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1 Introduction

Let X be a smooth projective variety with a simple normal crossing hypersurface H. Let L be
an ample line bundle on X. We shall prove the following theorem, that is the Kobayashi—Hitchin
correspondence for good wild harmonic bundles and good filtered A-flat bundles.

Theorem 1.1 (Corollary 2.24). The following objects are equivalent:

e Good wild harmonic bundles on (X, H).
e ur-Polystable filtered A-flat bundles (P*V,]D))‘) on (X, H) satisfying

/C1(P*V)61(L)dimx_1 =0, /ChQ(P*V)C]_(L)dimX_Q —0.

We shall recall the precise definitions of the objects in Section 2.

In [51], we have already proved that good wild harmonic bundles on (X, H) induce pp-
polystable good filtered A-flat bundles satisfying the vanishing condition. Note that 0-flat bun-
dles are equivalent to Higgs bundles, and 1-flat bundles are flat bundles in the ordinary sense.
Moreover, we studied an analogue of Theorem 1.1 in the case A = 1, i.e., the correspondence
between good wild harmonic bundles and pp-polystable good filtered flat bundles satisfying
a similar vanishing condition [51, Theorem 16.1.1]. It was applied to the study of the correspon-
dence between semisimple algebraic holonomic D-modules and pure twistor D-modules.

In this paper, as a complement, we shall explain the proof for all A. There is no new
essential difficulty to prove Theorem 1.1 after our studies [46, 47, 48, 49, 51] on the basis
of [62, 63]. Moreover, in some parts of the proof, the arguments can be simplified in the Higgs
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case. However, because the Higgs case is also particularly important, it would be useful to
explain a rather detailed proof. We shall also explain the correspondences in homogeneous cases
which would be useful in a generalized Hodge theory.

1.1 Kobayashi—Hitchin correspondences
1.1.1 Kobayashi—Hitchin correspondence for vector bundles

We briefly recall a part of the history of this type of correspondences. (See also [25, 35,
41].) For a holomorphic vector bundle E on a compact Riemann surface C, we set u(E) :=
deg(F)/rank(FE), which is called the slope of E. A holomorphic bundle F is called stable
(resp. semistable) if u(E’) < u(E) (resp. u(E') < p(FE)) holds for any holomorphic subbundle
E’ C E such that 0 < rank(E’") < rank(FE). It is called polystable if it is a direct sum of sta-
ble subbundles with the same slope. This stability, semistability and polystability conditions
were introduced by Mumford [56] for the construction of the moduli spaces of vector bundles
with reasonable properties. Narasimhan and Seshadri [58] established the equivalence between
unitary flat bundles and polystable bundles of degree 0 on compact Riemann surfaces.

Let (X,w) be a compact connected Kéhler manifold. For any torsion-free Ox-module F,
the slope of F with respect to w is defined as

B fX cl(]:')wdimel
- rank F

fhoo(F)

If the cohomology class of w is the first Chern class of an ample line bundle L, then p,, (F) is also
denoted by pr(F). Then, a torsion-free Ox-module F is called p-stable if g, (F') < pw(F)
holds for any saturated coherent subsheaf 7' C F such that 0 < rank(F’) < rank(F). This
condition was first studied by Takemoto [71, 72]. It is also called pu,,-stability, or slope stability.
Slope semistability and slope polystability are naturally defined.

Bogomolov [4] introduced the T-stability condition for torsion-free sheaves on connected
projective surfaces, and he proved the inequality of the Chern classes c2(E)—(r—1)c1(E)?/2r > 0
for any T-semistable bundle E of rank r. We do not recall the precise definition of T-stability
condition here, but we note that if a holomorphic vector bundle on a complex projective manifold
is slope semistable, then it is T-semistable. (See [4, Section 7] for more details.) Gieseker [19]
gave a different proof of the inequality for slope semistable bundles. The inequality is called
Bogomolov—Gieseker inequality or Bogomolov inequality.

Inspired by these works, Kobayashi [32] introduced the concept of Hermitian—Einstein con-
dition for metrics of holomorphic vector bundles. Let (E ,5E) be a holomorphic vector bundle
on a Kéhler manifold (X,w). Let h be a Hermitian metric of E. Let R(h) denote the curva-
ture of the Chern connection V, = 9 + Og.p, associated with h and Op. Then, h is called
Hermitian-Einstein if AR(h)* = 0, where R(h)* denotes the trace-free part of R(h). In parti-
cular, he proved in [32] that if a holomorphic vector bundle on a compact Kéhler manifold has
a Hermitian—Einstein metric, then it is T-semistable. Kobayashi [33, 34] and Liibke [40] proved
that a holomorphic vector bundle on a compact connected Kéhler manifold satisfies the slope
polystability condition if it has a Hermitian—Einstein metric. Moreover, Liibke [39] established
the so called Kobayashi-Liibke inequality for the first and the second Chern forms associated
with Hermitian-Einstein metrics, which is reduced to the inequality Tr((R(h)L)2)wdimX “2>0
in the form level. In particular, it implies the Bogomolov—Gieseker inequality for holomorphic
vector bundles (E , EE) with a Hermitian—Einstein metric h on compact Kéhler manifolds (X, w).
Moreover, if ¢i(E) = 0 and [ cha(E)wd™*~2 = 0 are satisfied for such (F,dp,h), and if we
impose det(h) is flat, then the Kobayashi—Liibke inequality implies that R(h) = 0, i.e., V}, is flat.

Independently, in [36], Hitchin proposed a problem to ask an equivalence of the stability
condition and the existence of a metric h such that AR(h) = 0, under the vanishing of the
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first Chern class of the bundle. (See [25] for more precise explanation.) It clearly contains
the most important essence. He also suggested possible applications of the vanishings. His
problem stimulated Donaldson whose work on this topic brought several breakthroughs to whole
geometry.

In [14], Donaldson introduced the method of global analysis to reprove the theorem of Nara-
simhan—Seshadri. In [15], by using the method of the heat flow associated with the Hermitian—
Einstein condition, he established the equivalence of the slope polystability condition and the
existence of a Hermitian—FEinstein metric for holomorphic vector bundles on any complex pro-
jective surface. The important concept of Donaldson functional was also introduced in [15].

Eventually, Donaldson [16] and Uhlenbeck—Yau [73] established the equivalence on any dimen-
sional complex projective manifolds. Note that Uhlenbeck—Yau proved it for any compact Kéahler
manifolds, more generally. The correspondence is called with various names; Kobayashi—Hitchin
correspondence, Hitchin—Kobayashi correspondence, Donaldson—Hitchin—Uhlenbeck—Yau corre-
spondence, etc. In this paper, we call it the Kobayashi—Hitchin correspondence.

As a consequence of the Kobayashi—Hitchin correspondence and the Kobayashi—Liibke inequa-
lity, we also obtain an equivalence between unitary flat bundles and slope polystable holomorphic
vector bundles E satisfying pu,(E) = 0 and [y chy(E)w?™X~2 = 0. Note that Mehta and
Ramanathan [43, 44] deduced the equivalence on complex projective manifolds directly from the
equivalence in the surface case due to Donaldson [15].

1.1.2 Higgs bundles and A-flat bundles

Such correspondences have been also studied for vector bundles equipped with some additional
structure, which are also called Kobayashi—Hitchin correspondences in this paper. One of the
most rich and influential is the case of Higgs bundles, pioneered by Hitchin and Simpson.

Let (E,EE) be a holomorphic vector bundle on a compact Riemann surface C. A Higgs
field of (E,dp) is a holomorphic section § of End(E) ® Q.. Let h be a Hermitian metric of E.
We obtain the Chern connection dg + O and its curvature R(h). Let 0;2 denote the adjoint
of 6. In [24], Hitchin introduced the following equation, called the Hitchin equation,

R(h) + [0,6]] = 0. (1.1)

Such (E,EE, 0, h) is called a harmonic bundle. In particular, he studied the case rank £ = 2.
Among many deep results in [24], he proved that a Higgs bundle (E, O, 0) has a Hermitian met-
ric h satisfying (1.1) if and only if it is polystable of degree 0. Here, a Higgs bundle (E ,0E, 49) is
called stable (resp. semistable) if u(E') < u(E) (resp. u(E") < ¢/ (E)) holds for any holomorphic
subbundle E' C E such that 0(E') C E' @ Q}, and that 0 < rank(E’) < rank(E), and a Higgs
bundle is called polystable if it is a direct sum of stable Higgs subbundles with the same slope.
By this equivalence and another equivalence due to Donaldson [17] between irreducible flat bun-
dles and twisted harmonic maps, Hitchin obtained that the moduli space of polystable Higgs
bundles of degree 0 and the moduli space of semisimple flat bundles are isomorphic. His work
revealed that the moduli spaces of Higgs bundles and flat bundles have extremely rich structures.

The higher dimensional case was studied by Simpson [62]. Note that Simpson started his
study independently motivated by a new way to construct variations of Hodge structure, which
we shall mention later in Section 1.2.1. For a holomorphic vector bundle (E ,5}3) on a complex
manifold X with arbitrary dimension, a Higgs field @ is defined to be a holomorphic section
of End(F) ®Q}( satisfying the additional condition 8 Af = 0. Suppose that X has a Kahler form.
Let h be a Hermitian metric of E. Let F'(h) denote the curvature of the connection Vj + 0 + 9;2.
A Hermitian metric h of a Higgs bundle (E , 0B, 9) is called Hermitian-Einstein if AF(h)*+ = 0.
When X is compact, the slope stability, semistability and polystability conditions for Higgs
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bundles are naturally defined in terms of the slopes of Higgs subsheaves. Simpson established
that a Higgs bundle (E ,0E, 0) on a compact Kéhler manifold (X,w) has a Hermitian—Einstein
metric if and only if it is slope polystable. Moreover, he generalized the Kobayashi—Liibke
inequality for the Chern forms to the context of Higgs bundles, which is reduced to the inequality
Tr((F(h)J-)2)wdimX—2 > 0 in the form level for any Hermitian—Einstein metric h of (E, g, 0).
Here, the condition 8 A6 = 0 is essential. In particular, it implies that if (E,EE, 9) on a compact
Kahler manifold (X,w) satisfies y1,(E) = 0 and [y chy(E)wd™*~2 = 0, then a Hermitian—
Finstein metric h of (E,gE,Q) is a pluri-harmonic metric, i.e., the connection Vj + 6 + 9}; is
flat. It is equivalent to the following:

dppf =0, 90} =0, R(h)+[0.0]] =0.

A Higgs bundle (E,EE,H) with a pluri-harmonic metric is called a harmonic bundle. This
equivalence and another important equivalence due to Corlette [11] induce an equivalence bet-
ween semisimple flat bundles and polystable Higgs bundles (E,EE,G) satisfying uw(E) = 0
and [ chy(E)wd™X=2 = 0 on any connected compact Kéhler manifold.

After the work of Corlette, Donaldson, Hitchin and Simpson, it turned out that the moduli
space M(X) of flat bundles on a complex projective manifold X has a hyper-Kéhler metric.
In particular, it induces the twistor space of the moduli space TW (M (X)), which is a complex
analytic space with a fibration TW (M (X)) — P!, such that the fiber over 1 is the moduli space
of flat bundles, and that the fiber over 0 is the moduli space of Higgs bundles with vanishing
rational Chern classes. The notion of A-connections was introduced and developed by Deligne
and Simpson [65, 66] for a more complex analytic construction of the twistor space TW (M (X)).
They obtain the family of the moduli spaces M*(X) of A-flat bundles on X, and the family
of the moduli spaces M* (X T) of p-flat bundles on the conjugate X of X. They proved that
the twistor space TW (M (X)) can be obtained as the gluing of the two families ][, M*(X)
and J], M* (XT) by the natural identification of M*(X) = MH(XT) for Au = 1.

These correspondences are not only really interesting, but also provide a starting point of the
further investigations. Simpson pursued the comparison of flat bundles, Higgs bundles and
more generally A-flat bundles in deeper levels [64, 66], and developed the non-abelian Hodge
theory [65]. In particular, he explained that the Kobayashi-Hitchin correspondences for A-flat
bundles can be studied in a unified way [64]. For more recent study on the moduli spaces
of A-connections, see [10, 26, 27, 67|, for example.

1.1.3 Filtered case

It is interesting to generalize such correspondences for objects on complex quasi-projective
manifolds. We need to impose a kind of boundary condition, that is parabolic structure.

Mehta and Seshadri [45] introduced the concept of parabolic structure of vector bundles
on compact Riemann surfaces. Let C' be a compact Riemann surface with a finite subset D C C.
Let E be a holomorphic vector bundle on C. A parabolic structure of £ at D is a tuple
of filtrations Fe(E|p) (P € D) indexed by |—1,0] satisfying Fu(E|p) = Nysq Fo(E|p). Set
Grl (Ep) i= Fy(E)/F<a(E), and

deg(E, F) := deg(E) — Z Z a dim GraF(E|p).
PeD —1<a<0

We set u(FE, F) := deg(FE, F)/rank(E). For any subbundle E' C F, filtrations F(E(P) on E|/P are
induced as Fa(E"P) = Fu(Ep) ﬂE(P. Then, (E, F) is called stable if u(E’, F) < u(E, F) for any
subbundle E' C E with 0 < rank(E’) < rank(E). Semistability and polystability conditions are
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also defined naturally. Then, Mehta and Seshadri proved an equivalence of irreducible unitary
flat bundles on C'\ D and stable parabolic vector bundles (E, F') with u(E, F) =0 on (C, D).

For some purposes, it is more convenient to replace parabolic bundles with filtered bundles
introduced by Simpson [62, 63]. Let Oc(*D) denote the sheaf of meromorphic functions on C
which may have poles along D. Let V be a locally free O¢(*D)-module. A filtered bundle
P,V over V is a tuple of lattices PgV (@ = (ap)pep € RP) such that (i) PV (xD) = V,
(71) the restriction of P,V to a neighbourhood of P € D depends only on ap, (iii) PeinV =
PaV (Y npP) for any a € RP and n € ZP, (iv) for any a € R, there exists € € R such
that P,V = PayieV. Let 0 denote (0,...,0) € RP. Then, PoV is equipped with the parabolic
structure F' induced by the images of PoVjp — PoV|p (P € D). It is easy to observe that
filtered bundles are equivalent to parabolic bundles. We set u(P.V) := u(PoV, F) for the filtered
bundle P, V.

Simpson [62, 63] generalized the theorem of Mehta-Seshadri to the correspondences of tame
harmonic bundles and regular filtered A-flat bundles on compact Riemann surfaces. A harmonic
bundle (E,EE, 0, h) on C'\ D is called tame on (C, D) if the closure of the spectral curve of ¢
in T*C(log D) is proper over C. A regular filtered A-flat bundle consists of a filtered bundle P,V
equipped with a flat A-connection D*: V — V ® QF such that D* - PaV C P,V @ QL (log D)
for any @ € RP. Stability, semistable and polystable conditions are naturally defined in terms
of the slope. Then, Simpson established the equivalence of tame harmonic bundles on (C, D)
and polystable regular filtered A-flat bundles (P.V,D*) satisfying p(P.V) = 0. Note that
filtered bundles express the growth order of the norms of holomorphic sections with respect to
the metrics. We should mention that the study of the asymptotic behaviour of tame harmonic
bundles is much harder than that of the asymptotic behaviour of unitary flat bundles. Hence,
it is already hard to prove that tame harmonic bundles induce regular filtered A-flat bundles.

There are several directions to generalize. One is a generalization in the context of tame har-
monic bundles on higher dimensional varieties. Let X be a smooth connected projective variety
with a simple normal crossing hypersurface H and an ample line bundle L. Then, there should be
equivalences of tame harmonic bundles on (X, H) and pz-polystable regular filtered A-flat bun-
dles (P,V,0) on (X, H) satisfying [ c1(PV)er(L)4mX =1 = 0 and [y cho(P.V)er (L)ImX =2 =0
for each A € C. In [2], Biquard studied the case where H is smooth. In [37, 38, 70], Li,
Narasimhan, Steer and Wren studied the correspondence for parabolic bundles without flat \-
connections. In [30], Jost and Zuo studied the correspondence between semisimple flat bundles
and tame harmonic bundles. In [46, 47, 48, 49], the author obtained the satisfactory equiva-
lences for tame harmonic bundles. Note that Donagi and Pantev recently proposed an attractive
application of the Kobayashi-Hitchin correspondence for tame harmonic bundles to the study
of geometric Langlands theory [13].

