗) is the simplicial complex of S1 = R/Z, and the composition

is induced by the ordinary multiplication S1×S1 → S1. We denote by BS1 the simplicial nerve
of
(
BS1

)
∆

. It can also be regarded as the classifying space of S1 in S. Let p : E⊗1 × BS1 → Γ

be the composite E⊗1 × BS1 pr1→ E⊗1 → Γ. We note that E⊗1 × BS1 → Γ is not an ∞-operad.
Let M⊗ → Γ be a symmetric monoidal ∞-category. Though the above definition of algebra
objects is not applicable to E⊗1 × BS1 → Γ, we define AlgE⊗1 ×BS1

(
M⊗

)
as follows (cf. [25,

Definition 2.3.3.20]). Let ρi : 〈n〉 → 〈1〉 be the unique inert morphism which sends i ∈ 〈n〉
to 1 ∈ 〈1〉. Then AlgE⊗1 ×BS1

(
M⊗

)
is the full subcategory of FunΓ

(
E⊗1 × BS1,M⊗

)
spanned
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by those maps F : E⊗1 ×BS1 →M⊗ satisfying the condition: If C is an object of E⊗1 ×BS1 lying
over 〈n〉, and for 1 ≤ i ≤ n αi : C → Ci is a locally p-coCartesian morphism covering ρi : 〈n〉 →
〈1〉, then F (αi) is an inert morphism in M⊗. Let ∆0 → BS1 be the natural functor which
induces E⊗1 → E⊗1 ×BS1. By the construction of E⊗1 ×BS1, F belongs to AlgE⊗1 ×BS1

(
M⊗

)
if

and only if the composite E⊗1 → E⊗1 ×BS1 F→M⊗ carries any inert morphism in E⊗1 lying over
〈n〉 → 〈1〉 to an inert morphism in M⊗. As observed in [25, Remark 2.1.2.9], it is equivalent

to the condition that E⊗1 → E⊗1 × BS1 F→ M⊗ carries any inert morphism in E⊗1 to an inert
morphism in M⊗.

Lemma 4.14. Let M⊗ be a symmetric monoidal ∞-category whose underlying category we
denote by M. Let Fun

(
BS1,M

)
denote the functor category (function complex) which is en-

dowed with the pointwise symmetric monoidal structure induced by that of M⊗. Namely, the
symmetric monoidal structure on Fun

(
BS1,M

)
is given by the projection Fun

(
BS1,M

)⊗
:=

Fun
(
BS1,M⊗

)
×Fun(BS1,Γ) Γ→ Γ. Then there is a canonical equivalence of ∞-categories

AlgE⊗1 ×BS1

(
M⊗

)
' AlgE1

(
Fun

(
BS1,M

)⊗)
.

Similarly, there is a canonical equivalence AlgE1×BS1

(
M⊗

)
' AlgE1

(
Fun

(
BS1,M

)⊗)
.

Proof. We prove that there is an isomorphism of simplicial sets

AlgE⊗1 ×BS1

(
M⊗

)
' AlgE1

(
Fun

(
BS1,M

))
.

Observe that the symmetric monoidal ∞-category Fun
(
BS1,M

)⊗
is defined by the following

universal property: for a simplicial set K, there is a natural bijection of

HomSet∆

(
K,Fun

(
BS1,M

)⊗)
with the set of pairs (α, β) which makes the diagram commute

M⊗

��
BS1 ×Kpr2

//

β

55

K
α // Γ.

The assignment (α, β) 7→ α induces Fun
(
BS1,M

)⊗ → Γ. Therefore, for a simplicial set L,

a map L → AlgE1

(
Fun

(
BS1,M

)⊗)
amounts to a map f : BS1 × L × E⊗1 →M⊗ over Γ such

that for any vertex (a, l) in BS1 × L and for any inert morphism i in E⊗1 , the image f((a, l, i))
is an inert morphism in M⊗ (note also that by construction BS1 has a single vertex). Next,
we consider the universal property of AlgE⊗1 ×BS1

(
M⊗

)
. By the observation before this lemma,

for a simplicial set L, a map L→ AlgE⊗1 ×BS1

(
M⊗

)
amounts to a map g such that the diagram

M⊗

��
L×E⊗1 ×BS1 //

g

33

E⊗1 ×BS1 // Γ

commutes and for any vertex (l, a) in L× BS1 and for any inert morphism i in E⊗1 , the image
g((l, i, a)) is an inert morphism inM⊗. Comparing universal properties of AlgE1

(
Fun

(
BS1,M

))
and AlgE⊗1 ×BS1

(
M⊗

)
, we have a canonical isomorphism of simplicial sets AlgE1

(
Fun

(
BS1,M

))
' AlgE⊗1 ×BS1

(
M⊗

)
. The final assertion also follows from an argument similar to this proof. �
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Construction 4.15. We will define a functor E⊗1 ×BS1 → Cyl over Γ. To this end, we consider
the following simplicial categories

(
E1 × BS1

)
∆

and Cyl∆. Let
(
E1 × BS1

)
∆

be a simplicial
category defined as follows.

� The objects of
(
E1×BS1

)
∆

are objects 〈n〉 in Fin∗ (which we regard as formal symbols).

� For 〈n〉, 〈m〉 ∈
(
E1×BS1

)
∆

, the Hom simplicial set Hom(E1×BS1)∆
(〈n〉, 〈m〉) is the singular

complex of the space∐
α : 〈n〉→〈m〉

( ∏
1≤j≤m

Embrec
(
(0, 1)× α−1(j), (0, 1)

))
× S1.

� The composition is determined by the composition of embeddings and the multiplication
S1 × S1 → S1.

There is a canoncial projection
(
E1×BS1

)
∆
→ Fin∗. The simplicial nerve N

((
E1×BS1

)
∆

)
→

N(Fin∗) = Γ is p : E⊗1 ×BS1 → Γ.

� The objects of Cyl∆ are objects 〈n〉 in Fin∗ (which we regard as formal symbols).

� For 〈n〉, 〈m〉 ∈ Cyl∆, the Hom simplicial set HomCyl∆(〈n〉, 〈m〉) is the singular simplicial
complex of the space∐

α : 〈n〉→〈m〉

∏
1≤j≤m

Embrec
(
(0, 1)× S1 × α−1(j), (0, 1)× S1

)
.

The composition is determined by the composition of embeddings.

Passing to simplicial nerves, we get N(Cyl∆) ' Cyl → Γ. Note that there is a canonical
homeomorphism of spaces

Embrec
(
(0, 1)× S1 × α−1(j), (0, 1)× S1

)
' Embrec

(
(0, 1)× α−1(j), (0, 1)

)
×
(
S1
)×]α−1(j)

(each factor a ∈ (S1)×]α
−1(j) determines the rotation of the restriction (0, 1)×S1 → (0, 1)×S1).

The diagonal map S1 →
(
S1
)×]α−1(j)

induces a map

Hom(E1×BS1)∆
(〈n〉, 〈m〉)→ HomCyl∆(〈n〉, 〈m〉)

in the natural way. It gives rise to a functor Z :
(
E1 × BS1

)
∆
→ Cyl∆ of simplicial categories.

Then it induces a map

z : E⊗1 ×BS
1 → Cyl

over Γ. Let M⊗ be a symmetric monoidal ∞-category whose underlying category is M. The
restriction along E⊗1 ×BS1 → Cyl induces a functor z∗ : AlgCyl

(
M⊗

)
→ AlgE⊗1 ×BS1

(
M⊗

)
.

Proposition 4.16. The functor

z∗ : AlgCyl

(
M⊗

)
→ AlgE⊗1 ×BS1

(
M⊗

)
is an equivalence of ∞-categories.

Observe that MultCyl

(
Ctn t CM , CM

)
is the singular complex of the space which is home-

omorphic to MultE1

(
Dtn1 tM,M

)
×
(
S1
)×n+1

. As in the case of E⊗1 × BS1 → Cyl, using

MultE1

(
Dtn1 tM,M

)
× S1 → MultE1

(
Dtn1 tM,M

)
×
(
S1
)×n+1

induced by the diagonal map

S1 →
(
S1
)×n+1

we obtain a morphism z̄ : E
⊗
1 × BS1 → Cyl over Γ. The restriction along z̄

gives rise to z̄∗ : AlgCyl

(
M⊗

)
→ Alg

E
⊗
1 ×BS1

(
M⊗

)
.
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Proposition 4.17. The functor

z̄∗ : AlgCyl

(
M⊗

)
→ Alg

E
⊗
1 ×BS1

(
M⊗

)
is an equivalence of ∞-categories.

Corollary 4.18. There are canonical equivalences of ∞-categories

AlgCyl

(
M⊗

)
' AlgE⊗1 ×BS1

(
M⊗

)
' AlgE1

(
Fun

(
BS1,M

)⊗)
' AlgAssoc

(
Fun

(
BS1,M

)⊗)
and

AlgCyl

(
M⊗

)
' Alg

E
⊗
1 ×BS1

(
M⊗

)
' AlgE1

(
Fun

(
BS1,M

)⊗)
' LMod

(
Fun

(
BS1,M

)⊗)
.

Here LMod
(

Fun
(
BS1,M

)⊗)
= AlgLM⊗

(
Fun

(
BS1,M

)⊗)
.

Proof. It follows from Lemma 4.14, Propositions 4.16 and 4.17, and Remark 4.13. �

The proof of Proposition 4.17 is similar to Proposition 4.16. We prove Proposition 4.16.

Proof of Proposition 4.16. We use the notion of a weak approximation in the sense of [25,
Definition 2.3.3.6] (since z : E⊗1 ×BS1 → Cyl is not an equivalence of∞-operads, it is necessary
to use more delicate notion). According to [25, Theorem 2.3.3.23], if two conditions

(i) E⊗1 ×BS1 → Cyl is a weak approximation,

(ii) z : E⊗1 ×BS1 → Cyl induces an equivalence between the fiber over 〈1〉

hold, then z∗ : AlgCyl

(
M⊗

)
→ AlgE⊗1 ×BS1

(
M⊗

)
is an equivalence. We first prove (ii). Let

z〈1〉 :
(
E⊗1 × BS1

)
〈1〉 → Cyl〈1〉 be the map of fibers over 〈1〉. Both fibers consist of a unique

object (here we denote it by ∗ whose mapping space Map(∗, ∗) is (homotopy) equivalent to S1).
Taking into account our construction of Z :

(
E1×BS1

)
∆
→ Cyl∆, we see that z〈1〉 is a homotopy

equivalence BS1 → BS1. This proves (ii). Next we will prove (i). Let p : E⊗1 ×BS1 → Γ be the
projection. Let Tupn be the subcategory of Γ/〈n〉 whose objects are active morphisms 〈m〉 → 〈n〉
and whose morphisms are equivalences. According to a criterion [25, Proposition 2.3.3.14],
to prove (i), it is enough to prove that for any X ∈ E⊗1 × BS1 with 〈n〉 = p(X), z induces
a weak homotopy equivalence

u : A(X) :=
(
E⊗1 ×BS

1
)
/X
×Γ/〈n〉 Tupn → Cyl/z(X) ×Γ/〈n〉 Tupn =: B(z(X)).

Note that both domain and target are ∞-categories. Consequently, it will suffice to show
that u is a categorical equivalence. Clearly, u is essentially surjective. We prove that u is
fully faithful. The general case is essentially the same as the case n = 1 except for a more
complicated notation, so that we treat the case of n = 1. We think of D1 as the unique object
of
(
E⊗1 ×BS1

)
〈1〉. Also, we write Dm

1 for the unique object of the fiber
(
E⊗1 ×BS1

)
〈m〉 over 〈m〉

(namely, D1 = D1
1). Let f : Dm

1 → D1 be a map in E⊗1 × BS1 lying over an active morphism
α : 〈m〉 → 〈1〉 of Γ. We regard f as the product g×h : (0, 1)tm×S1 → (0, 1)×S1 of a rectilinear
map φ : (0, 1)tm → (0, 1) and a rectilinear map h : S1 → S1. Let f ′ : Dm

1 → D1 be another map
in E⊗1 ×BS1 lying over α. We have

MapA(D1)(f, f
′) ' Mapeq

E⊗1 ×BS1

(
Dm

1 , D
m
1

)
×Map

E⊗1 ×BS1 (Dm
1 ,D1) {f}

'
(
S1 × Σm

)
×(S1×Σm) {f},
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where Mapeq

E⊗1 ×BS1

(
Dm

1 , D
m
1

)
is the full subcategory of MapE⊗1 ×BS1

(
Dm

1 , D
m
1

)
spanned by equi-

valences, and Mapeq

E⊗1 ×BS1

(
Dm

1 , D
m
1

)
→ MapE⊗1 ×BS1

(
Dm

1 , D1

)
is induced by the composition

with f ′. Here Σm denotes the symmetric group (which comes from permutations of components).
Thus, the mapping space is contractible because (S1 × Σm) →

(
S1 × Σm

)
is an equivalence.

Next, we regard the color C in Cyl as an object in Cyl that lies over 〈1〉. We denote by Cm the
unique object of Cyl that lies over 〈m〉. Let z(f), z(f ′) : Cm → C be the images of f and f ′,
respectively. Then we have equivalences in S

MapB(C)(z(f), z(f ′)) ' Mapeq
Cyl

(
Cm, Cm

)
×MapCyl(C

m,C) {z(f)}

'
((
S1
)×m × Σm

)
×((S1)×m×Σm) {z(f)},

where Mapeq
Cyl

(
Cm, Cm

)
is the full subcategory of MapCyl(C

m, Cm) spanned by equivalences.

It follows from the canonical equivalence
(
S1
)×m×Σm →

(
S1
)×m×Σm that MapB(C)(z(f), z(f ′))

is contractible. Thus, MapA(D1)(f, f
′) → MapB(C)(z(f), z(f ′)) is an equivalence. We conclude

that u is a categorical equivalence. �

4.3. Let M⊗ be a symmetric monoidal ∞-category. If P⊗ and Q⊗ are small ∞-operads
and c : P⊗ → Q⊗ is a morphism of ∞-operads (over Γ), then we denote by c∗ : AlgQ(M) →
AlgP(M) the restriction/forgetful functor along c. If there exists a left adjoint of c∗, we denote
it by c! : AlgP(M) → AlgQ(M). If M⊗ admits small colimits and its monoidal multiplication
functor M×M → M preserves small colimits separately in each variable, then there exists
a left adjoint c!, cf. [25, Corollary 3.1.3.5].

The diagram DCyl
a← Cyl

b→ Cyl induces a∗ : AlgDCyl(M) → AlgCyl(M) and b∗ :
AlgCyl(M)→ AlgCyl(M). It gives rise to the fiber product AlgDCyl(M)×AlgCyl(M)AlgCyl(M).

We also have the inclusions DCyl → DCyl and Cyl → DCyl. Then the restriction/forgetful
functors induce

AlgDCyl(M)→ AlgDCyl(M)×AlgCyl(M) AlgCyl(M).

Now suppose that M⊗ admits small colimits and the tensor product functor M×M → M
preserves small colimits separately in each variable. Let i : E⊗2 → DCyl be the canonical
inclusion. We then have an adjoint pair

i! : AlgE2
(M) � AlgDCyl(M) : i∗,

where i! is fully faithful (indeed, the left adjoint is given by the operadic left Kan extension so that
the unit map of the adjunction is the identity). We write AlgD

DCyl(M) for the essential image

of i!. Note that AlgE2
(M) ' AlgD

DCyl(M). We set AlgD
DCyl

(M) := AlgDCyl(M) ×AlgDCyl(M)

AlgD
DCyl(M).

Proposition 4.19. Suppose that q : M⊗ → Γ is a symmetric monoidal∞-category such that the
underlying ∞-category M has small colimits and the tensor product functor ⊗ : M×M→M
preserves small colimits separately in each variable. Then the functor

AlgDCyl(M)→ AlgDCyl(M)×AlgCyl(M) AlgCyl(M)

is an equivalence of ∞-categories. Moreover, it induces an equivalence of ∞-categories

AlgD
DCyl

(M)
∼→ AlgD

DCyl(M)×AlgCyl(M) AlgCyl(M).
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Proposition 4.20. The restriction along the inclusion KS → DCyl induces an equivalence
of ∞-categories

AlgD
DCyl

(M)→ AlgKS(M).

Now we consider the diagram

AlgKS(M) AlgDCyl(M)oo ' // AlgDCyl(M)×AlgCyl(M) AlgCyl(M)

and its restriction to AlgD
DCyl

(M).

Corollary 4.21. We have canonical categorical equivalences

AlgE2
(M)×AlgCyl(M) AlgCyl(M) ' AlgD

DCyl(M)×AlgCyl(M) AlgCyl(M) ' AlgKS(M).

Moreover, by Corollary 4.18, the ∞-category on the left-hand side is equivalent to

AlgE2
(M)×AlgE1

(Fun(BS1,M)) LMod
(

Fun
(
BS1,M

))
,

where AlgE2
(M)→ AlgE1

(
Fun

(
BS1,M

))
is the composite

AlgE2
(M)

i!' AlgD
DCyl(M)→ AlgCyl(M) ' AlgE1

(
Fun

(
BS1,M

))
.

In particular, we have an equivalence of ∞-categories

AlgKS(M) ' AlgE2
(M)×AlgE1

(Fun(BS1,M)) LMod
(

Fun
(
BS1,M

))
.

This equivalence commutes with projections to AlgE2
(M) in the natural way.

The proof of Proposition 4.19 requires Lurie–Barr–Beck theorem [25, Corollary 4.7.3.16]. Let
us consider the comutative diagram

AlgDCyl(M)
U //

G ))

AlgDCyl(M)×AlgCyl(M) AlgCyl(M)

G′ss
AlgDCyl(M)×M.

The functor U is the functor in the statement in Proposition 4.19, and G is determined by the
forgetful/restriction functor AlgDCyl(M) → AlgDCyl(M) and the functor AlgDCyl(M) → M
given by the evaluation at CM . The functor G′ is determined by the first projection and the func-
tor AlgCyl(M) → M given by the evaluation at CM . According to Lurie–Barr–Beck theorem
[25, Corollary 4.7.3.16], U is a categorical equivalence if the following conditions are satisfied:

(i) The functors G and G′ admit left adjoints F and F ′, respectively.

(ii) AlgDCyl(M) admits geometric realizations of simplicial objects, which are preserved by G.

(iii) AlgDCyl(M) ×AlgCyl(M) AlgCyl(M) admits geometric realizations of simplicial objects,

which are preserved by G′.

(iv) The functors G and G′ are conservative.

(v) For any object X in AlgDCyl(M) ×M, the unit map X → GF (X) ' G′UF (X) induces
an equivalence G′F ′(X)→ GF (X) in AlgDCyl(M)×M.
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Proof of Proposition 4.19. We will prove the conditions (i), (ii), (iii), (iv), (v).
A morphism f in AlgDCyl(M) is an equivalence if and only if the evaluations at D, C, CM

are equivalences. Similarly, a morphism f in AlgDCyl(M) is an equivalence if and only if the
evaluations at objects D,C are equivalences. It follows that G is conservative. Similarly, we see
that G′ is conservative. Hence (iv) is proved. The conditions (ii) and (iii) follow from the
existence and the compatibility of sifted colimits [25, Proposition 3.2.3.1] and the conservativity
in (iv). (IfM⊗ is a presentably symmetric monoidal ∞-category, the condition (i) follows from
adjoint functor theorem since G and G′ preserve small limit and filtered colimit. We prove (i)
in full generality below.)

We prove the conditions (v) and (i). For this purpose, we first consider the left adjoint F ′

of G′. The values under F ′ can be described in terms of operadic colimits if we assume the
existence of a left adjoint F ′. Let j : Cyl→ Cyl be the canonical inclusion. Let j′ : Triv⊗ → Cyl
be a morphism from the trivial ∞-operad to Cyl that is determined by CM . Let Cyl � Triv⊗

denote the coproduct of Cyl and Triv⊗. Namely, it is a coproduct of Cyl and Triv⊗ in the
∞-category of ∞-operads, but we use its explicit construction in [25, Construction 2.2.3.3].
By the universal property, the morphism j and j′ induces k : Cyl � Triv⊗ → Cyl. By [25,
Corollary 3.1.3.5], we have an adjoint pair

k! : AlgCyl(M)×M ' AlgCyl�Triv⊗(M) � AlgCyl(M) : k∗.

Here we use the canonical categorical equivalence AlgTriv(M)
∼→ M. There are categori-

cal fibrations pr1 : AlgCyl(M) × M → AlgCyl(M) and AlgCyl(M) → AlgCyl(M) induced

by the inclusion Cyl ↪→ Cyl. The right adjoint k∗ commutes with these projections to
AlgCyl(M). Let Y : Cyl � Triv⊗ → M⊗ be a map of ∞-operads, which we regard as an ob-

ject Y of AlgCyl�Triv⊗(M). For A ∈ Cyl, the evaluation of k!(Y ) at A is an operadic q-colimit
of the map(

Cyl � Triv⊗
)act

/A
:=
(
Cyl � Triv⊗

)
×Cyl Cyl

act
/A → Cyl � Triv⊗

Y→M⊗,

lying over
(
(Cyl�Triv⊗)act

/A

). → Γ. See [25, Sections 3.1.1–3.1.3] for operadic left Kan extensions

and operadic colimits. Note that MultCyl

(
Ctn t CtmM , C

)
is the empty set for m 6= 0. Hence(

Cyl�Triv⊗
)
×Cyl Cyl

act
/C ' Cyl×Cyl Cyl

act
/C so that there is a final object determined by the

identity C → C. It follows that pr1(Y ) → pr1k
∗k!(Y ) is an equivalence in AlgCyl(M) for each

Y ∈ AlgCyl�Triv⊗(M) ' AlgCyl(M)×M. Thus (k!, k
∗) is an adjunction relative to AlgCyl(M).

