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1 Introduction

1.1 Background

Dual canonical bases and cluster theory. Let g denote a Kac–Moody algebra with a sym-
metrizable Cartan datum, and Uq = Uq(g) the corresponding quantized enveloping algebra,
where q is not a root of unity. The negative (or positive) part Uq

− of Uq possesses the famous
canonical bases [18, 19, 28, 29]. The corresponding dual basis Bup also has fascinating properties
and is related to the theory of total positivity [30].

Fomin and Zelevinsky invented cluster algebras as a combinatorial framework to understand
the total positivity [30] and the dual canonical bases Bup. We refer the reader to the survey [22]
for further details of cluster algebras.

Let there be given any Weyl group element w ∈W . Then the dual canonical basis Bup of Uq
−

restricts to a basis Bup(w) = Bup ∩Aq[N−(w)] for the quantum unipotent subgroup Aq[N−(w)],
see [25]. Notice that, if g is a finite-dimensional semi-simple Lie algebra, then Aq[N(w0)] agrees
with Uq

−, where w0 denotes the longest element in W .

Thanks to previous works (such as [1, 2, 9, 10, 11, 12]), it is known that the quantum
unipotent subgroup Aq[N−(w)] is a (partially compactified) quantum cluster algebra Aq(t0),
where the initial seed t0 = t0(−→w ) is constructed using a reduced word −→w of w. By Fomin
and Zelevinsky [7], the dual canonical basis Bup(w) is expected to contain all quantum cluster
monomials, which was formulated as the quantization conjecture for Kac–Moody cases in [25].
This conjecture has been verified for acyclic cases by [26] based on [16, 32], for symmetric
semisimple cases and partially for symmetric Kac–Moody cases by [33], for all symmetric Kac–
Moody cases by [17], and recently, for all symmetrizable Kac–Moody cases by [35].

This paper is a contribution to the Special Issue on Cluster Algebras. The full collection is available at
https://www.emis.de/journals/SIGMA/cluster-algebras.html
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Leclerc’s conjecture. A basis element b ∈ Bup ⊂ Uq
− is said to be real if b2 ∈ qZ Bup.

Leclerc proposed the following conjecture regarding the multiplication by a real element of Bup,
which is analogous to Kashiwara crystal graph operator.

Conjecture 1.1 (Leclerc’s conjecture [27, Conjecture 1]). Assume that b1 is a real element
of Bup. Then, for any b2 ∈ Bup such that b1b2 /∈ qZ Bup, the expansion of their product on Bup

takes the form

b1b2 = qhb′ + qsb′′ +
∑

c6=b′,b′′
γcb1,b2c, (1.1)

where b′ 6= b′′, h < s ∈ Z, γcb1,b2 ∈ q
h+1Z[q] ∩ qs−1Z

[
q−1
]
.

This conjecture was proved by [17] for symmetric Kac–Moody cases using quiver Hecke
algebras [23, 24, 36].

Common triangular bases. For a large class of quantum (upper) cluster algebras (called
injective-reachable, see Section 3.3), the author introduced the triangular basis Lt for any chosen
seed t in [33]. The basis is characterized by a triangular property with respect to the dominance
order on the degrees of its basis elements (Section 3.1), whence the name “triangular”. It is
unique if it exists, and it can be constructed via Lusztig Lemma for Kazhdan–Lusztig type bases
[35, Section 6.1]. Notice that the triangular basis Lt depends on the seed t.

In [33, Definition 6.1.1], the author further considered the common triangular basis L, such
that it gives rise to the triangular bases Lt for all seeds t and the basis elements have well-
behaved degrees under mutations (Sections 3.2 and 4.1). The common triangular basis, if
exists, contains all quantum cluster monomials and verifies the Fock–Goncharov dual basis
conjecture [5, 6]. It turns out the dual canonical bases of Aq[N−(w)] give rise to the common
triangular bases for the corresponding quantum cluster algebras [20, 33, 35]. Also, the collections
of the simple modules in monoidal categorification of cluster algebras also provide examples of
the common triangular bases [3, 17, 20, 33]. In this view, the common triangular bases suggest
a generalization of the dual canonical bases in cluster theory, and their existence also implies
the possible existence of monoidal categorifications.

1.2 Main results

By [20, 33, 35], after localization and rescaling, the dual canonical basis Bup(w) agrees with
the common triangular basis of the corresponding quantum cluster algebra in the sense of [33].
Correspondingly, we formulate the following analog of Leclerc’s conjecture.

Conjecture 1.2 (Conjecture 5.3). Conjecture 1.1 is true if we replace the dual canonical basis
by the common triangular basis.

Recall that the quantum cluster monomials provide a subset of the real elements in the dual
canonical basis Bup(w) (we conjecture that all real elements take this form, see Conjecture 5.7).
Our first main result is the following weaker form of the analogous conjecture.

Theorem 1.3 (Theorem 5.2). Conjecture 1.2 is true for the real basis elements corresponding
to quantum cluster monomials.

Theorem 1.3 implies a triangularity property for the t-analogs of q-characters of simple modu-
les of quantum affine algebras, see Theorem 5.4. By [21, Corollary 4.12], as a stronger version
of Theorem 5.4, Conjecture 1.2 holds true for the quantum cluster algebras in this case, see
Remark 5.5.

Our second main result follows as a consequence of Theorem 1.3.
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Theorem 1.4 (Theorem 5.6). If we consider the dual canonical basis Bup(w) of the quantum
unipotent subgroup Aq[N−(w)], then Conjecture 1.1 holds true for the real elements corresponding
to quantum cluster monomials.

In order to study the analog of Leclerc’s conjecture and prove Theorem 1.3, we will consider
not only triangularity with respect to degrees but also triangularity with respect to codegrees.
Correspondingly, we introduce the notion of double triangular bases (Definition 4.5), such that
both the degrees and the codegrees of the basis elements are well-behaved. In fact, the two
terms b′, b′′ in (the analog of) Leclerc’s conjecture are determined by the codegree and the
degree respectively, see Lemma 5.1.

As the third main result, we verify that the common triangular basis elements have well-
behaved degrees and codegrees.

Theorem 1.5 (Theorem 4.10). If the common triangular basis exists, then it gives rise to the
double triangular basis for any seed. Moreover, it is compatibly copointed.

It is worth remarking that, if the cluster algebra is categorified by a rigid monoidal category,
then degrees and codegrees are related to the two different ways of taking the dual objects in
the category, see [20].

1.3 Contents

In Section 2, we briefly review basic notions in cluster theory needed by this paper.
In Section 3.1, we review notions and techniques introduced and studied by [33, 34] such

as dominance orders, (co)degrees and (co)pointed functions. In Section 3.2, we define tropical
transformation for codegrees in analogous to that for degrees. In Section 3.3, we review the
notion of injective-reachability, and define the sets of distinguished functions It, Pt for seeds t,
and we present some properties of injective-reachability and these distinguished functions.

In Section 4, we define various bases whose degrees or codegrees satisfy certain properties.
In particular, we introduce the notion of double triangular bases. We discuss the relation between
double triangular bases and (common) triangular bases. We prove that common triangular bases
have good properties on their codegrees (Theorem 4.10).

In Section 5, we propose an analog of Leclerc’s conjecture for common triangular bases
(Conjecture 5.3) and show a weaker form holds true (Theorem 5.2). We discuss its consequences
for modules of quantum affine algebras (Theorem 5.4, Remark 5.5). We deduce that the weaker
form is satisfied by the dual canonical bases of Aq[N−(w)] (Theorem 5.6).

2 Basics of cluster algebras

We briefly review notions in cluster theory necessary for this paper following [33, 34, 35]. A rea-
der unfamiliar with cluster theory is referred to [2, 22] for background materials.

Denote k = Z
[
q±

1
2

]
= Z[v±], where v = q

1
2 is a formal parameter. Define m = v−1Z

[
v−1
]
.

Notice that we have a natural bar involution ( ) on k which sends v to v−1. Let ( )T denote the
matrix transposition and [ ]+ denote the function max(0, ).

2.1 Seeds

Fix a finite set of vertices I and its partition I = Iuf t If into the unfrozen and frozen vertices.
Let there be given a quantum seed t =

(
B̃(t),Λ(t), (Xi(t))i∈I

)
, where Xi(t) are indetermi-

nates, the integer matrices B̃(t) = (bij(t))i∈I,j∈Iuf and Λ(t) = (Λij(t))i,j∈I form a compatible
pair, i.e. there exists some diagonal matrix D = diag(dk)k∈Iuf with strictly positive integer dia-

gonals, such that B̃(t)TΛ(t) =
(
D 0

)
. Xi(t) are called the i-th X-variables or quantum cluster
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variables associated to t, B̃(t) the B̃-matrix, Λ(t) the Λ-matrix, and B(t) := (bij(t))i,j∈Iuf the

principal part of B̃(t) or the B-matrix.