In another natural direction of generalization, we should consider more singular objects than
regular filtered Higgs or flat bundles. A harmonic bundle (E ,0E, 0, h) on X \ H is called wild if
the closure of the spectral variety of 6 in the projective completion of T* X is complex analytic.
For the analysis, we should impose that the spectral variety of the harmonic bundle satisfies
some non-degeneracy condition along H. (See Section 2.7.1.) This is not essential because the
condition is always satisfied once we replace X by its appropriate blow up. The notion of regular
filtered A-flat bundle is appropriately generalized to the notion of good filtered A-flat bundle.
The results of Simpson should be generalized to equivalences of good wild harmonic bundles
and pz-polystable good filtered A-flat bundles (P,V,D*) satisfying [ c1(P.V)er (L)X~ =0
and [ chy(P.V)ea(L)4™mX=2 = 0. Sabbah [59] studied the correspondence between semisimple
meromorphic flat bundles and wild harmonic bundles in the one dimensional case. Biquard
and Boalch [3] obtained generalization for wild harmonic bundles in the one dimensional case.
Boalch informed the author that wild generalization in the context of the Higgs case was not
expected in those days.
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As mentioned, the author studied the wild harmonic bundles on any dimensional varieties
in [51]. We obtained that good wild harmonic bundles induce pr-polystable good filtered A-
flat bundles satisfying the vanishing conditions. Moreover, we proved that the construction
induces an equivalence of good wild harmonic bundles and slope polystable good filtered flat
bundles satisfying the vanishing condition. Such an equivalence for meromorphic flat bundles
is particularly interesting because we may apply it to prove a conjecture of Kashiwara [31]
on semisimple algebraic holonomic D-modules. See a survey paper [54] for more details on this
application.

In [51], we did not give a proof of the equivalence for wild harmonic bundles in the case A # 1
because it is rather obvious that a similar argument can work after [46, 47, 48, 49, 51] on the
basis of [62, 63]. But, because the Higgs case is also important, it would be better to have
a reference in which a rather detailed proof is explained. It is one reason why the author writes
this manuscript. As another reason, in the next subsection, we shall explain an application
to the correspondence for good wild harmonic bundles with homogeneity, which is expected to
be useful in the generalized Hodge theory.

1.2 Homogeneity with respect to group actions
1.2.1 Variation of Hodge structure

As mentioned, Simpson [62] was motivated by the construction of polarized variation of Hodge
structure. Let us recall the definition of polarized complex variation of Hodge structure given
in [62], instead of the original definition of polarized variation of Hodge structure due to Grif-
fiths. A complex variation of Hodge structure of weight w is a graded C°°-vector bundle
V = @p tgew VP equipped with a flat connection V satisfying the Griffiths transversality
condition, i.e., VO (VP1) C Q0 @ (VPHLa—l g VP4) and VIO(VPe) C QM0 @ (VP—hatl g ypa),
where VP denote the (p, q)-part of V. A polarization of a complex variation of Hodge struc-
ture is a flat Hermitian pairing (-, -) satisfying the following conditions: (i) the decomposition
V = @ VP4 is orthogonal with respect to (-,-), (i4) (v/=1)""%(,-) is positive definite on V4.

A polarization of pure Hodge structure typically appears when we consider the Gauss—Manin
connection associated with a smooth projective morphism f: X — ). Namely, the family
of vector spaces H" (f_l(y)) (y € V) naturally induces a flat bundle on ). With the Hodge
decomposition, it is a variation of Hodge structure of weight w. A relatively ample line bundle
induces a polarization on the variation of Hodge structure.

Simpson discovered a completely different way to construct a polarized variation of Hodge
structure. Let (V = @ VP4 V) be a complex variation of Hodge structure. Note that V%!
induces holomorphic structures Jypa: VP9 — VP4 @ Q0L of VP4, We set dy := @ Oyva.
Then, (V =P Vre 5\/) is a graded holomorphic vector bundle. We also note that V0 induces
linear maps VP4 — VP~La+l @ QL0 and hence §: V — V @ Q9. It is easy to check that 6
is a Higgs field of (V, 5‘/). Such a graded holomorphic bundle V' = EBp g V1 with a Higgs
field  such that §(VP4) c VP~Latl @ Q10 is called a Hodge bundle of weight w. In general,
we cannot construct a complex variation of Hodge structure from a Hodge bundle. However,
Simpson discovered that if a Hodge bundle (V = @ VP9 0) on a compact Kéhler manifold
satisfies the stability condition and the vanishing condition, then there exists a flat connection V
and a flat Hermitian pairing (-, -) such that (i) (V = @ VP4,V) is a complex variation of Hodge
structure which induces the Hodge bundle, (i) (-, -) is a polarization of (V = @ VP4, V). Indeed,
according to the equivalence of Simpson between Higgs bundles and harmonic bundles, there
exists a pluri-harmonic metric h of (V). It turns out that the flat connection Vj,+6 —1-9}; satisfies
the Griffiths transversality. Moreover, the decomposition V' = @ VP17 is orthogonal with respect
to h, and flat Hermitian paring (-, -) is constructed by the relation (v=1)""7(, }ypa = hyyp.a-
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Note that a Hodge bundle is regarded as a Higgs bundle (V, v, 9) with an S'-homogeneity,
ie., (V, 5‘/) is equipped with an S'-action such that tofot=' =¢-0 for any t € S'. It roug-
hly means that semistable Hodge bundles correspond to the fixed points in the moduli space
of semistable Higgs bundles with respect to the natural S'-action induced by t(E,EE,H) =
(E , o, t@) .

By the deformation (E ,0R, a@) (a € C*), any semistable Higgs bundles is deformed to an S-
fixed point in the moduli space, i.e., a semistable Hodge bundle as a« — 0. Note that the Higgs
field of the limit is not necessarily 0. Hence, by the equivalence between Higgs bundles and flat
bundles, it turns out that any flat bundle is deformed to a flat bundle underlying a polarized
variation of Hodge structure.

In particular, Simpson [62] applied these ideas to construct uniformizations of some types
of projective manifolds. He also applied it to prove that some type of discrete groups cannot be
the fundamental group of any projective manifolds in [64].

1.2.2 TE-structure

We recall that a complex variation of Hodge structure on X induces a TE-structure in the sense
of Hertling [21], i.e., a holomorphic vector bundle V on X := C) x X with a meromorphic flat
connection

V: V—V®0x(x°) @0k (logx?),

where X0 := {0} x X. Indeed, for a complex variation of Hodge structure (V = @ VP4, V),
FP(V) =, s, VP"" are holomorphic subbundles with respect to V1. Thus, we obtain a de-
creasing filtration of holomorphic subbundles FP(V) (p € Z) satisfying the Griffiths transver-
sality VIVFP(V) € FP7L(V) @ Q0. Let p: C; x X — X denote the projection. We obtain
the induced flat bundle (Q*V, p*V). By the Rees construction, p*V extends to a locally free
Ox-module V, on which V := p*V is a meromorphic flat connection satisfying the condition
VYV CV®0x(X°) @ Q% (log X°).

It is recognized that a TE-structure appears as a fundamental piece of interesting structures
in various fields of mathematics. For instance, TE-structure is an ingredient of Frobenius mani-
fold, which is important in the theory of primitive forms and flat structures due to K. Saito [61],
the topological field theory of Dubrovin [18], the tt*-geometry of Cecotti—Vafa [7, 8], the Gromov—
Witten theory, the theory of Landau—Ginzburg models, etc. For the construction of Frobenius
manifolds, it is an important step to obtain TE-structures. Abstractly, TE-structure is also
an important ingredient of semi-infinite variation of Hodge structure [1, 9, 28], TERP struc-
ture [21, 22, 23], integrable variation of twistor structure [60], etc. (See also [50, 53].)

1.2.3 Homogeneous harmonic bundles

As Simpson applied his Kobayashi—Hitchin correspondence to construct complex variations
of Hodge structure, we may apply Theorem 1.1 to construct TE-structures with some addi-
tional structure. It is done through harmonic bundles with homogeneity as in the Hodge case.

Let X be a complex manifold equipped with an S'-action. Let (E ,EE) be an S'-equivariant
holomorphic vector bundle. Let 6 be a Higgs field of (E' , 5]3), which is homogeneous with respect
to the S'-action, i.e., t*6 = t™@ for some m # 0. Let h be an S'-invariant pluri-harmonic metric
of (E,EE,Q). Then, as studied in [53, Section 3|, we naturally obtain a TE-structure. More
strongly, it is equipped with a grading in the sense of [9, 28], and it also underlies a polarized
integrable variation of pure twistor structure of weight 0 [60]. Moreover, if there exists an S*-
equivariant isomorphism between (E,EE,H, h) and its dual, the TE-structure is enhanced to
a semi-infinite variation of Hodge structure with a grading [1, 9, 28]. If the S'-action on X
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is trivial, this is the same as the construction of a variation of Hodge structure from a Hodge
bundle with a pluri-harmonic metric for which the Hodge decomposition is orthogonal.

Let H be a simple normal crossing hypersurface of X. From an S'-homogeneous good wild
harmonic bundle (E,EE, 0, h) on (X, H), as mentioned above, we obtain a TE-structure with
a grading on X \ H. Moreover, it extends to a meromorphic TE-structure on (X, H) as studied
in [53, Section 3]. We obtain the mixed Hodge structure as the limit objects at the boundary,
which is useful for the study of more detailed properties of the TE-structure.

1.2.4 An equivalence

Let X be a complex projective manifold with a simple normal crossing hypersurface H and
an ample line bundle L, equipped with a C*-action. A good filtered Higgs bundle (P.V,8) is
called C*-homogeneous if P,V is C*-equivariant and t*6 = t"*-0 for some m # 0. Then, we obtain
the following theorem by using Theorem 1.1. (See Section 8.1.2 for the precise definition of the
stability condition in this context.)

Theorem 1.2 (Corollary 8.11). There ezists an equivalence between the following objects:

e uz-polystable C*-homogeneous good filtered Higgs bundles (P.V,0) on (X, H) satisfying

/ CI(P*V)Cl(L)dimX—l :/ Chz('p*v)cl(L)dimX—Q —0.
X X

e Sl-homogeneous good wild harmonic bundles on (X, H).

As mentioned in Section 1.2.3, Theorem 1.2 allows us to obtain a meromorphic TE-structure
on (X, H) with a grading from a pz-polystable C*-equivariant good filtered Higgs bundle satis-
fying the vanishing condition. We already applied it to a classification of solutions of the Toda
equations on C* [52]. It seems natural to expect that this construction would be another way
to obtain Frobenius manifolds.

Although we explained the homogeneity with respect to an S!'-action, Theorem 1.2 is gene-
ralized for K-homogeneous good wild harmonic bundles as explained in Section 8, where K is
any compact Lie group.

2 Good filtered A-flat bundles and wild harmonic bundles

2.1 Filtered sheaves and filtered A-flat sheaves
2.1.1 Filtered sheaves

Let X denote a complex manifold with a simple normal crossing hypersurface H. Let H =
Uica Hi denote a decomposition such that each H; is smooth. Note that H; are not necessarily
connected. For any P € H, a holomorphic coordinate neighbourhood (Xp, 21, ..., 2,) around P
is called admissible if Hp := HN Xp = Uf(j){zi = 0}. For such an admissible coordinate
neighbourhood, there exists the map pp: {1,...,¢(P)} — A determined by H,,; N Xp =
{z; = 0}. We obtain the map kp: R® — RYP) by kp(a) = (ap(l), .. ,ap(g(p))).

Let Ox (xH) denote the sheaf of meromorphic functions which may have poles along H. Let £
be any coherent torsion free Oy (xH)-module. A filtered sheaf over £ is defined to be a tuple
of coherent O x-submodules Pa€ C £ (a € R?) satisfying the following conditions:

o P.ECPpEifa<b,ie., a; <b; for any i € A.
o P,E(xH) = & for any a € R™.
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o Poiné = PGE(ZZ-GA nZHZ) for any a € R and n € ZA.
e For any a € R? there exists € € ]R/;O such that Pgie€ = Pof.

e For any P€ H, we take an admissible coordinate neighbourhood (Xp, 21, . . ., 2, ) around P.
Then, for any a € R, Pal)x, depends only on kp(a).

For any coherent Ox (xH )-submodule & C &, we obtain a filtered sheaf P.E over £ by Pg&’ :=
PoENE'. If E is saturated, i.e., £ := E/E" is torsion-free, we obtain a filtered sheaf P.E” over
E" by Pa&” :=Im(Pal — £").

A morphism of filtered sheaves f: P.&; — P&y is defined to be a morphism f: & — &
of Ox (*H)-modules such that f(Pe&1) C P&y for any a € RA.

Remark 2.1. The concept of filtered bundles on curves was introduced by Mehta and Sesha-
dri [45] and Simpson [62, 63]. A higher dimensional version was first studied by Maruyama
and Yokogawa [42] for the purpose of the construction of the moduli spaces.

2.1.2 Restriction and gluing

Let U C X be any open subset. We set Hy = HNU. Let Hy = UjeAU Hy ; be the irreducible
decomposition. For any j € Ay, we have i(j) € A such that Hy; is a connected component
of Hz(]) NU. For any P € Hy, we set Ay(P):={j €Ay | P € HUJ}.

Let P.E be a filtered sheaf over £. We shall define a filtered sheaf over the Oy (xHy)-
module &7. Let b € RAV. For any P € Hy, we choose a(P,b) € R such that a(P, b)ij) = bj
for any j € Ay(P), and we obtain the following Oy, p-submodule of the stalk (/) p:

Po(Ev)p = Papp)(E)P-

It is independent of the choice of a(P,b) as above. There uniquely exists a coherent Op-
submodule Py(&rr) of &y such that (i) Po(Ey) (xHy) = &y, and (i7) for any P € Hy, the stalk
of Py(&rr) at P is equal to Py(&r)p. Thus, we obtain a filtered sheaf Py (&y) over &£y, which
is denoted as P&y

Let X = Uper X®) be an open covering. We set H*) = HNX®). For any filtered sheaf P,
over &£, we obtain filtered sheaves 73*5| x (k) OVETr 5| x(v) as the restriction. Conversely, let P, (5‘ X(k))

(k € T') be filtered sheaves over E|X(k> such that P (E|X<k))|x(k>mx(é) =P, (EIX(e))|X(k>mX(@> for
any k., ¢ € T.

Lemma 2.2. There uniquely exists a filtered sheaf P& over € such that P& xw) = Px (S‘X(k))
forany k e T.

Proof. Let @ € A. For any P € H, there exists k € T’ such that P € X®). Let H® =
UJEA(;C) H](k) be the irreducible decomposition. For any j € A®) we have i(k,j) € A such

that H](-k) is a connected component of H, jy N X&) Thus, we obtain a map A¥) — A. For

any a € R?, let a®) be the image of a by the induced map R* — RA(k>, and we obtain the
following Ox, p-submodule of Ep:

Pa(E)p := Pawy (Ex®)) p-

There uniquely exists a coherent O x-submodule P& of £ such that (i) PoE(xH) = &, and (i) for
any P € H, the stalk of Pq(€) at P is equal to Pq(E)p. Thus, we obtain a filtered sheaf P&
over £ with the desired property. The uniqueness is also clear. |
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2.1.3 Reflexive filtered sheaves

A filtered sheaf P.E on (X, H) is called reflexive if each Pg€ is a reflexive Ox-module. Note
that it is equivalent to the “reflexive and saturated” condition in [46, Definition 3.17] by the
following lemma.

Lemma 2.3. Suppose that P.E is reflexive. Let a € RY. We take a; — 1 < b < a;, and let
a’ € RN be determined by a; = a; (j # i) and a; = b. Then, Pal /P is a torsion-free
Op,-module.

Proof. Let s be a section of Pe& /770/8 on an open set U C D;. There exists an open subset
UcC X and a section s of P on U such that UnN D; = U and that s induces s. Note that
there exists Z C U of codimension 2 such that 3 S|U\ 5 s a section of Pa/é"U\Z Because Py &

is reflexive, there exists a section 5’ of P& on U such that 3 S\\z §|L~,\ 4 Hence, we obtain

that s is a section of Py &, ie., s = 0. |

The following lemma is clear.

Lemma 2.4. Let P.E be a reflezive filtered sheaf on (X,H). Then a coherent Ox(xH)-
submodule &' C & is saturated if and only if the induced filtered sheaf PLE' is reflexive.

2.1.4 Filtered \-flat sheaves

Let A be any complex number. Let £ be a coherent torsion-free O x (xH )-module. A A-connection
D*: & — Q% ® € is a C-linear morphism of sheaves such that D*(fs) = fD*(s) + Adf ® s for
any local sections f and s of Ox and &, respectively. Note that an O x-morphism D*oD*: £ —
Qg( ® € is induced. If D* o D* = 0, it is called a flat A-connection. When & is equipped with
a flat A\-connection, a M-flat subsheaf of £ means a coherent Ox-submodule & C £ such that
DANE') € Q% ®E'. A pair of a filtered sheaf P.E over € and a flat A-connection D* of € is called
a filtered A-flat connection. It is called reflexive if P.E is reflexive.

2.2 py-stability condition for filtered A-flat sheaves

Let X be a connected projective manifold with a simple normal crossing hypersurface H =
Uiea Hi. Let L be an ample line bundle.