See [25, Definition 7.3.2.2] for the notion of relative adjunctions. The base change of (k!, k
∗)

along AlgDCyl(M)→ AlgCyl(M) gives rise to an adjunction

l! : AlgDCyl(M)×AlgCyl(M) (AlgCyl(M)×M) � AlgDCyl(M)×AlgCyl(M) AlgCyl(M) : l∗

relative to AlgDCyl(M), where the right adjoint is G′. This shows that there exists a left
adjoint F ′ of G′. In addition, F ′ ' l!. We denote informally by X = (A,B,M) an ob-
ject of AlgDCyl(M) ×M ' AlgCyl�Triv⊗(M), where (A,B) ∈ AlgDCyl(M), M ∈ M, A is

the restriction to E⊗2 ⊂ DCyl, and B is the restriction to Cyl ⊂ DCyl. We compute the
image of (A,B,M) under the left adjoint l!. The left adjoint F ′ = l! is induced by k! so
that l!(A,B,M) = ((A,B), k!(B,M)), where ((A,B), k!(B,M)) indicates the object of the fiber
product on the right-hand side. The pair (B,M) is an object of AlgCyl(M) ×M. Thus we
will compute k!(B,M) in terms of the operadic left Kan extension; we describe it as a colimit
of a certain diagram. Let (B,M) : Cyl � Triv⊗ → M⊗ be a morphism of ∞-operads which
corresponds to (B,M) ∈ AlgCyl(M)×M. Let Cyl�Triv⊗ → Cyl be a morphism determined

by Cyl→ Cyl and the morphism Triv⊗ → Cyl classified by the object CM in the fiber Cyl〈1〉
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(by using the same symbol CM we abuse notation). Let Cyl
act

be the subcategory spanned
by those morphisms whose images in Γ are active (cf. [25, Definition 2.1.2.1]). Let us consider(
Cyl � Triv⊗

)act

/CM
=
(
Cyl � Triv⊗

)
×Cyl Cyl

act
/CM

. We have a morphism

p : K :=
(
Cyl � Triv⊗

)act

/CM
→ Cyl � Triv⊗

(B,M)−→ M⊗

that extends (Cyl�Triv⊗)act
/CM

→ Γ. According to [25, Proposition 3.1.3.2], the operadic left Kan

extension k!(B,M) : Cyl→M⊗ of k carries CM to a colimit of p, that is, the image of the cone
point under an operadic q-colimit diagram p′ : K. →M⊗ that extends p. Let ? denote the unique
object of Triv⊗ lying over 〈1〉. Let Sub be a category defined as follows [25, Definition 2.2.3.2]:
The objects of Sub are triples (〈n〉, S, T ) such that 〈n〉 ∈ Fin∗, and S, T ⊂ 〈n〉 are subsets such
that S∩T = ∗ and S∪T = 〈n〉. A morphism (〈n〉, S, T )→ (〈n′〉, S′, T ′) is a morphism 〈n〉 → 〈n〉
in Fin∗ such that f(S) ⊂ S′ and f(T ) ⊂ T ′. Let

(〈n〉, S, T, Cn−1 = (C, . . . , C), ?)

be an object of Cyl � Triv⊗ lying over 〈n〉 such that (〈n〉, S, T ) is an object of Sub, Cn−1 is
the unique object of Cyl〈n−1〉 (lying over 〈n − 1〉), and ? ∈ Triv = Triv⊗〈1〉. This presentation

is based on the explicit construction of the coproducts in [25, Construction 2.2.3.3]. For our
purpose below, we may assume that T ⊂ 〈n〉 is of the form T = {∗, i} so that by default T
in the above object is of the form T = {∗, i}. The mapping space from

(
〈n〉, S, T, Cn−1, ?

)
to
(
〈m〉, S′, T ′, Cm−1, ?

)
is given by( ∐

α : 〈n〉→〈m〉
α(S)⊂S′, α(T )⊂T ′

∏
j∈〈m〉\T ′

Embrec
((

(0, 1)× S1
)
× α−1(j), (0, 1)× S1

))
× ∗,

which we regard as an object in S, and ∗ indicates the contractible space which we regard
as the mapping space from ? to ?. Using this description we consider mapping spaces in
(Cyl � Triv⊗)act

/CM
. We abuse notation by writing

(
〈n〉, S, T, Cn−1, ?,

(
Cn−1, CM

)
→ CM

)
for

an object of K, where
(
〈n〉, S, T, Cn−1, ?

)
∈ Cyl � Triv⊗ and (C, . . . , C, CM ) =

(
Cn−1, CM

)
→

CM is a morphism in Cyl
act

lying over the active morphism 〈n〉 → 〈1〉, where
(
Cn−1, CM

)
is a sequence of n − 1 C’s and a single CM which we regard as an object in Cyl〈n〉. Now it

is easy to compute the mapping space from H =
(
〈n〉, S, T, Cn−1, ?,

(
Cn−1, CM

) f→ CM
)

to

H ′ =
(
〈m〉, S′, T ′, Cm−1, ?,

(
Cm−1, CM

) g→ CM
)

in
(
Cyl�Triv⊗

)
×Cyl Cyl

act
/CM

. We think of f

as an embedding
(
(0, 1)×S1

)tn−1 t (0, 1)×S1 → (0, 1)×S1 that belongs to MultCyl

(
Ctn−1 t

CM , CM
)

(namely, the restricition to the “right component” (0, 1)× S1 is shrinking). Consider

the restriction
(
(0, 1)×S1

)tn−1 → (0, 1)×S1 and its projection f : (0, 1)tn−1 → (0, 1) obtained
by forgetting the S1-factor, which is a rectilinear embedding. If we denote by Dn

1 the unique
object in the fiber

(
E⊗1
)
〈n〉 over 〈n〉 ∈ Γ, we can regard f as a map Dn−1

1 → D1 := D1
1 in E⊗1 . Let

Map(E⊗1 )/D1
(f, g) be the discrete mapping space from f : Dn−1

1 → D1 to g : Dm−1
1 → D1. Given

a morphism H → H ′, by applying the same procedure to the induced morphism Cn−1 → Cm−1,
we obtain a map MapK(H,H ′) → Map(E⊗1 )/D1

(f, g). Note that Map
Cyl

act
/CM

(CM , CM ) is con-

tractible. Consequently, the restriction to the component CM gives rise to

MapK(H,H ′)→ MapTriv(?, ?)×MapCyl(CM ,CM ) Map
Cyl

act
/CM

(CM , CM ) ' ∗ ×S1 ∗ = Z.
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Taking account of definitions of ∞-operads Cyl � Triv⊗ and Cyl, we see that

MapK(H,H ′)→ Map(E⊗1 )/D1
(f, g)× Z

is an equivalence in S. Let L be the full subcategory of K spanned by the single object

Z =
(
〈2〉, S ' 〈1〉, T ' 〈1〉, C, ?, (C,CM )

j→ CM
)

(a morphism j is uniquely determined up to homotopy). We now claim that L ⊂ K is cofinal.
It will suffice to prove that for each V ∈ K, the ∞-category L ×K KV/ is weakly contractible,

see [25, Definition 4.1.3.1]. Let V =
(
〈n〉, S, T, Cn−1, ?,

(
Cn−1, CM

) f→ CM
)
. By the above

discussion about mapping spaces, a morphism u : V → Z is uniquely determined by a ∈ Z
since Map(E⊗1 )/D1

(f, j) is contractible. Let u′ : V → Z be another object of L ×K KV/ that

is determined by a′ ∈ Z. Note that MapK(Z,Z) ' Z and the composition MapK(Z,Z) ×
MapK(V,Z) ' Z× Z→ MapK(V,Z) ' Z can be identified with the additive operation +: Z×
Z → Z (up to automorphisms of Z). It follows that MapL×KKV/

(u, u′) is a contractible space

so that the ∞-category L×K KV/ is contractible. Let p′ : K. →M⊗ be the operadic q-colimit
diagram. Let p′′ : K. →M be the diagram obtained by a q-coCartesian natural transformation
from p′. Since we assume that ⊗ : M×M → M preserves small colimits separately in each
variable, then by [25, Propositions 3.1.1.15 and 3.1.1.16], p′′ is a colimit diagram of p′′|K :
K →M, and the image of the cone point under p′′ is naturally equivalent to the image of the cone
point under p′. Since L ⊂ K is cofinal, we have a canonical equivalence colim p′′|K ' colim p′′|L.

Indeed, colim p′′|K is equivalent to B ⊗M ⊗ S1 (this computation is not necessary to the
proof so that the reader may skip this paragraph, but it may be helpful to get feeling for the
operadic left Kan extension F ′). By construction, the composite L ↪→ K

p→M⊗ is equivalent
to a contant diagram so that p′′|L : L → M is a contant diagram taking the value B ⊗ M .
Note that MapK(Z,Z) = Z and there is a categorical equivalence L ' BZ ' S1. We deduce
that colim p′′|L ' (B ⊗ M) ⊗ S1. Namely, the evaluation F ′(A,B,M)(CM ) of F ′(A,B,M)
at CM is colim p′′|K ' colim p′′|L ' (B ⊗ M) ⊗ S1. Another way to compute it is as fol-
lows. By Corollary 4.18, we have AlgCyl(M) ' AlgAs

(
Fun

(
BS1,M

))
and AlgCyl(M) '

LMod
(

Fun
(
BS1,M

))
. These equivalences commute with forgetful functors arising from the

inclusions As → LM and Cyl → Cyl. The adjunction (k!, k
∗) can be identified with the

composite of adjunctions

AlgAs

(
Fun

(
BS1,M

))
×M� AlgAs

(
Fun

(
BS1,M

))
× Fun

(
BS1,M

)
� LMod

(
Fun

(
BS1,M

))
,

where the left adjunction is induced by the adjunctionM� Fun
(
BS1,M

)
which consists of the

forgetful functor Fun
(
BS1,M

)
→M and the left adjoint free functor which sends M to S1⊗M .

The right adjoint in the right adjunction is given by the evaluation of the module objects
LMod

(
Fun

(
BS1,M

))
→Fun

(
BS1,M

)
and LMod

(
Fun

(
BS1,M

))
→AlgAs

(
Fun

(
BS1,M

))
induced by As ↪→ LM. The left adjoint functors carry (B,M) to(

B,B ⊗ S1 ⊗M
)
∈ LMod

(
Fun

(
BS1,M

))
.

Next we will consider F (A,B,M). Let r : DCyl�Triv⊗ → DCyl be a morphism of ∞-ope-
rads induced by DCyl ↪→ DCyl and Triv⊗ → DCyl determined by CM ∈ DCyl〈1〉 correpond-
ings to the color CM (we slightly abuse notation again). By [25, Corollary 3.1.3.5], we have
an adjunction r! : AlgDCyl(M) ×M � AlgDCyl(M) : r∗. This shows that there exists a left
adjoint F = r! of G. Consider

e : P := DCyl � Triv⊗ ×DCyl DCyl
act
/CM

pr1−→ DCyl � Triv⊗
(A,B,M)−→ M⊗,
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where the right arrow classifies the algebra object (A,B,M) ∈ AlgDCyl(M)×M. The evaluation
of r!(A,B,M) at CM is a colimit of e, that is, the image of the cone point under an operadic
q-colimit diagram e′ : P . →M⊗ that extends e. The computation of the colimit of e is similar
to that of p. We infomally denote by (〈n〉, S, T,Dd, Cc, ?) an object of DCyl � Triv⊗, where
? ∈ Triv, and (Dd, Cc) indicates the sequence of colors which consists of d D’s and c C’s which
we regard as an object in DCyl〈n−1〉 (d+ c = n− 1). By abuse of notation, we write

R =
(
〈n〉, S, T,Dd, Cc, ?, (Dd, Cc, CM )

f→ CM
)

for an object of P , where f :
(
Dd, Cc, CM

)
→ CM is a morphism in DCyl

act
that lies over the

active morphism 〈n〉 → 〈1〉. We compute the mapping space from R to another object

R′ =
(
〈m〉, S′, T ′, Dd′ , Cc

′
, ?, (Dd′ , Cc

′
, CM )

g→ CM
)
.

Given a morphism φ : R → R′ we have the induced morphism
(
Dd, Cc, CM

)
→
(
Dd′ , Cc

′
, CM

)
in DCyl

act
/CM

. Notice that it is given by the union of
(
Dd, Cc

)
→
(
Dd′ , Cc

′)
and CM →

CM over CM . Moreover, we can think of
(
Dd, Cc

)
→
(
Dd′ , Cc

′)
as a rectilinear embedding(

(0, 1)2
)td t ((0, 1) × S1

)tc → (
(0, 1)2

)td′ t ((0, 1) × S1
)tc′

over (0, 1) × S1. In this way, we
obtain the induced morphism

MapP (R,R′)→ MapDCylact
/C

((
Dd, Cc

)
,
(
Dd′ , Cc

′))
.

As in the case of K, the restriction to CM gives rise to a morphism

MapP (R,R′)→ MapTriv(?, ?)×MapDCyl(CM ,CM ) Map
DCyl

act
/CM

(CM , CM ) ' ∗ ×S1 ∗ = Z.

It gives rise to an equivalence in S:

MapP (R,R′)→ MapDCylact
/C

((
Dd, Cc

)
,
(
Dd′ , Cc

′))× Z.

Let Q ⊂ P be the full subcategory spanned by Z which we think of as an object of P in the
obvious way. As in the case of K, using the above description of MapP (R,R′) we see that for
any V ∈ P , Q ×P PV/ is weakly contractible so that Q ⊂ P is cofinal. Let e′ : P . → M⊗ be
an operadic q-colimit diagram that extends e. Let e′′ : P . →M =M〈1〉 be the diagram obtained
by a q-coCartesian natural transformation from e′. Then the image of the cone point under e′

is colim e′′|P ' colim e′′|Q. (We can also deduce that r!(A,B,M)(CM ) = F (A,B,M)(CM ) is
B ⊗M ⊗ S1 ∈M in the same way as described above.)

The projection of G′F ′(A,B,M) → GF (A,B,M) to M is the canonical map colim p′′|K →
colim e′′|P . We note that the canonical functor K → P induces an equivalence L

∼→ Q. Conse-
quently, colim p′′|K → colim e′′|P can be identified with the equivalence colim p′′|L

∼→ colim e′′|Q.
Next we consider the projection of G′F ′(A,B,M)→ GF (A,B,M) to AlgDCyl(M). Taking into

account the equivalences DCyl � Triv⊗ ×DCyl DCyl
act
/D ' DCyl×DCyl DCyl

act
/D and DCyl �

Triv⊗×DCylDCyl
act
/C ' DCyl×DCylDCyl

act
/C and the presentation of F in terms of operadic col-

imits, we see that the evaluations of unit maps A→ GF (A,B,M)(D) and B → GF (A,B,M)(C)
are equivalence so that the evaluations A ' G′F ′(A,B,M)(D) → GF (A,B,M)(D) and B '
G′F ′(A,B,M)(C)→ GF (A,B,M)(C) of G′F ′(A,B,M)→ GF (A,B,M) are also equivalences.
Consequently, G′F ′(A,B,M)→ GF (A,B,M) is an equivalence since evaluations at D, C, and
the projection to M are equivalences. This proves (v). We also have proved the existence of F
and F ′, that is, (i). The final assertion is clear. �
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Proof of Proposition 4.20. The inclusion j : KS→ DCyl induces an adjunction

j! : AlgKS(M) � AlgDCyl(M) : j∗.

Since j! is fully faithful, it is enough to prove that the essential image of j! is AlgD
DCyl

(M). Let

X = (A,B,M) : DCyl→M⊗ be an object of AlgDCyl(M) whose evaluations at D, C and CM
are A, B and M , respectively. Note that the forgetful functor AlgDCyl(M) → M×M×M
induced by evaluations at D, C, and CM is conservative. Thus if we write q : M⊗ → Γ for the
structure map, X belongs to AlgD

DCyl
(M) if and only if

p′ : K. :=
(
E⊗2 ×DCyl DCylact

/C

). → DCyl→M⊗

is an operadic q-colimit diagram that extends p = p′|K , see [25, Definition 3.1.2.1]. Let Y : KS→
M⊗ be an object of AlgKS(M). Let us consider the image of C under j!(Y ) : DCyl → M⊗.
It is an operadic q-colimit of

e : L := KS×DCyl DCyl
act
/C → KS→M⊗.

In view of [25, Propositions 3.1.1.15 and 3.1.1.16], to prove the image of j! is contained in
AlgD

DCyl
(M), it is enough to observe that the natural functor E⊗2 ×DCyl DCylact

/C → KS×DCyl

DCyl
act
/C is a categorical equivalence. It follows from the fact that if a sequence E = (D, . . . ,D,

C, . . . , C, CM , . . . CM ) (regarded as an object of DCyl) contains CM , then there is no mor-

phism from E to C in DCyl
act

. Consequently, we have a new adjunction j! : AlgKS(M) �
AlgD

DCyl
(M) : j∗. By the comparison of operadic q-colimit diagrams from K. and L., the

counit map of this adjunction is an equivalence. Therefore, we obtain a categorical equivalence
AlgKS(M) ' AlgD

DCyl
(M) induced by j! (or j∗). �

5 Hochschild cohomology

In this section, we recall Hochschild cohomology spectra of stable∞-categories C. The definition
is based on the principle that, under a suitable condition on C, Hochschild cohomology of C is
the endomorphism algebra of the identity functor C → C. Moreover, since Fun(C, C) has the
monoidal structure given by the composition, Hochschild cohomology is the endomorphism
algebra of the unit object of Fun(C, C) so that it comes equipped with the structure of an
E2-algebra, cf. [4, 22] (see also references cited in loc. cit. for Deligne conjecture concerning
Hochschild cochains). We establish some notation. Let R be a commutative ring spectrum. Let
Mod⊗R be the symmetric monoidal ∞-category of R-module spectra whose underlying category
we denote by ModR. Let AlgAs(ModR) be the ∞-category of the associative algebra objects
in ModR. Let PrL be the ∞-category of presentable ∞-categories whose morphisms are those
functors that preserve small colimits. This category PrL admits a symmetric monoidal structure,
see [25, Notation 4.8.1.7 and Proposition 4.8.1.15]. The ∞-category of small spaces S is a unit
object in PrL. For D,D′ ∈ PrL, the tensor product D ⊗ D′ comes equipped with a functor
D × D′ → D ⊗ D′ which preserves small colimits separately in each variable and satisfies the
following universal property: for any F ∈ PrL, the composition induces a fully faithful functor

FunL(D ⊗D′,F)→ Fun(D ×D′,F)

whose essential image is spanned by those functors D × D′ → F which preserves small colim-
its separately in each variable, where FunL(−,−) indicates the full subcategory of Fun(−,−)
spanned by those functors which preserves small colimits. The underlying associative monoidal
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∞-category Mod⊗R can be regarded as an associative algebra object in PrL since ModR is
presentable and the tensor product functor ModR×ModR → ModR preserves small colimits
separately in each variable. We denote by LModMod⊗R

(
PrL

)
the ∞-category of left Mod⊗R-

module objects in PrL. Given A ∈ AlgAs(ModR), we write RModA := RModA(ModR) for the
∞-category of right module objects of A in ModR. We remark that the forgetful lax symmetric
monoidal functor ModR → Sp induces ModA(ModR) → ModA(Sp), where we use the same
notation A to indicate the image in AlgAs(Sp). The functor ModA(ModR) → ModA(Sp) is
an equivalence of∞-categories (for example, apply Lurie–Barr–Beck theorem to this functor en-
dowed with projections to Sp) so that the notation RModA is consistent with that of [25]. The
category RModA has a natural left module structure ModR×RModA → RModA informally
given by (M,N) 7→ M ⊗R N . In what follows, when we treat the tensor product of objects
in ModR (over R), we write ⊗ for ⊗R. The assignment A 7→ RModA gives rise to a functor

AlgAs(ModR)→ LModMod⊗R

(
PrL

)
that sends A to RModA and carries a morphism f : A→ B to the base change functor RModA →
RModB; N 7→ N ⊗A B, that is, a left adjoint of the forgetful functor RModB → RModA, see
[25, Section 4.8.3, Notation 4.8.5.10 and Theorem 4.8.5.11]. We have the induced functor

I : AlgAs(ModR) ' AlgAs(ModR)R/ → LModMod⊗R

(
PrL

)
ModR /

,

which sends A to the base change functor ModR = RModR → RModA. The functor I is fully
faithful and admits a right adjoint E. A morphism f : ModR → D in LModMod⊗R

(
PrL

)
is

determined by the image f(R) of R ∈ ModR in an essentially unique way (up to a contractible
space of choices). Therefore, an object of LModMod⊗R

(
PrL

)
ModR /

is regarded as a pair (D, D)

such that D belongs to LModMod⊗R

(
PrL

)
and D is an object of D. The essential image of I can

naturally be identified with AlgAs(ModR). Namely, it consists of pairs of the form (RModA, A):
I carries A to (RModA, A). Put another way, the essential image is spanned by pairs (D, D) such
that D is a compactly generated stable∞-category equipped with a single compact generator D.
The right adjoint E sends (D, D) to an endormorphism algebra object End(D) ∈ AlgAs(ModR)
[25, Theorem 4.8.5.11]. Since the left adjoint I is fully faithful, the unit map id → E ◦ I is
a natural equivalence. Namely, the adjunction (I, E) is a colocalization. If we denote A ⊂
LModMod⊗R

(
PrL

)
ModR /

by the essential image of I, then E induces a categorical equivalence

A ∼→ AlgAs(ModR).
The functor I is extended to a symmetric monoidal functor. To explain this, note that

AlgAs(ModR) comes equipped with a symmetric monoidal structure induced by that of Mod⊗R,
see [25, Section 3.2.4] or Construction 7.9. Since Mod⊗R is a symmetric monoidal ∞-category
such that ModR has small colimits and the tensor product functor ModR×ModR → ModR pre-
serves small colimits separately in each variable, we define Mod⊗

Mod⊗R

(
PrL

)
to be the symmetric

monoidal ∞-category of Mod⊗R-module objects in PrL, cf. [25, Section 3.3.3]. If we denote the
underlying ∞-category by ModMod⊗R

(
PrL

)
, then ModMod⊗R

(
PrL

)
' LModMod⊗R

(
PrL

)
. Hence

LModMod⊗R

(
PrL

)
ModR /

' ModMod⊗R

(
PrL

)
ModR /

' AlgE⊗0
(ModMod⊗R

(
PrL

)
) inherits a symmet-

ric monoidal structure. In summary, we have the adjunction

I : AlgAs(ModR) � LModMod⊗R

(
PrL

)
ModR /

:E

whose left adjoint is symmetric monoidal and fully faithful, and whose right adjoint is lax
symmetric monoidal. It gives rise to an adjunction

I : AlgAs(AlgAs(ModR)) � AlgAs

(
ModMod⊗R

(
PrL

)
ModR /

)
' AlgAs

(
ModMod⊗R

(
PrL

))
:E,
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where we abuse notation by writing (I, E) for the induced adjunction. By virtue of the cano-
nical equivalence E⊗1 ' As⊗ and the ∞-operad version of Dunn additivity theorem [25, Theo-
rem 5.1.2.2], we have a canonical equivalence

AlgE2
(ModR) ' AlgAs(AlgAs(ModR))

(we can also use additivity theorem to the equivalence on the right-hand side).
We refer to an object of PrL

R := ModMod⊗R

(
PrL

)
as an R-linear presentable∞-category. Note

that the underlying ∞-category of an R-linear presentable ∞-cartegory is stable.