Lemma 2.1 ([2]).

(1) We have dibik(t) = −dkbki(t) for i, k ∈ Iuf .

(2) The matrix B̃(t) is of full rank |Iuf |.

Define the following lattices (of column vectors):

M◦(t) = ⊕i∈IZfi(t) ' ZI ,
Nuf(t) = ⊕k∈IufZek(t) ' ZIuf ,

where fi(t), ek(t) denote the i-th and k-th unit vectors respectively. Denote

N≥0
uf (t) = ⊕k∈IufNek(t) ' NIuf .

Define the linear map p∗ : Nuf(t)→M◦(t) such that p∗n = B̃(t)n. Let λ denote the bilinear
form on M◦(t) such that

λ(g, g′) = gTΛ(t)g′.

Lemma 2.2. For any i ∈ I, k ∈ Iuf , we have λ(fi(t), p
∗ek(t)) = −δikdk.

The group algebra of M◦(t) is the Laurent polynomial ring k[M◦(t)] := k[X(t)m]m∈M◦(t) =
k[Xi(t)

±]i∈I with the usual addition and multiplication (+, ·), where we denote the Laurent
monomial X(t)m =

∏
i∈I Xi(t)

mi for m =
∑
mifi(t).

The quantum Laurent polynomial ring (also called the quantum torus) LP(t) associated to t
is defined as the commutative algebra k[M◦(t)] further endowed with the twisted product ∗:

X(t)m ∗X(t)m
′

= vλ(m,m′)X(t)m+m′ .

By the algebraic structure on LP(t), we mean (+, ∗) unless otherwise specified.
The monomials X(t)m, m ∈ NI , are called the quantum cluster monomials associated to t.

The Laurent monomials X(t)m, m ∈ NIuf ⊕ZIf , are called the localized quantum cluster mono-
mials associated to t.

Define the Y -variables to be Yk(t) := X(t)p
∗ek(t), k ∈ Iuf . Denote Y (t)n = X(t)p

∗n for
n ∈ Nuf(t).

We also define F(t) to be the skew field of fractions of LP(t).
For simplicity, we often omit the symbol t when there is no confusion.

2.2 Mutations

For any k ∈ Iuf , we have an operation µk called mutation in the direction k which gives us
a new seed t′ = µkt =

(
B̃(t′),Λ(t′), (Xi(t

′))i∈I
)
, where X ′i := Xi(t

′) are indeterminates. See [2]

for precise definitions of B̃(t′), Λ(t′). Recall that we have µ2
kt = t.

Given any initial seed t0, we let ∆+
t0

denote the set of seeds obtained from t0 by iterated
mutations. Then we have ∆+

t0
= ∆+

t if t ∈ ∆+
t0

. Throughout this paper, we will always work
with seeds from the same set ∆+ = ∆+

t0
, where the initial seed t0 is often omitted for simplicity.

For simplicity, denote t =
(
B̃,Λ, (Xi)

)
and t′ =

(
B̃′,Λ′, (X ′i)

)
.

Denote vk = vdk . Recall that there is an algebra isomorphism µ∗k : F(t′) ' F(t) called the
mutation birational map, such that we have

µ∗k(X
′
k) = vλ(fk,

∑
j∈I [−bjk]+fj)X−1

k ∗
(
X

∑
j∈I [−bjk]+fj + v−1

k X
∑

i∈I [bik]+fi
)
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and, for i 6= k,

µ∗k(X
′
i) = Xi.

Notice that we can also write µ∗k(X
′
k) = X−fk+

∑
j∈I [−bjk]+fj · (1 + Yk). Recall that (µ∗k)

2 is
an identity.

Let there be given any seed t′ = ←−µ t′,tt, where ←−µ t′,t = ←−µ = µkr · · ·µk2µk1 is a sequence
of mutations (read from right to left). We define the mutation birational map←−µ ∗t′,t : F(t′) ' F(t)

as the composition µ∗k1 · · ·µ
∗
kr

. It is known that←−µ ∗t′,t is independent of the choice for the mutation

sequence←−µ t′,t from t to t′. Define a sequence of mutations←−µ t,t′ = µk1µk2 · · ·µkr correspondingly,
which is often denoted by (←−µ t′,t)

−1 for simplicity.
Notice that, if i ∈ If , we have ←−µ ∗t′,tXi(t

′) = Xi(t) for all t′ ∈ ∆+. Correspondingly, we

call Xi(t
′), i ∈ If , t

′ ∈ ∆+, the frozen variables, and denote them by Xi for simplicity. Define
the set of frozen factors to be P =

{
Xm |m ∈ ZIf

}
.

2.3 Cluster algebras

Let there be given a quantum seed t ∈ ∆+.

Definition 2.3. The (partially compactified) quantum cluster algebra Aq(t) is defined to be the
k-subalgebra of LP(t) generated by the quantum cluster variables ←−µ ∗t′,tXi(t

′), i ∈ I, t′ ∈ ∆+.

The (localized) quantum cluster algebra Aq(t) is defined to be the localization of Aq(t) at P.
The upper quantum cluster algebra Uq(t) is defined to be ∩t′∈∆+

←−µ ∗t′,tLP(t′).

Recall that we have Aq(t) ⊂ Aq(t) ⊂ Uq(t). Moreover, for t, t′ ∈ ∆+, we have ←−µ ∗t′,tUq(t′) =

Uq(t), ←−µ ∗t′,tAq(t′) = Aq(t), ←−µ ∗t′,tAq(t′) = Aq(t). It is sometimes convenient to forget the sym-

bols t, t′ by viewing ←−µ ∗t′,t as an identification.

3 Dominance orders and pointedness

In this section, we recall the notions and some basic results concerning dominance orders and
pointed functions from [33, 34]. We also describe properties of codegrees and copointed functions
in analogous to those of degrees and pointed functions.

3.1 Dominance orders and pointedness

Let there be given a quantum seed t.

Definition 3.1 (dominance order). We denote g′ �t g if there exists some n ∈ N≥0
uf (t) such

that g′ = g + p∗n. In this case, we say g′ is dominated by g, or g′ is inferior to g.

The meanings of symbols ≺t, �t, �t are given in the obvious way.

Lemma 3.2 ([33]). For any g, g′ ∈ M◦(t), there exist finitely many g′′ such that g′′ �t g
and g′′ �t g′.

Notice that LP(t) has a subring k[N≥0
uf (t)] := k[Yk(t)]k∈Iuf . Let ̂k[Yk(t)]k∈Iuf denote the

completion of k[Yk(t)]k∈Iuf with respect to the maximal ideal generated by Yk(t), k ∈ Iuf .
The formal completion of LP(t) is defined to be

L̂P(t) = LP(t)⊗k[Yk(t)]k∈Iuf
̂k[Yk(t)]k∈Iuf .

Elements in L̂P(t) will be called functions or formal Laurent series.
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Similarly, we consider the subring k
[
Y −1
k (t)

]
k∈Iuf

of LP(t) and its completion ̂k
[
Y −1
k (t)

]
k∈Iuf

with respect to the maximal ideal generated by Y −1
k (t), k ∈ Iuf . We define the following

completion of LP(t):

L̃P(t) := LP(t)⊗k[Y −1
k (t)]k∈Iuf

̂k
[
Y −1
k (t)

]
k∈Iuf

.

By a formal sum, we mean a possibly infinite sum. Let Z denote a formal sum Z =∑
m∈M◦(t) bmX(t)m. Notice that it belongs to L̂P(t) (resp. L̃P(t)) if and only if its Laurent deg-

ree support suppM◦(t) Z = {m | bm 6= 0} has finitely many ≺t-maximal elements (resp. finitely
many ≺t-minimal elements).

Definition 3.3 ((co)degrees and (co)pointedness). The formal sum Z is said to have degree g
if suppM◦(t) Z has a unique ≺t-maximal element g, and we denote degt Z = g. It is said to be
pointed at g or g-pointed if we further have bg = 1.

The formal sum Z is said to have codegree η if suppM◦(t) Z has a unique≺t-minimal element η,

and we denote codegt Z = η. It is said to be copointed at η or η-copointed if we further have
bη = 1.

Let there be given a set S. It is said to be M◦(t)-pointed if it takes the form S = {Sg | g ∈
M◦(t)}, where Sg are g-pointed functions in L̂P(t). Similarly, it is said to be M◦(t)-copointed,

if it takes the form S = {Sη | η ∈M◦(t)}, where Sη are η-copointed functions in L̃P(t).

As in [34], if Z is both pointed at g and copointed at η, it is said to be bipointed at the
bidegree (g, η).

Definition 3.4 (normalization). Let F(k) denote the fraction field of k. If Z has degree g,

we define its (degree) normalization in L̂P(t)⊗k F(k) to be

[Z]t := b−1
g Z.