2.2.1 Slope of filtered sheaves

Let P.E be a filtered sheaf on (X, H). Recall the definition of the parabolic first Chern
class ¢1(P«E). Let n; be the generic point of H;. Note that Ox ,,-modules (Po&),, depends only
on a;, which is denoted by P, (E,,). We obtain O, ,,,-modules G17'(&,,) := Pu(&y,) /Peal(Eny).
Then, we set

a(Pl) =c1(Pa€) =Y > arankGr} (€,)[H] € H*(X,R). (2.1)

€N a;—1<a<a;

Here, [H;] denote the cohomology class induced by H;. It is easy to see that ¢1(P.V) is inde-
pendent of the choice of @ € R*. We set

P 1 n—1
pr(PE) = /X L (PuE) - er (L)

It is called the slope of P.£ with respect to L. The following is proved in [46, Lemma 3.7].
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Lemma 2.5. Let f: P.EW — P.ED be a morphism of filtered sheaves which is generically

(1) (2)

an isomorphism, i.e., the induced morphism & — Sn(X) at the generic point of X is an iso-

n(X)
morphism. Then, ,uL(’P*E(l)) < pr (77*5(2)) holds. If the equality holds, f is an isomorphism
in codimension one, i.e., there exists an algebraic subset Z C X such that (i) the codimension

of Z is larger than 2, (ii) fix\z: 77*5(1) — 77*5(2)

|X\Z |X\Z s an Zsomorphzsm.

2.2.2 puyr-stability condition

A filtered M-flat sheaf (P,£,D*) on (X, H) is called jur-stable (resp. pz-semistable) if the fol-
lowing holds:

e Let & C & be any Mflat Ox (*H )-submodule such that 0 < rank(£’) < rank(€). Then,
pr(PeE") < pr(PLE) (resp. purn(PyE') < pur(PLE)) holds.

A filtered A-flat sheaf (77*5 ,]DA) is called pp-polystable if the following holds:
° (P*S,ID))‘) is pr-semistable.
. (P*S,D)‘) =P (P*Ei,]D)f‘), where each (P*gi,]]])f‘) is pp-stable.

The following is standard. (See [46, Section 3.1.3] and [49, Section 2.1.4].)

Lemma 2.6. Suppose that (P.E,D*) is a pr-polystable reflexive filtered \-flat sheaf. Then, there
exists a unique decomposition (73*5, D)‘) = @fvzl (P*é’i,Df‘) ®@C™ such that (i) (P*Si,]]))f‘) are
p-stable, (ii) pp(Pe&;) = pr(Pu), (iii) (Pu€i, DY) # (Pe&j,D}) (i # 4).

Remark 2.7. In [46, Section 3.1.3], “the inequality par-deg; (&.) < par-degy (Ex)” should be
corrected to “the inequality pr(EL) < pur(Es)”.

2.3 Filtered bundles
2.3.1 Filtered bundles in the local case

We recall the notion of filtered bundle in the local case. We shall explain it in the global case
in Section 2.3.3. Let U be a neighbourhood of (0,...,0) in C". We set Hy; := U N{z = 0},
and Hy := Ule Hy; for some 0 < ¢ < n. Let V be a locally free Oy (*Hy)-module. A filtered
bundle P,V over V is a tuple of locally free Oy-submodules P,V (a € RY) such that the following
holds:

e PV CPyWifa<b,ie., a; <b;foranyi=1,...,¢.

e There exists a frame v = (vy,...,v,) of V and tuples a(v;) € R’ (j =1,...,r) such that
PbV = @ OU < Z [bz - ai(vj)]HU’i> Uy, (22)
j=1 i

where we set [¢] := max{p € Z | p < ¢} for any ¢ € R.
Clearly, a filtered bundle over V is a filtered sheaf over V.

Remark 2.8. We set R := C[z1,...,2,] and R = R[zfl, . .,z[l]. For a free R-module )7,
a filtered bundle over V is defined to be a tuple P*ﬁ = (Pa]A/ |a € RUP )) of free R-submodules
satisfying similar conditions as above.
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2.3.2 Pull back, push-forward and descent with respect to ramified coverings
in the local case

Let ¢: C" — C" be given by ¢(C1,..., ) = (G, " Corty -5 Gn) . Weset U = o~ 1(U),
Hyr; == ¢ Y(Hy;) and Hyr := ¢ '(Hy). The induced ramified covering U’ — U is also
denoted by .

For any b € RY, we set ¢*(b) = (m;b;) € R’. For any filtered bundle P.V; on (U, Hy),
we define a filtered bundle P,V] on (U’, Hyr) as follows:

PaVi= Y ¢ (Pov)(Domiurs).

¢*(b)+n<a

We set ¢* (P V1) := P.V]. Thus, we obtain the pull back functor ¢* from the category of filtered
bundles on (U, Hyy) to the category of filtered bundles on (U’, Hy).

For any b € R, we set ¢.(b) = (m; 'b;). For any filtered bundle P, Vs on (U’, Hyr), we obtain
the following filtered bundle

Pb(,O*(VQ) = (p*P *(b)VQ.

In this way, we obtain a functor ¢, from the category of filtered bundles on (U’, Hy) to the
category of filtered bundles on (U, Hy).
We set G := Hle {wi € C* | " = 1}. We define the action of G on U’ by

(uh oo ?M@)(Clw . 7<TL) = (:u’l<17 o '7”[(@7{54’17' . 7<TL)

We identify G as the Galois group of the ramified covering U’ — U. Let P, V3 be a G-equivariant
filtered bundles on (U’, Hy). Then, P.p.Vs is equipped with an induced G-action. We obtain
a filtered bundle (P*go*Vg)G on (U, Hy) as the G-invariant part of P.p.Vs, which is called the
descent of P, V3 with respect to the G-action. In this way, we obtain a functor from the category
of G-equivariant filtered bundles on (U’, Hy) to the category of filtered bundles on (U, Hy).

For a filtered bundle P,V on (U, Hy), the pull back ¢*(P.V1) is a G-equivariant filtered
bundle on (U’, Hy), and its descent is naturally isomorphic to P, V.

2.3.3 Filtered bundles in the global case

We use the notation in Section 2.1.1. Let V be a locally free Ox (xH)-module. A filtered bundle
PV = (PaV |a € ]RA) over V be a sequence of locally free Ox-submodules P,V of V such that
the following holds:

e Forany P € H, we take an admissible coordinate neighbourhood (Xp, 21, .. ., 2, ) around P.
Then, for any a € R, PaV|x, depends only on xp(a), denoted as P,g};)(a) Vixp)-

e The sequence (P,()P) Vix,) | b€ RAP )) is a filtered bundle over V|x, in the sense of Sec-
tion 2.3.1.

In other words, a filtered bundle is a filtered sheaf (see Section 2.1.1) satisfying the condition
in Section 2.3.1 locally around any point of H.

Remark 2.9. The higher dimensional version of filtered bundles was introduced in [47, 48] with
a different formulation. See also [5, 6]. In this paper, we essentially follow Iyer and Simpson [29].
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2.3.4 The induced bundles and filtrations
For any I C A, let 87 € R™ be the element whose j-th component is 0 ( € A\ I) or 1 (j € I).
We also set Hy := (\;c; H; and 0Hy := H; N (UjeA\I Hj).

Let P,V be a filtered bundle on (X, H). Take i € A. Let a € RA. For any a; — 1 < b < a;,
we set a(b,i) == a+ (b— a;)d;. We set

in (,Pa(v)\Hl) = 'Pa(b,i)v/lpa(aifl,i)v’

It is naturally regarded as a locally free Op,-module. Moreover, it is a subbundle of Pq (V) g,
In this way, we obtain a filtration 'F' of Po (V) |y, indexed by |a; — 1,a;]. We shall also denote
it as just F if there is no risk of confusion.

We obtain the induced filtrations F of PaVig, ifi € 1. Let ay € R’ denote the image of a by

the projection R* — RZ. Set |a; — 87, af] := [Lic/lai — 1,a;]. For any b €la; — 1, az], we set

"Fo(PaVit,) = () Fr, (PaVimt,)-
el

By the condition of filtered bundles, the following compatibility condition holds.

e Let P be any point of H;. There exist a neighbourhood Xp of P in X and a non-canonical
decomposition

PaV\xpnH; = @ Grp

bE]a]—(s[,a[]

such that the following holds for any ¢ €]a; — 67, a;|:

"Fe(PaVit,nx») = €D Gpo- (2.3)
b<e
Indeed, there exists a frame v = (vy,...,v,) of P,V around P with tuples a(v;) € R/F)

of real numbers satisfying (2.2), where b is replaced with a. There exists the bijection
w: I ~{1,...,(P)} determined by H; N Xp = {z,(; = 0}, by which we identify I with
{1,...,(P)}. Let Gpp be the subbundle of PoV|x,np, generated by vjx,np, satisfying
a(vj) = b. Then, we obtain the decomposition (2.3).

For any ¢ €]a; — 91, as], we obtain the following locally free Op,-modules:

Fe(PaV
1GiE (PRV) = 1( )
Ybze Fo(PaVin,)
Here, b = (b;) < ¢ = (¢;) means that b; < ¢; for any ¢ and that b # c. Clearly, if ¢ €]a’; — 81, a}]
and a’A\I = ay\j, we obtain IGrE (PuV) = Gt (Pu V).

2.3.5 The induced filtered bundles

For ¢ € R, we choose a € R™ such that ¢ €]a;—d7, a], and we obtain the following On, (x0Hy)-
module:

IGrE (V) == 1Gel (PLV) (x0HT).

It is independent of the choice of a as above. We obtain the irreducible decomposition dH; =
Uiea(r) Hii- For any i € A(I), there exists j(i) € A\ I such that Hy; is a connected component
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of HiNHj;). Let d € RAD. For P € 9Hj, there exists a(c, d, P) € R such that (i) a(c,d, P); =
cj (j €1), (i) ale,d, P);iy = d; (i € A(I), P € Hy;). We obtain an Ox p-submodule

Pa('Grg (V) p = "Grg (Paea,mV) pC 'Grg (V).

Note that Pg({Gf (V)) p is independent of the choice of a(P). There uniquely exists an Op,-
submodule Pg(!Grf (V)) € IGrE (V) whose stalk at P (P € 0H[) are equal to Pg(!GrE (V)
Thus, we obtain the following filtered bundle over Gr% (V) on (Hy,0H7):

p-

IarE (Pw) = (Pa(PGrE(V)) | d € RAD).

2.3.6 First and second Chern characters for filtered bundles

Let P,V be a filtered bundle over (X, H). Take any a € R*. As recalled in Section 2.2.1,
we obtain the parabolic first Chern class:

c1(PYV) = c1(PaV) — Z Z a; rankiGrf(Paqu) - [H;] € H*(X,R).

€A a;—1<b<a;

To explain the second parabolic Chern character in H*(X, R), let us introduce some notation.
Let Irr(H; N Hj) be the set of the irreducible components of H; N H;. For C € Irr(Hy), let
[C] € H*(X,R) denotes the induced cohomology class, and let ©GrE (P4 V) denote the restriction
of IGrE (P,V) to C. Moreover, 1;,: H*(H;,R) — H*(X,R) denotes the Gysin map induced
by ¢;: H;i — X. Then, the second parabolic Chern character is given as follows.

cho(P,V) := cha(PgV) — Z Z b i (1 (iGrf (PaVim,)))

€A a;—1<b<a;

+ %Z Z b? rank (iGrf(PaV)) - [H]?

€A a;—1<b<a;

+ % Z Z Z i - Cj rankCGrfii7cj)(PaV) - [C].

(i,j)eA? Celrr(H;NH;) a;i—1<c¢;<a;
i£] aj—1<c;j<a;

Remark 2.10. The higher Chern character for filtered sheaves was defined by Iyer and Simp-
son [29] in a systematic way. In this paper, we adopt the definition of cha(P.V) in [46].

2.4 Good filtered A-flat bundles

Let X be a complex manifold with a simple normal crossing hypersurface H = J;c, H;.

2.4.1 Good set of irregular values at P

Let P be any point of H. We take an admissible holomorphic coordinate neighbourhood
(Xp,z1,...,2n) around P. Let f € Ox(xH)p. If f € Ox p, we set ord(f) :=(0,...,0) € RUP),
If there exists n € Z40)\ {(0,...,0)} such that (i) g := f[[ 2™ € Ox.p, (ii) g(P) # 0, then
we set ord(f) := n. Otherwise, ord(f) is not defined.

For any a € Ox(xH)p/Ox p, we take a lift @ € Ox(xH)p. If ord(a) is defined, we set
ord(a) := ord(a). Otherwise, ord(a) is not defined. Note that it is independent of the choice of
a lift a.

Let Zp C Ox(*H)p/Ox p be a finite subset. We say that Zp is a good set of irregular values
if the following conditions are satisfied:
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e ord(a) is defined for any a € Zp.
e ord(a — b) is defined for any a,b € Zp.

e {ord(a—b)|a,b e Zp} is totally ordered with respect to the order <,.r). Here, we define
n <,upy n' if n; < n} for any 7.

2.4.2 Good filtered A-flat bundles

Let V be a locally free Ox (xH)-module with a flat A-connection. Let P,V be a filtered bundle
over V. For any P € X, let Oy 5 denote the completion of the local ring Ox p with respect to

the maximal ideal. Note that Remark 2.8 has a natural generalization to filtered A-flat bundles.
We say that (P*V, DA) is unramifiedly good at P if the following holds:

e There exist a good set of irregular values Zp C Ox(xH)p/Ox p and a decomposition
of filtered A-flat bundles

(PV.DY) @Oy 5= P (PVe, 1) (2.4)

aGIP

such that ID)Q‘ — daidy, are logarithmic with respect to the lattices PgV, for any a € RYP)
and a € Zp, i.e.,

(D} — daidy, )PaVa C PaVa @ Qk (log H). (2.5)
Here, a denote lifts of a to Ox (xH)p.
We say that (P*V, D’\) is good at P if the following holds:

e There exist a neighbourhood Xp of P in X and a covering map pp: X, — Xp rami-
fied over Hp = H N Xp such that ¢} (P.V, D) is unramifiedly good at ©p' (P). (See
Section 2.3.2 for the pull back of filtered bundles.)

We say that (P*V, ID)A) is good (resp. unramifiedly good) if it is good (resp. unramifiedly good)
at any point of H.

2.5 Prolongation of holomorphic vector bundles with a Hermitian metric

Let X be any complex manifold with a simple normal crossing hypersurface H = J;c, H;.
Let (E ,EE) be a holomorphic vector bundle on X \ H with a Hermitian metric h. Let us recall
the construction of Ox (*H)-module P"E and Ox-modules PE (a € R}).

Let a € RA. For any open subset U C X, let P?E(U) be the space of holomorphic sections s
of Eyy g satistying the following condition:

e For any point P of U N H, let (Xp,z1,...,2,) be an admissible holomorphic coordinate
neighbourhood around P such that Xp is relatively compact in U. Set ¢ = kp(a). (See
Section 2.1.1.) Then,

opP)
sl = O(H |Zilci6>
i=1

holds on Xp \ H for any € > 0.

We obtain an Ox-module PAE. We set P"E := s PAE which is an Ox (+H)-module. Note
that in general, P! E are not necessarily coherent Ox-modules.

Definition 2.11. Let P,V be a filtered bundle over (X, H). Let (E,dg) be the holomorphic
vector bundle obtained as the restriction of V to X \ H. A Hermitian metric h is called adapted
to P,V if PfE =PV in 14 (E) = 14 (V|X\H), where ¢: X \ H — X denotes the inclusion.
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2.5.1 A sufficient condition

We mention a useful sufficient condition for P*E to be a filtered bundle, although we do not
use it in this paper. Let gx\x be a Kéhler metric satisfying the following condition [12]:

e Forany P € H, take an admissible holomorphic coordinate neighbourhood (Xp, 21, ..., z,)
around P such that Xp is isomorphic to []" ,{|zi] < 1} by the coordinate system. Set
Xp = [[[21{lzil <1/2}. Then, g/x;\p is mutually bounded with the restriction of the
Poincaré metric

dz; dz;
5 + dzZ dz;.
Z |2i? (log [ 24]?)? Z

A Hermitian metric h of (E,gE) is called acceptable if the curvature of the Chern connection is
bounded with respect to h and gx\ . The following theorem is proved in [51, Theorem 21.3.1].

Theorem 2.12. If h is acceptable, then PIE is a filtered bundle, and P"E is a locally free
Ox (xH)-module.

2.6 Harmonic bundles
2.6.1 Pluri-harmonic metrics for A-flat bundles

Let Y be any complex manifold. Let E' be a C°°-vector bundle on Y. Let AP9(FE) denote the
space of C®-sections of Q77 @ E. We set AY(E) := @D, =0 APY(E). In this context, a A-
connection of E is a differential operator D*: A°(E) — A'(E) such that D*(fs) = fD*(s) +
(Ady +0y) f®s for any f € C*°(Y) and s € A°(E). We obtain a section D*oD* € A?(End(E)).
A A-connection is called flat if D* o DA = 0.