Lemma 5.1. Let D be an R-linear presentable ∞-category. Let ⊗R : PrL
R×PrL

R → PrL
R be

the tensor product functor. There exists a morphism object from D to itself (i.e., an internal
hom object) MorR(D,D) ∈ PrL

R equipped with e : MorR(D,D) ⊗R D → D for D. Moreover,
(MorR(D,D), e) is promoted to an object of E ∈ AlgAs

(
PrL

R

)
together with a left module action

E ⊗R D → D.

Proof. According to [25, Corollaries 4.7.1.40 and 4.7.1.41], the second assertion follows from
the first assertion. We will show the existence of a morphism object MorR(D,D). Recall
that a morphism object for D and D′ is an R-linear presentable ∞-category C together with
a morphism C ⊗R D → D′ such that the composition induces an equivalence

MapPrL
R

(F , C) ' MapPrL
R

(F ⊗R D,D′)

for each F ∈ PrL
R, which informally carries F → C to F ⊗R D → C ⊗R D → D. We first

consider the case where R is the sphere spectrum S. Let FunL(D,D′) be the full subcategory
of Fun(D,D′) that consists of colimit-preserving functors. Then FunL(D,D′) together with the
evaluation functor FunL(D,D′)×D → D′ exhibits FunL(D,D′) as an internal hom object. Thus
we have a morphism object FunL(D,D′). Next, we consider the general case. Let F : PrL �
ModMod⊗R

(
PrL

)
:U be an adjunction which consists of the forgetful functor U and the free

functor F given informally by C 7→ C⊗ModR. Here ⊗ indicates the tensor product in PrL. If we
suppose that D is a free object, i.e. D = F (C) = C ⊗ModR, then there is a morphism object for
D and D′. Indeed, we observe that MorR(D,D′) = FunL(C,D′) together with

FunL(C,D′)⊗R (C ⊗ModR) ' FunL(C,D′)⊗ C → D′

constitutes a morphism object for D and D′. To prove that

θ : MapPrL
R

(
P,FunL

(
C,D′

))
→ MapPrL

R
(P ⊗R (C ⊗ModR),D′)

is an equivalence, we may and will assume that P is a free object since the tensor operation
functor ⊗R preserves small colimits separately in each variable (see the proof of [25, Propo-
sition 5.1.2.9]), and P is a (small) colimit of the diagram of free objects: for example, using
the adjunction (F,U) we have a simplicial diagram of free objects whose colimit is P. When
P = C′ ⊗ModR, by the adjunction we see that θ is an equivalence. We put D = colimi∈I Di,
where each Di is a free object. Then for any P ∈ PrL

R there exist natural equivalences

MapPrL
R

(P ⊗R (colimi∈I Di),D′) ' MapPrL
R

(colimi∈I(P ⊗R Di),D′)

' lim
i∈I

MapPrL
R

(P ⊗R Di,D′)

' lim
i∈I

MapPrL
R

(P,MorR(Di,D′))

' MapPrL
R

(P, lim
i∈I
MorR(Di,D′)).

Hence there exists a morphism object MorR(D,D′), that is, limi∈IMorR(Di,D′). �
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Remark 5.2. LetMorR(D,D′)' be the largest Kan subcomplex of the underlying∞-category
of MorR(D,D′), which we regarded as an object in S. By the above proof, MorR(D,D′)'
is equivalent to the mapping space MapPrL

R
(D,D′).

We shall write EndR(D) for E ∈ AlgAs

(
PrL

R

)
.

Definition 5.3. Let D be an R-linear presentable ∞-category. Applying E : AlgAs

(
PrL

R

)
→

AlgE2
(ModR), we define the Hochschild cohomology R-module spectrum of D to be

HH•R(D) := E(EndR(D))

in AlgE2
(ModR). We often abuse notation by identifying HH•R(D) with its image in ModR.

If no confusion can arise, we write HH•(D) for HH•R(D).

Let St be the ∞-category of small stable idempotent-complete ∞-categories whose mor-
phisms are exact functors. Let C be a small stable idempotent-complete ∞-category and let
Ind(C) denote the ∞-category of Ind-objects. Then Ind(C) is a compactly generated stable
∞-category. The inclusion C → Ind(C) identifies the essential image with the full subcategory
Ind(C)ω spanned by compact obejcts in Ind(C). Given C, C′ ∈ St, if we write Funex(C, C′) for
the full subcategory spanned by exact functors, the left Kan extension [27, Proposition 5.3.5.10]
gives rise to a fully faithful functor Funex(C, C′) → FunL(Ind(C), Ind(C′)) whose essential im-
age consists of those functors that carry C to C′. We set PrL

St = ModSp⊗
(
PrL

)
, which can

be regarded as the full subcategory of PrL that consists of stable presentable ∞-categories.
The assignment C 7→ Ind(C) identifies St with the subcategory of PrL

St whose objects are com-
pactly generated stable ∞-categories, and whose morphisms are those functors that preserve
compact objects. The ∞-category St inherits a symmetric monoidal structure from the struc-
ture on PrL

St. The stable ∞-category of compact spectra is a unit object in St. Given two
objects C and C′ of St, the tensor product C ⊗ C′ is naturally equivalent to the full subcategory
(Ind(C) ⊗ Ind(C′))ω ⊂ Ind(C) ⊗ Ind(C′) spanned by compact objects. If we let CgtL

St denote
the full subcategory of PrL

St spanned by compactly generated stable ∞-categories, then we have
a sequence

St→ CgtL
St ⊂ PrL

St,

where CgtL
St ⊂ PrL

St is closed under the tensor product so that CgtL
St inherits a symmetric

monoidal structure from the structure on PrL
St, and the left arrow is a symmetric monoidal

faithful functor given by C 7→ Ind(C). In CgtL
St, every object is dualizable. For more details,

we refer the readers to [6, Section 3], [25, Section 4.8].

Consider RModA for A ∈ AlgAs(ModR). We let RPerfA be the full subcategory of RModA
spanned by compact objects. This subcategory is the smallest stable subcategory which contains
A (regarded as a right module) and is closed under retracts. When A belongs to CAlg(ModR),
we write PerfA for RPerfA. In this case, PerfA is closed under taking tensor product so that it
inherits a symmetric monoidal structure from that of Mod⊗A. We usually regard the symmetric
monoidal ∞-category Perf⊗R as an object of CAlg(St), and we write StR for ModPerf⊗R

(St).

We refer to an object of StR as a small R-linear stable∞-category. Since Mod⊗R ' Ind(PerfR)⊗,
there is a natural symmetric monoidal functor StR → PrL

R = ModMod⊗R

(
PrL

)
which carries C

to Ind(C).

Definition 5.4. Given C ∈ StR, we define the Hochschild cohomology R-module spectrum
HH•R(C) to be HH•R(Ind(C)). If no confusion can arise, we write HH•(C) for HH•R(C).
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6 Hochschild homology

Let R be a commutative ring spectrum. Suppose that we are given a small R-linear stable
∞-category C. In this section, we assign to C ∈ StR the Hochschild homology R-module spec-
trum HH•(C) ∈ ModR. For the main purpose of this paper, we require the following additional
structures:

� the R-module spectrum HH•(C) has an action of the circle S1. Namely, HH•(C) is pro-
moted to an object of Fun

(
BS1,ModR

)
, and the assignment C 7→ HH•(C) gives rise to

a functor StR → Fun
(
BS1,ModR

)
,

� if Fun
(
BS1,ModR

)
is equipped with a pointwise symmetric monoidal strcuture induced

by that of ModR, then the above functor StR → Fun
(
BS1,ModR

)
is promoted to a sym-

metric monoidal functor from StR to Fun
(
BS1,ModR

)
.

To this end, we will use enriched models of stable idempotent-complete ∞-categories, i.e., spec-
tral categories.

Symmetric spectra. We give a minimal review of the theory of symmetric spectra, introduced
and developed in [17]. This theory provides a nice foundation of the homotopy theory of highly
structured ring spectra as well as a theoretical basis for spectral categories. We let SpΣ be
the closed symmetric monoidal category of symmetric spectra. We write S for the unit object
which we call the sphere spectrum. We use the notation slightly different from [17, 32]: S is S
in [17]. We use a symmetric monoidal proper combinatorial model category structure on SpΣ

satisfying the monoid axiom in the sense of [30, Definition 3.3], in which a weak equivalence is
a stable equivalence. There are several versions of such model structures. We here focus on two
model structures. One is described in [17, Theorems 3.4.4 and 5.4.2, Corollaries 5.3.8 and 5.5.2]
which is called the stable model structure. In [32], it is proved that there is another model
structure called the stable S-model structure. The difference (relevant to us) between stable
model structure and stable S-model structure is that cofibrations in the stable model structure
[17, Theorem 3.4.4] are contained in the class of cofibrations in the stable S-model structure
while both have the same class of weak equivalences. Let CAlg

(
SpΣ

)
denote the category

of commutative algebra objects in SpΣ. We refer to an object of CAlg
(

SpΣ
)

as a commutative

symmetric ring spectrum. The category CAlg
(

SpΣ
)

admits a model category structure: we

use the model structure on CAlg
(

SpΣ
)
, defined in [32, Theorem 3.2] in which a morphism is

a weak equivalence if the underlying morphism in SpΣ is a stable equivalence. The stable S-model
structure on SpΣ has the following pleasant property: if R is a cofibrant object in CAlg

(
SpΣ

)
,

then the underlying object R in SpΣ is cofibrant with respect to the stable S-model structure,
see [32, Section 4].

Let R be a commutative symmetric ring spectrum, which we think of as a model of R ∈
CAlg(Sp). Unless otherwise stated, we assume that R is cofibrant in CAlg

(
SpΣ

)
. We let

SpΣ(R) denote the category of R-module objects in SpΣ, which is endowed with the natural
symmetric monoidal structure induced by the structure on SpΣ. In virtue of [32, Theorem 2.6]
(or [30, Theorem 4.1]), there is a combinatorial symmetric monoidal projective model structure
on SpΣ(R) satisfying the monoid axiom, in which a morphism is a weak equivalence (resp. a
fibration) if the underlying morphism in SpΣ is a stable equivalence (resp. a fibration with
respect to stable S-model structure). We refer to this model structure as the stable R-model
structure.

Definition 6.1. Let R be a commutative symmetric ring spectrum. An R-spectrum category
is a category enriched over SpΣ(R). More explicitly, a (small) R-spectrum category A consists
of the data:
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� A (small) set of objects,

� An R-module symmetric spectrum A(X,Y ) ∈ SpΣ(R) for each ordered pair of objetcs
(X,Y ),

� The composition law A(Y,Z)∧RA(X,Y )→ A(X,Z) satisfying the standard associativity
axiom,

� S→ A(X,X) for each object X that satisfies the standard unit axiom.

Here ∧R denotes the wedge product over R, which defines the tensor product in SpΣ(R). A fun-
ctor of R-spectral categories is an enriched functor, that is, a functor as enriched categories.
We refer to them as R-spectral functors. We write CatR for the category of R-spectral categories
whose morphisms are R-spectral functors. We refer to an S-spectral category (resp. an S-spectral
functor) as a spectral category (resp. a spectral functor). We write ∧ for ∧S.

Thanks to works [6, Corollary 2.4], [28, Theorem 1.1], [33, Theorem 7.25], CatR admits
a combinatorial model structure whose weak equivalences are Dwyer–Kan equivalences (DK-
equivalences for short). See, e.g., [6, Definition 2.1] for DK-equivalences.

Let us recall the notion of Morita equivalences in the context of spectral categories, see
[6, Sections 2 and 4] for an excellent account. Let A be a small spectral category and let
FunS

(
Aop, SpΣ

)
be the spectral category of spectral functors. There is a combinatorial spectral

model structure where the class of weak equivalences (resp. fibrations) are objectwise stable
equivalences (resp. objectwise fibrations with respect to the stable S-model structure) [29, Ap-
pendix]. The enriched Yoneda embedding A → FunS

(
Aop,SpΣ

)
is contained in the full subcate-

gory of cofibrant objects. If we replace A by a fibrant object in CatS, the embedding lands in the

full subcategory FunS
(
Aop,SpΣ

)cf
that consists of cofibrant and fibrant objects. Let F : A → B

be a spectral functor of spectral categories. Then we have a Quillen adjunction

F! : FunS
(
Aop,SpΣ

)
� FunS

(
Bop,SpΣ

)
:F ∗,

where F ∗ is determined by the composition with Aop → Bop, see [29, Appendix]. Let D(A) be

the homotopy category of DΣ(A) := FunS
(
Aop,SpΣ

)cf
. It constitutes a triangulated category.

Let Dpe(A) be the smallest thick subcategory of D(A) that contains the image of A under the
Yoneda embedding. The subscript “pe” stands for “perfect”. We write DΣ

pe(A) for the full

subcategory of FunS
(
Aop,SpΣ

)cf
spanned by those objects that belong to Dpe(A). If F : A → B

is a spectral functor, we have the induced (left-derived) functor LF! : D(A) → D(B). Since
LF! is an exact functor of triangulated categories, it follows that the restrcition of LF! induces
LF! : Dpe(A)→ Dpe(B).

Definition 6.2. We say that a spectral functor F : A → B is a Morita equivalence if the induced
functor LF! : Dpe(A)→ Dpe(B) is an equivalence of categories. When F : A → B is an R-spectral
functor, F is said to be a Morita equivalence if F is a Morita equivalence as a spectral functor.

Let R be a commutative symmetric ring spectrum. Let us recall the tensor product of R-
spectral categories. Suppose that we are given A,B ∈ CatR. The tensor product A ∧R B is
defined by the following data:

� The set of objects of A ∧R B is the set of pairs (A,B), where A is an object of A, and B
is an object of B,

� A ∧R B((a, b), (a′, b′)) = A(a, a′) ∧R B(b, b′) for (a, b), (a′, b′) ∈ A ∧R B.

This tensor product determines a symmetric monoidal structure on CatR. A unit object is
defined as follows: Let BR be the spectral category which has a single object ∗ together with
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the morphism ring spectrum BR(∗, ∗) = R. The composition R ∧ R → R and the unit S → R
are determined by the algebra structure on R in an obvious way. Clearly, BR is a unit object
in CatR. Since R is commutative, we can also think of BR as a symmetric monoidal spectral
category. Namely, it is a commutative algebra object in the symmetric monoidal category CatS.
Note that an R-spectral category A is regarded as a BR-module in SpΣ. Namely, there is
a canonical equivalence of categories CatR

∼→ ModBR(CatS), where the target is the category
of BR-module objects in CatS.

For technical reasons, we use the notion of pointwise-cofibrant spectral categories, cf. [7, Sec-
tion 4]. We say that an R-spectral category A is pointwise-cofibrant if each morphism spectrum
A(X,Y ) is cofibrant in SpΣ(R) with respect to the stable R-model structure. Using the same
argument as that in the proof in [7, Proposition 4.1], we have:

Proposition 6.3 ([7]).

(i) Every R-spectral category is functorially Morita equivalent to a pointwise-cofibrant R-spec-
tral category with the same objects.

(ii) The subcategory of pointwise-cofibrant R-spectral category is closed under the tensor pro-
duct.

(iii) If A is a pointwise-cofibrant R-spectral category, the tensor operation A ∧R (−) preserves
Morita equivalences and colimits.

(iv) If A and B are both pointwise-cofibrant R-spectral categories, then the A ∧R B computes
the derived tensor product.

We denote by Catpc
S the category of small pointwise-cofibrant spectral categories. By Propo-

sition 6.3, Catpc
S admits a symmetric monoidal structure given by tensor products, and the

tensor products preserves Morita equivalences in each variable. Similarly, we denote by Catpc
R

the category of small pointwise-cofibrant R-spectral categories.

Inverting morphisms. We recall the notion of ∞-categories obtained from an ∞-category
endowed with a set of morphisms. We refer the readers to [25, Sections 1.3.4 and 4.1.3] for
more details. Let C be an ∞-category. Suppose that we are given a set S of edges (morphisms)
(we assume all equivalences are contained in S). Then there exists an ∞-category C

[
S−1

]
together with ξ : C → C

[
S−1

]
such that for any ∞-category D the composition induces a fully

faithful functor

Map
(
C
[
S−1

]
,D
)
→ Map(C,D)

whose essential image consists of those functors F : C → D which carry edges in S to equiv-
alences in D. We shall refer to C

[
S−1

]
as the ∞-category obtained from C by inverting S.

We note that C
[
S−1

]
is generally not locally small even when C is so. When C is an ordi-

nary category, an explicit construction of C
[
S−1

]
is given by the hammock localization [13].

Let C⊗ be a symmetric monoidal ∞-category. Let S be a set of edges in C such that all equiv-
alences are contained in S. Assume that for any object C ∈ C and any morphism C1 → C2

in S, the induced morphisms C ⊗ C1 → C ⊗ C2 and C1 ⊗ C → C2 ⊗ C belong to S. Then
there exists a symmetric monoidal ∞-category C

[
S−1

]⊗
together with a symmetric monoidal

functor ξ̃ : C⊗ → C
[
S−1

]⊗
whose underlying functor is equivalent to ξ. There is a universal

property: for any symmetric monoidal ∞-category D⊗ the composition induces a fully faithful
functor Map⊗

(
C
[
S−1

]⊗
,D⊗

)
→ Map⊗

(
C⊗,D⊗

)
whose essential image consists of those func-

tors F : C⊗ → D⊗ which carry morphisms in S to equivalences in D. Here Map⊗(−,−) indicates
the space of symmetric monoidal functors.
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Example 6.4. Let SpΣ(R)c be the full subcategory that consists of cofibrant objects. The
tensor product ∧R given by the wedge product over R preserves cofibrant objects. In addi-
tion, if C ∈ SpΣ(R)c and f : C1 → C2 is a weak equivalence (i.e., stable equivalence), then
C ∧R f is a weak equivalence. Consequently, we have the symmetric monoidal ∞-category
SpΣ(R)c

[
W−1

]⊗
obtained by inverting weak equivalence. In the case of R = S, by the character-

ization of Sp⊗ [25, Corollary 4.8.2.19], there is a canonical (unique) symmetric monoidal equiv-

alence SpΣ(S)c
[
W−1

]⊗ ' Sp⊗. In addition, if we denote R by the image of R in CAlg(Sp), then

by [25, Theorem 4.3.3.17] there is a canonical symmetric monoidal equivalence SpΣ(R)c
[
W−1

]⊗
∼→ Mod⊗R(SpΣ(S)c[W−1]⊗) ' Mod⊗R(Sp⊗) = Mod⊗R. Let AlgAs

(
SpΣ(R)c

)
be the category of as-

sociative algebra objects in SpΣ(R)c, which is endowed with the symmetric monoidal structure

induced by that of SpΣ(R)c. Then if AlgAs

(
SpΣ(R)c

)[
W−1

]⊗
denotes the associated symmet-

ric monoidal ∞-category obtained by inverting weak equivalences, then we have equivalences
of symmetric monoidal ∞-categories

AlgAs

(
SpΣ(R)c

)[
W−1

]⊗ ' Alg⊗As

((
SpΣ(R)c

)[
W−1

])
' Alg⊗As(ModR),

where the left equivalence follows from the rectification result [25, Theorem 4.1.8.4]. In par-
ticular, given an associative algebra A ∈ AlgAs(ModR), there is an associative algebra A ∈
AlgAs

(
SpΣ(R)c

)
together with an equivalence σ : A ' A in AlgAs(ModR). In this case, we say

that A (together with σ) represents A.

Example 6.5. We use the symbol M to indicate the class of Morita equivalences in Catpc
S

or Catpc
R . By Proposition 6.3, we can invert the class of Morita equivalences M to obtain

symmetric monoidal ∞-categories Catpc
S
[
M−1

]⊗
and Catpc

R
[
M−1

]⊗
. Thanks to multiplica-

tive Morita theory [7, Theorem 4.6], there is a canonical equivalence of symmetric monoidal
∞-categories

St⊗ ' Catpc
S
[
M−1

]⊗
.

Construction 6.6. There is a sequence of symmetric monoidal ∞-categories

Catpc
R → Catpc

S → Catpc
S
[
M−1

]
such that Catpc

R and Catpc
S are ordinary symmetric monoidal categories, the left arrow is the for-

getful lax symmetric monoidal functor, and the right arrow is the canonical symmetric monoidal
functor. Consequently, if we write R for the image of R in CAlg(Sp), it gives rise to a lax
symmetric monoidal functor

π : Catpc
R → ModBR

(
Catpc

S
[
M−1

])
' ModPerfR(St).

To obtain Catpc
R → Catpc

S , we need to check that the essential image of Catpc
R → CatS is con-

tained in Catpc
S . It is enough to show that the forgetful functor SpΣ(R)→ SpΣ(S) = SpΣ carries

cofibrant objects to cofibrant objects in SpΣ. For this purpose, we recall that cofibrations in SpΣ

with respect to the stable S-model structure is the smallest weakly saturated class [27, Defini-
tion A.1.2.2] of morphisms that contains {S⊗i}i∈Mon, where Mon is the class of monomorphisms
of symmetric sequences, and S⊗ i denotes the morphism of symmetric spectrum induced by i,
namely, S⊗ (−) is the left adjoint of the forgetful functor from SpΣ to the category of symmetric
sequences, see [32]. The class of cofibrations in SpΣ(R) with respect to the stable R-model struc-
ture is the smallest weakly saturated class of morphisms containing {R⊗ i = R∧ (S⊗ i)}i∈Mon.
Note that we assume that R is a cofibrant object in CAlg

(
SpΣ

)
so that the underlying object R

is cofibrant in SpΣ. It follows that the underlying morphisms R⊗i in SpΣ are cofibrations. Since
SpΣ(R)→ SpΣ preserves colimits, SpΣ(R)→ SpΣ preserves cofibrations.
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The following is a rectification result for St⊗R.

Proposition 6.7. π : Catpc
R → ModBR

(
Catpc

S
[
M−1

])
in Construction 6.6 induces a symmetric

monoidal equivalence

Catpc
R
[
M−1

]⊗ ' Mod⊗BR
(

Catpc
S
[
M−1

])
.

In particular, we have a canonical symmetric monoidal equivalence

Catpc
R
[
M−1

]⊗ ' Mod⊗PerfR
(St) = St⊗R .