Similarly, if Z has codegree η, we define its codegree normalization in L̃P(t)⊗k F(k) to be:

{Z}t := b−1
η Z.

Let there be given a (possibly infinite) collection of formal sums Zj . Notice that their formal
sum

∑
j Zj is well-defined if, at each Laurent degrees, only finitely many of them have non-

vanishing coefficients.

Definition 3.5 (degree triangularity). A formal sum
∑

j bjZj of pointed elements Zj ∈ L̂P(t),

bj ∈ k, is said to be degree ≺t-unitriangular, or ≺t-unitriangular for short, if
{

degt Zj | bj 6= 0
}

has a unique ≺t-maximal element degt Zj0 and bj0 = 1. It is further said to be degree (≺t,m)-
unitriangular, or (≺t,m)-unitriangular for short, if we further have bj ∈m for j 6= j0.

Definition 3.6 (codegree triangularity). A formal sum
∑

j bjZj of copointed elements Zj ∈
L̃P(t), bj ∈ k, is said to be codegree �t-unitriangular if {codegt Zj | bj 6= 0} has a unique ≺t-
minimal element codegt Zj0 and bj0 = 1. It is further said to be codegree (�t,m)-unitriangular,
if we further have bj ∈m for j 6= j0.

Notice that Lemma 3.2 implies that a degree ≺t-unitriangular sum is a well-defined sum
in L̂P(t) and, similarly, a codegree �t-unitriangular sum is a well-defined sum in L̃P(t).

Lemma 3.7.

(1) Let there be given a M◦(t)-pointed set S, then any pointed function Z ∈ L̂P(t) can be
written uniquely as a (degree) ≺t-unitriangular sum of elements of S [33].
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(2) Let there be given a M◦(t)-copointed set S, then any copointed element Z ∈ L̃P(t) can be
written uniquely as a codegree �t-unitriangular sum of elements of S.

Proof. (1) is proved as in [33, Lemma 3.1.10(i)], see also [34, Definition–Lemma 4.1.1]. (2) can
be proved similarly, or we can deduce it from (1) by using the map ι defined in (3.2). �

In the cases of Lemma 3.7, we say Z is (degree) ≺t-unitriangular to S or codegree �t-
unitriangular to S respectively. It is further said to be (degree) (≺t,m)-unitriangular to S
or codegree (�t,m)-unitriangular to S respectively, if its decomposition in S has such properties.

Example 3.8 (type A2). Take I = {1, 2} = Iuf and If = ∅. Consider the initial quantum
seed t0 such that B(t0) := B :=

(
0 −1
1 0

)
, Λ(t0) := Λ := B and denote its quantum cluster

variables by X1, X2 for simplicity. Then we have Y1 = Xf2 = X2 and Y2 = X−f1 = X−1
1 ,

where fi denote the i-th unit vector.
The corresponding quantum cluster algebra Aq has five quantum cluster variables. It has the

basis L consisting of the quantum cluster monomials.
Recall that, in LP(t0), the commutative product is denoted by · or is omitted, while the

twisted product is denoted by ∗. The non-initial quantum cluster variables can be written as
the following in LP(t0):

P2 := Xf1−f2 +X−f2 = Xf1−f2 · (1 + Y2),

I2 := P1 := X−f2 +X−f1−f2 +X−f1 = X−f2 · (1 + Y2 + Y1 · Y2),

I1 := X−f1 +X−f1+f2 = X−f1 · (1 + Y1).

Then P2, P1, I1 are bipointed at the bidegrees (f1 − f2,−f2), (−f2,−f1), (−f1,−f1 + f2)
respectively.

Let us compute some degree normalized products in LP(t0):

[X1 ∗ I1] = X1 ∗ I1 = 1 + v−1X2,

[X1 ∗ I2] = vΛ12X1 ∗ I2 = Xf1−f2 +X−f2 + v−1 · 1 = P2 + v−1 · 1,
[X2 ∗ I1] = vΛ21X2 ∗ I1 = Xf2−f1 +X−f1+2f2 ,

[X2 ∗ I2] = X2 ∗ I2 = 1 + v−1X−f1 + v−1X−f1+f2 = 1 + v−1I1.

Notice that vΛ21X2 ∗ I1 is a quantum cluster monomial of the seed µ1(t0). Then the above
normalized products are degree (≺t,m)-unitriangular to the basis L.

Similarly, we compute some codegree normalized products in LP(t0):

{P1 ∗X1} = P1 ∗X1 = v−Λ21Xf1−f2 + v−Λ21X−f2 + 1 = v−1P2 + 1,

{P1 ∗X2} = vΛ12P1 ∗X2 = v−1 +X−f1 +Xf2−f1 = v−1 · 1 + I1,

{P2 ∗X1} = vΛ21P2 ∗X1 = X2f1−f2 +Xf1−f2 ,

{P2 ∗X2} = P2 ∗X2 = v−1X1 + 1.

Notice that vΛ21P2 ∗X1 is a quantum cluster monomial of µ2(t0). Then the above normalized
products are codegree (�t,m)-unitriangular to the basis L.

3.2 Tropical transformations and compatibility

As before, let there be given seeds t′ =←−µ t, where←−µ =←−µ t′,t is a sequence of mutations. Denote
←−µ t,t′ =←−µ −1

t′,t. Denote the i-th cluster variables associated to t and t′ by Xi and X ′i respectively.
Let fi, f

′
i denote the i-th unit vectors associated to t and t′ respectively.
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Definition 3.9 (tropical transformation). If t′ = µkt, k ∈ Iuf , we define the (degree) tropical
transformation φt′,t : M

◦(t) ' M◦(t′) such that, for any g = (gi)i∈I ∈ M◦(t) ' ZI , its image
φt′,tg = (g′i)i∈I ∈M◦(t′) ' ZI is given by

g′i =


−gk, i = k,

gi + bik[gk]+, i 6= k, bik ≥ 0,

gi + bik[−gk]+, i 6= k, bik < 0.

In general, we define the (degree) tropical transformation φt′,t : M
◦(t) ' M◦(t′) as the com-

position of the tropical transformations for adjacent seeds along the mutation sequence←−µ from t
to t′. By [13], φt′,t is the tropicalization of certain birational maps between the split algebraic
tori associate to t, t′ and, consequently, independent of the choice of ←−µ .

Recall that ←−µ ∗t,t′Xi is a pointed Laurent polynomial in LP(t′) by [4, 14, 37].

Definition 3.10 (degree linear transformation [34, Definition 3.3.1]). Define ψt′,t : M
◦(t) '

M◦(t′) to be the linear map such that ψt′,t(fi) = degt
′←−µ ∗t,t′Xi.

By [34, Lemma 3.3.4], the mutation map ←−µ ∗t,t′ : F(t) ' F(t′) induces an injective algebra

homomorphism µ̂ : LP(t) ↪→ L̂P(t′). It has the following property.

Lemma 3.11 ([34, Lemma 3.3.7]). For any m ∈ ZI , µ̂Xm is a well-defined function in L̂P(t′)
pointed at degree ψt′,tm.

Moreover, for Z ∈ LP(t) ∩ ←−µ ∗t′,tLP(t′), we have µ̂(Z) = ←−µ ∗t,t′Z, see [34, Lemma 3.3.4].

Correspondingly, denote µ̂ by ←−µ ∗t,t′ for simplicity.

Consider the following set of Laurent polynomials

LP(t; t′) := LP(t) ∩←−µ ∗t′,tLP(t′).

Then LP(t; t′) is a k-algebra, such that ←−µ ∗t,t′LP(t; t′) = LP(t′; t).

The following very useful result shows that certain mutation sequences swap pointedness and
copointedness, where t[−1] is a shifted seed constructed from a given seed t (Definition 3.18).

Proposition 3.12 (Swap [34, Propositions 3.3.9 and 3.3.10]).

(1) For any g, η ∈M◦(t), we have η �t g if and only if ψt[−1],tη �t ψt[−1],tg.

(2) Let there be given Z ∈ LP(t; t[−1]) ⊂ LP(t). Then Z is η-copointed if and only if←−µ ∗t,t[−1]Z
is ψt[−1],tη-pointed.

Definition 3.13 (compatibility). If Z belongs to LP(t; t′) ⊂ LP(t), then Z is said to be
compatibly pointed at t, t′ if it is g-pointed for some g ∈M◦(t), and ←−µ ∗t,t′Z is φt′,tg-pointed.

If Z belongs to Uq(t) ⊂ LP(t), then Z is said to be compatibly pointed at ∆+ if it is
compatibly pointed at t, t′ for any t′ ∈ ∆+.