Let (E,]D)A) be a A-flat bundle on Y. We decompose D* = d7%, + d into the (0,1)-part and
the (1,0)-part. Then, (E,d’P’J) is a holomorphic vector bundle. Let h be a Hermitian metric
of E. From h and d7,, we obtain the differential operator ¢’ , such that d; + ¢%; , is a Chern
connection. From d; and h, we obtain the (0,1)—operat0r75j§ ;, determined byy)\ah(u, v) =
h(dpu, v) + h(u, 6% ,v). As in [49, Section 2.2.1], we obtain the operators

— 1
0 = ————(d% + N6 Opp =
E,h 1 |)\|2( E E,h)a E.h

1 _
T —
Oon = 1 Odb = 0ka)s O i

1
1+|A|2(Ad B+ 05n),

1
1+ |A]2

Noiteithat D» = 5E,h +0pn + )\(8E,h + 9}:3,}1)- We set D)th - 5/E,h _ (%,h — g + 92,;1
— X0 +0p,4), and G(h) := [DA, Dy, ].

Definition 2.13. h is called a pluri-harmonic metric of (E,D*) if G(h) = 0. Such a tuple
(E , DA, h) is called a harmonic bundle.

If A # 0, because (1 + \)\]2) (51;,;1 + 0E7h) =D*— /\ID)g*h, and (ID))‘)2 = (D%’:hf = 0, we obtain

(1+[A*)? C (AP
A A

Hence, G(h) = 0 implies that (E,EE,h,GE,h) is a Higgs bundle. The metric h is a pluri-

G(h) = — (Op.h + 05, ) = (aEh+aEh9Eh+‘9Eh)

harmonic metric for (EagE,hyeE,h)- Conversely, if h is a pluri-harmonic metric for a Higgs
bundle (E,gE, 0), we obtain the Chern connection 0 + O, associated with Op and h, and the
adjoint O,TL of 6 with respect to h. We obtain a flat A-connection DQ = 0p + M\, + Nogn + 0.
The metric h is a pluri-harmonic metric for (E,Dj).



Good Wild Harmonic Bundles and Good Filtered Higgs Bundles 17

Remark 2.14. If A = 0, a flat 0-connection is equivalent to a Higgs bundle (E,EE, 9) by the
relation D' = 9 + 6. In this case, we obtain G(h) = [0 + 0,08, + 02], and hence 2G(h) is
equal to the curvature F'(h) of the connection D} = 9p + 9}; +0pn+0.

2.6.2 The case A # 0

Let G(h) = G(h)?*° + G(h)}! + G(h)%? denote the decomposition into (p, q)-parts. If G(h) = 0,
we clearly obtain G((h)}! = 0. If A # 0, we obtain the converse.

Proposition 2.15. Suppose A # 0. If G(h)"' = 0, we obtain G(h) = 0, i.e., h is a pluri-
harmonic metric of (E,]D))‘).

Proof. As in [49, Lemma 2.28], the following holds:

X0, H AT, =0, Aan, A (6h,)" =0 (2.6)
It is easy to check that 5,297h = —(8%7h)T, (9};7h)2 = —(G%ﬁﬁ and (EEyhﬁEﬁ)T = BE’hHE’h.
From the flatness D* o D* = 0, we obtain
(Nopp + 0p.n)* = N0, + X0ppbpn + 0%, =0, (2.7)
(5.1 + ML 0, A1 + 05,1
= )\( @E,ha 8E,h] + [9E7h9;57h]) + EE,heE,h + )\28E,h0TE7h =0. (2.8)

From (2.6) and (2.7), we obtain
6E,h9E7h = —)\71(1 — |)‘|2)912E,h‘
Because (5E7h921h)T = Op.n0E,n, We obtain
= —1 2
Tpndl, =2 (1= A7) (0%,)" (2.9)

Note that G(h)! = 0 is equivalent to g 105, = 0 and OE,hQEh = 0. To obtain G(h) = 0,
it is enough to prove Tr (0% h (0; h)z) = 0. Indeed, there exists C' # 0 depending on dim Y such
that for any Kéhler form w of Y we obtain Tr (Q%ﬁ (Gg’h)2)wdimyf2 = C‘G%7h‘i7wwdimy. Hence,
the vanishing Tr (63, (61;,)*) = 0 implies 6%, = (6};,)> = 0 and 8%, = 95, = 0.

From (2.9) and 8Eyh923h = 0, we obtain 8E,h5E,h91Tg7h ! (1 - |)\|2)5E,h((9}r5,h)2) = 0.
We also have EE,haE,hHTE 5, = 0. Hence, we obtain the following equality:

0="Tr (0p 108108105 1) = Tr(0ph - [05108h + Opn0E0 05 ,))- (2.10)

From (2.8), EE,heE,h =0 and aE’hHE =0, we obtain

(081,081 + [HE,hﬁe;[E,h] =0.

Hence, we obtain the following:

Te(0ph - [05108n + Opn080 0% ,]) = Te(0pn - [~ (084,05 ,],05,])
= —27Tx(03,,(05,,)%). (2.11)

We obtain the claim of the proposition from (2.10) and (2.11). [
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By using Proposition 2.15 we can improve [49, Corollary 2.30] as follows.

Corollary 2.16. If A # 0, the pluri-harmonicity of the metric h is equivalent to the vanishing
Gh)M =0, i.e., Opnbpn =0.

Remark 2.17. In [49, Lemma 2.29], the claim [gv,h, 3‘/7;1] + [9V7h, H‘T/ h] = 0 is incorrect, in gene-
ral. The author thanks Pengfei Huang for pointing out it.

Remark 2.18. If A = 1, the claim of Proposition 2.15 also follows from a Bochner type for-
mula [48, Proposition 21.39], which originally goes back to the study of Simpson [64] in the
context of harmonic bundles, the study of Corlette [11] in the context of harmonic metrics for
flat bundles on Riemannian manifolds, and the study of Siu [69] in the context of harmonic
maps.

2.7 Wild harmonic bundles
2.7.1 Higgs case

Let X be a complex manifold with a simple normal crossing hypersurface H = Uica Hi. Let
(E ,0g,0, h) be a harmonic bundle on X \ H. It is called wild on (X, H) if the following holds:

e Let Xy C T*(X \ H) denote the spectral cover of ¢, i.e., 3y denotes the support of the
coherent O« (x\ fr)-module induced by (E ,0E, 9). Then, the closure of 3y in the relatively
projective completion of T* X with respect to X is complex analytic.

A wild harmonic bundle (E , 08,0, h) is called unramifiedly good at P € H if the following holds:

e There exists a good set of irregular values Zp C Ox(xH)p/Ox p, a neighbourhood Xp,
and a decomposition

(E’EE’Q)\XP\H = @ (Eangaaaa)

aelp

such that the closure of the spectral cover 3, of 0, — daidg, in T*Xp(log(Xp N H)) is
proper over X p, where a denote lifts of a to Ox (xH)p.

A wild harmonic bundle (E,EE, 0, h) is called good at P € H if the following holds:

e There exist a neighbourhood Xp and a covering ¢p: X, — Xp ramified along H}, such

that the pull back 4,0;1 (E,EE, 0, h)IXp is unramifiedly good wild at any point of gol_;l (H).

We say that (E,EE, 0, h) is good wild (resp. unramifiedly good wild) on (X, H) if it is good wild
(resp. unramifiedly good wild) at any point of H.

Note that not every wild harmonic bundle on (X, H) is necessarily good on (X, H). But, the
following is known [55, Corollary 15.2.8].

Theorem 2.19. Let (E,EE,G,h) be a wild harmonic bundle on (X,H). Then, there ezists
a proper birational morphism ¢: X' — X of complex manifolds such that (i) H' = ¢ Y(H) is
simple normal crossing, (it) X'\ H' ~ X \ H, (iii) ¢ ' (E,0p,0,h) is good wild on (X', H').

2.7.2 The case of \-flat bundles

A X-flat bundle (E, ]DV‘) with a pluri-harmonic metric h on X \ H is called (good, unramifiedly
good) wild if the associated Higgs bundle with a pluri-harmonic metric (E,gE,h,HEﬁ,h) is
a (good, unramifiedly good) wild harmonic bundle.
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2.7.3 Prolongation of good wild harmonic bundles to good filtered A-flat bundles

The following is one of the fundamental theorems in the study of wild harmonic bundles [51,

Theorem 7.4.3].

Theorem 2.20. If (E,ID)A,h) is a good wild harmonic bundle on (X, H), then (Pi”E,DA) 18
a good filtered \-flat bundle on (X, H).

The following is a consequence of the norm estimate for good wild harmonic bundles [51,

Theorem 11.7.2].

Theorem 2.21. Let (E,]D))‘,hi) (1 = 1,2) be good wild harmonic bundles on X \ H such that
PME =Ph2E. Then, h; are mutually bounded around any point of H.

2.7.4 Prolongation of good wild harmonic bundles in the projective case

Suppose that X is projective and connected. Let L be any ample line bundle on X. The following
is proved in [51, Propositions 13.6.1 and 13.6.4].

Proposition 2.22. Let (E,]D))‘, h) be a good wild harmonic bundle on (X, H).

° (PfEa]D))‘) is pr-polystable with ur, (PfE) =0.
o We obtain c1(P.E) =0 and [ chy(P.E)ey (L)dmX=2 = q,

e Let W' be another pluri-harmonic metric of (E,ID))‘,h) such that Pf/E = PIE. Then,
there exists a decomposition of the \-flat bundle (E,]D)A) =6 (Ej’DE'\) such that (i) the
decomposition is orthogonal with respect to both h and h', (i7) hg, = a;- h"Ei for some
a; > 0.

o Let (P*Vl,ID)i\) be any direct summand of (PfE,ID))‘). Let (El,ID){‘) be the A\-flat bundle
on X \ H obtained as the restriction of (Vl,Di\), and let hy be the metric of E1 induced
by h. Then, (El,]D){‘, hl) is a harmonic bundle. In particular, we obtain c1(PV1) =0 and
fX ChQ(P*Vl)Cl(L)dimX_2 =0.

2.8 Main existence theorem in this paper

Let X be a smooth connected projective complex manifold with a simple normal crossing hy-
persurface H. Let L be any ample line bundle on X. Let (P*V,ID))‘) be a good filtered A-flat
bundle on (X, H). Let (E ,0R, ]DY\) be the A-flat bundle obtained as the restriction of (P*V, D’\)
to X \ H.

Theorem 2.23. Suppose that (P*V, ]DA) 1s pr,-polystable, and that the following vanishing holds:
pr(PV) =0, / chy (P, V)ey (L)mX=2 = 0, (2.12)

X
Then, there exists a pluri-harmonic metric h of (E,EE,]D)’\) such that (V,}D))‘) ~ (E,]D))‘)

IX\H —
extends to (P*V,D’\) ~ (PfE,D)‘).

We proved the claim of the theorem in the case A = 1in [51, Theorem 16.1.1]. We shall explain
the proof in Sections 3-7. Note that the one dimensional case is due to Biquard-Boalch [3].

Corollary 2.24. There exists the equivalence of the following objects for each A:

e Good wild harmonic bundles on (X, H).
e 11 -polystable good filtered A-flat bundles (P*V,]D)A) satisfying the condition (2.12).
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Remark 2.25. One of the referees raised the following interesting question. Let L be a big
and nef line bundle on X such that there exists a positive current T representing c¢;(L) whose
restriction to X \ H is a smooth Kahler form with at most Poincaré growth near H. We do
not assume that L is ample. We can define the slope pr(P.V) for a filtered sheaves, by using
which we can introduce a stability condition for good filtered A-flat bundles. Then, we may ask
whether a statement similar to Theorem 2.23 holds. This question might also be related with
a generalization of Kobayashi—Hitchin correspondence to the context of D-modules.

2.8.1 Outline of the proof Theorem 2.23

Let us explain a rough outline of the proof. We shall omit some technical details. Let (P*V, ]D))‘)
be a pr-stable good filtered A-flat bundle on (X, H) such that ch;(P.V) = 0 (i = 1,2).
Let (V,D*) be the A-flat bundle on X \ H obtained as the restriction of (P,V,D*) to X \ H.

In the case dim X = 1, we shall apply the argument in [63] as follows. For each P € H, we take
a holomorphic coordinate neighbourhood (X P, zP) around P. We take a Kéhler metric gx\ g
such that gx\gxp\(py (P € H) are mutually bounded with |zp[*"~?dzp dzp for some > 0.
If 7 is sufficiently small, there exists a Hermitian metric hi, of V such that (i) PPV = P,V, and
(i) G(hin) is bounded with respect to hin and gx\ g, (#ii) det(hin) is flat. (See Corollary 3.28.
Though we state it as a corollary of Proposition 3.27, which also deals with a perturbation, it is
easy to deduce it directly from the estimate in the tame case [63].) Moreover for any filtered A-
flat subsheaf P,V" C PV, deg(P.V’) is equal to the analytic degree of (V’ , ]D))‘) X\H with respect
to hin and gx\g. Then, by [62, Theorem 1], if (P*V,DA) is stable of degree 0, there exists a
harmonic metric h of (P*V,ID))‘) such that h and hy, are mutually bounded (Theorem 4.1).
Let us note that the proof allows us to obtain the inequality for the Donaldson functional
M (hin, h) < 0 (Proposition 4.4). This inequality is useful for the study of the continuity of the
family of harmonic metrics of some family of good filtered A-flat bundles (Proposition 4.5).

For the higher dimensional case, we use the same strategy in [46, 49] and [51]. It is a key step
to study the case dim X = 2. There are two naive ideas which are not available as they are.

One is to apply [62, Theorem 1] by constructing a Hermitian metric hy, of V' such that
(i) PlnV = PV, (ii) G(hiy) is dominated in an appropriate way, (iii) det(hi,) is flat. For the
construction of such a Hermitian metric hi,, a compatibility condition seems necessary between
the nilpotent parts of the induced endomorphisms Res;(D*) and Res;(D*) on “Grf (P V).
(See Section 3.5.3 for the endomorphisms Res; (ID))‘).) Once we prove the existence of a pluri-
harmonic, it turns out that such a compatibility condition is satisfied. However, before proving
the existence, it is not clear whether such a compatibility condition is satisfied. As a result,
it is difficult to construct a Hermitian metric hy, with the desired property, in general.

The other is to use Mehta—Ramanathan type theorem (Proposition 3.8), according to which
there exists m > 0 such that for the O-set Y C X of a generic section of H? (X , L®m), the
restriction (P*V, ]D))‘) v is also stable. Hence, if we fix a flat metric hge () of det(V) x\ g adapted
to det(P.V), there exists a harmonic metric hy of (V, D/\)W\H adapted to P.Vy such that
det(hy) = hget(v)y\m- If we can prove that there exists a Hermitian metric h of V' such
that hjy = hy for such generic hypersurfaces Y, then h should be the desired pluri-harmonic
metric for (P*V, D)‘). But, the existence of such A is not clear.

Roughly speaking, we combine these two ideas as follows. For any small € > 0, there exists
a filtered bundle P9V over V such that (i) (PL)V,D*) is a uz-stable good filtered A-flat

bundle, (ii) Res; (D*) are semisimple for Py, (37) det (P*E)V) = det(P.V), (iv) the difference

of Pie)V and P,V are dominated by €. (See Section 3.7.2 for more precise conditions.) The last

condition implies that hH(l) J chy (Pie)) = 0. For (PiE)V,ID))‘), we can construct hi(fl) such that
e~
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(i) Pl i<'6‘)V =PV, (ii) G (hl(fl)) is dominated in an appropriate way, (iii) det (hl(fl)) = hdet(v)-
By [62, Theorem 1], there exists a Hermitian—Einstein metric hS)E of (V, IDA) such that hS)E
and hi(;) are mutually bounded, and that det (hS)E) = hget(v)- (See Section 3.1 for Hermitian—
Einstein metrics of Higgs bundles.) Moreover, G(hgl)a) — 0in L? as € — 0. Hence, we would like

to construct the desired pluri-harmonic metric as lir% hg])a If € is sufficiently small, (Pﬁs)v, ID)A) v
€E—

is also stable for the 0-set Y of a generic section of H° (X , L®m), and hence (P,Ee)v, ]D’\) has a

Y
harmonic metric hgf) such that det (hgf)) = hget(v)[v\m- By the continuity of a family of harmonic

metrics mentioned above, the sequence hgﬁ) is convergent to hy as € — 0 (Proposition 4.5).