Proof. The underlying functor is an equivalence of ∞-categories. In fact, there are sequence
of categorical equivalences

Catpc
R
[
M−1

]
→ ModBR(Catpc

S )
[
M−1

]
→ ModBR

(
Catpc

S
[
M−1

])
,

where the middle ∞-category is obtained from the ordinary category ModBR
(

Catpc
S
)

by in-
verting Morita equivalences (we do not claim that the middle ∞-category admits a monoidal
structure). The right arrow is induced by ModBR

(
Catpc

S
)
→ ModBR

(
Catpc

S
[
M−1

])
. The left

arrow is induced by the inclusion Catpc
R ↪→ ModBR

(
Catpc

S
)
⊂ ModBR

(
CatS

)
' CatR. The

functorial cofibrant resolution CatR → Catpc
R induces an inverse equivalence of Catpc

R
[
M−1

]
→ ModBR

(
Catpc

S
)[
M−1

]
(a cofibrant one is pointwise-cofibrant). It is proved in [9, Theo-

rem 5.1] that the right arrow is a categorical equivalence. Next, we prove that π : Catpc
R →

ModBR
(

Catpc
S
[
M−1

])
is symmetric monoidal. Namely, we show that the natural morphisms

PerfR → π(BR) and π(A)⊗R π(B)→ π(A ∧R B) are equivalences in ModBR
(

Catpc
S
[
M−1

])
'

ModPerfR(St), where π(A)⊗R π(B) indicates the tensor product in ModPerfR(St). By construc-
tion, the morphism PerfR → π(BR) is an equivalence. We prove that π(A)⊗Rπ(B)→ π(A∧RB)

is an equivalence. We here write Âpe for the R-spectral full subcategory of FunR
(
Aop,SpΣ(R)

)cf

that consists of cofibrant-fibrant objects lying over Dpe(A)R (Âpe is DK-equivalent to DΣ
pe(A)

as spectral categories, see the proof of Lemma 6.11 and Claim 6.12 for the notation). For any
other R-spectral category P, we define P̂pe in the same way. By Claim 6.12 below, the im-

age of ̂(A ∧R B)pe in ModBR
(

Catpc
S
[
M−1

])
is equivalent to π(A∧R B) in the natural way. Let

{Aλ}λ∈Λ be the filtered family (poset) of R-spectral full subcategories of A such that for any Aλ,

D(Aλ) (or FunR
(
Aop
λ , SpΣ(R)

)cf
) admits a single compact generator (so that (Âλ)pe is Morita

equivalent to BA for some A ∈ AlgAs

(
SpΣ(R)c

)
, where BA has one object ∗ with the morphism

ring spectrum BA(∗, ∗) = A). Then we have the filtered family (poset) of R-spectral full sub-

categories
{ ̂(Aλ ∧R B)pe

}
λ∈Λ

of ̂(A ∧R B)pe. The filtered colimit of this family in Catpc
R
[
M−1

]
is ̂(A ∧R B)pe. Indeed, from the categorical equivalence Catpc

R
[
M−1

]
' ModPerfR(St) and the

conservative colimit-preserving functor ModPerfR(St) → St, if we transfer
{ ̂(Aλ ∧R B)pe

}
λ∈Λ

into the filtered family of stable idempotent-complete ∞-categories, we are reduced to proving
that the colimit of the resulting diagram in St is a stable ∞-category obtained from the spec-

tral category ̂(A ∧R B)pe. We think of
{ ̂(Aλ ∧R B)pe

}
λ∈Λ

as a filtered diagram (poset) of full

subcategories of ̂(A ∧R B)pe. Since ∪λ∈Λ
̂(Aλ ∧R B)pe = ̂(A ∧R B)pe, a colimit of this diagram

in Cat∞ is naturally equivalent to ̂(A ∧R B)pe. Note that a filtered colimit of stable∞-categories
in St naturally coincides with a colimit which is taken in Cat∞ [25, Proposition 1.1.4.6].

It follows that ̂(A ∧R B)pe is a colimit of
{ ̂(Aλ ∧R B)pe

}
λ∈Λ

in St. We then deduce that

colimλ∈Λ
̂(Aλ ∧R B)pe → ̂(A ∧R B)pe is an equivalence in ModPerfR(St). In addition, we note that

the tensor product in ModPerfR(St) preserves small colimits in each variable since St⊗ is a sym-
metric monoidal compactly generated∞-category whose tensor product preserves small colimits
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in each variable (see [6, Corollary 4.25]). Therefore, taking into account Proposition 6.3(3), we
may and will suppose that A = BA for some A ∈ AlgAs

(
SpΣ(R)c

)
. Taking the same procedure

to B, we may and will suppose that B = BB for some B ∈ AlgAs

(
SpΣ(R)c

)
. We write A and

B for the images of A and B in AlgAs(ModR), respectively. In this situation, we have a canon-

ical equivalence π(A) ⊗R π(B) ' (RModA⊗R RModB)ω ' (RModA⊗RB)ω ' ̂(BA ∧R B)pe '
π(A∧RB) (cf. [5, Proposition 4.1(2)], [25, Theorem 4.8.5.16]), where (−)ω indicates the full sub-
category of compact objects. Hence π : Catpc

R → ModBR
(

Catpc
S
[
M−1

])
is symmetric monoidal,

which induces a symmetric monoidal functor Catpc
R
[
M−1

]⊗ → Mod⊗BR
(

Catpc
S
[
M−1

])
whose

underlying functor is a categorical equivalence. Thus we have the desired symmetric monoidal
equivalence Catpc

R
[
M−1

]⊗ ∼→ Mod⊗BR
(

Catpc
S
[
M−1

])
. �

Using the equivalence in Proposition 6.7, we obtain equivalences of symmetric monoidal
∞-categories

θ : St⊗R = Mod⊗PerfR
(St) ' Mod⊗PerfR

(
Catpc

S
[
M−1

])
' Catpc

R
[
M−1

]⊗
.

Next, to an R-spectral category we assign Hochschild homology R-module spectrum en-
dowed with circle action. The construction is based on the Hochschild–Mitchell cyclic nerves
(cf. [7, 8]).

Definition 6.8. Let A be a pointwise-cofibrant small R-spectral category. Let p ≥ 0 be a non-
negative integer. Let

HH(A)p :=
∨

(X0,...,Xp)

A(Xp−1, Xp) ∧R · · · ∧R A(X0, X1) ∧R A(Xp, X0).

The coproduct is taken over the set of sequences (X0, . . . , Xp) of objects of A. The composition
in A determines degeneracy maps d0, . . . , dp : HH(A)p → HH(A)p−1, and the unit map S →
A(Xi, Xi) determines face maps s0, . . . , sp : HH(A)p → HH(A)p+1. The cyclic permutation
(X0, . . . , Xp) 7→ (Xp, X0, . . . , Xp−1) gives rise to the action of the cyclic group Z/(p + 1)Z
on HH(A)p. The family HH(A)• := {HH(A)p}p≥0 equipped with degeneracy maps and face
maps form a simplicial object in SpΣ(R). If we take into account the action of Z/(p + 1)Z
on HH(A)p, then HH(A)• = {HH(A)p}p≥0 is promoted to a cyclic object, that is, a functor
Λop → SpΣ(R) from (the opposite category of) the cyclic category of Connes such that the
composite ∆op → Λop → SpΣ(R) is the simplicial object. Here Λ denotes the Connes’ cyclic
category, see [10, Section 2], [24] for the definition of the cyclic category.

We let Fun
(
Λop, SpΣ(R)

)
denote the ordinary functor category from Λop to SpΣ(R). The

category Fun
(
Λop,SpΣ(R)

)
inherits a symmetric monoidal structure given by the pointwise

tensor product F ⊗G([n]) = F ([n]) ∧R G([n]).
From the definition of the tensor product of R-spectral categories and the construction

of HH(A)p, it is straightforward to check that the assignment A 7→ HH(A)• determines a sym-
metric monoidal functor

HH(−)• : Catpc
R → Fun

(
Λop, SpΣ(R)

)
.

The image of HH(−)• is contained in Fun
(
Λop,SpΣ(R)c

)
since the stable R-model structure sat-

isfies the axiom of symmetric monoidal model categories. Let SpΣ(R)c
[
W−1

]
be the symmetric

monoidal ∞-category obtained from SpΣ(R)c by inverting stable equivalences. The underlying
∞-category is presentable since SpΣ(R) is a combinatorial model category. There is a canonical
symmetric monoidal functor Fun

(
Λop,SpΣ(R)c

)
→ Fun

(
Λop, SpΣ(R)c

[
W−1

])
induced by the

symmetric monoidal functor SpΣ(R)c → SpΣ(R)c
[
W−1

]
.

We recall the following results from [10, 18, 24]:
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Lemma 6.9.

(i) Let Λ → Λ be the groupoid completion. Namely, it is induced by a unit map of the
adjunction Cat∞ � S : ι, where ι is the fully faithful inclusion. Then Λ is equivalent
to BS1 in S.

(ii) Let C be a presentable∞-category. Let F : Λop→ C be a cyclic object in C. Let F ′ : BS1→ C
be a functor. Let ∆0 → BS1 be the map determined by the unique object of BS1. Consider
the commutative diagram

∆op

��

// Λop

��
∆0 // BS1,

where we regard ∆0 as the groupoid completion of ∆op (∆op is sifted so that the groupoid
completion is given by the contractible space ∆0, cf. [27, Section 5.5.8]). Then F ′ is a left
Kan extension of F along Λop → BS1 if and only if the composite ∆0 → BS1 → C is
a colimit of the composite ∆op → Λop → C.

Proof. The first assertion is a result of Connes, see [10, Théorème 10], [18, 24]. The second
assertion is proved in [18, Proposition 1.1]. �

Lemma 6.10. Let R : Fun
(
BS1, SpΣ(R)c

[
W−1

])
→ Fun

(
Λop,SpΣ(R)c

[
W−1

])
be the functor

induced by composition with Λop → Λ
op ' BS1. Let

L : Fun
(
Λop, SpΣ(R)c

[
W−1

])
→ Fun

(
BS1, SpΣ(R)c

[
W−1

])
be a left adjoint (the existence of a left adjoint follows from the adjoint functor theorem [27] and
the fact that both ∞-categories are presentable). Then this left adjoint is symmetric monoidal.

Proof. Since the right adjoint is a symmetric monoidal functor, the left adjoint is an oplax
symmetric monoidal functor. Thus it is enough to show that L(F ⊗ G) → L(F ) ⊗ L(G) is
an equivalence in Fun

(
BS1,SpΣ(R)c

[
W−1

])
for F , G : Λop → SpΣ(R)c

[
W−1

]
. To this end,

note first that L(F ), L(G) : BS1 → SpΣ(R)c
[
W−1

]
are given by left Kan extensions of F and G,

respectively, along Λop → BS1. By Lemma 6.9(ii), F ′ : BS1 → SpΣ(R)c
[
W−1

]
is a left Kan

extension of F : Λop → SpΣ(R)c
[
W−1

]
if and only if the image of the unique object ∗ of BS1

under F ′ is a colimit of the composite F∆ : ∆op → Λop → SpΣ(R)c
[
W−1

]
. Let G∆ be the

restriciton of G to ∆op. Then L(F⊗G)(∗) is a colimit of the composite ∆op diag−→ ∆op×∆op F∆×G∆→
SpΣ(R)c[W−1] × SpΣ(R)c

[
W−1

] ⊗→ SpΣ(R)c
[
W−1

]
. On the other hand, L(F ) ⊗ L(G)(∗) is

a colimit of ∆op × ∆op F∆×G∆→ SpΣ(R)c
[
W−1

]
× SpΣ(R)c

[
W−1

] ⊗→ SpΣ(R)c
[
W−1

]
since the

tensor product of SpΣ(R)c
[
W−1

]
preserves small colimits separately in each variable. Note that

the diagonal functor ∆op → ∆op×∆op is cofinal. Thus the canonical morphism L(F ⊗G)(∗)→
L(F )⊗ L(G)(∗) is an equivalence. This means that L is symmetric monoidal. �

Assembling these lemmata and constructions, we obtain a sequence of symmetric monoidal
functors

H : Catpc
R
HH(−)•−→ Fun

(
Λop,SpΣ(R)c

)
→ Fun

(
Λop,SpΣ(R)c

[
W−1

])
' Fun

(
Λop,ModR

) L→ Fun
(
BS1,ModR

)
.
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More explicitly, the composition of H and the forgetful functor Fun
(
BS1,ModR

)
→ ModR '

SpΣ(R)c
[
W−1

]
sends a pointwise-cofibrant R-spectral category A to the homotopy colimit of the

simplicial object ∆op ↪→ Λop HH(A)•−→ SpΣ(R).

Next, we observe the invariance under Morita equivalences.

Lemma 6.11. Let A and B be pointwise-cofibrant R-spectral categories. Let F : A → B be
an R-spectral functor which is a Morita equivalence. Then H : Catpc

R → Fun
(
BS1,ModR

)
carries F to an equivalence in Fun

(
BS1,ModR

)
.

Proof. It will suffice to prove that H(F ) is an equivalence in ModR. By [8, Theorems 5.9
and 5.11], the image of H(F ) in ModR ' SpΣ(R)

[
W−1

]
is an equivalence if F : A → B is

a Morita equivalence over R. We explain the notion of a Morita equivalence over R, which
we distinguish from the notion of Morita equivalences for the moment. Let FunR

(
Aop,SpΣ(R)

)
be the R-spectral category of R-spectral functors. As in the case of R = S, it admits a combina-
torial R-spectral model structure whose weak equivalences (resp. fibrations) are objectwise stable
equivalences (resp. fibrations). Let D(A)R denote the homotopy (triangulated) category of the

full subcategory FunR
(
Aop,SpΣ(R)

)cf
spanned by cofibrant and fibrant objects. Let Dpe(A)R be

the smallest thick subcategory that contains the image of the Yoneda embedding A → D(A)R.
We define Dpe(B)R in a similar way. The functor F induces (LF!)R : Dpe(A)R → Dpe(B)R as F
induces LF! : Dpe(A) → Dpe(B). We say that F is a Morita equivalence over R if (LF!)R is
an equivalence. Thus to prove our assertion, it is enough to show the following claim:

Claim 6.12. There exist equivalences Dpe(A)R ' Dpe(A) and Dpe(B)R ' Dpe(B) which identi-
fies (LF!)R with LF! up to natural equivalence. In particular, F is a Morita equivalence over R
if and only if F is a Morita equivalence.

Proof. We let DΣ
pe(A)R be the full subcategory of FunR

(
Aop,SpΣ(R)

)cf
spanned by those

objects that belongs to Dpe(A)R. The Yoneda embedding I : A → DΣ
pe(A)R (after replacing A

by a fibrant one) induces I! : DΣ
pe(A)→ DΣ

pe

(
DΣ

pe(A)R
)
. By [6, Proposition 4.11], we deduce that

the canonical functor DΣ
pe(A)R → DΣ

pe

(
DΣ

pe(A)R
)

is a DK-equivalence. Thus we have DΣ
pe(A)→

DΣ
pe(A)R (in the homotopy category of CatS). By the correspondence between stable idempotent-

complete ∞-categories and spectral categories up to Morita equivalences ([6, Theorems 4.22
and 4.23]), passing to stable (idempotent-complete) ∞-categories, we may replace DΣ

pe(A) →
DΣ

pe(A)R by the induced exact functor of stable idempotent-complete ∞-categories which we
denote by f : Perf(A) → Perf(A)R. Namely, it is enough to show that f is an equivalence.
Taking account of the Yoneda embedding, we see that f is fully faithful on the full subcategory
spanned by the image of A. It follows that f is fully faithful on the smallest stable subcategory
of Perf(A), containing A. Note that Perf(A)R is the idempotent completion of the smallest
stable subcategory that contains the image ofA under the Yoneda embedding. Then we conclude
that f is an equivalence. Similarly, Dpe(B)R ' Dpe(B). Finally, using the construction of these
equivalences and the functoriality of left adjoints (−)!, we identify (LF!)R with LF!. �

Corollary 6.13. The symmetric monoidal functor H : Catpc
R → Fun

(
BS1,ModR

)
factors as

Catpc
R

//

��

Fun
(
BS1,ModR

)

Catpc
R
[
M−1

]
.

H

66

Proof. It follows from the universal property of Catpc
R → Catpc

R
[
M−1

]
and Lemma 6.11. �
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Composing with θ, we obtain a sequence of symmetric monoidal functors

ModPerfR(St) ' ModPerfR

(
Catpc

S
[
M−1

]) θ // Catpc
R
[
M−1

] H // Fun
(
BS1,ModR

)
.

Definition 6.14. Let C be a small R-linear stable∞-category. We denote by HH•(C) the image
of C in Fun

(
BS1,ModR

)
under the above composite H ◦ θ. We often abuse notation by wri-

ting HH•(C) for its image in ModR. We refer to HH•(C) as Hochschild homology R-module
spectrum of C. If A is a pointwise-cofibrant R-spectral category, we refer to the image H(A)
in Fun

(
BS1,ModR

)
or ModR as Hochschild homology R-module spectrum of A.

We record our construction as a proposition:

Proposition 6.15. There is a sequence of symmetric monoidal functors

ModPerfR(St)
θ→ Catpc

R
[
M−1

] H−→ Fun
(
BS1,ModR

) forget→ ModR,

which to R-linear stable ∞-categories or pointwise-cofibrant R-spectral categories assigns Hoch-
schild homology R-module spectra. In particular, for any ∞-operad O it gives rise to

AlgO(ModPerfR(St))→ AlgO
(

Catpc
R
[
M−1

])
→ AlgO

(
Fun

(
BS1,ModR

))
→ AlgO(ModR).

7 Construction

In this section, we prove Theorem 7.14. Namely, we construct the structure of a KS-algebra
on the pair of Hochschild cohomology spectrum and Hochschild homology spectrum. We main-
tain the notation of Section 6.

Definition 7.1. Let M and M ′ be (possibly empty) finite disjoint unions of open interval (0, 1)

and the circle R/Z = S1. That is, M = (0, 1)tm t
(
S1
)tn

and M ′ = (0, 1)tm
′ t
(
S1
)tn′

.
Let Embrec(M,M ′) be the space of rectilinear embeddings. A rectilinear embedding M → M ′

is an open embedding such that any restriction (0, 1) → (0, 1), (0, 1) → S1 and S1 → S1

is rectilinear, see Definition 4.1. The topology is induced from the compact-open topology
(or parameters of rectilinear maps).

Let Mfldrec
1 be the the fibrant simplicial colored operad whose set

(
Mfldrec

1

)
col

of colors consists
of (possibly empty) finite disjoint unions of (0, 1) and S1. For a finite family {Mi}i∈I of colors
and N ∈

(
Mfldrec

1

)
col

, the simplicial hom set MultMfldrec
1

({Mi}i∈I , N) is defined to be the singular
complex of the space Embrec(ti∈IMi, N) of rectilinear embeddings. The composition is defined
in the obvious way. Then from Definition 4.7, we obtain the associated ∞-operad (Mfldrec

1 )⊗

→ Γ, which is a symmetric monoidal ∞-category by construction. Informally, objects of this
symmetric monoidal ∞-category are finite disjoint unions of (0, 1) and S1, and the symmetric
monoidal structure is given by disjoint union. The empty space is a unit. The mapping spaces are
spaces of rectilinear embeddings. Let Mfldrec

1 denote the underlying ∞-category. Let Diskrec
1 ⊂

Mfldrec be the full subcategory spanned by finite disjoint unions of (0, 1). It is closed under taking
tensor products so that Diskrec

1 is promoted to a symmetric monoidal∞-category (Diskred1 )⊗ (it is
equivalent to an ordinary symmetric monoidal 1-category).

Remark 7.2. There are several variants which are equivalent to Mfldrec
1 . Let Mfldfr

1 be the
∞-category of framed (or oriented) 1-manifolds without boundaries whose mapping spaces are
spaces of embeddings of framed manifolds (see, e.g., [2, Section 2]). The symmetric monoidal
structure is given by disjoint union. It is easy to see that there is an equivalence Mfldrec

1
∼→

Mfldfr
1 as symmetric monoidal ∞-categories. If we write Diskfr

1 for the full subcategory of Mfldfr
1

spanned by framed 1-disks, it also induces an equivalence Diskrec
1
∼→ Diskfr

1 of symmetric monoidal
∞-categories.
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From now on, for ease of notation, we write Mfld1, Disk1, and Disk⊗1 for Mfldrec
1 , Diskrec

1 ,

and
(
Diskrec

1

)⊗
, respectively.

We set (Disk1)/S1 := Disk1 ×Mfld1 (Mfld1)/S1 . Let
〈
S1
〉

be the full subcategory of Mfld1

that consists of S1. By the equivalence Embrec
(
S1, S1

)
' S1, it follows that

〈
S1
〉

is equiva-
lent to BS1, that is, the ∞-category which has one object ∗ together with the mapping space
MapBS1(∗, ∗) = S1 endowed with the composition law induced by the multiplication of S1.
Let Disk1/

〈
S1
〉

be the full subcategory of Fun
(
∆1,Mfld1

)
which consists of those functors

h : ∆1 → Mfld1 such that h(0) ∈ Disk1 and h(1) ∈
〈
S1
〉
. In other words, Disk1/

〈
S1
〉

=
Disk1 ×Mfld1 Fun

(
∆1,Mfld1

)
×Mfld1

〈
S1
〉
, where the functor from Fun

(
∆1,Mfld1

)
to the left

Mfld1 (resp. the right Mfld1) is induced by the restriction to the source (resp. the target). The
projection ∆0 = {S1} →

〈
S1
〉

= BS1 induces

(Disk1)/S1 ' Disk1 ×Mfld1 Fun
(
∆1,Mfld1

)
×Mfld1

{
S1
}

→ Disk1 ×Mfld1 Fun
(
∆1,Mfld1

)
×Mfld1

〈
S1
〉

= Disk1/
〈
S1
〉
,

where the left categorical equivalence follows from [27, Proposition 4.2.1.5].

Lemma 7.3. Let Disk†1 be the full subcategory of Disk1 spanned by nonempty spaces (namely, the

empty space is omitted from Disk1). We set Disk†1/
〈
S1
〉

= Disk†1×Disk1

(
Disk1/

〈
S1
〉)

. Let Λ be the

cyclic category of Connes [10, Section 2]. There is an equivalence of categories Λop ' Disk†1/
〈
S1
〉
.