Let S denote a set consisting of g-pointed functions Sg ∈ L̂P(t) for distinct g ∈M◦(t). If Sg
is compatibly pointed at t, t′ for each g, we say S is compatibly pointed at t, t′, or the pointed
sets S and ←−µ ∗t,t′S are (degree) compatible.

Thanks to [4, 14], we know that any given cluster monomial is compatibly pointed at all
seeds. In particular, the degrees of its Laurent expansions at different seeds are related by
tropical transformations.
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Definition 3.14 (codegree tropical transformation). For any seeds t′ = µkt, k ∈ Iuf , we define
the codegree tropical transformation φop

t′,t : M
◦(t) ' M◦(t′) as such that, for any g = (gi)i∈I ∈

M◦(t) ' ZI , its image φop
t′,tg = (g′i)i∈I ∈M◦(t′) ' ZI is given by

g′i =


−gk, i = k,

gi − bik[gk]+, i 6= k, bik ≤ 0,

gi − bik[−gk]+, i 6= k, bik > 0.

In general, we define the codegree tropical transformation φop
t′,t : M

◦(t) 'M◦(t′) as the compo-

sition of the codegree tropical transformations for adjacent seeds along the mutation sequence←−µ
from t to t′.

Let us justify our definition of the codegree tropical transformation.
To any given seed t =

(
B̃,Λ, (Xi)i∈I

)
, we associate the opposite seed defined to be ι(t) :=

top :=
(
−B̃,−Λ, (Xi)i∈I

)
. Then [34, Lemma 2.2.5] implies that, for any mutation sequence ←−µ ,

we have (←−µ t)op =←−µ (top).
Let us define ι : M◦(t) ' M◦(top) as an isomorphism on ZI such that ι(fi(t)) = ι(fi(t

op)).
Correspondingly, by defining ι(Xm) = Xm, we obtain natural k-algebra anti-isomorphisms

ι : LP(t) ' LP(top), (3.1)

ι : L̂P(t) ' L̃P(top), (3.2)

ι : L̃P(t) ' L̂P(top).

Notice that ι : LP(t) ' LP(top) induces an anti-isomorphism ι : F(t) ' F(top).
For any given k ∈ Iuf , we have µk(t

op) = (µkt)
op. It is straightforward to check the commu-

tativity of the following diagram:

F(t)
ι−→ F(top)

↑ µ∗k ↑ µ∗k
F(µkt)

ι−→ F(µk(t
op)).

(3.3)

In particular, ι(µ∗kXi(µkt)) = µ∗k(ιXi(µkt)) is given by Xi(t
op) if i 6= k, or

X(top)−fk(top)+
∑

j [−bjk]+fj(top) +X(top)−fk(top)+
∑

i[bik]+fi(t
op)

if i = k.
Notice that Y (t)n = XB̃n while Y (top)n = X−B̃n. It follows that Z ∈ L̂P(t) is g-pointed if

and only if ιZ ∈ L̃P(top) is g-copointed. We have the following result.

Lemma 3.15. Let there be given seeds t′ = ←−µ t′,tt. Then the codegree tropical transformation

φop
t′,t : M

◦(t) 'M◦(t′) equals the composition M◦(t)
ι−→M◦(top)

φ(t′)op,top−−−−−−→M◦((t′)op)
ι−→M◦(t′).

In particular, it is independent of the choice of ←−µ t′,t.

Proof. By the commutativity between ι and mutations, it suffices to check the claim for adja-
cent seeds t′ = µkt, which follows from definition. �

Notice that we have LP(t; t′) = ιLP(top; (t′)op) and Uq(t) = ι(Uq(top)) by the commutativity
between ι and mutations.

Definition 3.16 (codegree compatibility). If Z belongs to LP(t; t′) ⊂ LP(t), then Z is said
to be compatibly copointed at t, t′ if it is η-copointed for some η ∈ M◦(t), and ←−µ ∗t,t′Z is

φop
t′,tη-copointed.
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If Z belongs to Uq(t) ⊂ LP(t), then Z is said to be compatibly copointed at ∆+ if it is
compatibly copointed at t, t′ for any t′ ∈ ∆+.

Let S denote a set consisting of η-copointed elements Sη ∈ L̃P(t) for distinct η ∈ M◦(t).
If Sη are compatibly copointed at t, t′ for all η, we say S is compatibly copointed at t, t′, or the
copointed sets S and ←−µ ∗t,t′S are (codegree) compatible.

Remark 3.17. We refer the reader to [20, Section 3.5] for a categorical view. In their setting,
to study cluster algebras arising from quantum unipotent cells, one considers certain module
category of the corresponding quiver Hecke algebras and localize it at the simple objects cor-
responding to the frozen variables. Then the degrees and codegrees, together with the tropical
transformations, can be calculated by taking dual objects in the localized module category.

3.3 Injective-reachability and distinguished functions

Let σ denote a permutation of Iuf . For any mutation sequence ←−µ = µkr · · ·µk1 , we define
σ←−µ = µσkr · · ·µσk1 .

Let prIuf and prIf denote the natural projection from ZI to ZIuf and ZIf respectively.

Definition 3.18 ([33, Definition 5.1.1]). A seed t is said to be injective-reachable if there exists
a mutation sequence ←−µ = ←−µ t′,t and a permutation σ of Iuf , such that the seed t′ = ←−µ t′,tt
satisfies bσi,σj(t

′) = bij(t) for i, j ∈ Iuf and, for any k ∈ Iuf ,

degt←−µ ∗t′,tXσk(t
′) = −fk + uk (3.4)

for some uk ∈ ZIf .
In this case, we denote t′ = t[1] and say it is shifted from t (by [1]) with the permuta-

tion σ. Similarly, we denote t = t′[−1] and say it is the shifted from t′ (by [−1]) with the
permutation σ−1.

We recall that, up to a permutation of vertices, a seed is determined by the degrees (extended
g-vectors) of its cluster variables, see [14] for an interpretation in terms of chambers. In parti-
cular, the shifted seed t[1] is unique up to a permutation.

Let there be given an injective-reachable seed t. Recursively, we construct a chain of seeds
{t[d] | d ∈ Z} called an injective-reachable chain, such that t[d] =

(
σd−1←−µ

)
t[d − 1], see [33,

Definition 5.2.1]. In particular, we have t =
(
σ−1←−µ

)
t[−1].

We denote Ik(t) = ←−µ ∗t[1],tXσk(t[1]) and Pk(t) = ←−µ ∗t[−1],tXσ−1(k)(t[−1]). For any d ∈ NIuf ,
define the cluster monomial I(t)d :=

[∏
k Ik(t)

dk
]t

and P (t)d :=
[∏

k Pk(t)
dk
]t

.
Since a quantum cluster monomial is pointed, it is also copointed by [8] (we can also see this

using the map ι). It follows that I(t)d =
{∏

k Ik(t)
dk
}t

and P (t)d =
{∏

k Pk(t)
dk
}t

.
Notice that if t is injective-reachable, then so is any seed t′ ∈ ∆+. Such property is equivalent

to the existence of a green to red sequence. See [33, 34] for more details.
For any g = (gi)i∈I ∈ ZI 'M◦(t), denote [g]+ = ([gi]+)i∈I . We have the following g-pointed

element in LP(t):

Itg =
[
pg ∗X(t)[g]+ ∗ I(t)[− prIuf

g]+
]t

for some frozen factor pg ∈ P. Define the following set of distinguished pointed functions

It :=
{
Itg | g ∈M◦(t)

}
.

Denote t′ = t[1]. By (3.4), the linear map ψt,t′ : M◦(t′) 'M◦(t) is determined by

ψt,t′(f
′
σk) = −fk + uk, uk ∈ ZIf , k ∈ Iuf ,

ψt,t′(f
′
i) = fi, i ∈ If .
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Using Proposition 3.12, we deduce that

codegt[1] Pσk(t[1]) = codegt[1]←−µ ∗t,t[1]Xk(t) = ψ−1
t,t[1]fk = −fσk(t[1]) + uk. (3.5)

Notice that (3.5) appears in [33, equation (18)] as an assumption. Replacing t by t[−1] in the
above argument, we obtain

codegt Pσk(t) = −fσk + u′k (3.6)

for any k ∈ Iuf and some u′k ∈ ZIf .
Correspondingly, for any η ∈ ZI ' M◦(t), we have the following η-copointed element

in LP(t):

Pt,η =
{
P (t)[− prIuf

η]+ ∗X(t)[η]+ ∗ pη
}t

for some frozen factor pη ∈ P. Define the following set of distinguished copointed functions

Pt :=
{
Pt,η | η ∈M◦(t)

}
.

The two kinds of distinguished functions are related by the following result. At a categorical
level, it can be viewed as the duality between injective representations and projective represen-
tations for a pair of opposite quivers, see [33, Section 5.3] for more discussion.

Lemma 3.19. Denote ←−µ =←−µ t[1],t. The following claims are true.