Because hgl)iﬂy is not necessarily a harmonic metric of (PiE)V, ]DV\)

to hgf). But, because the L?-norm of G(hga v
(¢)

of the sequence hHE|Y to hy as € — 0 (Proposition 4.8). Hence, we obtain the convergence of

v it is not necessarily equal

) is dominated by €, we can deduce the convergence

hg)E almost everywhere, and the limit satisfies hjy = hy for the O-set of generic section s of
HY (X7 L®m). Thus, we can prove the theorem in the case dim X = 2. (See Section 7.2 for
a more precise argument. )

In the case dim X > 3, we use an induction on dim X. By the Mehta—Ramanathan type the-
orem, there exists m > 0 such that for the O-sets Y; (i = 1,2) of generic sections of H° (X , L®m),
(P*V, ]DV\) v and (P*V, ]D)’\) viny, are pr-stable. By fixing a flat metric hgeq(y) for det (P*V, ]D)/\),
there exist pluri-harmonic metric hy, of (P,V, D)

(P*V’DA)meg
exists a Hermitian metric i of Vix\(guw) for a finite subset W, such that hjy\g = hy for the
0-set Y of a generic section of H (X , L®m). It is easy to see that h is the desired pluri-harmonic
metric. (See Section 7.3 for a more precise argument.)

v; such that det(hy;) = hget(v)v;\z- Because

is also pz-stable, we obtain that hy,|(v,nva)\a# = Pvs|(vinyz)\ir- Hence, there

3 Preliminaries

3.1 Hermitian—Einstein metrics of A-flat bundles

Let Y be a Kéhler manifold with a Kéahler form w. Let (E,]D)‘) be a A-flat bundle on Y with
a Hermitian metric. Recall that h is called a Hermitian—Einstein metric of the A-flat bundle
if A,G(h)* =0, where G(h)* denote the trace-free part of G(h), and A, denote the adjoint of
the multiplication by w (see [35, Section 3.2]). The following is a generalization of Kobayashi—
Liibke inequality to the context of A-flat bundles due to Simpson [62, Proposition 3.4].

Proposition 3.1 (Simpson). If h is a Hermitian—Einstein metric, there exists C > 0 depending
only on n = dimY such that the following holds:

Tlr((G(h)J‘)Q)w”*2 = C‘G(h)ﬂiww”.
As a result, if Tlr((G(h)L)Q)w"_2 =0, then we obtain G(h)* = 0.

3.2 Rank one case

Let X be an n dimensional smooth connected projective variety with a simple normal crossing
hypersurface H. Let w be a Kahler form. Let H = |J;c, H; be the irreducible decomposition.
Let g; be a C*°-Hermitian metric of the line bundle O(H;). Let o; denote the section of Ox (H;)
induced by the inclusion Ox — Ox (H;).
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Let (P*V, ]D)/\) be a good filtered A-flat bundle on (X, H) of rank one. For each i € A, there
uniquely exists a; €]—1,0] such that ‘Grf (P.V) # 0. Let A be the constant determined by

A/ W = 2 (1 + A / el (P
X X
The following proposition is standard.

Proposition 3.2. There exists a Hermitian metric h of the line bundle E := V|x\p such that
(i) V=1ALG(h) = A, (ii) h]Tjcp loil2% is a Hermitian metric of Pa(V) of C*-class. Such
a metric is unique up to the multiplication by a positive constant. Moreover, if c¢1(P:V) = 0,
then R(h) = 0 holds, and hence h is a pluri-harmonic metric of (E,D’\).

Proof. Note that G(h) = (1 + |A|?)R(h) holds in the rank one case. (See [49, Lemma 2.31].)
Let h{ be a C*-metric of PaE. We obtain the metric hg := h{ - [T;e |03];?* of E on X \ H.
It is well known that gR(ho) naturally extends to a closed (1, 1)-form on X of C*°-class which
represents c¢1(P.E). By the condition of A, we obtain [y (v/=1A,R(ho)— (1+ |)\\2)_1A)w" =0.
Note that v/—1A,R(hge?) = V/—1A,R(ho) + v/ —1A,00¢. Hence, there exists an R-valued C>°-
function g such that /—1A,R(hoe?°) — (1 + ])\|2)71A = (0. The metric h = hge?°® has the
desired property. The uniqueness is clear.

Suppose that ¢;(P.E) = 0. In the rank one case, a Hermitian metric of E is a pluri-harmonic
metric of (E,D*), if and only if R(h) = 0. Because the cohomology class of R(hg) is 0, there
exists an R-valued C*°-function g such that R(hoe?°) = 0 by the standard dd-lemma. By the
uniqueness, we obtain the second claim of the lemma. |

For the metric h in Proposition 3.2, gR(h) induces a closed (1, 1)-form on X of C'*°-class
which represents ¢ (P, E).

3.3 B-subobject and socle for reflexive filtered A-flat sheaves

Let X and H be as in Section 3.2. Let L be an ample line bundle L on X. For any coherent
Ox-module M, we set degy (M) := [y c1(M)eg(L)mX=1,

3.3.1 B-subobjects

Let (P*V, DA) be a reflexive filtered A-flat sheaf on (X, H). For any A € R, let S(PoV, A) denote
the family of saturated coherent subsheaves F of PV such that degy (F) > —A and that F(xH)
is a A-flat subsheaf of V. Any F € S(PoV, A) induces a reflexive filtered sheaf P,(F(xH)) by
Pe(F(xH)) := PVNF(xH) for any ¢ € RY. We set f4(F) := pur(P«(F(xH))). Thus, we obtain
a function f4 on S(PoV, A).

Lemma 3.3. The image fa (S(POV,A)) 15 a finite subset of R. In particular, fa has the
Mazimum.

Proof. According to [20, Lemma 2.5], the family S(PgV, A) is bounded. Hence, by using the
flattening stratifications [57, Section 8], it is easy to see that there exists a finite decomposition

S(PoV, A) = ]_L]il Si(PoV, A) such that f4 is constant on each S;(PoV, A). [

It is standard that any reflexive filtered A-flat sheaf has a S-subobject, i.e., the following
holds.

Proposition 3.4. For any reflexive filtered \-flat sheaf (P*V, ]D)/\), there uniquely exists a non-
zero A-flat subsheaf Vo C V such that the following holds for any non-zero reflexive A-flat sub-
sheaf V' C V:
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° ,U,L(P*V,) < ,LLL(P*VO) holds.
o If up(PV') = ur(Po) holds, then we obtain V' C V.

Proof. By the formula (2.1), there exists N > 0 such that the following holds for any saturated
subsheaf F C PoV:

|degy (F) — rank(F)urn(PF(xH))| < N.

We set Ag := |deg(PoV)| + 10N. Let By denote the maximum of f4,. Then, it is easy to see
that ur(P.V’) < By for any saturated A-flat subsheaf V' C V. Moreover, if ur,(PsV') = By, then
(P*V’ ,]D){‘,/) is ju7-semistable, where D3}, denote the flat A-connection induced by D*.

Suppose that the A-flat subsheaves V; C V (i = 1,2) satisfy ur(P.V;) = By. We obtain
the subsheaf Vi + Vo C V. Because Vi + Vs is a quotient of Vi @ Vs, we obtain a filtered
sheaf P.(V1 + Va) over Vi + Vs. induced by P.V; @ PiVse. Then, by the ur-semistability of
(P*Vi,]D)f‘), we obtain that By = pur(PV1 @ PuVa) < prn(Pe(Vi + V2)). Let Vs denote the
saturated subsheaf of V generated by Vi + Vo. We obtain a filtered sheaf P,V3 by PgVs =
Pa (V)N V3. Because the natural morphism P, (V) + Va) — P, Vs is generically an isomorphism,
we obtain pur(Px(V1+V2)) < ur(PyV3) < By by Lemma 2.5. Hence, we obtain ur(PxV3) = By.
Then, the claim of the lemma is clear. |

3.3.2 Socle

Let (P.V,D*) be a pur-semistable reflexive filtered A-flat sheaf on (X, H). Let T denote the fa-
mily of saturated \-flat subsheaves V' C V such that the induced filtered \-flat sheaf (77* V', ID)]);,)
is pr-stable with pr(PuV') = pr(P.V). Let Vi be the saturated Ox(xH)-submodule of V
generated by >y, V. It is a M-flat subsheaf of V.

Proposition 3.5. (P*Vl,]D)f)l) 1s equal to the direct sum @i:l (P*V(k),]l))));(k)) of a tuple of pr.-
stable filtered A-flat subsheaves of (P*V,]D))‘). In particular, (P*Vl,]D)i\) s pp-polystable. The
filtered A-flat subsheaf (P*Vl,]l)\))l) is called the socle of (P*V,}D)A).

Proof. Let V) (i = 1,2) be saturated A-flat subsheaves of V such that (i) p(P.V®) =
wr(PV), (i) (P*V(l),]l)i‘)(l)) is pp-semistable, (7ii) (P*V@),ID);\}(Q)) is pur-stable.

Lemma 3.6. Either V@ c V1) or V) 0 V) = 0 holds.

Proof. Let us consider the morphism ¢; — ¢5: Yy ¢ y@ V, where ¢;: VO 5 VY de-
note the inclusions. Let K denote the kernel. We obtain a filtered sheaf P,K over K by
PoK == KN Pa(V1 ® V). The projection VM @ V@ — V@ induces K ~ V) 0y = .
It induces a morphism of filtered A-flat sheaves g: (P*IC,]D)%) — (P*V(Q),D])}@)). We set
po := pr(PiV). Because B, 5 (P*V("),]D);\)m) and (P*V,]D))‘) are pz-semistable with the same
slope 19, we obtain that (P./C,Dy) is also pz-semistable with pr(PukC) = po.

Suppose that I # 0, i.e., Z # 0. Because Z is a subsheaf of V()| we also obtain a filtered
sheaf P,Z induced by P.V2) . Because T ~ K, we obtain a filtered sheaf P.Z over Z induced
by P«K. Then, we obtain

po = pur(PuK) = pr(PLI) < pr(PuI) < pup(PVP) = po.

Because (P*V(Q),]D)])}(z)) is puz-stable and because Z # 0, we obtain that rank(Z) = rank V(.
i.e., T and V) are generically isomorphic. Because ur(PL) = pg (P*V(z)), Lemma 2.5 implies
that P,Z — P,V is an isomorphism in codimension 1. Hence, there exists a closed alge-
braic subset Z C X such that (i) the codimension of Z is larger than 2, (i) V&)\ 5 C Vl()lf)\Z'
Because V(1) is reflexive we obtain that V2 ¢ y1), |



24 T. Mochizuki

Let us study the case where V(U N V@ = 0. Let V) denote the saturated A-flat subsheaf
of V generated by YD) 1+ Y@ Let P,VG) denote the filtered sheaf over V&) induced by P V.

Lemma 3.7. (P*V(P)),D\A}m) is pur-semistable, and the induced morphism g: P,YV@P, V@ —

P, VG is an isomorphism in codimension one.

Proof. We obtain puo = ur, (77* (V(l) @ V(2))) < pur (P*V(?’)) < ur(P.V) = po. Hence, we obtain
that pr, (P*V(3)) = po and that ('P*V(?’),Di‘;(g)) is pz-semistable. Because g: PYDgp, v —
P, VG is generically an isomorphism, and because they have the same slope, ¢ is an isomorphism
in codimension one by Lemma 2.5. |

By Lemma 3.7, it is easy to observe that there exists a finite sequence of reflexive A-flat sub-
sheaves V} (j = 1,...,m) such that (i) the induced filtered A-flat sheaves (P*VJ’-,]D)])},_) are fi-
J

stable, (7i) the image of the induced morphism g: V= @V]’ — V) is generically an isomor-

phism. Because pug = pp, (73*]7) < pur(PV1) < prn(PV) = pp, we obtain that pur, (73*17) =
wur(PV1) = pr(PyV). Hence, g is an isomorphism in codimension one by Lemma 2.5. Because

both P,V and P,V are reflexive, we obtain that 73*]7 ~ P, V. Thus, we obtain Proposi-
tion 3.5. [ |

3.4 Mehta—Ramanathan type theorems

Let X be a smooth connected n-dimensional projective variety with a simple normal crossing
hypersurface H. Let H = J;c, H; be the irreducible decomposition. Let L be an ample line
bundle on X.

3.4.1 Restriction to general curves

Let (P.V,D*) be a reflexive filtered A-flat sheaf on (X, H). There exists a Zariski closed sub-
set W C X with dimW < dim H such that (i) the singular locus of H is contained in W,
(i) P«Vix\w is a filtered bundle on (X \ W, H \ W).

Let Y be a smooth curve in X such that (i) Y N W = @, (ii) Y intersects with the smooth
part of H transversally. Set Hy := H NY. We obtain a locally free Oy (xHy )-module V,y-.
It is equipped with the induced flat A-connection Df‘y. Let b € RAY . For any P € Hy, there
exists i € A such that P € H;. We choose a(P,b) € R* such that a(P,b); = b(P), and we
obtain an Oy,p-submodule Py(Viy) p := Papp)(V)p of (Vy)p, which is independent of the
choice of a(P,b) as above. There exists a locally free Oy-module Py, (V|y) C Vjy whose stalk

at P is Pp (V‘y) p- Thus, we obtain a filtered A-flat bundle (77* (V|y),]D)|>‘Y) which is denoted
by (P*V,ID)A)‘Y.

3.4.2 The stability condition

Proposition 3.8. A refiexive filtered \-flat sheaf (P*V,]D))‘) on (X, H) is ur-stable (resp. pr-
semistable) if and only if the following holds:

e For any my > 0, there exists m > my such that (P*V,]D)A)W

semistable), where Y denotes a generic 1-dimensional complete intersection of hypersur-
faces of L®™.

is pr-stable (resp. pr-

Proof. The case A = 1 is already studied in [51, Section 13.2]. The case A # 0 is reduced to the
case A = 1. As for the case A = 0, we can prove the claim of the proposition by the argument
in [46, Section 3.4], which closely follows the arguments of Mehta—Ramanathan [43, 44] and
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Simpson [64]. We use W = QY(ND) for a large N instead of Q!(log D) in [46, Section 3.4].
(See also [51, Section 13.2].) [ |

3.4.3 Restrictions of morphisms and the polystability condition

Let us give a complement on the restriction of morphisms of reflexive filtered \-flat sheaves
to generic complete intersection curves, which is a variant of [64, Lemma 3.9]. Let (P*Vi,]D)A)
(1 = 1,2) be reflexive filtered A-flat sheaves on (X, H). Let Hom((P*Vl, ]DD{‘), (P*Vg, Dé\)) denote
the vector space of morphisms of filtered A-flat sheaves (P*Vl,]D){‘) — (P*VQ,D%). We shall
prove a refined claim (Proposition 3.16) of the following proposition in Sections 3.4.4-3.4.6.

Proposition 3.9. There exists a positive integer mg > 0 such that the restriction

Hom((P.V1,D?), (PVs,D3)) — Hom((P*vl,M)'Y, (P*VQ,D%)‘Y)

is an isomorphism for a generic 1-dimensional complete intersection Y of hypersurfaces of L™
(m > my).

Before going to the proof of Proposition 3.9, we state a variant of Proposition 3.8 on the
pr-polystability condition.

Corollary 3.10. A reflexive filtered A-flat sheaf (P*V,]DJ/\) on (X, H) is pp-polystable if and
only if the following holds:

o For any my > 0, there exists m > my such that (P*V,ID)/\)ly s pr-polystable, where Y

denotes the 1-dimensional complete intersection of generic hypersurfaces of L®™.

Proof. If (P*V,ID)A) is pr-polystable, we obtain a decomposition (P*V,ID))‘) =& (P*Vi,]Df‘)
into pr-stable filtered A-flat sheaves. Applying Proposition 3.8 to each stable component, we
obtain the “only if” claim.

Let m; be an integer larger than mg in Proposition 3.9 for Hom((P*V,]D))‘), (P*V,]D)/\)).
Suppose that there exists m > m;j such that (P*V,ID)’\)‘Y is pr-polystable for a generic 1-

dimensional complete intersection Y of hypersurfaces of L®™. We obtain the decomposition

¢
(P.V.DY) = D (PWv., DY) (3.1)

i=1
into stable filtered Higgs bundles. Let 7y;; denote the endomorphisms of (P*V, ID>’\)|Y obtained
by composing the projection (P*V,ID)/\)D, — (P*VYJ}D?/’Z‘) with respect to the decomposi-
tion (3.1), with the inclusion (P*Vy,i,]Dﬁ‘/’i) — (P*V,]D))‘)D,.
Ty,i, Ty,;0my,; = 0 (i # j) and ) my,; = id. By Proposition 3.9, there uniquely exist the endomor-
phisms ; of (P*V, ]D))‘) such that 7y = my;;. By Proposition 3.9 again, they satisfy m;om; = m;,
miom; =0 (i # j) and ) m; = id. Let V; C V denote the image of ;. We define P V; = ViNP,V
for any @ € RA. Because 7; are compatible with D* and the filtration P,), we obtain the de-
composition (P*V,D’\) =& (P*Vi,]D);\). By the construction, (P*VMD);‘)'Y = (P*Vy,i,]])?i)
are stable. Hence, (P*Vi,]D)ﬁ) are uy-stable with uL(P*VZ-,]D)f‘) = ,uL(P*Vj,]D)?) (1 # j), ie.,
(P*V,]D)A) is pp-polystable. |

Note that they satisfy my; omy; =
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3.4.4 General Enriques—Severi lemma due to Mehta—Ramanathan

To prove Proposition 3.9, we recall the general Enriques—Severi lemma in [43]. Recall n = dim X.
For a positive integer m, let S, denote the projective space of lines in H° (X , L®m). For sequ-
ences m = (ma,...,my) € ZL ) with ¢t < n — 1, we set Sp, := [[ Sp,. There exists the corres-
pondence variety Z,, C X X S, i.e., Zy = {(9:, Sly-v38t) € X X Sy | si(x) =0,1 <4< t}.
For any s € Sy, we set X := Zpn, Xg,, X{s}.