Proof. This is a comparison between definitions which look different. We first recall that
objects of Λ are (p) for p ≥ 0, which is denoted by Λp in [10]. Let

(
S1, p

)
be the circle

S1 = R/Z equipped with the set of torsion points 1
p+1Z/Z. The hom set HomΛ((p), (q)) is

defined to be the set of homotopy classes of monotone degree one maps φ : S1 → S1 such that
φ
(

1
p+1Z/Z

)
⊂ 1

q+1Z/Z. We denote points 0
p+1 , . . . ,

p
p+1 ∈ R/Z by x0

p, . . . , x
p
p, respectively. Let

Iip =
{
xip < x < xi+1

p |x ∈ [0, 1)
}

be the open set in S1, where we use the obvious bijection
of sets [0, 1) ' R/Z. In what follows, we regard the superscripts in xip and Iip as elements
of Z/(p + 1)Z. For u, v ∈ [0, 1), {u < x < v} means {x ∈ [0, 1) |u < x < v} if u < v,
{x ∈ [0, 1) |u < x < 1, 0 ≤ x < v} if u > v > 0, and {x ∈ [0, 1) |u < x < 1} if u > v = 0.
Given (p) ∈ Λ, we think of jp : (R/Z)\

(
1
p+1Z/Z

)
=
(
I0
p t · · · t I

p
p

)
↪→ R/Z = S1 as an object

of Disk†1/
〈
S1
〉
. We fix Iip ' (0, 1) such that Iip ↪→ R/Z is equivalent to (0, 1) ↪→ R → R/Z.

We write J(p) for it. We note that every object of Disk†1/
〈
S1
〉

is equivalent to J(p) for some p ≥ 0.
Since each component of MapMfld1

(
(0, 1)tp+1, S1

)
is naturally equivalent to S1, the computation

of mapping spaces shows that Disk†1/
〈
S1
〉

is equivalent to the nerve of a 1-category. We may

and will abuse notation by identifying Disk†1/
〈
S1
〉

with its homotopy category. Suppose that we
are given a monotone degree one map φ : S1 → S1 such that φ

(
1
p+1Z/Z

)
⊂ 1

q+1Z/Z. Assume

that p ≥ 1 and φ
(
jp
(
Iip
))

is not a one-point space. Let σ(i, φ) be an element of Z/(p+ 1)Z such

that x
σ(i,φ)
q = φ

(
xip
)
. Consider a rectilinear embedding

ιi,φ : Iσ(i,φ)
q t Iσ(i,φ)+1

q t · · · t Iσ(i+1,φ)−1
q ' (0, 1) t · · · t (0, 1) ↪→ (0, 1) ' Iip

such that ιi,φ
(
I
σ(i,φ)
q

)
< · · · < ιi,φ

(
I
σ(i+1,φ)−1
q

)
in (0, 1) (we here abuse notation: for two subsets

S, T ⊂ (0, 1), S < T if s < t for any pair (s, t) ∈ S × T ). When p = 0, we define ιi,φ

by replacing I
σ(i,φ)
q t Iσ(i,φ)+1

q t · · · t Iσ(i+1,φ)−1
q by I

σ(i,φ)
q t Iσ(i,φ)+1

q t · · · t Iσ(i,φ)−1
q . Such

a rectilinear embedding is unique up to equivalences. Given φ ∈ HomΛ((p), (q)), we define the

class of a map φ∗ : J(q) → J(p) in Disk†1/
〈
S1
〉

such that the fiber of the induced morphism
I0
q t· · ·t I

q
q → I0

p t· · ·t I
p
p over the connected component Iip is (equivalent to) ιi,φ if φ

(
Iip
)

is not
a one-point space, and if otherwise there is no component which maps to Iip. Notice that such
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a class is unique. It is routine to check that the assignments (p) 7→ J(p) and φ 7→ φ∗ determine

a categorical equivalence Λop ∼→ Disk†1/
〈
S1
〉
, where the target is identified with the homotopy

category. �

Lemma 7.4. Let π : Disk†1/
〈
S1
〉
→

〈
S1
〉

be the projection. It is a groupoid completion

of Disk†1/
〈
S1
〉
.

Proof. By Lemmas 6.9(i) and 7.3, there is a groupoid completion c : Λop ' Disk†1/
〈
S1
〉
→

BS1. Thus, by the universal property, there is a canonical morphism from c : Λop → BS1

to π : Λop ' Disk†1/
〈
S1
〉
→
〈
S1
〉

in (Cat∞)Λop/. It will suffice to show that the induced morphism
g : BS1 →

〈
S1
〉
' BS1 is an equivalence, equivalently, it is induced by an equivalence S1 → S1

as E1-monoid spaces. To this end, assume that g : BS1 →
〈
S1
〉
' BS1 is induced by a map

S1 → S1 of degree n, where |n| = p+1, p > 0. We will show that this gives rise to a contradiction.

The automorphism group of (p) in Λop ' Disk†1/
〈
S1
〉

is Z/(p+ 1)Z so that there is the functor

h : BZ/(p + 1)Z → BS1 induced by π. By the factorization Λop c→ BS1 g→
〈
S1
〉
' BS1 and

our assumption, h : BZ/(p + 1)Z → BS1 factors through the canonical morphism ∆0 → BS1.

Thus, the fiber product of BZ/(p+ 1)Z
h→ BS1 ← ∆0 = ∗ is B(Z×Z/(p+ 1)Z). On the other

hand, the space/∞-groupoid in (Disk1)/S1 ' Disk1/
〈
S1
〉
×〈S1〉 ∆0 spanned by J(p) : (0, 1)tp+1

→ S1 (obtained by discarding non-invertible morphisms) is equivalent to BZ. It gives rise to
a contradiction B(Z× Z/(p+ 1)Z) ' BZ. �

Remark 7.5. There is another category relevant to the cyclic category: the paracyclic cat-
egory Λ∞. Let us recall the definition of the paracyclic category. We follow [14]. The set
of objects of Λ∞ is {(0)∞, (1)∞, . . . , (p)∞, . . . }p≥0. The hom set HomΛ∞((p)∞, (q)∞) is defi-
ned to be the set of monotonically increasing maps f : Z → Z such that f(i + k(p + 1)) =
f(i) + k(q+ 1) for any k ∈ Z. We define a functor Λ∞ → Λ which carries (p)∞ to (p). The map
HomΛ∞((p)∞, (q)∞)→ HomΛ((p), (q)) carries f to φf : S1 → S1, where φf is the class of a map

such that φf (xip) = x
f(i)
q ∈ 1

q+1Z/Z for i ∈ Z/(p + 1)Z. Here, we regard f(i) as belonging
to Z/(q + 1)Z. This determines a functor Λ∞ → Λ. Unwinding the definition of Λ∞ → Λ,
we see that it is a (homotopy) quotient morphism Λ∞ → Λ∞/BZ ' Λ that comes from a free
action of BZ on Λ∞. This free action of BZ is determined by the natural equivalence from the
identity functor idΛ∞ to itself such that for any p ≥ 0, the induced map (p)∞ → (p)∞ is the
map i 7→ i+p+1 (see [14] for details). The paracyclic category also has a geometric description.
From the proof of Lemma 7.6 below, ∆op → Λ∞ is (left) cofinal so that it induces an equiva-
lence between their groupoid completions. Since the groupoid completion of ∆op is contractible
(note that it’s sifted), the groupoid completion Λ∞ of Λ∞ is a contractible space. It follows
that the geometric realization of Λ is equivalent to BBZ = BS1 (see also Lemma 6.9(i)).

The composition with the opposite functor Λop
∞ → Λop ' Disk†1/

〈
S1
〉
→
〈
S1
〉

= BS1 factors

through the groupoid completion Λop
∞ → Λ

op
∞ ' ∆0. Consequently, we have the induced func-

tor Λop
∞ →

(
Disk†1

)
/S1 ' Disk†1/

〈
S1
〉
×〈S1〉 ∆0. This is an equivalence. Clearly, it is essentially

surjective. The map HomΛop
∞ ((q)∞, (p)∞)→ HomΛop((q), (p)) is a homotopy quotient map that

comes from a free action of Z. We see that HomΛop
∞ ((q)∞, (p)∞) is a (homotopy) fiber product

HomΛop
∞ ((q)∞, (p)∞)/Z ×BZ ∆0 ' HomΛop((q), (p)) ×BZ ∆0. It follows that Λop

∞ →
(
Disk†1

)
/S1

is fully faithful. Hence Λop
∞
∼→
(
Disk†1

)
/S1 .

Lemma 7.6. Let C be a presentable ∞-category. Let Λ∞ be the paracyclic category, see [14]

or Remark 7.5. Let Λop
∞ '

(
Disk†1

)
/S1 → Disk†1/

〈
S1
〉
' Λop be the natural functor. Let

f : Disk†1/
〈
S1
〉
→ C and g :

〈
S1
〉
→ C be functors and let f → π ◦ g be a natural trans-
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formation. Then g is a left Kan extension of f along π : Disk†1/
〈
S1
〉
→
〈
S1
〉

if and only if

∆0 → BS1 '
〈
S1
〉 g→ C determines a colimit of the composite

(
Disk†1

)
/S1 → Disk†1/

〈
S1
〉 f→ C.

Moreover, the inclusion
(
Disk†1

)
/S1 → (Disk1)/S1 is cofinal. Therefore, if we suppose that

f : Disk†1/
〈
S1
〉
→ C is the restriction of a functor f̃ : Disk1/

〈
S1
〉
→ C, the above condition

that g is a left Kan extension of f is also equivalent to the condition that ∆0 → BS1 → C
determines a colimit of the composite (Disk1)/S1 → Disk1/

〈
S1
〉 f̃→ C, where the first arrow

(Disk1)/S1 → Disk1/
〈
S1
〉

is the natural functor.

Proof. There is a faithful functor ∆op → Λop
∞ that is (left) cofinal [26, Proposition 4.2.8]: it is

the same as the functor m in Remark 7.7. Thus, for any paracyclic object F : Λop
∞ → C, the

canonical morphism colim[p]∈∆op F ([p]) → colim(p)∞∈Λop
∞ F ((p)∞) is an equivalence. Our first

assertion now follows from this fact and Lemma 6.9(ii).

To prove the second assertion, it will suffice to prove that
((

Disk†1
)
/S1

)
e/

=
(
Disk†1

)
/S1

×
(Disk†1)/S1

((Disk1)/S1)e/ is weakly contractible, where e is the map e : φ → S1 from the empty

space to S1. Since e is an initial object in (Disk1)/S1 , we are reduced to proving that
(
Disk†1

)
/S1

' Λop
∞ is weakly contractible. By Quillen’s theorem A, it is clear because ∆op is weakly

contractible and ∆op → Λop
∞ is (left) cofinal (it follows also from the fact that

(
Disk†1

)
/S1 is

sifted). �

Remark 7.7. We have the following commutative diagram of categories:{
(0, 1)→ S1

}
//

'
��

((
Disk†1

)
/S1

)
(0,1)→S1/

forget //

'
��

(
Disk†1

)
/S1

//

'
��

Disk†1/
〈
S1
〉

'
��

{[0]} // ∆op m // Λop
∞ // Λop.

It is straightforward to observe that the composite
((

Disk†1
)
/S1

)
(0,1)→S1/

→ Λop is a faithful

and essentially surjective functor whose image is ∆op contained in Λop.

Let Mfldic
1 be the colored simplicial full suboperad of Mfldrec

1 (Definition 7.1) whose set(
Mfldic

1

)
col

of colors is
{

(0, 1), S1
}

. Namely, for Mi, N ∈ {(0, 1), S1}, the simplicial Hom set
MultMfldic

1
({Mi}i∈I , N) is the singular complex of the space Embrec(ti∈IMi, N) of rectilinear em-

beddings. The superscript “ic” stands for the “interval” and the “circle”. Let Disk1 be the full
suboperad whose set of colors is {(0, 1)}. Notice that Disk1 is identical with E1 in Section 4. From
Definition 4.7, we obtain the associated∞-operad

(
Mfldic

1

)
∆
→ Fin∗ of simplicial categories con-

structed from Mfldic
1 . Also, to E1 = Disk1 ⊂ Mfldic

1 we associate (E1)∆ = (Disk1)∆ → Fin∗.

Construction 7.8. We define ρ : (E1)∆ ×
(
Mfldic

1

)
∆
→ DCyl∆ which makes the following dia-

gram commute

(E1)∆ ×
(
Mfldic

1

)
∆

ρ //

��

DCyl∆

��
Fin∗×Fin∗

∧ // Fin∗ .

Here DCyl∆ → Fin∗ is the map of simplicial categories associated to DCyl. The lower hori-
zontal arrow ∧ : Fin∗×Fin∗ → Fin∗ that sends a pair (〈m〉, 〈n〉) to 〈mn〉 is defined in [25,
Notation 2.2.5.1]. Let X = (〈m〉, (L1, . . . , Lm)) be an object of (E1)∆, where Ls = (0, 1) for
each 1 ≤ s ≤ m. Let Y = (〈n〉, (M1, . . . ,Mn)) be an object of

(
Mfldic

1

)
∆

where Mt is either
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(0, 1) or S1 for each 1 ≤ t ≤ n. We define ρ((X,Y )) to be (〈mn〉, (Ls ×Mt))1≤s≤m
1≤t≤n

, where we

abuse notation by the identifications (0, 1)2 = D and (0, 1)× S1 = C, see Definition 4.4.
X ′ = (〈m′〉, (L′1, . . . , L′m)) be another object of (E1)∆. Let Y ′ = (〈n′〉, (M ′1, . . . ,M ′n)) be ano-

ther object of (Mfldic
1 )∆. Given a pair of morphisms f : 〈m〉 → 〈m′〉 and g : 〈n〉 → 〈n′〉, we define

a map

Embrec
(
ts∈f−1(s′) Ls, L

′
s′
)
× Embrec

(
tt∈g−1(t′) Mt,M

′
t′
)

��
Embrec

(
t(s,t)∈f−1(s′)×g−1(t′) Ls ×Mt, L

′
s′ ×M ′t′

)
that sends (φ, ψ) to φ × ψ. Taking the product parameterized by (s′, t′) with 1 ≤ s′ ≤ m′,
1 ≤ t′ ≤ n′ and taking simplicial nerves, we obtain morphisms of hom simplicial sets. It gives
rise to a functor ρ : (E1)∆ ×

(
Mfldic

1

)
∆
→ DCyl∆ which makes the diagram commute. This

construction is a natural extension of that in [25, Construction 5.1.2.1]: Let 〈D〉 ⊂ DCyl be the
full suboperad whose set of colors is {D}. Let 〈D〉∆ → Fin∗ be the correpsonding simplicial
full subcategory of DCyl∆. Then the restriction of ρ induces (E1)∆ × (E1)∆ → 〈D〉∆ lying over
∧ : Fin∗×Fin∗ → Fin∗, which is defined in loc. cit.

Let Mfld1 be the simplicial nerve of
(
Mfldic

1

)
∆

. The simplicial nerves of the above diagrams
give rise to the commutative diagram

E⊗1 ×E⊗1
//

��

E⊗2

��
E⊗1 ×Mfld1

ρ // DCyl,

which lies over ∧ : Γ× Γ→ Γ. We abuse notation by writing ρ for the associated map.

Given an ∞-operad O⊗ → Γ, there exist a symmetric monoidal ∞-category Env(O⊗) → Γ
and a mapO⊗ → Env

(
O⊗
)

of∞-operads such that for any symmetric monoidal∞-categoryD⊗,

the composition induces a categorical equivalence Fun⊗
(

Env
(
O⊗
)
,D⊗

) ∼→ AlgO⊗
(
D⊗
)
, see

[25, Section 2.2.4]. Here Fun⊗
(

Env
(
O⊗
)
,D⊗

)
denotes the ∞-category of symmetric monoidal

functors. We shall refer to Env
(
O⊗
)

as the symmetric monoidal envelope of O⊗ (in loc. cit., it
is referred to as the Γ-monoidal envelope). Through the categorical equivalence, for a map of∞-
operads f : O⊗ → D⊗, there exists a symmetric monoidal functor f̃ : Env

(
O⊗
)
→ D⊗ which

is unique up to a contractible space of choices. We refer to f̃ as a symmetric monoidal functor
that corresponds to f . Let Oper∞ be the ∞-category of (small) ∞-operads [25, Section 2.1.4]
and let Cat⊗∞ be the∞-category of (small) symmetric monoidal∞-categories whose morphisms
are symmetric monoidal functors. Then the construction of symmetric monoidal envelopes
gives a left adjoint Oper∞ → Cat⊗∞ of the canonical functor Cat⊗∞ → Oper∞. Here are some
examples. The symmetric monoidal envelope Ẽ⊗1 of E⊗1 is equivalent to Disk⊗1 as symmetric

monoidal ∞-categories. Similarly, a symmetric monoidal envelope Ẽ⊗2 of E⊗2 is equivalent to
the symmetric monoidal ∞-category Disk⊗2 of (possibly empty) finite disjoint unions of (0, 1)2

defined as in the case of Disk⊗1 : mapping spaces are spaces of rectilinear embeddings, and the
tensor product is again given by disjoint union. Another quick example of symmetric monoidal
envelopes is Mfld1 → Mfld⊗1 .

Construction 7.9. Let q : C⊗ → Γ be a symmetric monoidal ∞-category. Let p : P⊗ → Γ be
a symmetric monoidal ∞-category (resp. an ∞-operad). We construct a symmetric monoidal
structure on the ∞-category Fun⊗

(
P⊗, C⊗

)
of symmetric monoidal functors (resp. the ∞-

category AlgP⊗
(
C⊗
)

of algebra objects), see [25, Section 3.2.4] for more details of the case
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of AlgP⊗
(
C⊗
)
. We define a map Fun⊗

(
P⊗, C⊗

)⊗ → Γ (resp. Alg⊗P⊗
(
C⊗
)
→ Γ) by the uni-

versal property that for any α : K → Γ, the set of morphisms K → Fun⊗
(
P⊗, C⊗

)⊗
over Γ

(resp. K → Alg⊗P⊗
(
C⊗
)

over Γ) is defined to be the set of morphisms f : K × P⊗ → C⊗ such
that

(i) the diagram

K × P⊗ f //

(α,id)
��

C⊗

q

��
Γ× P⊗ // Γ

commutes; here the lower horizontal arrow is induced by ∧ : Γ× Γ→ Γ,

(ii) for any vertex k of K and any p-coCartesian edge φ in P⊗, f(k, φ) is a q-coCartesian edge
(resp. for any vertex k of K and any inert morphism φ in P⊗, f(k, φ) is an inert morphism
in C⊗).

The morphism Alg⊗P⊗
(
C⊗
)
→ Γ is a symmetric monoidal∞-category whose underlying∞-cate-

gory is AlgP⊗(C), cf. [25, Proposition 3.2.4.3]. Similarly, Fun⊗
(
P⊗, C⊗

)⊗ → Γ is a symmetric
monoidal∞-category whose underlying∞-category is Fun⊗

(
P⊗, C⊗

)
: the proof of [25, Proposi-

tion 3.2.4.3] based on the theory of categorical patterns can also be applied to Fun⊗
(
P⊗, C⊗

)⊗
.

An edge ∆1 → Fun⊗
(
P⊗, C⊗

)⊗
is a coCartesian edge if and only if for any X ∈ P, the composite

∆1×{X} ⊂ ∆1×P⊗ → C⊗ determines a q-coCartesian edge (this means that the tensor product
F ⊗G of two symmetric monoidal functors F : P⊗ → C⊗ and G : P⊗ → C⊗ is informally given
by objectwise tensor products (F ⊗G)(X) = F (X)⊗G(X)).

Let O⊗ → Γ be an ∞-operad and let Õ⊗ → Γ be the symmetric monoidal envelope. The
composition with the inclusion O⊗ → Õ⊗ induces a map over Γ

Fun⊗
(
Õ⊗, C⊗

)⊗ → Alg⊗O⊗
(
C⊗
)

that preserves coCartesian edges, namely, it is a symmetric monoidal functor. Since the under-
lying functor is an equivalence [25, Proposition 2.2.4.9], it gives rise to a symmetric monoidal
equivalence. That is, the categorical equivalence Fun⊗

(
Õ⊗, C⊗

)
' AlgO⊗

(
C⊗
)

is promoted to
a symmetric monoidal equivalence in the natural way.

Let A be an E2-algebra in ModR. By definition, it is a map of ∞-operads A : E⊗2 → Mod⊗R
over Γ. We denote by

i!(A) : DCyl→ Mod⊗R

the operadic left Kan extension of A along the inclusion i : E⊗2 ↪→ DCyl. If we think of the
color S1 as an object in the fiber (Mfld1)〈1〉 of Mfld1 → Γ over 〈1〉, the full subcategory

〈
S1
〉

spanned by S1 determines the inclusion ι : BS1 '
〈
S1
〉
↪→ (Mfld1)〈1〉 ⊂Mfld1. Then we have

the following diagram

E⊗1 ×BS1 id×ι //

��

E⊗1 ×Mfld1
ρ //

��

DCyl
i!(A) //

��

Mod⊗R

��
Γ× {〈1〉} // Γ× Γ

∧ // Γ
id // Γ.

See Construction 7.8 for ρ. The composite Γ ' Γ × {〈1〉} → Γ of lower horizontal arrows
is the identity map. Note that the composite ρ ◦ (id × ι) : E⊗1 × BS1 → DCyl is the map
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z : E⊗1 × BS1 → Cyl ⊂ DCyl which was defined in the discussion before Proposition 4.16.
Taking into account the above diagram, Proposition 4.16 and Lemma 4.14, we have the induced
functors

AlgDCyl(ModR)→ AlgCyl(ModR)
∼→ AlgE1

(
Fun

(
BS1,ModR

))
,

and we write i!(A)C for the image of i!(A) in AlgE1

(
Fun

(
BS1,ModR

))
' AlgCyl(ModR).

Remark 7.10. The image of C = (0, 1) × S1 under i!(A) : DCyl → Mod⊗R can be viewed as
the factorization homology

∫
C A in ModR in this context, cf. [2, 25].