(1) For any k ∈ Iuf , we have ιPk(t) = Ik(t
op).

(2) We have t[−1]op = (top)[1] =
(
σ−1←−µ

)−1
top, which is shifted from top with the permuta-

tion σ−1.

(3) We have t[1]op = (top)[−1] =←−µ top, which is shifted from top with the permutation σ.

Proof. (1) Recall that ιPk(t) is a quantum cluster variable contained in LP(top). By (3.6),
ιPk(t) is pointed at −fk + u for some u ∈ ZIf . The claim follows.

(2) Denote ←−ν =
(
σ−1←−µ

)−1
for simplicity. By the commutativity between mutations and ι,

we have t[−1]op = (←−ν t)op =←−ν top.
The seed t[−1]op has the principal B-matrix given by bij(t[−1]op) = −bij(t[−1]) = −bσi,σj ,

i, j ∈ Iuf . Using the commutativity relation (3.3) between ι : F(t) ' F(top), ι : F(←−ν t) '
F((←−ν t)op) and mutations, its cluster variables have the following Laurent expansion in LP(top):(←−ν )∗(Xσ−1k

(←−ν top
))

= ι
((←−ν )∗ι−1Xσ−1k

(←−ν top
))

= ι
((←−ν )∗Xσ−1k

(←−ν t)) = ι
(
Pk(t)

)
,

k ∈ Iuf , which are pointed at −fk + u, u ∈ ZIf . It follows that t[−1]op is a shifted seed top[1]
with the permutation σ−1.

(3) Notice that t[1]op = (←−µ t)op = ←−µ (top) by the commutativity between mutations and ι.
Since ←−µ −1top = top[1] with the permutation σ−1 by (2), we have ←−µ top = top[−1] with the
permutation σ. �

Example 3.20. Let us continue Example 3.8. Ignore the Lambda matrices for simplicity and
set v = 1. Then the cluster algebra have five cluster variables in LP(t0):

X1, X2, P2 =
X1 + 1

X2
, P1 = I2 =

X1 + 1 +X2

X1X2
, I1 =

1 +X2

X1
.

Take the seed t0 = (B, (X1, X2)). Choose the mutation sequence ←−µ = µ2µ1µ2 (read from
right to left). Then

t0[1] :=←−µ t0 = (−B, (I2, I1))
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is shifted from t0 by [1] with the unique non-trivial permutation σ of I = {1, 2}. Notice that(
σ−1←−µ

)−1
= µ1µ2µ1. Similarly,

t0[−1] :=
(
σ−1←−µ

)−1
t0 = (−B, (P2, P1))

is shifted from t0 by [−1] with σ−1.
It follows that

top
0 = (−B, (ιX1, ιX2)) =

(
−B, (X1(top

0 ), X2(top
0 ))

)
,

t0[1]op = (B, (ιI2, ιI1)) =
(
B, (P2(top

0 ), P1(top
0 ))

)
=←−µ top

0 ,

t0[−1]op = (B, (ιP2, ιP1)) =
(
B, (I2(top

0 ), I1(top
0 ))

)
=
(
σ−1←−µ

)−1
top
0 .

We see that t0[−1]op is shifted from top
0 by [1] with the permutation σ−1, which we denote by

t0[−1]op = top
0 [1], and t0[1]op is shifted from top

0 by [−1] with the permutation σ, which we denote
by t0[1]op = top

0 [−1].

Lemma 3.21 (substitution).

(1) Assume that
[
X(t)d ∗ I(t)d

′]t
is (≺t,m)-unitriangular to It for any d ∈ NIuf ⊕ ZIf and

d′ ∈ NIuf . If Z is (≺t,m)-unitriangular to It, then the normalized products
[
X(t)d ∗ Z ∗

I(t)d
′]t

are (≺t,m)-unitriangular to It too [33, Lemma 6.2.4].

(2) Assume that
{
P (t)d

′∗X(t)d
}t

is codegree (�t,m)-unitriangular to Pt for any d ∈ NIuf⊕ZIf
and d′ ∈ NIuf . If Z is codegree (�t,m)-unitriangular to Pt, then the codegree normalized

products
{
P (t)d

′ ∗ Z ∗X(t)d
}t

are codegree (�t,m)-unitriangular to Pt too.

Proof. (1) has been proved in [33]. We can prove (2) using similar arguments as those for (1),
or deduce (2) from (1) by using the map ι. �

We have the following relation between degree and codegree tropical transformations.

Proposition 3.22. For any t, t′ ∈ ∆+, the following diagram commutes:

M◦(t[1])
ψt,t[1]−−−→ M◦(t)

↓ φop
t′[1],t[1] ↓ φt′,t

M◦(t′[1])
ψt′,t′[1]−−−−→ M◦(t′).

(3.7)

Proof. It suffices to check the claim for the case t′ = µkt, k ∈ Iuf . Notice that, in this case,
we have t′[1] = µσk(t[1]) and ←−µ ∗t,t′Ii(t) = Ii(t

′) for i 6= k, see [33, Proposition 5.1.4].

Notice that, all u ∈ ZIf are invariant under the maps in the diagrams. In view of the piecewise
linearity of φt′,t and φop

t′[1],t[1], it remains to check the claim that, for i ∈ Iuf ,

φt′,tψt,t[1](±fσi(t[1])) = ψt′,t′[1]φ
op
t′[1],t[1](±fσi(t[1])).

(i) By definition, for i 6= k in Iuf , we have

φt′,tψt,t[1](fσi(t[1])) = degt
′←−µ ∗t,t′Ii(t) = degt

′
Ii(t
′)

and also

ψt′,t′[1]φ
op
t′[1],t[1](fσi(t[1])) = ψt′,t′[1](fσi(t

′[1])) = degt
′
Ii(t
′).

It follows that these two vectors in M◦(t′) agree.
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(ii) For the non-trivial case i = k, we have

φt′,tψt,t[1](fσk(t[1])) = degt
′←−µ ∗t,t′Ik(t).

Notice that Ik(t) and Ik(t
′) are related by an exchange relation for the seeds (t[1], t′[1]). It follows

that we have

degt
′←−µ ∗t,t′Ik(t) = −degt

′
Ik(t

′) +
∑
i∈Iuf

[bik(t
′)]+ degt

′
Ii(t
′) +

∑
s∈If

[bs,σk(t
′[1])]+fs,

see [33, equation (14)].

On the other hand, we have the following computation

ψt′,t′[1]φ
op
t′[1],t[1](fσk(t[1]))

= ψt′,t′[1]

(
−fσk(t′[1]) +

∑
i∈Iuf

[−bσi,σk(t[1])]+fσi(t
′[1]) +

∑
s∈If

[−bs,σk(t[1])]+fs

)
= −degt

′
Ik(t

′) +
∑
i∈Iuf

[−bσi,σk(t[1])]+ degt
′
Ii(t
′) +

∑
s∈If

[−bs,σk(t[1])]+fs

= −degt
′
Ik(t

′) +
∑
i∈Iuf

[bik(t
′)]+ degt

′
Ii(t
′) +

∑
s∈If

[bs,σk(t
′[1])]+fs.

The desired equality follows:

φt′,tψt,t[1](fσk(t[1])) = ψt′,t′[1]φ
op
t′[1],t[1](fσk(t[1])).

(iii) By (3.4) and the linearity of ψt,t[1], ψt′,t′[1], for i 6= k in Iuf , we have

φt′,tψt,t[1](−fσi(t[1])) = φt′,t(fi(t)− ui) = fi(t
′)− ui

and also

ψt′,t′[1]φ
op
t′[1],t[1](−fσi(t[1])) = ψt′,t′[1](−fσi(t′[1])) = −degt

′
Ii(t
′).

Then (3.4) implies that the two vectors in M◦(t′) agree.

(iv) For the non-trivial case i = k, the linearity of ψt,t[1] implies

ψt,t[1](−fσk(t[1])) = −degt Ik(t).

Notice that Ik(t) and Ik(t
′) are related by an exchange relation for the seeds (t[1], t′[1]). It follows

that we have

degt←−µ ∗t′,tIk(t′) = −degt Ik(t) +
∑
i∈Iuf

[bik(t)]+ degt Ii(t) +
∑
s∈If

[bs,σk(t[1])]+fs,

see [33, equation (14)]. Consequently, we get

ψt,t[1](−fσk(t[1])) = degt←−µ ∗t′,tIk(t′)−
∑
i∈Iuf

[bik(t)]+ degt Ii(t)−
∑
s∈If

[bs,σk(t[1])]+fs.