Let F' be a coherent reflexive Ox-module on X. For any m = (my,...,my) € Zt>0 with
t <mn—1, and for any s € Sy, we set Fy := F ®p, Ox,. For any integer m, let Fy(m) =
F Koy Lem,

According to [43, Proposition 1.5], there exists a non-empty Zariski open subset S C S
such that the following holds.

o Sm XS, Zm — §m is smooth.

e For any s € S, Fs is a reflexive Ox,-module.
In the proof of [43, Proposition 3.2], the following proposition is proved.

Proposition 3.11. Lett < n —2. There exists a positive integer mgy depending only on F' such
that the following holds:

e For any m = (mq,...,my) € Zt>0 with m; > my, there exists a non-empty Zariski open
subset U C Sy, such that H'(Xs, Fs(—£)) =0 for any s € U and any £ > my.

Corollary 3.12. Lett < n — 1. There exists a positive integer mg depending only on F such
that the following holds:

e for any m = (mq,...,my) € Zt>0 with m; > my, there exists a non-empty Zariski open
subset U C Sy, such that H*(Xs, Fs(—£)) =0 for any s € U and any £ > myg.

Proof. Let mg be a positive integer as in Proposition 3.11. We also assume H°(X, F(—¢)) =0
for any ¢ > mg. We use an induction on ¢t. For m = (mq,...,m;) with m; > my, we set
m' = (mq,...,my_1). By the assumption of the induction and Proposition 3.11, there exists
a non-empty Zariski open subset U] C Sy, such that H (Xy,Fy(—f)) = 0 (i = 0,1) for
any s’ € U] and any ¢ > my.

For any s € Sy, let s’ denote the image s in S,,,» by the projection Sy, — Sy.. There exists
the exact sequence

0 — Ox_,(—m¢) — Ox, — Ox, — 0. (3.2)

By [43, Proposition 1.5], there exists a Zariski open subset U; C §m such that if s € Uy then
we obtain the following exact sequence from (3.2) by taking the tensor product with F':

0 — Fy(—my) — Fy — Fs — 0.

We shrink U; so that U] contains the image of U; by the projection Sp, — Sp. Let £ > my.
For any s € Uy, we obtain H*( Xy, Fy(—¢)) = 0 and HY (X, Fy(—¢ —my)) = 0 because s’ € Uj.
Hence, we obtain H%(Xs, Fs(—¢)) = 0. [

Corollary 3.13. Let t < n — 1. There exists mg depending only on F such that the following
holds:

e For any m = (my,...,my) € Zt>0 with m; > my, there exists a non-empty Zariski open
subset U C Sy, such that the natural morphism HY(X, F) — H°(X,, F,) is an isomor-
phism for any s € U.
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Proof. It is enough to apply the argument in the first paragraph of the proof of [43, Propo-
sition 3.2] with Proposition 3.11 and Corollary 3.12. (This is essentially pointed out in [64,
Lemma 3.9].) |

Let T)*(SX denote the conormal bundle of X in X for any s € §m.

Corollary 3.14. Let t < n — 1. There exists mg depending only on F' such that the following
holds:

e For any m = (mq,...,my) € Zt>0 with m; > my, there exists a non-empty Zariski open
subset U C Sy, such that HO(XS,T)*(SX ® FS) =0 foranyseU.

Proof. Because Ty X =~ @;:1 Ox,(—m;), the claim follows from Corollary 3.12. |

3.4.5 Flat sections of reflexive filtered \-flat sheaves

Let H be a simple normal crossing hypersurface of X with the irreducible decomposition H =
Uien Hi- Let (P.V, DY) be a reflexive filtered A-flat sheaf on (X, H). Note that there exists
a Zariski closed subset W C X with dim W < dim H such that (i) W contains the singular
locus of H, (ii) P.V x\w is a filtered bundle on (X \ W, H \ W). For any m € Z"~! and for any
S E S, weset Hg := X xx H.

According to [43, Proposition 1.5], there exists a non-empty Zariski open subset S5, C Sm
such that the following holds:

® Zim XSy S — Sy is smooth.

e For any s € S;,, X NW = & holds, and X intersects with H in H \ W transversally.
Moreover, PaVs := PaV)x, (a € RM) are locally free Oy, -modules.

There exists a non-negative integer N such that D* induces a morphism of sheaves D*:
PaV — PaV @ Q4 (log H) @ Ox(NH). For j =0,1,...,n, we set

Cl(PaV) = PaV @ O (log H) ® Ox (jNH).

The flat A-connection D* induces D*: C4 (PaV) — CA (PaV) such that D} A DA = 0. Thus,
we obtain a complex of sheaves C} (PGV, H])’\) on X. Clearly, the following holds:

H (X, C} (PaV, D)) = Ker( HO(X, PaV) D HO(X, PaV @ Qk (log H) ® Ox(NH))).

For any s € Sg,, we obtain the filtered A-flat bundle (P.V,,D}) := (P*V,]D))‘)IXS. Let a(s)

denote the image of R® — Rs induced by the natural map Hy — A. Let 15: Xy — X
denote the inclusion. We obtain the natural morphism of complexes of sheaves Cj; (Pav, ]D))‘) —
LexC3y (PG(S)VS, ID);\), which induces

HY (X, Cx (PaV, DY) — HO (X, C (Pas)Vs, D2)). (3.3)
The following proposition is essentially [64, Lemma 3.9].

Proposition 3.15. There exists a positive integer mg > 0 such that the following claim holds
for any m = (my,...,mp_1) with m; > mg and a non-empty Zariski open subset U C Sy,.

e [For any s € U, the natural morphism (3.3) is an isomorphism.
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Proof. According to Corollary 3.13, if myg is sufficiently large, there exists a non-empty Zariski
open subset U; C Sy, such that the following natural morphisms are isomorphisms for any s € U:

H(X,PaV) — H(Xs, Pa(s)Vs).
HY(X,PaV ®0, Qx(log H) ® Ox(NH))
— H° (X5, Pa(s)Vs @0y, (Qx(log H) ® Ox,(NHy))).
There exists the following exact sequence:
0 — Tx%, X ® PosyVs ® Ox,(NH,) — (U (log H) ®0, Ox,(NH)) @ Pos)Vs
— Q. (log Hy) ® Py(s)Vs ® Ox,(NH,) — 0.

According to Corollary 3.14, if myg is sufficiently large, there exists a non-empty Zariski open
subset Uy C U; such that the following holds for any s € Us:

HY(Xs,T%, X ® Py(s)Vs ® Ox,(NHy)) = 0.
Hence, the natural morphism
H (X5, (% (log H) ®0x Ox,(NHs)) ® Pa(s)Vs)
— HY(X,, Q%, (log Hy) ® Pg(s)Vs ® Ox, (N Hy))

is injective for any s € Us. We obtain the injectivity of the following natural morphism for
any s € Us:

H°(X, Q% (log H) ® PaV ® Ox (NH)) — H%(X,, Qx (log Hy) ® Pg(s)Vs ® Ox, (NHy)).

Then, we obtain the claim of the proposition. |

3.4.6 Morphisms of reflexive filtered A-flat sheaves

Let P.V; (i = 1,2) be reflexive filtered sheaves with meromorphic flat A-connection D} on (X, H).
Let Hom((P*Vl, ]D){‘), (P*Vg, ID)%)) denote the vector space of morphisms of filtered A-flat sheaves
(P, DY) — (P2, D3).

Proposition 3.16. There exists a positive integer mg > 0 such that the following claim holds
for any m = (my,...,mp_1) with m; > mgy and for a non-empty Zariski open subset U C Sp,.

e for any s € U, let (P*VLS,D,?‘?S) denote the induced filtered \-flat bundles on (X, Hs).
Then, the natural morphism

Hom((P.V1, D7), (PoVs,D3)) — Hom((PuVis, DY), (PeVes, D3,))
is an isomorphism.

Proof. For any a € R*, let PaHom(Vi,Vs) denote the subsheaf of the Ox(*H)-module
Homp () (V1, V2) determined as follows for any open subset U C X:

H°(U, Pa(Hom(V1, W2))) = { f € H(U, Hom(V1, V2)) | f(PoVir) C Pats(Vaw) ¥b € R}

It is easy to see that PgHom(Vy,Vs) are reflexive (’)X—modules; Thus, we obtain a reflexive
filtered sheaf P,Hom(Vy, V) with the induced flat A-connection D*. We can easily observe that

Hom ((PV1,D7), (P.Ve,D3)) = HY (X, Cx (PoHom(Vi, Vs), D))

for any large N, where 0 = (0,...,0) € R*. Then, the claim follows from Proposition 3.15. W
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3.5 Good filtered A-flat bundles and ramified coverings
3.5.1 Pull back

Let X be any complex manifold with a simple normal crossing hypersurface H. Let (P*V,]DA)
be a good filtered A-flat bundle. We set e := rank(V)!.

For any point P € X, let (Xp,z1,...,2,) denote an admissible holomorphic coordinate
neighbourhood around P. We set Hp := Xp N H and Hp; := Hp N {z = 0}. We set
(P*Vp,]D)f‘D) = (P*V,]D))‘)|XP.

By using the coordinate system, we may regard Xp as an open subset of C". Let pp:
C" — C™ be given by ¢p((1,...,(n) = (Cf, . .,CE(P),CZ([.))+1, e ,Cn). We set Xp := gol_gl(Xp),
Hp := ¢p (Hp) and ﬁpﬂ; = ' (Hp;). We set Gp := Hf(j){ai € C| of = 1}. It is identified
with the Galois group of the ramified covering ¢p by the action as in Section 2.3.2.

We obtain the Gp-equivariant good filtered A-flat bundle (77*17]:,]13))1‘3) = ©p (P*Vp,]D))I‘D)
on (Xp, ﬁp)

Lemma 3.17. (P*ﬁp,ﬁ)%,) is unramifiedly good.
Proof. See [51, Lemma 2.2.7]. [

3.5.2 The associated graded bundles

We obtain the G p-equivariant filtered bundles lGrf (73*171:) (c € R) on (ﬁ P, OH p71). There
exists the G p-equivariant decomposition

e—1
'Grl (P.Vp) = P GGl (PVP),
=0

where (a,1,...,1) acts on GglGrF (73*]71:) as the multiplication by af.
c/e P*VP ) =

Lemma 3.18. The pull back naturally induces the isomorphism ( g0|H *(lGr
) More generally,

Go'Grl (P*Vp) As a result, 1Grc/e(73*Vp) is the descent of Go'Grl (P*Vp
the pull back and the multiplication by ¢} induces an isomorphism (QDIHP 1) (! Gr{;H)/e(P*Vp)) ~

G Gt (P.Vp).

Clearly, there exist a similar decomposition ‘Grf’ (73*)719) = @E;é GGt (77*1713) and iso-
morphisms for any i = 1,...,¢(P).

3.5.3 Residues

Let us recall that we obtain the endomorphisms Res; (D*) (j € A) on IGrE (P.V) by using
Lemma 3.18. (See [51, Section 2.5.2] for more detailed explanations.)

Let P be any point of H. First, let us construct the residues Res; (]D)f‘;) on 'Grf' (P, Vp).
At any QQ € ﬁp}l, we obtain the formal decomposition (Paf)p,]D))}‘)) ® O)?P,@ =& (Paga, ﬁé) as

n (2.4). For a; —1 < ¢ < a1, we obtain the endomorphisms Res; (]ﬁ)}\,)Q of 1Gr5 (Paﬁ)lQ as the

residue of @@ (ﬁé—dﬁ idf/a) at ). According to [51, Lemma 2.5.2], by varying Q € Hp, we obtain
the endomorphism Res; (]]53\3) of the filtered bundle 1Grf (’P*ip). It is Gp-equivariant. Hence,
we obtain Res; (D}) on 'Grf(P.Vp) as the descent of 1 Res; (D)) on Go'CrZ, (P*ﬁp). The
factor % comes from the relation e d¢; /(1 = dz1/z;1. Similarly, we obtain Res; (Df‘g) ZGrf (PVp)
fori=1,...,¢(P).

It is easy to see that there exists a globally defined endomorphism Res; (]D)A) on J Grf (P.V)
which is equal to the endomorphisms constructed locally around P € H; as above.
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3.5.4 Parabolic weights

We introduce some notation. We set Par(P.V,j) := {b € R | IGr} (P.V) # 0} for j € A.
Because we shall often use the pull back by a ramified covering as in Section 3.5.1, for a fixed e,
it is convenient to consider

Par(P,V, j) == {c+m/e|cePar(PV,j), meZ}.
Note that Par(P*ﬁp,j) ={eb|be %‘(’P*Vp,j)} for P € H. (See Lemma 3.18.) We define
gap(P.V, §) := min{|by — by| | by, bs € Par(P,V, ), by # by }.

If A is finite, we also set gap(P.V) := mi/{l gap(P.V, j).
j€

For each a € R, we set
Par(P.V,a,i) = Par(P.V,i)N|a; — 1, a;], Par(P.V, a,i) := Par(P.V,i)Na; — 1, a.
We remark the following obvious lemma.

Lemma 3.19. For each j, there exists a; € R such that |a; — b| > (derankV)™! for any
b € Par(P.V, ).

3.6 Approximation by model filtered A-flat bundles
3.6.1 Model filtered A-flat bundles

Let Z be a complex manifold. Let Y be a neighbourhood of {0} x Z in C x Z. We set
Hy := {0} x Z. Let e be a positive integer. Let ¢ be the standard complex coordinate of C.
Consider ¢: C x Z — C x Z induced by ¢ —> % We set Y := ¢ 1(Y) and H := ¢ *(H).
The induced morphism Y — Y is also denoted by . Let G denote the group of the e-th roots
of 1, which is naturally identified with the Galois group of the ramified covering .

Let 7 be a finite subset of H° (17,(’)37 (*ﬁ)) which is preserved by the G-action. Let S
and S be finite subsets of |—1,0] and C, respectively. Let Viq0a ((a,a,a) € T x S; x S2)
be finite dimensional C-vector spaces equipped with a nilpotent endomorphism fq 4. Note
that Vgq,q may be 0. We suppose that @, , , Vaaa i a G-representation such that (i) it is
G-equivariant as a vector bundle over Z, (1) @ fa.q,o commutes with the G-action.

We set 17&&70[ =0y (*ﬁ) @ Va,a,0- We define the filtered bundle P*ﬁw,a over ﬁa,a,a by setting
PoVaaa = O ([b— alH) @ Vaa.a

for any b € R, where [b— a] := max{n € Z | n < b— a}. We define the flat A-connection D}

a,a,0

on 17‘1,@704 by setting
D} 4a(v) = da- v+ (a0 + faaa(v))dC/C

for any v € Vg 4,a, which we regard as a section of ﬁa,a,a in a natural way. Thus, we obtain
a G-equivariant filtered A-flat bundle €, , , (P*Va,am]l)é,a’a), called a model filtered A-flat

bundle. If 7 induces a good set of irregular values in Oy (*f[ )Q /Oy o at each Q) € H , then
Dova (P*]?a,ma, D, ) is an unramifiedly good filtered A-flat bundle. It induces a filtered A-flat

a,a,o

bundle on (Y, H) as the descent, which is also called a model filtered A-flat bundle.
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3.6.2 Approximation of good filtered A-flat bundles
Let (P*V,]D)’\) be any good filtered A-flat bundle on (Y, H). Assume the following condition:

Condition 3.20. For each a € Par(P.V), the conjugacy classes of Res (}D)A) on Grf(P*V)‘p
are independent of P € H. Note that this condition is trivially satisfied if X # 0.

We set e := rank(V)!. Let ¢ and (}7,]?) be as in Section 3.6.1. We set (77*17,}139) =
p* (P*V,]D))‘). For each @ € H , there exists a decomposition

(73*17,]]3)>‘) & (9}7@ = @ ('P*]N/u,]ﬁ)é)
a€Z(Q)

as in (2.5). We obtain the vector spaces Gr’’ (Polja) —1 < a < 0) equipped with the endo-

Q (
morphisms Res (]DA). Condition 3.20 is equivalent to the following.

e The conjugacy classes of Res (BA) on Gr¥ (’P()]N)a)l Q e independent of @ € H for any
—1<a<0.