We continue to suppose that A is an E2-algebra in ModR. Let us consider the Hochschild
homology R-module spectrum of A defined as follows. Let AlgAs

(
SpΣ(R)c

)
be the category

of associative algebra objects of SpΣ(R)c, where R be a (cofibrant) commutative symmetric ring
spectrum that represents R, and SpΣ(R)c is the full subcategory of SpΣ(R) spanned by cofibrant
objects (cf. Section 6). The ordinary category AlgAs

(
SpΣ(R)c

)
admits a symmetric monoidal

structure given by A ⊗ B = A ∧R B. Define a symmetric monoidal functor AlgAs

(
SpΣ(R)c

)
→

Catpc
R which carries A to BA, where BA is the R-spectral category having one object ∗ with the

morphism spectrum A = BA(∗, ∗). We define HH•(A) to be the Hochschild homology R-module
spectrum of BA. Namely, we use canonical symmetric monoidal functors

AlgAs

(
SpΣ(R)c

)
→ Catpc

R → Catpc
R
[
M−1

] H−→ Fun
(
BS1,ModR

)
,

see Corollary 6.13. By inverting weak equivalences we obtain symmetric monoidal functors

AlgAs(ModR) ' AlgAs

(
SpΣ(R)c

)[
W−1

]
→ Catpc

R
[
M−1

]
→ Fun

(
BS1,ModR

)
,

see Example 6.4 for the first symmetric equivalence. This functor sends A ∈ AlgAs(ModR) to
HH•(A). Note that there is a canonical categorical equivalence

AlgE2
(ModR) ' AlgAs AlgAs(ModR)

that follows from the trivial fibration E⊗1 → As⊗ and the equivalence E⊗2 ' E⊗1 ⊗ E⊗1 (Dunn
additivity theorem). Thus, we have the induced functor

AlgE2
(ModR) ' AlgAs AlgAs(ModR)→ AlgAs

(
Fun

(
BS1,ModR

))
.

Given A ∈ AlgE2
(ModR), we define HH•(A) to be the image of A in AlgAs

(
Fun

(
BS1,ModR

))
.

Proposition 7.11. There is a canonical equivalence

HH•(A)
∼→ i!(A)C

in AlgAs(Fun(BS1,ModR)).

Let us consider AlgAs

(
SpΣ(R)c

) B(−)−→ Catpc
R
HH(−)•−→ Fun

(
Λop,SpΣ(R)c

)
, see Definition 6.8 for

HH(−)•. We write HHΛ
• (−) for the composite. Let Ãs

⊗
be the symmetric monoidal envelope

of As⊗. The equivalence E⊗1
∼→ As induces Disk⊗1

∼→ Ãs
⊗

. There is a canonical symmet-

ric monoidal equivalence Fun⊗
(
Ãs
⊗
,
(

SpΣ(R)c
)⊗) ' AlgAs

(
SpΣ(R)c

)
, see Construction 7.9.

We write Disk1 ↪→ Disk⊗1 for the inclusion of the fiber of the coCartesin fibration Disk⊗1 → Γ
over 〈1〉. Using Lemma 7.3, we have

ξ : Λop ' Disk†1/〈S
1〉 forget−→ Disk1 ↪→ Disk⊗1 ' Ãs

⊗
.

The composition with ξ induces

g : AlgAs

(
SpΣ(R)c

)
' Fun⊗

(
Ãs
⊗
,
(

SpΣ(R)c
)⊗)→ Fun

(
Λop,SpΣ(R)c

)
,

which is a symmetric monoidal functor.
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Lemma 7.12. The functor HHΛ
• (−) : AlgAs

(
SpΣ(R)c

)
→ Fun

(
Λop, SpΣ(R)c

)
can be identified

with

g : AlgAs

(
SpΣ(R)c

)
' Fun⊗

(
Ãs
⊗
,
(

SpΣ(R)c
)⊗)→ Fun

(
Λop,SpΣ(R)c

)
in the natural way. In particular, AlgAs

(
SpΣ(R)c

)[
W−1

]
→ Fun

(
Λop,SpΣ(R)c

[
W−1

])
induced

by HH(−)• can be identified with

AlgAs

(
SpΣ(R)c

)[
W−1

]
' Fun⊗

(
Ãs
⊗
,SpΣ(R)c

[
W−1

]⊗)→ Fun
(
Λop,SpΣ(R)c

[
W−1

])
induced by the composition with ξ.

Proof. We use the notation in Lemma 7.3. Let φp−1,i : S
1 → S1 be a monotone degree one

map which we think of as a morphism (p − 1) → (p) in Λ such that φp−1,i

(
xkp−1

)
= xkp for

0 ≤ k ≤ i − 1, and φp−1,i

(
xkp−1

)
= xk+1

p for i ≤ k ≤ p − 1 (in particular, xip does not lie in

the image of
{
xkp
}

0≤k≤p−1
). Let A be an object of AlgAs

(
SpΣ(R)c

)
. Consider the composition

Λop ' Disk†1/
〈
S1
〉
→ Ãs

⊗
→ SpΣ(R)c, where the final map is a symmetric monoidal functor

corresponding to A. By inspection, if {φp−1,i}0≤i≤p are regarded as morphisms (p) → (p − 1)
in Λop, their images in SpΣ(R)c define (p + 1) degeneracy maps A∧p+1 → A∧p given by the
multiplication A ∧ A → A. Let ψp,i : S

1 → S1 be a monotone degree one map which we think
of as a morphism (p)→ (p− 1) such that ψp,i

(
xkp
)

= xkp−1 for k < i+ 1, and ψp,i
(
xkp
)

= xk−1
p−1 for

k ≥ i+1. As in the case of {φp−1,i}0≤i≤p, these maps give rise to p face maps A∧p → A∧p+1 given
by the unit R→ A. Consider the rotation rp : S1 → S1 which sends xkp to xk+1

p for k ∈ Z/(p+1)Z.
We regard rp as an isomorphism (p) → (p). It yields the action of Z/(p + 1)Z on A∧p+1 given
by the cyclic permutation of factors. It is straightforward to check that these maps constitute
a cyclic object that coincides with the cyclic object obtained from BA in Definition 6.8. �

Proof of Proposition 7.11. Taking into account Lemma 7.12 and SpΣ(R)c
[
W−1

]⊗ ' Mod⊗R,
for an E2-algebra A, we consider the image of A under

h : AlgE2
(ModR) ' AlgAs

(
Fun⊗

(
Ãs
⊗
,Mod⊗R

))
→ AlgAs

(
Fun

(
Λop,ModR

))
,

where the right functor is induced by the composition with ξ : Λop → Ãs
⊗

. We abuse nota-
tion by writing HHΛ

• (A) for the image of A under h. In the following discussion, we will use
the canonical identification Alg⊗E1

(−) ' Alg⊗As(−) which comes from the canonical equivalence

E⊗1 ' As⊗ of ∞-operads. Let us consider

AlgE2
(ModR) ' AlgE1

(
Alg⊗As(ModR)

)
' AlgAs

(
Alg⊗E1

(ModR)
)

∼← Fun⊗
(
Ãs
⊗
,Alg⊗E1

(ModR)
)
→ Fun

(
Λop,AlgE1

(ModR)
)
.

The second equivalence follows from Construction 7.9, and the third functor is induced by ξ :

Λop → Ãs
⊗

. The composition is identified with h via the equivalence

AlgE1

(
Fun

(
Λop,ModR

))
' Fun

(
Λop,AlgE1

(ModR)
)
.

Let A[ : As⊗ → Alg⊗E1
(ModR) be a map of ∞-operads that corresponds to A ∈ AlgE2

(ModR) '
AlgAs

(
AlgE1

(
Mod⊗R

))
. We let Ã[ : Ãs

⊗
→ Alg⊗E1

(ModR) be a symmetric monoidal functor

from the symmetric monoidal envelope Ãs
⊗

that corresponds to A[ (namely, the composite

As⊗ → Ãs
⊗
→ Alg⊗E1

(ModR) is equivalent to A[). Observe that the composite Λop ξ→ Ãs
⊗ Ã[→

Alg⊗E1
(ModR) gives rise to a functor Λop → AlgE1

(ModR) which is equivalent to HHΛ
• (A) in
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Fun
(
Λop,AlgE1

(ModR)
)
' AlgAs

(
Fun

(
Λop,ModR

))
. Note that HH•(A) is defined to be the

image of HHΛ
• (A) under the functor AlgAs

(
Fun

(
Λop,ModR

))
→ AlgAs

(
Fun

(
BS1,ModR

))
induced by the symmetric monoidal functor L : Fun

(
Λop,ModR

)
→ Fun

(
BS1,ModR

)
in Lem-

ma 6.10. Here L is a left adjoint of the symmetric monoidal functor Fun
(
BS1,ModR

)
→

Fun
(
Λop,ModR

)
induced by the composition with Λop → BS1. Thus, HH•(A) can also be

regarded as the image under the (left adjoint) functor Fun
(
Λop,AlgE1

(ModR)
)
→ Fun

(
BS1,

AlgE1
(ModR)

)
given by left Kan extensions along Λop → BS1. Consequently, HH•(A) : BS1 →

AlgE1
(ModR) is a left Kan extension of Λop ξ→ Ãs

⊗ Ã[→ AlgE1
(ModR) along Λop → BS1.

Next, we let Â[ : Mfld1 → Alg⊗E1
(ModR) be an operadic left Kan extension of A[ : E⊗1 '

As⊗ → Alg⊗E1
(ModR). Let A′[ : Mfld⊗1 → Alg⊗E1

(ModR) be a symmetric monoidal functor

which corresponds to Â[. The composite Disk⊗1 → Mfld⊗1 → Alg⊗E1
(ModR) is equivalent to

Ã[ : Disk⊗1 ' Ãs
⊗
→ Alg⊗E1

(ModR). Consider the diagram of ∞-categories:

Disk1/
〈
S1
〉

//

��

Disk1

��

// AlgE1
(ModR)

〈
S1
〉

// Mfld1.

88

The upper left horizontal arrow is induced by the restriction to the source. The left verti-
cal arrow is induced by the restriction to the target. The upper right arrow is the underly-
ing functor of Ã[. The arrow Mfld1 → AlgE1

(ModR) is the underlying functor of A′[. The
right triangle commutes whereas the left square does not commute (but it admits a canonical
natural transformation induced by the evaluation map ∆1 × Fun

(
∆1,Mfld1

)
→ Mfld1). The

functor Mfld1 → AlgE1
(ModR) carries S1 to colimU→S1∈(Disk1)/S1

Ã[(U) which means a colimit

of E⊗1 ×Mfld1

(
Mfldact

1

)
/S1 ' (Disk1)/S1 → Disk1

Ã[→ AlgE1
(ModR). By Lemma 7.6, the compos-

ite
〈
S1
〉
→ AlgE1

(ModR) is a left Kan extension of Λop ' Disk†1/
〈
S1
〉
→ AlgE1

(ModR). Since

Λop ' Disk†1/
〈
S1
〉
→
〈
S1
〉
' BS1 is a groupoid completion by Lemma 7.4, it follows that the

composite BS1 '
〈
S1
〉
→ AlgE1

(ModR) is equivalent to HH•(A). In other words, HH•(A) is

equivalent to BS1 '
〈
S1
〉
↪→Mfld1

Â[−→ AlgE1
(ModR).

Next, we relate i!(A)C with HH•(A) : BS1 ι→Mfld1
Â[−→ AlgE1

(ModR). For this purpose, we

consider the following setting. Let DCyl→ D̃Cyl be a symmetric monoidal envelope of DCyl.
Composing with maps into symmetric monoidal envelopes, we have the left diagram

E⊗1 ×E⊗1
//

��

Ẽ⊗2

��

E⊗1
//

��

Alg⊗E1

(
Ẽ⊗2
)

��

E⊗1 ×Mfld1
// D̃Cyl, Mfld1

// Alg⊗E1

(
D̃Cyl

)
lying over ∧ : Γ × Γ → Γ. Then by the universal property of the tensor product of ∞-operads,
it induces the right commutative diagram consisting of maps of ∞-operads over Γ, where

Alg⊗E1

(
Ẽ⊗2
)

and Alg⊗E1

(
D̃Cyl

)
are symmetric monoidal ∞-categories (defined over Γ), and

the right vertical arrow is a symmetric monoidal (fully faithful) functor. In the following dis-
cussion, we replace Mod⊗R by an arbitrary symmetric monoidal presentable ∞-category M⊗
whose tensor product M×M →M preserves small colimits separately in each variable. The
example of M⊗ we keep in mind is Mod⊗R. Let A be an E2-algebra object in M⊗, that is,
a map A : E⊗2 → M⊗ of ∞-operads over Γ. The inclusion i : E⊗2 ↪→ DCyl gives rise to the
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adjoint pair i! : AlgE2
(M) � AlgDCyl(M) : i∗. Let Ã : Ẽ⊗2 →M⊗ and ĩ!(A) : D̃Cyl→M⊗ be

symmetric monoidal functors that correspond to A and i!(A), respectively. We have the diagram
of ∞-operads

E⊗1
//

��

Alg⊗E1

(
Ẽ⊗2
)

��

AlgE1
(Ã)
// Alg⊗E1

(
M⊗

)

Mfld1
// Alg⊗E1

(
D̃Cyl

)
.

AlgE1
(ĩ!(A))

77

As before, we let A[ : E⊗1 → AlgE1

(
M⊗

)
be the composite of top horizontal arrows, which

amounts to A : E⊗2 → M⊗ since E⊗1 ⊗ E⊗1 ' E⊗2 . Let Â[ : Mfld1 → Alg⊗E1

(
M⊗

)
be the

operadic left Kan extension of A[ along E⊗1 ↪→ Mfld1. Let Â] : Mfld1 → Alg⊗E1

(
M⊗

)
be

the composite. We note that i!(A)C is equivalent to BS1 → AlgE1

(
M⊗

)
determined by the

composite BS1 '
〈
S1
〉 ι
↪→ Mfld1

Â]→ Alg⊗E1

(
M⊗

)
. The universal property [25, Proposi-

tion 3.1.3.2] induces a canonical morphism Â[ → Â]. It suffices to prove that the restriction

Â[|〈S1〉 → Â]|〈S1〉 to
〈
S1
〉

is an equivalence. (It gives rise to an equivalence HH•(A) ' i!(A)C
in Fun

(
BS1,AlgE1

(ModR)
)
.) To this end, it is enough to show the following lemma, which

completes the proof of Proposition 7.11. �

Lemma 7.13. The induced morphism Â[
(
S1
)
→ Â]

(
S1
)

is an equivalence in the ∞-category
AlgE1

(
M⊗

)
.

Proof. We first consider Â[ : Mfld1 → Alg⊗E1

(
M⊗

)
. The operadic left Kan extension gives

Â[
(
S1
)

= colimU→S1∈(Disk1)/S1
Ã[(U). Here, colimU→S1∈(Disk1)/S1

Ã[(U) means a colimit of E⊗1 ×

Mfld1(Mfld1)act
/S1 ' (Disk1)/S1 → Disk1

Ã[→ AlgE1

(
M⊗

)
. By [2, Corollary 3.22] or [25, Proposi-

tion 5.5.2.15], (Disk1)/S1 is sifted (strictly speaking, in the statement in [25, Proposition 5.5.2.15],
mapping spaces between disks are spaces of (not necessarily rectilinear) open embeddings, but
the overcategory (Disk1)/S1 is equivalent to a nonrectilinear version in loc. cit.). The forget-

ful functor AlgE1

(
M⊗

)
→ M preserves sifted colimits. Consequently, the image of Â[

(
S1
)

in M is a colimit of (Disk1)/S1 → AlgE1

(
M⊗

)
→ M. Given a topological r-manifold T ,

we let Disj(T ) be the poset that consists of open sets U ⊂ T such that U is homeomor-
phic to a finite disjoint union of (0, 1)r. We think of Disj(T ) as a category. Then according
to [25, Proposition 5.5.2.13], the natural functor Disj

(
S1
)
→ (Disk1)/S1 is left cofinal. Thus,

colimU∈Disj(S1) Ã[(U) ' colimU→S1∈(Disk1)/S1
Ã[(U) in M, where colimU∈Disj(S1)A[(U) is a co-

limit of Disj
(
S1
)
→ (Disk1)/S1 →M (this equivalence also follows from the fact that (Disk1)/S1

is obtained from Disj
(
S1
)

by localizing with respect to those inclusions U ⊂ U ′ that are isotopic
to an isomorphism [2, Proposition 2.19]).

Next, we consider the image of Â]
(
S1
)

in M. If Disk2 denotes the underlying ∞-category
of Disk⊗2 and we set C = (0, 1) × S1, then the image of C in M under the operadic left
Kan extension i!(A) is colimV→C∈(Disk2)/C A(V ), that is, a colimit of E⊗2 ×DCyl (DCyl)act

/C '

(Disk2)/C → Disk2
Ã→ M, where the latter functor is the underlying functor of the induced

symmetric monoidal functor Ã : Disk⊗2 →M⊗ (we abuse notation).

Let Disjrec(C) be the full subcategory (poset) of Disj(C) spanned by those open sets V ⊂ C
such that V is the image of a rectilinear embedding, and the composite V ↪→ C = (0, 1) × S1

pr→ S1 is not surjective. By applying the argument of [25, Proposition 5.5.2.13] to Disjrec(C)→
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(Disk2)/C , we see that Disjrec(C)→ (Disk2)/C is left cofinal. It follows that there is a canonical

equivalence colimV ∈Disjrec(C) Ã(V ) ' colimV→C∈(Disk2)/C Ã(V ).

To prove that Â[
(
S1
)
→ Â]

(
S1
)

is an equivalence, it is enough to show that

colimU∈Disj(S1) Ã[(U)→ colimV ∈Disjrec(C) Ã(V )

is an equivalence in M. Unwinding the definition, this morphism is the composite of

colimU∈Disj(S1) Ã[(U)→ colim(0,1)×U∈Disjrec(C) Ã((0, 1)× U)→ colimV ∈Disjrec(C) Ã(V ),

where the right arrow is induced by the universal property of the colimit, and the left arrow is
an equivalence because Ã[(U) ' Ã((0, 1) × U). To see that the right arrow is an equivalence,
it will suffice to prove that Disj

(
S1
)
→ Disjrec(C) that sends U to (0, 1) × U is left cofinal:

for any V ∈ Disjrec(C), the category Disj
(
S1
)
×Disjrec(C) Disjrec(C)V/ is weakly contractible.

Consider the image W of V under the projection (0, 1)×S1 → S1. Then W belongs to Disj
(
S1
)

since V ↪→ C → S1 is not surjective. It follows that Disj
(
S1
)
×Disjrec(C) Disjrec(C)V/ has

an initial object so that the opposite category is filtered. Thus, by [27, Proposition 5.5.8.7],
Disj

(
S1
)
×Disjrec(C) Disjrec(C)V/ is weakly contractible as desired. �

Theorem 7.14. Let R be a commutative ring spectrum. Let C be a small R-linear stable idem-
potent-complete∞-category, that is, an object of StR = ModPerfR(St). Let HH•(C) be the Hoch-
schild cohomology R-module spectrum which belongs to AlgE2

(ModR), see Definitions 5.3 and 5.4.
Let HH•(C) be the Hochschild homology R-module spectrum which lies in Fun

(
BS1,ModR

)
, see

Definition 6.14. Then (HH•(C),HH•(C)) is promoted to an object of AlgKS(ModR) in a natural
way.

Remark 7.15. By Corollary 4.21, we have

AlgKS(ModR) ' AlgE2
(ModR)×AlgE1

(Fun(BS1,ModR)) LMod
(

Fun
(
BS1,ModR

))
→ AlgE2

(ModR)× Fun
(
BS1,ModR

)
.

Theorem 7.14 means that we can obtain an object of AlgKS(ModR) which “lies over” the pair
(HH•(C),HH•(C)) ∈ AlgE2

(ModR)× Fun
(
BS1,ModR

)
.

The proof proceeds in Construction 7.16, Proposition 7.17 and Construction 7.18.

Construction 7.16. We write D for the Ind-category Ind(C), which is an R-linear com-
pactly generated stable ∞-category. Let HH•(C) = HH•(D) be the Hochschild cohomology
R-module spectrum. Recall that HH•(D) = E(EndR(D)). The counit map of the adjunction
I : AlgE2

(ModR) � AlgAs

(
PrL

R

)
:E induces to an associative monoidal functor

RMod⊗HH•(C) = RMod⊗HH•(D) → End⊗R(D),

that is, a morphism in AlgAs

(
PrL

R

)
, where RMod⊗HH•(C) := RMod⊗HH•(C)(ModR) is the associa-

tive monoidal ∞-category of right modules of HH•(C). According to [25, Corollary 4.7.1.40],
the associative monoidal ∞-category End⊗R(D) naturally acts on D. More precisely, D is
a left module of End⊗R(D), that is, an object of LModEnd⊗R(D)

(
PrL

R

)
(this action is univer-

sal in an appropriate sense, cf. [25, Section 4.7.1]). Then the associative monoidal functor
RMod⊗HH•(C) → End⊗R(D) induces a left RMod⊗HH•(C)-module structure on D. That is, D is

promoted to an object of LModRMod⊗HH•(C)

(
PrL

R

)
.

Let RPerfHH•(C) be the full subcategory of RModHH•(C) spanned by compact objects. This
subcategory is the smallest stable subcategory which contains HH•(C) (regarded as a right
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module) and is closed under retracts. Hence RPerfHH•(C) inherits an associative monoidal struc-

ture from the structure on RModHH•(C). We denote by RPerf⊗HH•(C) the resulting associative
monoidal small R-linear stable idempotent-complete ∞-category which we regard as an object
of AlgAs(StR).

Proposition 7.17. We continue to assume that C is a small R-linear stable idempotent-complete
∞-category. If we think of D = Ind(C) as the left RMod⊗HH•(C)-module (as above), the restriction

exhibits C as a left RPerf⊗HH•(C)-module, that is, an object of LModRPerf⊗HH•(C)
(StR). In particu-

lar, C is promoted to an object of LModRPerf⊗HH•(C)
(StR).