On the other hand, we compute that

ψt′,t′[1]φ
op
t′[1],t[1](−fσk(t[1]))
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= ψt′,t′[1](fσk(t
′[1])−

∑
i∈Iuf

[bσi,σk(t[1])]+fσi(t
′[1])−

∑
s∈If

[bs,σk(t[1])]+fs)

= degt
′
Ik(t

′)−
∑
i∈Iuf

[bσi,σk(t[1])]+ degt
′
Ii(t
′)−

∑
s∈If

[bs,σk(t[1])]+fs

= degt
′
Ik(t

′)−
∑
i∈Iuf

[bik(t)]+ degt
′
Ii(t
′)−

∑
s∈If

[bs,σk(t[1])]+fs.

Further applying φt,t′ to both sides, we obtain

φt,t′ψt′,t′[1]φ
op
t′[1],t[1](−fσk(t[1]))

= degt←−µ ∗t′,tIk(t′)−
∑
i∈Iuf

[bik(t)]+ degt Ii(t)−
∑
s∈If

[bs,σk(t[1])]+fs.

Consequently, we have

ψt,t[1](−fσk(t[1])) = φt,t′ψt′,t′[1]φ
op
t′[1],t[1](−fσk(t[1])).

We obtain the claim observing that φt,t′ = φ−1
t′,t. �

Consequently, we obtain a relation between the degree compatibility and the codegree com-
patibility, which will be useful for studying properties of double triangular bases (Proposi-
tion 4.9).

Proposition 3.23. Let there be given seeds t, t′∈∆+ and Z∈LP(t)∩←−µ ∗t′,tLP(t′)∩←−µ ∗t[1],tLP(t[1])

∩ ←−µ ∗t′[1],tLP(t′[1]). Then Z is compatibly copointed at t[1], t′[1] if and only if it is compatibly

pointed at t, t′.

Proof. By Proposition 3.12,←−µ ∗t,t[1]Z is η-copointed in LP(t[1]) if and only if Z is ψt,t[1]η-pointed

in LP(t), and similar statements hold in LP(t′[1]) and LP(t′). Let us explain how the claim
follows from Proposition 3.22.

First, assume that Z is compatibly copointed at t[1], t′[1]. This means that there ex-
ists some η such that ←−µ ∗t,t[1]Z is η-copointed in LP(t[1]) and ←−µ ∗t,t′[1]Z is φop

t′[1],t[1]η-copointed

in LP(t′[1]). Then Proposition 3.12 implies that Z is ψt,t[1]η-pointed in LP(t) and ←−µ ∗t,t′Z =
←−µ ∗t′[1],t′

(←−µ ∗t,t′[1]Z
)

is ψt′,t′[1]

(
φop
t′[1],t[1]η

)
-pointed in LP(t′). In addition, Proposition 3.22 implies

that ψt′,t′[1]

(
φop
t′[1],t[1]η

)
= φt′,t(ψt,t[1]η). Therefore, Z is compatibly pointed at t, t′.

Conversely, assume that Z is compatibly pointed at t, t′. This means that there exists some g
such that Z is g-pointed in LP(t) and ←−µ ∗t,t′Z is φt′,tg-pointed in LP(t′). Then Proposition 3.12

implies that ←−µ ∗t,t[1]Z is ψ−1
t,t[1]g-copointed in LP(t[1]) and ←−µ ∗t,t′[1]Z is ψ−1

t′,t′[1](φt′,tg)-copointed

in LP(t′[1]). In addition, Proposition 3.22 implies that φop
t′[1],t[1]

(
ψ−1
t,t[1]g

)
= ψ−1

t′,t′[1](φt′,tg). There-

fore, Z is compatibly copointed at t[1], t′[1]. �

4 Bidegrees and bases

Let there be given an injective-reachable quantum seed t and a subalgebra A(t) ⊂ Uq(t).
Assume that A(t) possesses a k-basis L. Then A(t) naturally gives rise to a subalgebra A(t′) :=
←−µ ∗t,t′A(t) ⊂ Uq(t′) =←−µ ∗t,t′Uq(t), and L naturally gives rise to a basis ←−µ ∗t,t′L of A(t′). We some-

times omit the symbols t, t′, identifying A(t) and A(t′), L and ←−µ ∗t,t′L.
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4.1 Bases with different properties

Definition 4.1 (degree-triangular basis). A k-basis L of A(t) is said to be a degree-triangular
basis with respect to t if the following conditions hold:

(1) Xi(t) ∈ L for i ∈ I.

(2) Bar-invariance: L is invariant under the bar involution.

(3) Degree parametrization: L is M◦(t)-pointed, i.e., it takes the form L = {Lg | g ∈ M◦(t)}
such that Lg is g-pointed.

(4) Degree triangularity: For any basis element Lg, i ∈ I, the decomposition of the pointed
function [Xi(t) ∗ Lg]

t in terms of L is degree (≺t,m)-unitriangular:

[Xi(t) ∗ Lg]
t =

∑
g′�tg+fi

bg′Lg′ ,

where bg+fi = 1, bg′ ∈m for g′ ≺t g + fi.

The basis is said to be a cluster degree-triangular basis with respect to t, or a triangular basis
for short, if it further contains the quantum cluster monomials in t and t[1].

It is not clear if a degree-triangular basis is unique or not. Nevertheless, a triangular basis
must be unique if it exists, see [33, Lemma 6.3.2]. By definition, It is (≺t,m)-unitriangular to
the triangular basis.

We now propose the dual version below.

Definition 4.2 (codegree-triangular basis). A k-basis L of A(t) is said to be a codegree-
triangular basis with respect to t if the following conditions hold:

(1) Xi(t) ∈ L for i ∈ I.

(2) Bar-invariance: L is invariant under the bar involution.

(3) Codegree parametrization: L is M◦(t)-copointed, i.e., it takes the form L = {Lη | η ∈
M◦(t)} such that Lη is η-copointed.

(4) Codegree triangularity: For any basis element Lη, i ∈ I, the decomposition of the copointed
function {Lη ∗Xi(t)}t in terms of L is codegree (�t,m)-unitriangular:

{Lη ∗Xi(t)}t =
∑

η′�tη+fi

cη′L
η′ ,

where cη+fi = 1, cη′ ∈m for η′ �t η + fi.

The basis is said to be a cluster codegree-triangular basis with respect to t if it further
contains the quantum cluster monomials in t and t[−1].

By definition, Pt is codegree (�t,m)-unitriangular to the cluster codegree-triangular basis.
Similar to [33, Lemma 6.3.2], we can show that the cluster codegree-triangular basis is unique
if it exists.

Lemma 4.3 (factorization).

(1) Let there be given a degree-triangular basis L. Then [Xi(t) ∗ S]t = [S ∗Xi(t)]
t ∈ L for any

i ∈ If , S ∈ L [33, Lemma 6.2.1].

(2) Let there be given a codegree-triangular basis L. Then {Xi(t) ∗ S}t = {S ∗Xi(t)}t ∈ L for
any i ∈ If , S ∈ L.
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Definition 4.4 (bidegree-triangular basis). If L is both degree-triangular and codegree-trian-
gular with respect to t, we call it a bidegree-triangular basis with respect to t.

Definition 4.5 (double triangular basis). If L is bidegree-triangular with respect to t and further
contains the quantum cluster monomials in t, t[−1], t[1], we call it a cluster bidegree-triangular
basis of A(t) or a double triangular basis with respect to t.

The basis L in Example 3.8 provides an example of double triangular bases.

Definition 4.6 (common triangular basis). Assume that L is the triangular basis of A(t) with
respect to t. If, for any t′ ∈ ∆+, ←−µ ∗t,t′L is the triangular basis of A(t′) =←−µ ∗t,t′A(t) with respect
to t′ and is compatible with L, we call L the common triangular basis.

4.2 From triangular bases to double triangular bases

Proposition 4.7. Let there be given the triangular basis Lt of A(t) with respect to the seed t.
If Lt[−1] :=←−µ ∗t,t[−1]L

t is the triangular basis with respect to t[−1], then Lt is the double triangular
basis with respect to t.

Proof. By assumption, Lt is the triangular basis for t and t[−1], thus it must contain the
quantum cluster monomials in t, t[1] and t[−1], t respectively. It remains to check that Lt

satisfies the defining conditions of a codegree triangular basis for t, see Definition 4.2.
Conditions (1) and (2) are trivial as Lt is assumed to be triangular for t. Since Lt[−1] is

M◦(t[−1])-pointed, Lt = ←−µ ∗t[−1],tL
t[−1] is M◦(t)-copointed by Proposition 3.12. Thus Condi-

tion (3) is also verified.
Now, let us prove Condition (4).
First, consider any i ∈ If . Then for any V ∈ Lt which is bipointed by (i), we have {V ∗

Xi(t)}t = [V ∗Xi(t)]
t = [Xi(t) ∗ V ]t ∈ Lt by Lemma 4.3.