In particular, the condition implies that there exists a decomposition

Grl' (PoVa) = (P Ea Grl (PoVa)

aeC

on H where Res (ID)’\) — «id are nilpotent on E, Gr (730951).
Fix P € H. Let P € H be determined by (p( ) = P. We set Viqq = Eq Grl’ (730)7 )|§

Let fqa,a be the nllpotent part of Res (]D)A) on Vg 4. For a neighbourhood Yp of P in Y, we
set Hp :=Yp N H, Yp == ¢ Y(Yp) and Hp := ¢ 1(Hp). We may assume that any a € I(P)
has a lift @ in H° (?p, Oy, (*ﬁp)) From the set {(a,a,a)} C I(P) ]—1,0] x C and the tuples
(Va,a,a» faa,a), we obtain a model filtered A-flat bundle

(PYV0, D) == P (PVaaa: DY ua)

a,a,x

n (?p, H p). It is unramifiedly good and naturally G-equivariant. As the descent, we obtain
a good filtered A-flat bundle (P*VO,ID)S‘) on (Yp, Hp).

Lemma 3.21 (assume Condition 3.20). For any positive integer m, there exist a neighbour-
hood Yp of P in'Y and an isomorphism of filtered bundles ®p,: PVo =~ PuV}y, such that the
following holds:

o We set CAISm = " (Py,) and A = (&)m)*(ﬁk) — ﬁé on f/p. Let A=Y A(b,b,8),(a,a,0) be the
decomposition such that

Ap,6,8),(0,a,0) € Hom(f/a?a@7 17[,75,5) ® Q%P.
Then, we obtain the following for any c € R:
Aop ) (waa) " PeVaaa C PetomVop,s ® Q%P (a #b),
A ) @aa) PeVaaa C PVans @ Qg (logHp),  (a,0) # (b,5),
Res A(q .0 (@a0) (PeVaaa) C PecVaaa-

Here, P<cVops = Ugee PaVobs-
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Proof. By [51, Proposition 2.4.4], for any large inter N, there exists a G-equivariant decompo-
sition of filtered bundles

PVy, = @ P

an(P)

n (?p, H p) such that the following holds.

o Let ng) denote the projection of 77*17'5713 onto P*%N), and let Ll(l ) denote the inclusion

of 77*17(5]\[) into P*Vlf/ Then, for any a # b and for any ¢ € R, we obtain

) oD o oM (PVN) € Pean M @ 0

BAN) ()

e For a, we set Dy oD*o LSN) — daidg(m. Then, for any ¢ € R, we obtain

DM (P VMY c PV ® Q%,P (log Hp),
D* ™) o DM (PVM) € P x VY © 0L (log Hp).

Then, the claim of the lemma is clear. |

3.7 Perturbation of good filtered A-flat bundles
3.7.1 Curve case

Let C be a Riemann surface with a finite subset D C C. Let (P*V, IDD)‘) be a good filtered A-flat
bundle on (C, D). We set e := rank(V)!. We choose n > 0 such that 10en < gap(P.V).

For any 0 < 10rank(V)e < 5, and for any P € D, let ¢ p be a map 7;3}(77*]/, P) — R such
that () WeP( ) — bl < 2, (i7) if e(by — b2) € Z then v p(b1) — b1 = e p(b2) — ba. We define
Ve p: L % Par(P,V, P) — R by

SDG,P(]C? b) = we,P(b) + €k.

We take a € RP as in Lemma 3.19. For each P € D and b € Par(P,V, a, P), we obtain
the endomorphism Resp (]DD)‘) of Grlrll:7 (PaV| p). Let W, Grlrll:7 (PaV| p) denote the weight filtra-
tion associated with the nilpotent part of Resp(D*). For any (k,b) € Z x Par(P.V,a, P),
we obtain the subspace W (Fb (PaV| p)) as the pull back of W}, Grf (PaV| p) by the projection
Fy(PaVip) — Grf (PaV,p). We define the filtration F© on PaV|p indexed by |a(P) —1,a(P)]

as follows:

F{(PaVip) = > Wi Fy (PaVip).
(k,b)EZxPar(P«V,a,P)
@e,p(k,b)<c

We obtain the corresponding filtered bundle Pie)v. Note the following lemma.

Lemma 3.22. (Pﬁs)V,DA) is a good filtered A-flat bundle.

Proof. It is enough to consider the case where C is a neighbourhood of D = {P} = {0} in C.
We obtain ¢: C — C, D, G, and (73 V,D A) as in Section 3.5.1. We set a := ea(P) and

P := ¢ Y(P). For (k,b) € Z x Par(P,V,d), we construct Wi Fy (P le) as above.
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For b € Par(P*ﬁ,E), note that b/e € Par(P,V), and we set
e p(k,b) := ey p(k,b/e) + kee.

We set

FOPTR) = Y W (T,
SZE,P(kvb)Sd

We obtain the corresponding G-equivariant filtered bundle Pie)ij. We can easily observe that
cp*Pie)V ~ PP by using 102erank(V)e < gap(P.V).
There exists the decomposition

(P.V,D*) @ C[¢] = P (P.Va, DY),

ael

as in (2.4). We apply the same procedure to each P.Ve by using ¢, p, and we obtain filtered
bundles Pie)ﬁa for which ]INDG)‘ — daid are logarithmic. Because P,EE)IN) ® C[¢] = @Pﬁe)ﬁa, we
obtain that (Pie)f),]]]))‘) is unramifiedly good. Hence, we obtain that (P,EE)V, ]DV\) is good. |

Suppose that C is compact and connected. We clearly obtain liH(l) c1 (P,EE)V) = ¢1(P«V). The
e—

following is also standard.

Lemma 3.23. Suppose that (P*V, DA) is stable. Then, if € > 0 is sufficiently small, (P,EG)V,]DA)
15 also stable.

Proof. For any positive integer s < rank()), and for any P € D, let T (s, P) be the set of real
numbers expressed as

Z bSb,

bePar(P«V,a,P)

where s, are non-negative integers such that > s, = s. Let S(s) denote the set of real numbers
expressed as 1(m + Y pcpcp), where m € Z and cp € T(s,P). Then, Uy scramcy S(5) is
discrete in R. Hence, there exists 0 > 0 such that if t € Uy ycrancy S(5) satisfies t < pu(PiV),
we obtain ¢ < u(P,V) — §. Then, the claim of the lemma is clear. [ ]

3.7.2 Surface case

Let X be a complex projective surface with a simple normal crossing hypersurface H = J;c, H;.
Let (P*V, D’\) be a good filtered A-flat bundle on (X, H). We shall explain a similar perturbation
of good filtered A-flat bundles. Set e := rank(V)!. We choose n > 0 such that 0 < 10en <
gap(PY). -

For any 0 < 10rank(V)e < n, let 1.; be a map Par(P.V,i) — R such that (i) |[¢ei(b) — b
< 2¢, (11) if e(by —b2) € Z then ¢ ;(b1) —b1 = 1 i(ba) —ba. We define ¢ ;: Z x Par(P,V,i) — R
by @E,i(kv b) = we,i<b) +f\/k'

We take a € R? for Par(P,V,i) (i € A) as in Lemma 3.19. The eigenvalues of the endomor-
phism Res; (]D)A) on Grlr{,7 (PaV‘ Hz) are constant on H; because H; are compact. We obtain the
well defined nilpotent part IV;; of Res; (D’\). There exists a finite subset Z; C H; such that the
conjugacy classes of the nilpotent part of N; ¢ (Q € H;\ Z;) are constant. We obtain the weight
filtration W of Grlr{,7 (PaV‘ i\ Zi) by algebraic vector subbundles whose restriction to Q € H; \ Z;
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are the weight filtration of N; ;. It uniquely extends to a filtration of Grlr}:7 (PaV| Hz) by algebraic
subbundles, which is also denoted by W.

For any (k,b) € Z x Par(P.V, a, i), let W Fy,(PaVy,) denote the subbundle of Pg V), obtai-
ned as the pull back of Wy Ger (PGV‘HZ.) by the projection Fb(PaV|Hi) — Ger (PaV|Hi).
We define the filtration F(©) on PaV|h, indexed by Ja; — 1, a;] as follows:

FOP Wy, = > Wi FyPaVim, -

(k,b)eZxPar(P«V,a,i)
Pe,i (k,b)SC

We obtain the corresponding filtered bundle P,EE)V over V. Asin the curve case (see Lemma 3.22),
we obtain the following.

Lemma 3.24. (Pie)V,DA) is a good filtered A-flat bundle.

We clearly have lim e, (PLIV) = ¢1(P.V) and lim chy (PLIV) = chy(P.V). The following is
€= e—>
standard, and similar to Lemma 3.23. (See also [46, Proposition 3.28].)

Lemma 3.25. Let L be an ample line bundle on X . Suppose that (P*V,ID))‘) 1s pr,-stable. Then,
if € is sufficiently small, (Pf)V,ID))‘) 18 also pr-stable.

3.8 Some families of auxiliary metrics on a punctured disc
3.8.1 Regular model case

Let V be a finite dimensional vector space over C with a nilpotent endomorphism f. Let
(a,a) € RxC. Let X be a neighbourhood of 0 in C. We set H := {0}. Weset V = Ox(xH)QV.
From (a,a) and (V, f), we obtain a model filtered A-flat bundle (P*V,]D))‘) by applying the
construction in Section 3.6.1 in the case a = 0 and e = 1.

Fix 0 < n < 1. For any 0 < 10rank(V)e < 7, we take a(e) such that |a — a(e)| < 2¢, and

we obtain the regular filtered A-flat bundle (Pie)V, D’\) as in Section 3.7.1. We set E =V x\p.
We consider the Kéhler metric ge := (n?(z[*"72 + €*|z|*72) dzdz of X \ H.

Proposition 3.26. There exist Hermitian metrics b9 of E for 0 < 10rank(V)e < n such that
the following holds:

PR =PV,

h©) is a Hermitian metric of (E,D)‘), and () — h(O) in the C®-sense locally on X \H.
There exist C; > 0 (i = 0,1,2) such that the following conditions are satisfied for any e:

‘G(h(e))}g&h(e) < Cy, Cl—l‘z|2rank(V)eh(O) < h(e) < Cl|Z|f2rank(V)eh(O)’
Cy ' det(ho) < det (h)) < Oy det (b)),

Let Bz@ (i =1,2) be the C*°-endomorphisms of E determined by the condition Dz(i) (v) =

B%E) (v)dz/z + Bée) (v)dz/z for v € V. Then, there exists C3 > 0 such that ‘Bi(e)’h(e) < (O3
holds for any €.

Moreover, for any vi,va € V, h{9)(vy,v2) depends only on |z|, where vj are naturally regarded
as holomorphic sections of V.

In the case A # 0, such a family of Hermitian metrics A9 is constructed in [49, Sections 4.3
and 4.4.1]. We shall explain the case A = 0 in Section 3.8.4.
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3.8.2 General case

Let Sy be a finite set. Let S; be a finite subset of |0,1]. Let So be a finite subset of C. Let
Viaa ((i,a,a) € Sy x S1 x S2) be finite dimensional C-vector spaces equipped with a nilpotent
endomorphism fj qq. Set r:= ) dimV; 4 and e :=rl. Take n > 0 such that

10en < min{|a — b| | a,b € Sy U{0,1}, a # b}.

As in Section 3.8.1, we obtain the regular filtered A-flat bundles (P*V¢7a7a,ID)g\’a7a) from

(Via,as fiaa). For 0 < € < n/10r, we take a(e) such that |a — a(e)] < 2¢, and we obtain
(P,EE)V@CL,Q, D ) We set Ej 4.0 := Vi,a,a|X\H. We obtain the metrics hgega of Ej 4. as in Pro-

1,a,00

position 3.26. We set PiE)V = @Pﬁe)%,a,a and h(© = ) ple)

1,a,0"
Fix a positive integer m and a positive number C. We consider the following data:

e For each i € S, let a(i) denote a polynomial 3 7", a(i)jz7 € z7'C[z7!] such that
la(i);| < C.

e Let A be a holomorphic section of End(V) with the decomposition A = > A 8) (i,a,0);
where

Agip,B),(1a0) € Hom(Vi a0, Vipg)

If'i # j, we obtain [ AG.8), 60,0 lno) < Cl2|'™, and if i = j, we obtain |A(;,6) (0,0 ln©
< Clz|™.

We define the flat A\-connection D* on V as follows:

A N A %
D = @ (da(d)idy,, . +D,) + A —.

Let ge be the Kédhler metrics of X \ H as in Section 3.8.1.

Proposition 3.27. There exists a constant C' depending only on m and C such that

|G(R)

!
967h<€) S C '

3.8.3 A consequence

Let Y be a neighbourhood of 0 in C. We set H := {0}. Let (P*V,]D’\) be any good filtered -
flat bundle on (Y, H). Let (E,D*) be the A-flat bundle obtained as the restriction of (P,V, D)
to Y\ H. We set e := rank(V)!. Let ¢ be as in Section 3.6, and we set (73*9, IBJ’\) = @* (P.V, D).
We take 7 > 0 such that 10en < gap(P.V). Let g be the Kihler metric ?|z|>7"2dzdz of Y \ H.
By using a special case of Proposition 3.27, we obtain the following corollary.

Corollary 3.28. There exists a Hermitian metric h of (E,]D)A) such that (i) PI'E = P,V,
(1) |G(h)|n,g is bounded on Y \ H.

Proof. Let (P*VO,ID)(}) be a model filtered A-flat bundle with an isomorphism ®,,: PyVy ~
P,V as in Lemma 3.21, where m is a sufficiently large integer. We recall that (P*VO,D())‘)

is obtained as the descent of the G-equivariant model filtered A-flat bundle (77*170,[5)6‘) =
@a,a,a (P*Vu,ma,ID))‘ ), and ®,, is induced by a G-equivariant isomorphism 73*% ~ P.V.

a,a,o

Let E(()O) be the Hermitian metric of 9()'37\}7 as in Proposition 3.26 with € = 0. By the isomor-

phism (T)m, it induces a G-equivariant Hermitian metric hofV Applying Proposition 3.27

IY\H*
to (P*V, ]D))‘) with A, we obtain the boundedness of G(h) with respect to ¢p*g and h. Because h
is G-equivariant, we obtain the Hermitian metric A of E which has the desired property. |
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3.8.4 Proof of Proposition 3.26

Let V5 := Cuv; ® Cvg with the nilpotent map determined by fo(vi) = vy and fa(ve) = 0.
We obtain Vo = Vo ® Ox(xH) and the Higgs field 6 determined by 62(v) = fao(v)dz/z. Let
(E’g, g, 92) be the Higgs bundle on X \ H obtained as the restriction of (Vs, 62). For any € > 0,
we set Le(2) := e 1(|z|7€ — |2]€). We also set Lo := —log |2|2.

Lemma 3.29. We obtain Lo(z) < Le(2) < |2|7“Lo(2). There exists C > 0 such that
\az long(z)‘ < Clz|™
on {|z| <1/2} for any 0 <e<1/2.

Proof. As proved in [49, Section 4.2], Lo(z) < L(z) holds. We set g1(e) :== —elog|z|* — (1 —
|2|%¢) for any z € A* and for € > 0. It is easy to check that d.g1(€) > 0 and lir% g1(e) = 0. Hence,
€E—

we obtain L¢(z) < |z["“Lo(z). For 0 < a < 1and 0 < ¢, we set ga(€, a) := §(a™“—a) " (a"“+a).
Then, dlog L(2) = —ga(e, |z|)% Then, we can check that J,g2(€,a) > 0 and O.g2(€,a) > 0.
Then, we obtain the second claim of the lemma. |

Let hge) be the C*°-metric of Fy given by

hge) (Ul, Ul) = LE, hge) (UQ, UQ) = L_l, hge) (’Ul, ’Ug) = 0.

€

)

Lemma 3.30. (E2,5E2,92,hg€)) are harmonic bundles. Moreover, the family of metrics hge
satisfies the condition in Proposition 3.26 for (P.Va,02).

Proof. Let H. be the matrix valued function on X \ D determined by (H.);; := hge) (vs, v5).
Then, the following holds:

5 _ 2.1-2 4=
I(H-"0H,) (88logL€ 0 >_< 1 0> e%|z|72dz dz

0 —00logL.)  \ 0 1 (|Z|—6_|Z|e)2
. —1 0 _QdZdE
— (o 1)

Let © be the matrix valued function representing fy with respect to the frame (vi,v2), i.e.,
02(v1,v2) = (v1,v2)0. Let 9; 1O denote the adjoint of 65 with respect to hge). Let @I denote

the matrix valued function representing 9; h(o- The following holds:

0 0\ dz 01 dz
G)_(1 0>z’ O <0 0>L6 z

Hence, we obtain

—'- _ —1 0 . 72'dZdE
o0l = (3 4) 1 R

It implies that
O(H '0H,) + [0,0]] = 0.