Proof. We may and will suppose that C is the full subcategory of compact objects in D. The
tensor product functor

RModHH•(C)×RModHH•(C) → RModHH•(C)

sends RPerfHH•(C)×RPerfHH•(C) to RPerfHH•(C) ⊂ RModHH•(C). It will suffice to prove that
the action functor

m : RModHH•(C)×D → D

sends RPerfHH•(C)×C to C. Let P be the full subcategory of RModHH•(C) spanned by those
objects P such that the essential image of {P} × C is contained in C. Note that m preserves
the shift functors (Σ or Ω) and small colimits separately in each variable. Moreover, the stable
subcategory C ⊂ D is closed under retracts. Thus, we see that P is a stable subcategory which
is closed under retracts. Since HH•(C) is a unit object, HH•(C) lies in P. Keep in mind
that RPerfHH•(C) is the smallest stable subcategory which contains HH•(C) and is closed under
retracts. It follows that RPerfHH•(C) ⊂ P. �

Construction 7.18. TakeO to be LM in Proposition 6.15. By definition, LMod(ModPerfR(St))
is AlgLM(ModPerfR(St)), and LMod

(
Fun

(
BS1,ModR

))
= AlgLM

(
Fun

(
BS1,ModR

))
. We

then have

LMod(ModPerfR(St)) //

��

LMod
(

Fun
(
BS1,ModR

))
��

AlgAs(ModPerfR(St)) // AlgAs

(
Fun

(
BS1,ModR

))
,

where the vertical arrows are given by the restriction along As⊗ ↪→ LM. By Proposition 7.17,
we think of C as an object of LModRPerf⊗HH•(C)

(ModPerfR(St)). Applying the above functor

to C, we obtain HH•(C) which belongs to LModHH•(RPerfHH•(C))

(
Fun

(
BS1,ModR

))
. The

lower horizontal arrow carries the associative monoidal ∞-category RPerf⊗HH•(C) to an object

of AlgAs

(
Fun

(
BS1,ModR

))
. That is, HH•(RPerfHH•(C)) is an associative algebra object in

Fun
(
BS1,ModR

)
. Consequently, the Hochschild homology R-module spectrum HH•(C) is

a left HH•(RPerfHH•(C))-module object in Fun
(
BS1,ModR

)
. Next, we set A = HH•(C) in

AlgE2
(ModR). By the invariance of Hochschild homology under Morita equivalences (cf. Lem-

ma 6.11), HH•(A) ' HH•(RPerfHH•(C)) in AlgAs

(
Fun

(
BS1,ModR

))
. Let

AlgE2
(ModR)

i!' AlgD
DCyl(ModR)→ AlgCyl(ModR) ' AlgE1

(
Fun

(
BS1,ModR

))
be a sequence of functors such that the first one is induced by left Kan extensions along
i : E⊗2 ↪→ DCyl (cf. the discussion before Proposition 4.19), the second one is the restric-
tion along Cyl → DCyl, and the third functor (equivalence) comes from Corollary 4.18.
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By definition, the image of A in AlgE1

(
Fun

(
BS1,ModR

))
is i!(A)C defined in the discus-

sion before Proposition 7.11. According to Proposition 7.11, we have the canonical equiva-
lence HH•(A) ' i!(A)C in AlgE1

(
Fun

(
BS1,ModR

))
' AlgAs

(
Fun

(
BS1,ModR

))
. Therefore,

HH•(C) = A ∈ AlgE2
(ModR) and the left HH•(A)-module HH•(C) together with i!(A)C '

HH•(A) determines an object of

AlgE2
(ModR)×AlgAs(Fun(BS1,ModR)) LMod

(
Fun

(
BS1,ModR

))
' AlgKS(ModR),

where the equivalence comes from the canonical equivalences in Corollary 4.21. In other words,
it defines an object of AlgD

DCyl
(ModR) ⊂ AlgDCyl(ModR) which induces a KS-algebra via the

restriction. Thus, we obtain the desired object of AlgKS(ModR).

8 The action

In this section, we study the maps induced by the action of Hochschild cohomology spectrum
HH•(C) on HH•(C), constructed in Theorem 7.14.

8.1. Let R be a commutative ring spectrum. We let C be a small stable R-linear∞-category.
We let A ∈ AlgAs(ModR) and suppose that C = RPerfA. In other words, we assume that
Ind(C) admits a single compact generator. In this setting, we can describe morphisms induced
by module actions by means of concrete algebraic constructions. For ease of notation, we write
HH•(A) for HH•(RPerfA) = HH•(RModA). We can safely confuse HH•(RModA) with the
Hochschild homology R-module spectrum HH•(A) of A because of the invariance under Morita
equivalences. We do not distinguish between the notation HH•(RModA) and HH•(A): we write
HH•(A) for HH•(RModA) as well. Write Ae for Aop⊗RA. As before, by ⊗ we mean the tensor
product over R when we treat the tensor products of objects in ModR or AlgAs(ModR).

We define a morphism HH•(A) ⊗HH•(A) → HH•(A) which we refer to as the contraction
morphism:

Definition 8.1. Consider the functor

(−)⊗Ae (−) : RModAe ×LModAe → ModR

which is informally given by the two-sided bar construction (P,Q) 7→ P ⊗Ae Q. Note that
RModAe is left-tensored over Mod⊗R. If we regard HH•(A) as an object of ModR, there is
a morphism HH•(A)⊗A→ A in RModAe , which exhibits HH•(A) as a morphism object from A
to itself in RModAe (i.e., hom R-module), see Corollary 8.6. Let (HH•(A)⊗A)⊗AeA→ A⊗AeA
be the morphism induced by the morphism HH•(A)⊗A→ A in RModAe . We identify HH•(A)
with A⊗Ae A in ModR, see Lemma 8.7. It gives rise to

σ : HH•(A)⊗HH•(A) = HH•(A)⊗ (A⊗Ae A)→ A⊗Ae A = HH•(A).

We shall refer to it as the contraction morphism.

We denote by (HH•(C),HH•(C)) the pair endowed with the KS-algebra structure construc-
ted in Theorem 7.14: we will think that the pair is promoted to an object of AlgKS(ModR).
Let D and CM be colors in the colored operad KS. There is a class of an active morphism
fj : (〈2〉, D,CM )→(〈1〉, CM ) in KS lying over the active morphism ρ : 〈2〉→〈1〉 (with ρ−1(∗)=∗).
Such a morphism fj is unique up to equivalences. This is induced by an open embedding
j : (0, 1)2t(0, 1)×S1 → (0, 1)×S1 such that j1 : (0, 1)2 → (0, 1)×S1 is rectilinear and j2 : (0, 1)×
S1 → (0, 1) × S1 is a shrinking embedding, cf. Definition 4.1. If h : KS → Mod⊗R denotes
a map of∞-operads that encodes (HH•(C),HH•(C)), passing to ModR via a coCartesian natural
transformation, the image of fj induces a morphism in ModR:

u : HH•(C)⊗HH•(C) ' h(D)⊗ h(CM )→ h(CM ) ' HH•(C).
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Theorem 8.2. Let A be an associative algebra in ModR and let C be RPerfA. Then u : HH•(C)⊗
HH•(C)→ HH•(C) is equivalent to the contraction morphism σ : HH•(A)⊗HH•(A)→ HH•(A)
as a morphism in ModR.

Example 8.3. If C = RPerfA has a Calabi–Yau structure of dimension d, then there is a mor-
phism w : ΣdR → HH•(A) in ModR (which we can think of as an analogue of a global section

of a volume form) such that the composite ΣdHH•(A) ' ΣdR ⊗ HH•(A)
w⊗id−→ HH•(A) ⊗

HH•(A)
σ→ HH•(A) is an equivalence. Here Σ indicates the suspension. It follows from Theo-

rem 8.2 that ΣdHH•(A)→ HH•(A) induced by w and u instead of σ also gives an equivalence.

Construction 8.4. We set C = RPerfA. Consider a morphism

e : ModR →MorR(RModA,RModA)

in PrL
R which carries R to the identity functor, cf. Lemma 5.1. Applying the adjunction

I : AlgAs(ModR) �
(
PrL

R

)
ModR /

:E

(see Section 5) to the morphism ModR → MorR(RModA,RModA), we have the morphisms
in
(
PrL

R

)
ModR /

RModHH•(A)⊗A ' RModHH•(A)⊗R RModA

→MorR(RModA,RModA)⊗R RModA → RModA,

where the right arrow is the canonical morphism, and the middle arrow is induced by the counit
map RModHH•(RModA) → MorR(RModA,RModA) of the adjunction. Here, RModHH•(A) is
endowed with pHH•(A) : ModR → RModHH•(A) which carries R to HH•(A). The morphisms

from ModR are omitted from the notation. Recall that I : AlgAs(ModR) →
(
PrL

R

)
ModR /

that

sends A to pA : ModR → RModA with pA(R) = A is fully faithful so that the full subcat-
egory of

(
PrL

R

)
ModR /

spanned by objects of the form pA : ModR → RModA is equivalent

to AlgAs(ModR). Thus, the composite RModHH•(A)⊗A → RModA in
(
PrL

R

)
ModR /

gives rise

to a morphism of associative algebras

α : HH•(A)⊗A→ A,

that is, a morphism in AlgAs(ModR)). Since

RModA ' ModR⊗R RModA
e⊗id→ MorR(RModA,RModA)⊗R RModA → RModA

is naturally equivalent to the identity functor, we have a homotopy from the composite A →
HH•(A) ⊗ A α→ A to the identity morphism of A, where A → HH•(A) ⊗ A is induced by the
morphism from the unit algebra R→ HH•(A).

We can make the following observation:

Lemma 8.5. HH•(A) is a center of A. See [25, Section 5.3.1] or the proof below for centers
and centralizers.

Proof. The statement of this lemma is slightly imprecise. Given B ∈ AlgAs(ModR), we define
c(B,A) to be the fiber product Map(B⊗A,A)×Map(A,A){idA}, where Map(−,−) means the map-
ping space in AlgAs(ModR), and Map(B⊗A,A)→ Map(A,A) is induced by the composition with
R⊗RA→ B⊗RA. The assignment B 7→ c(B,A) induces a functor c(−, A) : AlgAs(ModR)→ S.
A center of A is Z ∈ AlgAs(ModR) that represents c(−, A), that is, a centralizer of the identity
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morphism A → A (cf. [25]). Through the equivalence Map(Z,Z) ' c(Z,A), the identity of Z
determines Z⊗A→ A and a homotopy/equivalence from the composite A→ Z⊗A→ A to idA.
Our lemma claims that HH•(A) together with α : HH•(A)⊗A→ A and the homotopy induces
an equivalence in S:

θB : Map(B,HH•(A))→ Map(B ⊗A,A)×Map(A,A) {idA}

for any B ∈ AlgAs(ModR). Here, Map(B,HH•(A))→ Map(B⊗A,A) is the functor which sends

f : B → HH•(A) to the composite B ⊗A f⊗idA→ HH•(A)⊗A α→ A.
We will prove our claim. Namely, we show that θB is an equivalence. For ease of nota-

tion, we set pB : ModR → RModB = MB and pA : ModR → RModA = MA. Let X =
MapPrL

R
(MB ⊗RMA,MA) ×M'A {A}, where A is the right A-module determined by the mul-

tiplication of A, and MapPrL
R

(MB ⊗RMA,MA) → MapPrL
R

(ModR,MA) ' M'A is induced

by the composition with ModR = ModR⊗R ModR
pB⊗pA→ MB ⊗RMA. Similarly, we define

Y = MapPrL
R

(MA,MA)×M'A {A}. Note that

X ' Map(PrL
R)

ModR /

(RModB ⊗R RModA,RModA) ' Map(B ⊗A,A).

Similarly, Y ' Map(PrL
R)

ModR /

(RModA,RModA) ' Map(A,A). The morphism MapPrL
R

(MB⊗R
MA,MA) → MapPrL

R
(MA,MA) given by the composition with ModR → MB determines

X → Y . Let ∆0 → Y be the map determined by the identity functor MA and the identity
morphism of A. We have a canonical equivalence

X ×Y ∆0 ' Map(B ⊗A,A)×Map(A,A) {idA} = c(B,A).

By the universal property of MorR(MA,MA),

MapPrL
R

(MB,MorR(MA,MA)) ' MapPrL
R

(MB ⊗RMA,MA).

Using this equivalence, we deduce that

X ×Y ∆0 ' MapPrL
R

(MB,MorR(MA,MA))×MorR(MA,MA)' {idMA
}.

Moreover, taking into account the universal property of RModHH•(A) → MorR(MA,MA) in(
PrL

R

)
ModR /

(we omit pHH•(A) : ModR → RModHH•(A) and e : ModR →MorR(MA,MA) from

the notation), we see that the composition gives rise to an equivalence

MapPrL
R

(MB,RModHH•(A))×RMod'HH•(A)
{HH•(A)}

' MapPrL
R

(MB,MorR(MA,MA))×MorR(MA,MA))' {idMA
},

where the left hand side is naturally equivalent to Map(B,HH•(A)). Unwinding the construc-
tion, we have the desired equivalence θB : Map(B,HH•(A)) ' c(B,A). �

Corollary 8.6. Let us regard HH•(A)⊗A as a right Ae-module induced by that of A (that is,
HH•(A)⊗(−) means the tensor product with HH•(A) ∈ ModR) and regard α : HH•(A)⊗A→ A
as a morphism of right Ae-moudles in the natural way. Then the morphism α : HH•(A)⊗A→ A
exhibits HH•(A) as a morphism object from A to itself in RModAe.

Proof. By Lemma 8.5, HH•(A) (endowed with α and an identification σ between A→ HH•(A)
⊗A→ A and the identity morphism) is a center of A. According to [25, Theorem 5.3.1.30], the
morphism HH•(A)⊗A→ A of the right Ae modules, that is obtained from the center, exhibits
HH•(A) as a morphism object from A to A. Thus, our claim follows. �
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We describe the bar construction P ⊗Ae A by means of symmetric spectra. Let R be a cofi-
brant commutative symmetric ring spectrum. Let A be a cofibrant associative symmetric ring
R-module spectrum which represents A, cf. Example 6.4. We write ∧ for the wedge/tensor pro-
duct ∧R over R. Let B•(A,A,A) be a simplicial diagram ∆op → SpΣ(R)c of symmetric spectra
(called the bar construction), which is given by [p] 7→ A ∧ · · · ∧ A = A ∧ A∧p ∧ A. We refer
to [31, Definition 4.1.8] for the explicit formula of B•(A,A,A). The degeneracy maps A∧p+2 →
A∧p+1 is induced by the multiplication of A∧A→ A, and face maps A∧p+2 → A∧p+3 is induced
by the unit map R→ A. Each term A ∧ A∧p ∧ A is a free left Ae := Aop ∧ A-module generated
by A∧p = R∧A∧p∧R. In addition, B•(A,A,A) can be thought of as a simplicial diagram of left
Ae-modules. The homotopy colimit of B•(A,A,A) is naturally equivalent to A with respect to
stable equivalences [31, Lemma 4.1.9] so that the colimit of the induced diagram in LModAe is A.
Let P be a right Ae-module which is cofibrant as an R-module. Let P∧AeB•(A,A,A) be a simpli-
cial diagram induced by B•(A,A,A) which carries [p] to P∧Ae (A∧A∧p∧A) ' P∧A∧p. Consider

the composition AlgAs

(
SpΣ(R)c

) B(−)−→ Catpc
R
HH(−)•−→ Fun

(
Λop,SpΣ(R)c

)
→ Fun

(
∆op, SpΣ(R)c

)
,

where the final morphism is determined by the restriction ∆op ⊂ Λop. We write HH∆
• (−)

for the composite. Note that HH∆
• (A) gives rise to a simplicial diagram in ModR whose col-

imit is HH•(A). The standard computation shows that A ∧Ae B•(A,A,A) can be identified
with HH∆

• (A).

Lemma 8.7. Let P be a right Ae-module symmetric spectrum which is cofibrant as an R-module.
We write P for the image of P in RModAe. Then P ⊗Ae A can be identified with a colimit of the
simplicial diagram induced by P ∧Ae B•(A,A,A). In particular, HH•(A) can be identified with
A⊗Ae A in ModR.

Proof. Note that the two-sided bar construction preserves colimits in each variable. Moreover,
the colimit of B•(A,A,A) is A after passing to LModAe , and each P∧Ae

(
A∧A∧p∧A

)
' P∧A∧p

computes P ⊗A⊗p ' P ⊗Ae

(
A⊗A⊗p ⊗A

)
. Therefore, lemma follows. �

Proof of Theorem 8.2. We use the notation in the discussion about the setting of Theo-
rem 8.2. We first consider an operadic left Kan extension h′ : DCyl→ Mod⊗R of h : KS→ Mod⊗R

over Γ along KS ↪→ DCyl, cf. Proposition 4.20. The open embedding j : (0, 1)2t(0, 1)×S1 j1tj2−→
(0, 1)×S1 factors as the composition of two open embeddings (0, 1)2t(0, 1)×S1 dtid−→ (0, 1)×S1t
(0, 1)× S1 rtj2→ (0, 1)× S1. See Definition 4.3 for the notation and convention. The embedding
d : (0, 1)2 → (0, 1) × S1 and r : (0, 1) × S1 → (0, 1) × S1 are recti-linear embeddings such that
the composite r ◦ d is j1 (of course, the image of r does not intersect with that of the shrinking
embedding j2). Thus, fj factors as (〈2〉, D,CM ) → (〈2〉, C, CM ) → (〈1〉, CM ) in DCyl, that lie

over 〈2〉 = 〈2〉 ρ→ 〈1〉. It follows that h(D)⊗ h(CM )→ h(CM ) induced by fj factors as

h(D)⊗ h(CM ) ' h′(D)⊗ h′(CM )→ h′(C)⊗ h′(CM )→ h′(CM ) ' h(CM ),

where h′(D)→ h′(C) and h′(C)⊗ h′(CM )→ h′(CM ) are induced by d and r t j2, respectively.

Next, we describe h′(D) → h′(C) in an explicit way. If HH•(A) is encoded by the map
of an ∞-operads E⊗2 → Mod⊗R, we let i!(HH•(A)) : DCyl → Mod⊗R be its operadic left Kan
extension along i : E⊗2 → DCyl. Let i!(HH•(A))((〈1〉, D)) → i!(HH•(A))((〈1〉, C)) be a mor-
phism in ModR, that is determined by d. For simplicity, we set Z := HH•(A) and we
write i!(Z)(D) → i!(Z)(C) for this morphism. If we think of Z as the underlying E1-algebra
given by the composite E⊗1 → E⊗2 → Mod⊗R, we denote by l!(Z) : Mfld1 → Mod⊗R its ope-
radic left Kan extension along l : E⊗1 ↪→ Mfld1. A rectilinear embedding (0, 1) → S1 gives
rise to l!(Z)((0, 1)) → l!(Z)

(
S1
)

in ModR (we abuse notation as above). More explicitly,

l!(Z)((0, 1)) → l!(Z)
(
S1
)

is Z = Z̃((0, 1)) → colimU→S1∈(Disk1)/S1
Z̃(U), where Z means the
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underlying R-module, and Z̃ : Disk1 → ModR is the underlying functor of the symmetric
monoidal functor Z̃ : Disk⊗1 → Mod⊗R corresponding to the composite E⊗1 → E⊗2 → Mod⊗R.
Since the forgetful functor AlgE1

(ModR) → ModR preserves colimits over the sifted category
(Disk1)/S1 , it follows from Lemma 7.13 that i!(Z)(D) → i!(Z)(C) is naturally equivalent to

Z = l!(Z)((0, 1)) → l!(Z)
(
S1
)

= colim(Disk1)/S1
Z̃(U) as a morphism in ModR. Therefore, we

may identify h′(D) → h′(C) with Z = l!(Z)((0, 1)) → l!(Z)(S1) = colim(Disk1)/S1
Z̃(U). Hence-

forth, we regard Z as an associative algebra in ModR, which is given by a symmetric monoidal

functor Ãs
⊗
→ Mod⊗R. The map ξ : Λop → Ãs

⊗
(see the discussion proceeding to Lemma 7.12)

and ∆op ↪→ Λop
∞ → Λop induces

AlgAs(ModR) ' Fun⊗
(
Ãs
⊗
,Mod⊗R

)
→ Fun

(
Λop,ModR

)
→ Fun

(
Λop
∞ ,ModR

)
→ Fun

(
∆op,ModR

)
.

It follows from Lemma 7.6 that the image of Z in Fun(Λop
∞ ,ModR) is the composite Λop

∞ '(
Disk†1

)
/S1 → Disk1 → ModR whose colimit is naturally equivalent to l!(Z)

(
S1
)
. Moreover, from

the cofinality of ∆op → Λop
∞ , l!(Z)

(
S1
)

is naturally equivalent to the colimit of c : ∆op → Λop
∞ →

ModR. Taking into account Remark 7.7, Z → l!(Z)
(
S1
)

can be identified with Z = c([0]) →
colim[p]∈∆op c([p]).

Next let us consider h′(C) ⊗ h′(CM ) → h′(CM ). According to Construction 7.18, its under-
lying morphism in ModR can naturally be identified with HH•(Z)⊗HH•(A) ' HH•(Z⊗A)→
HH•(A) induced by α : Z ⊗ A → A. Let Z and A be cofibrant and fibrant associative ring
symmetric R-module spectra that represent Z and A, respectively (namely, they are objects
in AlgAs

(
SpΣ

(
R
))

which are both cofibrant and fibrant with respect to the projective model

structure). Let ᾱ : Z ∧ A → A be a morphism in AlgAs

(
SpΣ(R)c

)
which represents α. The

composite A ' R ∧ A → Z ∧ A → A induced by R → Z is equivalent to the identity morphism
of A. Let HH∆

• (Z) ∧ HH∆
• (A) denote the bisimplicial diagram induced by the wedge product

and
(
HH∆

• (Z) ∧ HH∆
• (A)

)diag
the associated diagonal simplicial diagram. The morphism ᾱ

induces the following morphism of simplicial diagrams(
HH∆

• (Z) ∧HH∆
• (A)

)diag ' HH∆
• (Z ∧ A)→ HH∆

• (A)

whose colimit is equivalent to HH•(Z)⊗HH•(A) ' HH•(Z ⊗A)→ HH•(A) (notice that ∆op

is sifted).
Note that l!(Z)

(
S1
)

= colim[p]∈∆op c([p]) ' HH•(Z). If Zcst denotes the constant simpli-

cial diagram taking the value Z, {[0]} → ∆op induces Zcst → HH∆
• (Z) whose colimit is Z =

c([0])→ colim[p]∈∆op c([p]) ' HH•(Z). Consider Zcst∧HH∆
• (A)→

(
HH∆

• (Z)∧HH∆
• (A)

)diag →
HH∆

• (A). Their colimits give Z ⊗ HH•(A) → HH•(Z) ⊗ HH•(A) → HH•(A), which is
equivalent to h′(D) ⊗ h′(CM ) → h′(C) ⊗ h′(CM ) → h′(CM ). Observe that the composi-
tion Zcst ∧ HH∆

• (A) = (Z ∧ A) ∧Ae B•(A,A,A) → A ∧Ae B•(A,A,A) = HH∆
• (A) is induced

by ᾱ : Z ∧ A → A. The contraction morphism (Z ⊗ A) ⊗Ae A → A ⊗Ae A is obtained from
Z∧ (A∧Ae B•(A,A,A)) = (Z∧A)∧Ae B•(A,A,A)→ A∧Ae B•(A,A,A) by taking colimits. This
completes the proof. �

8.2. Let k be a field. We suppose that R is the Eilenberg–MacLane spectrum of k. We write
k for R. In this context, we will give a concrete model of the contraction morphism

σ : HH•(A)⊗HH•(A)→ HH•(A)

as a morphism of chain complexes of k-vector spaces. Let Comp⊗(k) be the symmetric monoidal
category of chain complexes of k-vector spaces, whose tensor product is given by the standard
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tensor product of chain complexes. There is a symmetric monoidal (projective) model structure
on Comp(k) such that a morphism is a weak equivalence (resp. a fibration) if it is a quasi-
isomorphism (resp. a termwise surjective), see, e.g., [25, Proposition 7.1.2.11]. Since k is a field,

every object is both cofibrant and fibrant. Let Comp(k)
[
W−1

]⊗
be the symmetric monoidal∞-

category obtained by inverting quasi-isomorphisms. We fix a symmetric monoidal equivalence
Mod⊗k ' Comp(k)

[
W−1

]⊗
, see [25, Theorem 7.1.2.13]. Thus it gives rise to AlgAs(Comp(k))→

AlgAs

(
Comp(k)

[
W−1

])
' AlgAs(Modk). We here regard AlgAs(Comp(k)) as (the nerve of)

the category of differential graded k-algebras in an obvious way. Let A be an associative (cofi-
brant) differential graded k-algebra, i.e., an object of AlgAs(Comp(k)) that represents A ∈
AlgAs(Modk). Let Ae := Aop⊗A. The natural functor Comp(k)⊗ → Comp(k)

[
W−1

]⊗ ' Mod⊗k
induces

RModAe(Comp(k))× LModAe(Comp(k))→ RModAe(Modk)× LModAe(Modk)→ Modk,

where the right functor is informally given by the bar construction (i.e., the relative tensor
product) (−)⊗Ae (−). We describe the contraction morphism by using explicit resolutions. Let

Bdg
• (A) := Bdg

• (A,A,A) be the right Ae-module associated to the total complex of the simpli-
cial diagram of Ae-modules [p] 7→ A ⊗ A⊗p ⊗ A (defined as in B•(A,A,A)). The associated

total complex Bdg
• (A) computes a homotopy colimit of the simplicial diagram, and there is

a canonical morphism of right Ae-modules Bdg
• (A) → A which is a quasi-isomorphism. Let

HomAe

(
Bdg
• (A), Bdg

• (A)
)

be the hom chain complex of right Ae-modules. By Lemma 8.9 be-

low, HomAe

(
Bdg
• (A), Bdg

• (A)
)

represents/computes the (derived) hom complex from A to A
in RModAe(Comp(k)). Let us consider an evaluation morphism of right Ae-modules

Ev: HomAe(Bdg
• (A), Bdg

• (A))⊗Bdg
• (A)→ Bdg

• (A)

defined in the obvious way, where HomAe

(
Bdg
• (A), Bdg

• (A)
)
⊗ Bdg

• (A) comes equipped with

the right Ae-module structure induced by Bdg
• (A). Let RModAe(Comp(k))

[
W−1

]
denote the

∞-category obtained by inverting quasi-isomorphisms (after restricting to cofibrant objects).