Second, consider any k ∈ Iuf and any η-copointed element V ∈ Lt. Then ←−µ ∗t,t[−1]Xk(t) =

Iσ−1k(t[−1]), and ←−µ ∗t,t[−1]V is pointed at g = ψt[−1],tη. Since ←−µ ∗t,t[−1]V belongs to the triangular

basis ←−µ ∗t,t[−1]L
t = Lt[−1], the normalized product

Z :=
[←−µ ∗t,t[−1]V ∗ Iσ−1k(t[−1])

]t[−1]
= vα←−µ ∗t,t[−1]V ∗ Iσ−1k(t[−1]),

α ∈ Z, is (≺t[−1],m)-unitriangular to It[−1] by Lemma 3.21. Therefore, it is (≺t[−1],m)-uni-

triangular to Lt[−1]. Then it has the following finite (≺t[−1],m)-unitriangular decomposition

in Lt[−1]:

Z = S(0) +

r∑
j=1

b(j)S(j)

with b(j) ∈m, r ∈ N, degt[−1] S(j) ≺t[−1] degt[−1] S(0) = degt[−1] Z for j > 0.
Applying the mutation ←−µ ∗t[−1],t, we obtain

Z ′ :=←−µ ∗t[−1],tZ = vαV ∗Xk(t) =←−µ ∗t[−1],tS
(0) +

r∑
j=1

b(j)←−µ ∗t[−1],tS
(j).

Proposition 3.12 implies that Z ′ is copointed and, for any j > 0, we must have

codegt←−µ ∗t[−1],tS
(j) �t codegt←−µ ∗t[−1],tS

(0) = codegt Z ′.

Then this is a codegree (�t,m)-unitriangular decomposition in terms of the copointed set Lt. �
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We prove the following inverse result, although it will not be used in this paper.

Proposition 4.8. Assume that Lt is the double triangular basis of A(t) with respect to the
seed t. Then Lt[−1] :=←−µ ∗t,t[−1]L

t is the triangular basis with respect to t[−1].

Proof. By assumption, Lt[−1] contains the quantum cluster monomials in t[−1], t. It remains
to check that Lt[−1] satisfies the definition condition of a degree triangular basis for t[−1].

(i) Since Lt is M◦(t)-copointed, Lt[−1] =←−µ ∗t,t[−1]L
t is M◦(t[−1])-pointed by Proposition 3.12.

(ii-a) Take any i ∈ If . Then for any (g − fi)-pointed element V ∈ Lt[−1], we have Xi ∗ V =
vαXi · V = v2αV ∗ Xi for some α ∈ Z. Since Xi · V is g-pointed, it agrees with [Xi ∗ V ]t[−1].
Moreover, ←−µ ∗t[−1],t(Xi · V ) is η-copointed by Proposition 3.12, where η = ψ−1

t[−1],tg. Therefore,
←−µ ∗t[−1],t(v

−αXi ∗ V ) = v−αXi ∗ ←−µ ∗t[−1],tV agrees with the copointed function
{
Xi ∗ ←−µ ∗t[−1],tV

}t
.

Using Lemma 4.3, we deduce that ←−µ ∗t[−1],t[Xi ∗ V ]t[−1] =
{
Xi ∗ ←−µ ∗t[−1],tV

}t
is contained in the

codegree triangular basis Lt. Consequently, [Xi ∗ V ]t[−1] belongs to Lt[−1].
(ii-b) Take any k ∈ Iuf and g-pointed element V ∈ Lt[−1]. Then ←−µ ∗t[−1],tXk(t[−1]) =

Pσk(t) ∈ Lt, and←−µ ∗t[−1],tV is copointed at η = ψ−1
t[−1],tg. The function←−µ ∗t[−1],t[Xk(t[−1])∗V ]t[−1]

is copointed by Proposition 3.12, i.e.,←−µ ∗t[−1],t[Xk(t[−1])∗V ]t[−1] = {Pσk(t)∗←−µ ∗t[−1],tV }
t. Since Lt

is a double triangular basis, ←−µ ∗t[−1],tV is codegree (�t,m)-unitriangular to Pt. Lemma 3.21 im-

plies that {Pσk(t) ∗ ←−µ ∗t[−1],tV }
t is codegree (�t,m)-unitriangular to Pt and, consequently, is

codegree (�t,m)-unitriangular to Lt. We obtain a finite codegree (�t,m)-unitriangular decom-
position

Z :=
{
Pσk(t) ∗←−µ ∗t[−1],tV

}t
=

r−1∑
j=0

b(j)S(j) + S(r)

with r ∈ N, b(j) ∈m, codegS(j) �t codegt S(r) = codegt Z for j < r.
Applying the mutation ←−µ ∗t,t[−1], we obtain

Z ′ :=←−µ ∗t,t[−1]Z = [Xk(t[−1]) ∗ V ]t[−1] =
r∑
j=1

b(j)←−µ ∗t,t[−1]S
(j) +←−µ ∗t,t[−1]S

(r).

Proposition 3.12 implies that Z ′ is pointed and, for any j < r, we have degt[−1]←−µ ∗t,t[−1]S
(j) ≺t[−1]

degt[−1]←−µ ∗t,t[−1]S
(r) = degt[−1] Z ′. Therefore, this decomposition becomes a degree (≺t[−1],m)-

unitriangular decomposition in Lt. �

4.3 Properties of common triangular bases

Recall that we have the k-algebra anti-isomorphism ι : LP(t) ' LP(top) such that ι(Xm) = Xm,
see (3.1). Define the subalgebra A(top) = ιA(t) ⊂ Uq(top).

Proposition 4.9. If A(t) possesses the common triangular basis L ⊂ LP(t), then A(top) pos-
sesses the common triangular basis ιL ⊂ LP(top).

Proof. Notice that ι sends (quantum) cluster monomials ←−µ ∗t′,tX(t′)m to (quantum) cluster

monomials ←−µ ∗(t′)op,topX((t′)op)m, m ∈ NIuf , because it commutes with mutations. In particular,
it gives a bijection between the sets of cluster monomials.

For any seed t′ ∈ ∆+, because the common triangular basis L gives rise to the double
triangular basis for t′ by Proposition 4.7, it gives rise to a codegree triangular basis Lt

′ ⊂ LP(t′)
for t′. Then ιLt

′ ⊂ LP((t′)op) is a degree triangular basis containing all cluster monomials.
Therefore, ιLt

′
is the triangular basis with respect to (t′)op.
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Moreover, for any t, t′ ∈ ∆+, because the elements of L are compatibly pointed at t[−1],
t′[−1], the elements of L are compatibly copointed at t, t′ by Proposition 3.23. It follows that
the elements of ιL are compatibly pointed at top, (t′)op.

Therefore, ιL is the common triangular basis by definition. �

Recall that a common triangular basis is necessarily compatibly pointed at ∆+. We have the
following results.

Theorem 4.10. Let there be a k-subalgebra A(t) of the upper quantum cluster algebra Uq(t). As-
sume that A(t) possesses the common triangular basis L. Then the following statements are true.

(1) ←−µ ∗t,t′L is the double triangular basis of A(t′) =←−µ ∗t,t′A(t) for any seed t′ ∈ ∆+.

(2) L is compatibly copointed at ∆+.

Proof. (1) The claim follows from Proposition 4.7. (2) By Proposition 4.9, ιL is the common
triangular basis of A(top), which is necessarily compatibly pointed at (∆+)op. Applying ι again,
we deduce that L = ι(ιL) is compatibly copointed at ∆+. �

5 Main results

5.1 An analog of Leclerc’s conjecture

Let there be given an injective-reachable seed t and a k-subalgebra A(t) of the upper quantum
cluster algebra Uq(t).

Lemma 5.1. Assume that A(t) possesses a bidegree-triangular basis L. Take any i ∈ I and
γ ∈ M◦(t). Denote the codegree of the γ-pointed basis element Lγ by η. Then we have either
Xi(t) ∗ Lγ ∈ vZL or

Xi(t) ∗ Lγ = vsS +
∑
j

bjL
(j) + vhH

such that s > h ∈ Z, bj ∈ vh+1Z[v] ∩ vs−1Z
[
v−1
]
, and S,L(j), H are finitely many distinct

elements of L with

degtH,degt L(j) ≺t degt S = fi + γ,

codegt S, codegt L(j) �t codegtH = fi + η.

Moreover, we have s = λ(fi, γ), h = λ(fi, η).

Proof. Omit the symbol t for simplicity.
Denote the codegree of Lγ by η = γ + B̃n, where n ∈ N≥0

uf (t) ' NIuf . Then Xi ∗ Lγ has
degree fi + γ with coefficient vs := vλ(fi,γ), codegree fi + η with coefficient vh := vλ(fi,η). It
follows that h = s+ λ

(
fi, B̃n

)
≤ s, where h = s if and only if ni = 0.