By the universal property of the morphism
(

HomAe

(
Bdg
• (A), Bdg

• (A)
)
,Ev

)
and the equivalence

RModAe(Comp(k))
[
W−1

]
' RModAe(Modk)

[25, Theorem 4.3.3.17] together with Lemma 8.9, it represents a morphism object from A

to A in RModAe . Note that Bdg
• (A) ⊗Ae A is the chain complex associated to the simpli-

cial chain complex given by [p] 7→
(
A ⊗ A⊗p ⊗ A

)
⊗Ae A ' A⊗p ⊗ A so that the associated

complex is a model of A ⊗Ae A = HH•(A). That is, its image in Modk is naturally equiv-

alent to Bdg
• (A) ⊗Ae Bdg

• (A)
∼→ A ⊗Ae Bdg

• (A) = HH•(A). By the Morita theory (cf., e.g.,
[5, Section 4]), Mork(RModA,RModA) ' RModAe , where the identity functor amounts to

A ∈ RModAe having the diagonal module structure. Consequently, HomAe

(
Bdg
• (A), Bdg

• (A)
)
∈

Comp(k) is a model of HH•(A) ∈ Modk. Moreover, Bdg
• (A) → A induces a quasi-isomorphism

HomAe

(
Bdg
• (A), Bdg

• (A)
)
→ HomAe

(
Bdg
• (A),A

)
(perhaps, the latter is more common Hochschild

cochain complex). We conclude:

Proposition 8.8. The above evaluation morphism induces

HomAe

(
Bdg
• (A), Bdg

• (A)
)
⊗Bdg

• (A)⊗Ae A→ Bdg
• (A)⊗Ae A,

which is equivalent to the contraction morphism σ : HH•(A) ⊗ HH•(A) → HH•(A). In parti-
cular, it is one of (explicit) models of u (cf. Theorem 8.2).
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Lemma 8.9. Let us consider RModAe(Comp(k)) to be a category endowed with Comp(k)-
enriched projective model structure, where a morphism is a weak equivalence (resp. a fibration) if

it is a quasi-isomorphism (resp. a termwise surjective), see, e.g., [3, Theorem 3.3]. Then Bdg
• (A)

is cofibrant with respect to this model structure.

Proof. Since Bdg
• (A) is obtained from the simplicial chain complex [p] 7→ A ⊗ A⊗p ⊗ A, there

is an increasing filtration of Ae-submodules 0 = F−1

(
Bdg
• (A)

)
↪→ F0

(
Bdg
• (A)

)
↪→ F1

(
Bdg
• (A)

)
↪→

· · · such that ∪p≥0Fp
(
Bdg
• (A)

)
= Bdg

• (A). The quotient Fp+1

(
Bdg
• (A)

)
/Fp
(
Bdg
• (A)

)
is isomor-

phic to A⊗A
⊗p+1⊗A as a right Ae-module, where A is the cokernel of a unit morphism k → A.

That is, Fp+1(Bdg
• (A))/Fp

(
Bdg
• (A)

)
is a free right Ae-module generated by A

⊗p+1 ∈ Comp(k).

By [3, Definition 9.17, Theorem 9.20], the existence of this filtration implies that Bdg
• (A) is cofi-

brant with respect to the r-model structure in [3, Section 4]. We deduce from the assumption
that k is a field that the projective model structure coincides with this r-model structure (the pro-
jective model structure is the same as the q-model structure in [3, Section 3]). This completes
the proof. �

Remark 8.10. There are other operations between HH•(A)⊗HH•(A) and HH•(A), which is
induced by the KS-algebra structure on (HH•(A),HH•(A)). We continue to work with the coef-
ficient field R = k. We further assume that k is of characteristic zero. Observe first that the Kan
complex MultKS({D,CM}, CM ) is equivalent to the product of the circles S1 × S1 in S, where
S1 × S1 is regarded as an object of S. The left factor S1 is homotopy equivalent to the space
of configuration of one point on (0, 1)×S1, which we regard as the space of rectilinear embeddings
from (0, 1)2 into (0, 1)×S1. The right factor S1 can be identified with the mapping space from CM
to itself, that is, the space of shrinking embeddings (0, 1) × S1 → (0, 1) × S1. The map of ∞-
operads h : KS→ Mod⊗k encoding the KS-algebra (HH•(A),HH•(A)) in Theorem 7.14 induces
morphisms h({D,CM},CM ) : MultKS({D,CM}, CM ) → MapModk

(HH•(A) ⊗ HH•(A),HH•(A))
and h({CM},CM ) : MultKS({CM}, CM ) → MapModk

(HH•(A),HH•(A)) in S. To discuss oper-
ations induced by these morphisms, we adopt the differential graded setting (we simplify the
problem). By taking the singular chain complex of the simplicial sets MultKS(−,−) with coeffi-
cients in k, we obtain the differential graded (dg) operad C•(KS) from KS, i.e., an operad in the
symmetric monoidal category Comp(k). We refer to [15] for the relation between dg operads and
∞-operads. By a rectification result of Hinich [15, Theorem 4.1.1], there is a canonical equiva-
lence between AlgKS(Modk) and the∞-category of C•(KS)-algebras in Comp(k) in the “conven-
tional” sense so that the KS-algebra (HH•(A),HH•(A)) gives rise to a (an essentially unique)
C•(KS)-algebra in Comp(k) in the “conventional” sense: see [15, Section 2.2.4] (we here use
the assumption of characteristic zero). We denote this C•(KS)-algebra by (HH•(A), HH•(A)).
Then the C•(KS)-algebra (HH•(A), HH•(A)) induces morphisms into hom chain complexes:

hdg
({D,CM},CM ) : C•(MultKS({D,CM}, CM ))→ Homk(HH

•(A)⊗HH•(A), HH•(A))

and

hdg
({CM},CM ) : C•(MultKS({CM}, CM ))→ Homk(HH•(A), HH•(A))

in Comp(k)
[
W−1

]
. Given a simplicial set S, we write H∗(S) for the homology H∗(C•(S))

of the singular chain complex C•(S) of S with coefficients in k. Passing to homology, we obtain
a morphism of graded k-vector spaces

H∗
(
hdg

({D,CM},CM )

)
: H∗(MultKS({D,CM}, CM ))

→ H∗(Homk(HH
•(A)⊗HH•(A), HH•(A)))
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from hdg
({D,CM},CM ). Note that by definition the left-hand side is connective. This map can also

be obtained by taking homology of C•(h({D,CM},CM )) up to isomorphisms. Since the mapping
space MultKS({D,CM}, CM ) is homotopy equivalent to S1 × S1, it follows that

H0(MultKS({D,CM}, CM )) ' k,
H1(MultKS({D,CM}, CM )) ' k ⊕ k,
H2(MultKS({D,CM}, CM )) ' k,

and the other parts are zero.
Let [0, 1] ⊂ R be the closed interval and let φ : [0, 1] × S1 = [0, 1] ×R/Z → R/Z = S1 be

the continuous map given by (t, x mod Z) 7→ x+ t mod Z. We think of φ as a homotopy from
the identity map S1 → S1 to itself. The product id(0,1)×φ determines a homotopy φ : [0, 1] ×
(0, 1)×S1 → (0, 1)×S1 from the identity map of (0, 1)×S1 to itself. Let r1 : [0, 1]× (0, 1)2 id×j1→

[0, 1]×(0, 1)×S1 φ→ (0, 1)×S1 be the homotopy from j1 to j1, see discussion before Theorem 8.2

for the maps j, j1, and j2. Let r2 : [0, 1]× (0, 1)× S1 pr→ (0, 1)× S1 j2→ (0, 1)× S1 be the trivial
homotopy from j2 and j2. Define

l := r1 t r2 : [0, 1]×
(
(0, 1)2 t (0, 1)× S1

)
→ (0, 1)× S1.

We think of l as a homotopy from j to j. If we regard φ as a homotopy from the identity to
itself in MultKS({CM}, CM ), it determines an element eB of H1(MultKS({CM}, CM )). If we
think of l as a homotopy from fj to itself in MultKS({D,CM}, CM ), it determines an ele-
ment eL of H1(MultKS({D,CM}, CM )). The C•(KS)-algebra (HH•(A), HH•(A)) (or equiva-
lently the KS-algebra (HH•(A),HH•(A)) in Theorem 7.14) defines L ∈ H1(Homk(HH

•(A)⊗k
HH•(A), HH•(A))) for eL: L is defined to be the image of eL under H∗

(
hdg

({D,CM},CM )

)
. Simi-

larly, eB determines an element B in H1(Homk(HH•(A), HH•(A))).
The morphism fj arising from j = j1 t j2 is a generator of the 0-th homology group. The

image of fj under hdg
({D,CM},CM ) can be identified with u : HH•(A)⊗HH•(A)→ HH•(A) which

is equivalent to the contraction morphism, cf. Theorem 8.2. By a comparison result of Hoyois
[18, Theorem 2.3], B in H1(Homk(HH

•(A), HH•(A))) may be viewed as the Connes opera-
tor: if A is an associative (cofibrant) differential graded algebra which represents A through

AlgAs(Mod⊗k ) ' AlgAs(Comp(k)[W−1]), the classical Connes operator b : Bdg
• (A) ⊗Ae A →

Bdg
• (A) ⊗Ae A (see, e.g., [18, 24]) is equivalent to B, up to the multiplication by ±1, through

Bdg
• (A)⊗Ae A ' HH•(A) ' HH•(A).
The homotopy l and the composition φ ◦ (id[0,1]×j) : [0, 1]×

(
(0, 1)2 t (0, 1)×S1

)
→ (0, 1)×S1

generate the k-vector space k ⊕ k ' H1(MultKS({D,CM}, CM )). Let 1 denote the element
of H0(Homk(HH•(A),HH•(A))) that corresponds to the identity morphism. By relations of ho-
motopies, we see that

L = B ◦ u+ u ◦ (1⊗ (−B)) = B ◦ u− u ◦ (1⊗B)

in H1(Homk(HH
•(A)⊗HH•(A), HH•(A))). Here “◦” indicates the composition. This relation

is known as Cartan homotopy/magic formula. In the dg setting over k, the shifted complex
HH•(A)[1] inherits the structure of an L∞-algebra, i.e., an algebra over a (cofibrant) Lie operad
in Comp(k), from the E2-algebra structure on HH•(A) ' HH•(A). The morphism

L : HH•(A)[1]⊗HH•(A)→ HH•(A)

induced by L appears as the Lie algebra action morphism on HH•(A) (see, e.g., [11]). Since
u and B can be explicitly described (B is equivalent to Connes’ operator), thus L also has
an explicit presentation. Finally, H2(MultKS({D,CM}, CM )) is generated by B ◦ u ◦ (1⊗B).
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9 Equivariant context

Our construction in Theorem 7.14 can easily be generalized to an equivariant setting: Let G
be a group object in S and BG ∈ S the classifying space. Let C ∈ StR, that is, a small
stable R-lienar idempotent-complete ∞-category. Suppose that G acts on C, i.e., an left ac-
tion on C. Namely, C is an object of Fun(BG,StR) whose image under the forgetful functor
Fun(BG,StR)→ StR is C. In this setting, we have

Theorem 9.1. The pair (HH•(C),HH•(C)) of Hochschild cohomology and homology R-module
spectra has the structure of a KS-algebra in Fun(BG,ModR). In other words, (HH•(C),HH•(C))
is promoted to AlgKS(Fun(BG,ModR)).

Remark 9.2. The forgetful functor AlgKS(Fun(BG,ModR)) → AlgKS(ModR) sends the KS-
algebra in Theorem 9.1 to a KS-algebra equivalent to the KS-algebra constructed in Theo-
rem 7.14.

Theorem 9.1 follows from the following:

Construction 9.3. The construction is almost the same as that of Theorem 7.14. Thus, we
highlight necessary modifications.

(i) Let D := Ind(C) be the Ind-category which is an R-linear compactly generated∞-category.
In particular, D belongs to PrL

R. Since C 7→ Ind(C) is functorial, the left action of G on C in-
duces a left action on D. Namely, D is promoted to Fun

(
BG,PrL

R

)
. The functor category

Fun
(
BG,PrL

R

)
inherits a (pointwise) symmetric monoidal structure from that of PrL

R. Let

MorGR(D,D) be an internal hom object in the symmetric monoidal∞-category Fun
(
BG,PrL

R

)
.

This is explicitly described as follows: The internal hom object MorR(D,D) (Lemma 5.1)
in PrL

R has the left action of Gop × G induced by the functoriality of the internal hom ob-
ject and the action of G on D (here Gop denotes the opposite group). The homomorphism
G → Gop × G informally given by g 7→

(
g−1, g

)
determines a left action of G on MorR(D,D).

By the universal property of MorR(D,D), MorR(D,D) endowed with the G-action is an inter-
nal hom object from D to D in Fun

(
BG,PrL

R

)
. As in Lemma 5.1, MorGR(D,D) is promoted to

AlgAs(Fun(BG,ModR)) ' Fun(BG,AlgAs(ModR)). Here the equivalence follows from the defi-
nition of the pointwise symmetric monoidal strucutre on Fun(BG,ModR) [25, Remark 2.1.3.4].

(ii) Recall the adjunction I : AlgAs(ModR) �
(
PrL

R

)
ModR /

:E induces an adjunction

AlgE2
(ModR) ' AlgAs

(
AlgAs

(
ModR

))
� AlgAs

(
PrL

R

)
' AlgE1

(
PrL

R

)
(see Section 5). Applying Fun(BG,−) to this adjunction we get an adjunction

Fun(BG,AlgE2
(ModR)) � Fun

(
BG,AlgAs

(
PrL

R

))
' AlgAs

(
Fun

(
BG,PrL

R

))
.

We define the Hochschild cohomology R-module spectrum

HH•(C) := HH•(D) ∈ Fun(BG,AlgE2
(ModR)) ' AlgE2

(Fun(BG,ModR))

to be the image of MorGR(D,D) under the right adjoint. For ease of notation, we write A for

HH•(C). Write RModG,⊗A for the image of A = HH•(C) = HH•(D) ∈ Fun(BG,AlgE2
(ModR))

under the left adjoint. Consider counit map RModG,⊗A →MorGR(D,D) in Fun
(
BG,AlgAs

(
PrL

R

))
which we regard as a G-equivariant associative monoidal functor. As in the non-equivariant
case, the natural action ofMorGR(D,D) on D gives rise to a left action of RModG,⊗A on D. More

precisely, D is promoted to an object of LMod
RModG,⊗

A
(Fun

(
BG,PrL

R

)
). Let RPerfG,⊗A be the

symmetric monoidal full subcategory spanned by compact objects. By definition, RPerfG,⊗A is
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the associative monoidal small R-linear ∞-category RPerf⊗A endowed with the G-action given
informally by the G-action on A. As in Proposition 7.17, the restriction exhibits C as a left
RPerfG,⊗A -module, that is, an object of LMod

RPerfG,⊗
A

(Fun(BG,StR)).

(iii) Let HH•(−) : StR → Fun(BS1,ModR) denote the symmetric monoidal functor which
carries E to HH•(E) (see Definition 6.14). Applying Fun(BG,−) to it, we have a symmetric
monoidal functor Fun(BG,StR) → Fun(BG,Fun(BS1,ModR)). We define HH•(C) to be the
image of C in Fun(BG,Fun(BS1,ModR)). By the induced functor

LMod
RPerfG,⊗

A
(Fun(BG,StR))→ LModHH•(RPerfG,⊗

A )

(
Fun

(
BG,Fun

(
BS1,ModR

)))
,

we regard HH•(C) as a left HH•
(

RPerfG,⊗A
)
-module. That is to say, HH•(C) is an object of

LModHH•(RPerfG,⊗
A )

(
Fun

(
BG,Fun

(
BS1,ModR

)))
' LModHH•(RPerfG,⊗

A )

(
Fun

(
BS1,Fun(BG,ModR)

))
.

According to the Morita invariance, HH•
(

RPerfG,⊗A
)

can naturally be identified with HH•(A),
where HH•(A) comes equipped with a left action of G induced by the G-action on A = HH•(C).
Let i!(A) : DCyl→ Fun(BG,ModR)⊗ denote the operadic left Kan extension of the map of ∞-
operads A : E⊗2 → Fun(BG,ModR)⊗ over Γ along i : E⊗2 → DCyl where Fun(BG,ModR)⊗ → Γ
is the pointwise symmetric monoidal∞-category induced by the structure on Mod⊗R. Let i!(A)C
be the restriction to Cyl ⊂ DCyl which we think of as an object of AlgCyl(Fun(BG,ModR)).
If we replace ModR by Fun(BG,ModR) in the proof of Proposition 7.11, the argument yields
a canonical equivalence HH•(A) ' i!(A)C in Fun(BS1,Fun(BG,ModR)). Then A = HH•(C) ∈
AlgE2

(Fun(BG,ModR)), the left HH•
(

RPerfG,⊗A
)
-module HH•(C), and HH•(A) ' i!(A)C de-

termine an object of

AlgE2
(Fun(BG,ModR))×AlgAs(Fun(BS1,Fun(BG,ModR)))LMod

(
Fun

(
BS1,Fun(BG,ModR)

))
,

which is naturally equivalent to AlgKS(Fun(BG,ModR)) (see Corollary 4.21). Consequently,
we obtain a KS-algebra in Fun(BG,ModR) having the property described in Remark 9.2.

Remark 9.4. The argument in Construction 9.3 can be applied to show other functorialities.
For example, suppose that we are given an equivalence f : C1

∼→ C2 in StR. Then it gives rise to
an equivalence

(HH•(C1),HH•(C1))
∼−→ (HH•(C2),HH•(C2))

in AlgKS(ModR). To see this, consider the ∞-category I which consists of two objects {1, 2}
such that for any i, j ∈ {1, 2}, the mapping space MapI(i, j) is a contractible space (so that I is
(the nerve of) an ordinary groupoid). The equivalence f amounts to a functor I → StR which
carries 1 and 2 to C1 and C2, respectively, and carries the unique morphism 1→ 2 to f . Namely,
we have an object of Fun(I,StR) so that the construction of Ind-categories gives rise to an object
F ∈ Fun

(
I,PrL

R

)
. Now apply the argument in Construction 9.3 by replacing BG with I: Namely,

we first consider the internal hom object from F to F in Fun
(
I,PrL

R

)
. Note that by [27, Corol-

lary 3.3.3.2] and the fact that I is a Kan complex (i.e.,∞-groupoid), Fun
(
I,PrL

R

)
can be identi-

fied with a limit of the constant diagram I → Ĉat∞ with value PrL
R. There exists an internal hom

object from F to F that is given by the tensor product F⊗F∨ of F and its dual object F∨, where
F∨ is given by taking termwise dual objects. According to [25, Corollary 4.7.1.40], F⊗F∨ is pro-
moted to an endomorphism algebra End(F ) ∈ AlgAs

(
Fun

(
I,PrL

R

))
equipped with a left action

on F in an essentially unique way. The evaluation at each 1, 2 ∈ I gives us the endomorphism al-
gebras EndR(Ind(C1)) and EndR(Ind(C2)), respectively. Thus, replacing BG with I in the proce-
dure in Construction 9.3, we obtain an object in AlgKS(Fun(I,ModR)) ' Fun(I,AlgKS(ModR)),
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which brings us an induced equivalence (HH•(C1),HH•(C1))
∼→ (HH•(C2),HH•(C2)). Finally,

we remark that this argument can be applied to any diagram K → StR such that K is a Kan
complex (i.e., an ∞-groupoid). That is, if we are given a diagram/functor P : K → StR from
an ∞-groupoid K, it gives rise to a diagram PKS : K → AlgKS(ModR) of KS-algebras such
that for any k ∈ K, PKS(k) is equivalent to the KS-algebra constructed from P (k) ∈ StR
in Theorem 7.14.
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