Because L is a degree-triangular basis, we have a degree (≺t,m)-unitriangular decomposition
with finitely many S(0), . . . , S(r) ∈ L:

[Xi ∗ Lγ ]t = v−sXi ∗ Lγ = S(0) +
∑
j>0

b(j)S(j) (5.1)

such that b(j) ∈m, degS(j) ≺ degS(0) = fi + γ for j > 0.
(i) Assume ni = 0, then v−sXi ∗ Lγ is pointed and bar-invariant. Because every basis

elements S(j) appearing in (5.1) are bar-invariant and b(j) ∈ m, it follows that v−sXi ∗ Lγ =
S(0) ∈ L.
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(ii) Assume ni 6= 0. Then h < s. In addition, v−sXi ∗ Lγ is pointed but not bar-invariant,
because it has the Laurent monomial vh−sXη+fi at the codegree.

Notice that v−hXi ∗ Lγ is copointed. Multiplying the decomposition (5.1) by vs−h and
applying the bar involution, we get a decomposition of copointed elements

vhLγ ∗Xi = vh−sS(0) +
∑
j>0

vh−s · b(j)S(j).

Because L is a codegree-triangular basis and vhLγ ∗Xi is copointed, the above decomposition
must be codegree (�t,m)-unitriangular. But vh−sS(0) is not copointed since S(0) ∈ L is co-
pointed but h < s. Relabeling S(j), j > 0, if necessary, we assume codegS(j) �t codegS(r)

for j < r. Then the codegree term Xη+fi is contributed from S(r) and S(r) is copointed
at codeg(Lγ ∗Xi) = η + fi with decomposition coefficient 1 = vh−sb(r). In addition, the rema-

ining terms S(j), 0 < j < r must have coefficients vh−s · b(j) in m. It follows that bj := b(j)vs

belongs to vh+1Z[v] for 0 < j < r. The claim follows by taking S = S(0), H = S(r), L(j) = S(j)

for 0 < j < r. �

Theorem 5.2. Let there be given a k-subalgebra A(t) of the upper quantum cluster algebra Uq(t).
Assume that it has the common triangular basis L. Then, for any i ∈ I, V ∈ L, and any localized
quantum cluster monomial R, we have either R ∗ V ∈ vZL or

R ∗ V = vsS +
∑
j

bjL
(j) + vhH (5.2)

such that s > h ∈ Z, bj ∈ vh+1Z[v] ∩ vs−1Z
[
v−1
]
, and S, L(j), H are finitely many distinct

elements of L.

Proof. Since L is the common triangular basis, Theorem 4.10(1) implies that ←−µ ∗t,t′L is the

double triangular basis (and thus bidegree-triangular) of A(t′) =←−µ ∗t,t′A(t) for any seed t′ ∈ ∆+.
We apply Lemma 5.1 for localized quantum cluster monomials associated to t′. �

Theorem 5.2 is a weaker form of the following analog of Leclerc’s conjecture.

Conjecture 5.3. Assume that L is the common triangular basis. Assume that R is a real basis
element in L (i.e., R2 ∈ L). Then, for any V ∈ L, we have either R ∗ V ∈ vZL or

R ∗ V = vsS +
∑
j

bjL
(j) + vhH

such that s > h ∈ Z, bj ∈ vh+1Z[v] ∩ vs−1Z
[
v−1
]
, and S,L(j), H are finitely many distinct

elements of L.

Choose any l ∈ N. Let Cl denote a level-l subcategory of the monoidal category of the
finite-dimensional modules of a quantum affine algebra Uq(ĝ) in the sense of [16], where g is
a Lie algebra of type ADE. Let Kt(Cl) denote its t-deformed Grothendieck ring, t a quantum
parameter. By [33, Theorem 8.4.3], Kt(Cl) is a (partially compactified) quantum cluster alge-
bra Aq. Notice that Kt(Cl) has a bar-invariant basis {[S]}, where S are simple modules. By [33],
{[S]} becomes the common triangular basis of the corresponding quantum cluster algebra Aq
after localization at the frozen factors.

A simple module R in Cl is called real if R ⊗ R remains simple. Theorem 5.2 implies the
following result.
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Theorem 5.4. Let R be any real simple module in Cl corresponding to a cluster monomial.
Then, for any simple modules V ∈ Cl, either R ⊗ V is simple, or there exists finitely many
distinct simple modules S, L(j), H in Cl such that the following equation holds in the deformed
Grothendieck ring Kt(Cl):

[R] ∗ [V ] = ts[S] +
∑
j

bj
[
L(j)

]
+ th[H],

where s > h ∈ 1
2Z, bj ∈ th+ 1

2Z
[
t
1
2

]
∩ ts−

1
2Z
[
t−

1
2

]
.

Notice that we can replace [S] by the t-analog of q-character of S and embed Kt(Cl) into
the completion of a quantum torus, see [15, 31, 38]. Correspondingly, Theorem 5.4 gives an
algebraic relation for such characters.

Remark 5.5. Assume that the quantum cluster algebra arises from a quantum unipotent sub-
group of symmetric Kac–Moody type, which possesses the dual canonical basis corresponding to
the set of self-dual simple modules of the corresponding quiver Hecke algebra. In this case, up
to v-power rescaling, S and H correspond to the simple socle and simple head of the convolution
product R ◦ V respectively. See [17, Section 4] for more details.

Similar picture appears in the category of finite-dimensional modules of quantum affine alge-
bras Uq(ĝ) by [21], where the objects are not graded. In particular, [21, Corollary 4.12] implies
that, as a stronger version of Theorem 5.4, Conjecture 5.3 holds true for the quantum cluster
algebras Kt(Cl).

5.2 Properties of dual canonical bases

Let us consider the quantum unipotent subgroup Aq[N−(w)] of symmetrizable Kac–Moody
types in the sense of [25, 35]. It is isomorphic to a (partially compactified) quantum cluster
algebra after rescaling, see [11, 12] or [35]. Theorem 5.2 implies the following weaker version
of Conjecture 1.1.

Theorem 5.6. Consider the dual canonical basis Bup(w) of Aq[N−(w)]. If b1 ∈ Bup(w) cor-
responds to a quantum cluster monomial after rescaling, then for any b2 ∈ Bup(w), either
b1b2 ∈ qZ Bup(w) or (1.1) holds true.

Proof. By [35, Theorem 9.5.1], after rescaling and localization at the frozen factors, the dual
canonical basis Bup(w) of Aq[N−(w)] becomes the common triangular basis of the corresponding
quantum cluster algebra. Therefore, elements of Bup(w) satisfy the algebraic relation (5.2) after
rescaling. Notice that the rescaling factors depends on the natural root-lattice grading of Uq,
which is homogeneous for ←−µ ∗t′,tXi(t

′) ∗ V , S, L(j), H in (5.2), because the Y -variables have
0-grading [35, Section 9.1]. The claim follows from Theorem 5.2. �

Theorem 5.6 would imply Conjecture 1.1 if the following multiplicative reachability conjecture
can be proved.

Conjecture 5.7. If b ∈ Bup(w) ⊂ Aq[N−(w)] is real (i.e., b2 ∈ qZ Bup(w)), then it corresponds
to a quantum cluster monomial after rescaling.

Conjecture 5.7 can be generalized as the following, which implies Conjecture 5.3 by Theo-
rem 5.2.

Conjecture 5.8 (multiplicative reachability conjecture). Let L denote a common triangular
basis. If b ∈ L is real (i.e., b2 ∈ L), then it corresponds to a localized quantum cluster monomial.
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Remark 5.9 (reachability conjectures). When the cluster algebra admits an additive categori-
fication by triangulated categories (cluster categories), we often expect that the rigid objects
(objects with vanishing self-extensions) correspond to the (quantum) cluster monomials. If so,
such objects can be constructed from the initial cluster tilting objects via (categorical) muta-
tions. Let us call such an expectation the additive reachability conjecture. This conjecture is
not true for a general cluster algebra because the cluster algebra seems too small for the cluster
category.

When the cluster algebra admits a monoidal categorification by monoidal categories, we
similarly expect that the real simple objects correspond to the (quantum) cluster monomials
(see [16]). If so, such objects can be constructed from the an initial collection of real simple ob-
jects via (categorical) mutations. Let us call such an expectation the multiplicative reachability
conjecture. Conjecture 5.7 is related to the special case for Aq[N−(w)].

We also conjecture an equivalence between the additive reachability conjecture and the mul-
tiplicative reachability conjecture, which can be viewed as an analog of the open orbit conjecture
[9, Conjecture 18.1]. See [32, Section 1] for a comparison between additive categorification and
monoidal categorification.

All these conjectures are largely open.
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[9] Geiß C., Leclerc B., Schröer J., Kac–Moody groups and cluster algebras, Adv. Math. 228 (2011), 329–433,
arXiv:1001.3545.
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