It is exactly the Hitchin equation for (E2,5E27 0, h275). The other claim is easy to see. |
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For each ¢ € Zg, we set (Vy, fr) = Syméil(VQ,fg). We set Vy = Vp; ® Ox(xH) and

= fydz/z. We obtain the regular filtered Higgs bundles ('P,,EE)Vg, Hg). Note that (Pff)Vg, Gg)
is naturally isomorphic to the (¢ — 1)-th symmetric product of (PiE)Vg, 92). Hence, hge) induce
harmonic metrics hée) of (Eg, g, (9@) := (Wi, 00)|x\ g satisfying the conditions in Proposition 3.26
for (PLVy, 0,).

Let (V. f), (a,a) and (V, ) be as in Section 3.8.1. There exist integers /1, ..., ¥, such that

n

V) ~P V. fr,).

j=1
We obtain P9V ~ D P9V, . We obtain the harmonic metrics D |2 2a(e) h(e) for (E, 0, 0).
We can easily check that they satisfy the conditions in Proposition 3.26 for (P*V 0). [ |

3.8.5 Proof of Proposition 3.27

We set @ := P, , ,da(i)idy, , , and DATes .= @Dma Let <I>T(€) and Ah(e)
of ® and A with respect to h(9, respectlvely We obtain the decompositions D = DAreg 4

® + Adz/z and D)) = ]D)z(re)g* — <I>;rl(€ Al dz/z. Note that [D*ree, <I>L( )] = [szjg*,qﬂ -

denote the adjoint

1,a,00

h(e)

[‘I) @IL( )] = 0. By the assumption, we obtain
HCIJ Ah< N goh@ = HCDIL(E),A” no < 220202 |y [m—rank(V)e—2n

We also obtain |[A, Al ) < 20203z~ 4rank(V)e | Because

h(e )”h(

D D) e ,Adz/z] = [B é ,A] |27 2dz dz,

h(e)
we obtain
[P Ad2/2] |, o = [0 AL 02/, o < OO

Hence, we obtain the desired estimate for G(h(g)) []D)A ]]])2(*6

] [ |
3.9 Estimate of the curvature for Hermitian—Einstein metrics
of a Higgs bundle

Let X be a complex surface. Let (E,EE,H) be a Higgs bundle on X. Let g; be a sequence
of Kéhler metric on X which is convergent to a Kéahler metric go, in the C°°-sense locally
on X. Let h; (i =1,2,...) be Hermitian-Einstein metrics of the Higgs bundle. We assume the
following:

o [y ’G(hi)’%hgi — 0.

Let Vj, be the Chern connection of (E,EE, hi). Let R(h;) denote the curvature of Vp,.
The following proposition is a refinement contained in the argument in [46, Section 9.1.1].

Proposition 3.31. For any relatively compact open subset U C X, and for any p > 1, the
LE-norms of R(h;)|y with respect to h; and g are bounded.

Proof. Let P be any point of X. Let (Xp, 21, 22) be a holomorphic coordinate neighbourhood
of X around P. Let us describe 6 as 6§ = Zj:1,2 fjdz;. Let Xpo be a relatively compact
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neighbourhood of P in Xp. According to [46, Lemma 2.13], there exist Cy > 0 (k = 1, 2), which
are independent of h;, such that the following inequalities hold on Xp:

2 < C-exp <C2 /. |G<hi>|ii)-

(Note that G(h;) is denoted as F'(h;) in [46].) Let e denote a positive number. After rescaling
the coordinate system, we may assume the following on Xp:

> 1517, < e/100.

There exists ig such that for ¢ > ig we obtain [ \G(hz)\,%z g < €/100. Because the L2-norms are
scale invariant, we obtain

/XP’O | R(hy)

Let Xp; be a relatively compact neighbourhood of P in Xpy. If € is sufficiently small, by the
theorem of Uhlenbeck [74, Corollary 2.2], there exists an orthonormal frame v; of (E,h;)|x,,

2
hi,gi, p

< €/10.

for each i such that the connection form A; of Vj, with respect to v; satisfies (i) A; is L%,
(1) [|Aillz < Cs|[R(hi)||z2 on Xp; for a positive constant C's independently from i, (iii) A;
satisfies dj, ,A; = 0, where dj , denotes the adjoint of d with respect to the metric g; p. Let ©;

and @j» represent # and 0}:2_ with respect to the frame v;. Then, A; satisfies
Agp (dA; + Ay A A;) + Ay, [64,0]] = 0.

Let Xpo be a relatively compact neighbourhood of P in Xp;. By the argument of Donaldson
in the proof of [15, Corollary 23|, we obtain that A; are L} for any p > 2 on Xpo, and that there
exists Cyp > 0 such that HAiHL’l’ < C4p on Xpo, where Cy ;, are independent of 7. In particular,

there exists U5, > 0 independently from 7 such that HR(hi)IXP,z HLP < Csp.

Let A; = A?’l + Ag’o be the decomposition into the (0, 1)-part and the (1,0)-part. Because
00 = 0, we obtain 00; + [A?’l, @i] = 0. Hence, there exist Cg ) > 0 independently from ¢ such
that [[©ix,,, |5 < Co,-

Note that dgR(h;) = 0 and 9, R(h;) = 0. Let 527,%%1) denote the formal adjoint of dp
with respect to h; and g; p. Because AgiﬁpR(hi) + Ay, p [Gi, 03] = 0, there exists C7, > 0 such
that |9,
in Xps. There exists Cg, > 0 independently from ¢ such that ||R(hs), Xps | < Cs p. It implies

R(hi)‘XPQHLp < C7p. Let Xp3 be a relatively compact neighbourhood of P
’ 1

i,9%, P

the claim of the proposition. [ |

4 Existence and continuity of harmonic metrics
in the curve case

4.1 Existence of Hermitian—Einstein metric

Let X be a compact Riemann surface. Let D C X be a finite subset. Let (P*V, ID)A) be a stable
good filtered A-flat bundle on (X, D). Let (E,D") be the A-flat bundle on X \ D obtained
as the restriction of (V,]D))‘). Let w be any Kahler form of X. Let hge(r) be a Hermitian

metric of det(E) such that (i) AyR(hge(p)) = 27 deg(PuV)( [y w)_l, (i1) hqet(p) is adapted
to P« det(V), ie., Pdet<E) det(E) ~ P, det(V). (See Proposition 3.2.)
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Theorem 4.1 (Biquard—Boalch). There ezists a unique Hermitian—Finstein metric h of (E, ]D)‘)
adapted to P.V such that det(h) = hgey(p)- If deg(PiV) =0, h is a harmonic metric.

Proof. It is enough to prove the case deg(P.V) = 0. We explain an outline of the proof based
on the fundamental theorem of Simpson [62, Theorem 1] (and its variant [49, Proposition 2.49])
because we obtain a consequence on the Donaldson functional from the proof, which will be
useful in the proof of Proposition 4.5 below. Set e := rank(V)!. Take n > 0 such that 10en <
gap(P«V,a). (See Section 3.5.4 for gap.)

Let (X P, ZP) be an admissible coordinate neighbourhood around P. Set X} := Xp \ {P}.
We take a Kihler metric gx\p of X \ D satisfying the following condition:

* gx\p|x; is mutually bounded with |zp|~2Tdzp dzp on X} for each P € D.

Recall that the Kéhler manifold (X \ D, gx\p) satisfies the assumptions given in [62, Section 2],
according to [62, Proposition 2.4].

Lemma 4.2. There exists a Hermitian metric hg of E such that the following holds:

(a) (E,d}%, ho) is acceptable, and PME = P,V.
(b) G(ho) is bounded with respect to hg and gx\p-
(c) det(ho) = hget(E)-
Proof. By Corollary 3.28, we obtain a Hermitian metric h{, of E satisfying (a) and (b). We define

the function ¢: X \ D — R by hqey(g) = det(hy)e?. Then, ¢ induces a C*°-function on X.
We set hg := hge*”/ rank(E) - Then, the metric ho has the desired property. |

For any A-flat subbundle E' C E, let h{, denote the Hermitian metric of E’ induced by hy.
Let ]D)E, denote the Higgs field of E’ obtained as the restriction of D*. We obtain the Chern
connection Vj, from the (0,1)-part of D}, and h{. Let R(h{) denote the curvature of Vi
We set

deg(E', ho) := V_ll/ Tr G(E', D}y, h) = v-l Tr R(hy).
2 1 + ‘)\’2 X\D 2 X\D
Let Agx\ ., denote the adjoint of the multiplication by the Kéhler form associated with gx\p -

Because G/(ho) is bounded with respect to ho and gx\ p5,, deg(E', ho) is well defined in RU{—o0}
by the Chern—Weil formula [62, Lemma 3.2] (see also [49, Lemma 2.34]):

v—1 1 1 1 2
deg(E' hg) = — ———= | Tr(A G(h V- ———— [ |IDMrg
e8(Eho) = TP / (oo, GlhOITE") = 52325 /' e
Here, g denotes the orthogonal projection £ — E’ with respect to hg.

Lemma 4.3. deg(E’, ho)/rank(E’) < deg(FE, hy)/rank(E) holds. Namely, (E,D*, hg) is ana-
lytically stable in the sense of [63, Section 6] (see also [49, Section 2.3]).

Proof. By [63, Lemma 6.1], we have deg(E, ho) = deg (P/°E) = 0. Let 0 # E' C E be a A-
flat subbundle on X \ D. By [63, Lemma 6.2], if deg(E’, hg) # —oo, E’ extends to a filtered
subbundle P B PME, and deg(E’, ho) = deg (Pf g ) holds. Because (P E,D") is assumed
to be stable, we obtain deg(FE’, hg)/rank E' < deg (PfOE)/rankE = 0. Hence, (E,EE, 0, ho) is
analytically stable. [ ]

According to the existence theorem of Simpson [62, Theorem 1] (see also [49, Proposi-
tion 2.49]), there exists a Hermitian—Einstein metric h of (E,D?) such that det(h) = det(ho) and
that h and hg are mutually bounded. We already know the uniqueness as in Proposition 2.22.
Thus, we obtain Theorem 4.1. |
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4.1.1 Complement on the Donaldson functional

Let ho and gx\p be as in the proof of Theorem 4.1. Let H(ho) be the space of C*°-Hermitian
metrics hy of E satisfying the following condition:

e Let u; be the endomorphism of E such that (i) hy = hoe", (ii) up is self-adjoint with
respect to both hg and hy. Then, supgex\p [u1]n (Q) + DM || 2 + H]D)/\]D)ﬁgulHLl < 00.
Here, we use the LP-norms induced by o and gx\p.

The Donaldson functional M (hg,e): H(hg) — R is defined as in [62, Section 5] and [49,
Section 2.4].

Proposition 4.4. Let h be the Hermitian—FEinstein metric in Theorem 4.1. Then, h is contained
in H(ho), and M (ho,h) <0 holds.

Proof. Let b be the automorphism of E which is self-adjoint with respect to both h and hg,
and determined by h = hg - b. The theorem of Simpson [62, Theorem 1] (see also [49, Pro-
position 2.49]) implies that b and b~! are bounded, and that DM is L? with respect to hg
and gx\p. By [62, Lemma 3.1] (see also [49, Section 2.2.5]), we also obtain ]D))‘ngb is L.
Hence, h is contained in H(hg). In the proof of [62, Theorem 1] and [49, Proposition 2.39],
the metric h is constructed as the limit of a subsequence of the heat flow h; (¢t > 0) for which
O¢M (ho, hy) < 0 holds. Because M (hg,hy) = 0 by the construction, we obtain M (hg, hy) < 0,
and hence M (hg, h) < 0. |

4.2 Continuities of some families of Hermitian metrics
4.2.1 Setting

Family of curves. Let ¥ be a compact connected oriented real 2-dimensional C*°-manifold
with a finite subset D C 3. Let J; (i = 1,2,...) be a sequence of complex structures on ¥ such
that the sequence J; is convergent to J in the C'"*-sense. Assume that there exists a neigh-
bourhood N(D) of D in ¥ such that J;x(p) are independent of i. Let X; denote the compact
Riemann surfaces (X;,J;). Similarly, let X denote the compact Riemann surface (X,.J). Let
kit (T8,J) ~ (TE, J;) be isomorphisms of complex vector bundles on ¥ such that (i) x; — id,
(4) Kin(py = id. We regard k; as isomorphisms of complex vector bundles TX ~ T'X;.

For P € D, let (Xp,zp) denote an admissible coordinate neighbourhood of P in X such
that Xp C N(D). We may regard (Xp, ZP) as a holomorphic coordinate neighbourhood of P
in X;. Let r be a positive integer, and set e := r!. As in Section 3.5.1, let pp: Xp — Xp be
the ramified covering given by ¢p({p) = (%. Let Gp denote the Galois group of the ramified
covering ¢p.

Family of good filtered A-flat bundles. Let (P*V,D/\) be a stable good filtered A-flat
bundle of rank r on (X, D) with deg(P.V) = 0. Let (P.V;,D}) be stable good filtered A-flat
bundles of rank r on (X;, D) with deg(P.V;) = 0. For each P € D, we set (P*Vp,Dj\g) =

(PV,DY) y, and (PVip,D}p) = (PViDY) i . Set (PVp,Dp) = @p(P.Vp,D}) and

(P*17,~7p,]ﬁ)l’-\’P) = @}(P*Vi7p,Df:P). There exist G p-invariant subsets Z(P), Z(i, P) C ¢(5'C[¢p']
and the formal decompositions

(PVp, DY) @C) = P (PVra,Dpy).
acZ(P)

(73*]71‘,13,@;‘7]3) ® C[[d] = @ (,P*T}i,ﬂaaﬁ);:P,a)?
a€Z(i,P)
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for each P € D. Suppose moreover that there exist G p-invariant bijections p; p: Z(P) ~ Z(i, P)
such that the following holds:

e rank ]7]3751 = rank ]77;7]37/)1.’},((1)-
e orda = ord pi’p(a) and ord(a — b) = Ord(Pi,P(a) - pZ,P(b))
e lim p; p(a) =ain ¢7'C[¢C].

1—00

We fix such bijections p; p. Let mp, denote the projection P*]N/p®(C[[C]] — P*ljp,a. Similarly,
let m; po denote the projection P*lji,p ®C[(] — P*lji,p,a.
C*°-isomorphisms. We set (E,]D’\) = (V,ID))‘)|X\D and (Ei,ID);\) = (Vi,ID)f‘)lxi\D. Let hg
denote C*°-metrics of E adapted to P,V such that R(det(hg)) = 0. Let hg; denote C°°-
metrics of E; adapted to P.V; such that R(det(ho;)) = 0. Let d” and d! denote the (0, 1)-parts
of D* and D?. Suppose that there exist C*°-isomorphisms f;: E ~ E; satisfying the following
conditions:

e f*(hoi) — ho in the C*-sense locally on ¥\ D.
e On N(D)\D, f; are holomorphic with respect to d” and d/, and f; extend to isomorphisms
of filtered bundles P*V‘N(D) ~ ?*Viw(p).

e For each P € D, we obtain GrZ (fixpr) oResp(D*) = Resp (D7) oGrl (fixp) on Grf(vp)
for any ¢ € R. Moreover, there exists N(P) > 10rank(V)|ord a| for any a € Z(P) such
that for the induced isomorphisms % (f; x,): P«Vp @ C[¢] ~ P,V p ® C[(], we obtain

(Tpa— Sﬁfv(fi\xp)_l O T3 Pp; p(a) © PP (fi|Xp))73*]~7P ® C[(]

C P*,N(p)vi,p(@(:[[d], (4.1)

and the sequences (4.1) are convergent to 0 as i — oo.

e DN — (fi®nr) Lo ]D)Z-A o fi = 0 in the C'*°-sense with respect to hg locally on ¥\ D.

Perturbation. We take n; (i = 1,2) satisfying 10er; < gap(P.V) and 10rne < 1. We take
a € RP for 73\25(77*1), P) (P € D) as in Lemma 3.19. For any 0 < € < 12, by taking ¢p,
(P € D) as in Section 3.7.1, we obtain families of good filtered A-flat bundles (’PS)V,ID))‘) and
(P,Eﬁ)Vi, }D);\) We assume the following for each P € D:

Z Vp(c) rank Grf (PaVip) = Z crank Grf’ (PaVip)-
a(P)—1<c<a(P) a(P)—1<c<a(P)
In particular, deg(P.V) = deg( ,Eg)V) and deg(P.V;) = deg (Pig)Vi) hold. By making 72
smaller, we may assume that (PEE)V, ]D)A) are stable for any 0 < e < no.

4.2.2 Continuity of the family of harmonic metrics

According to Theorem 4.1, there exists a harmonic metric hgg) of (El-,]D))‘) adapted to Pig)%

such that det hl(-e) = det hg ;. Similarly, there exists a harmonic metric RO of (E,ID))‘) adapted

to P,V such that det h(®) = det ho. The following proposition is a variant of [49, Propositions 4.1
and 4.2].

Proposition 4.5. For any sequence €¢; — 0, the sequence hgei) is convergent to h\©) locally
on X \ D in the C*-sense.
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Proof. For 0 < e <o, let gx\p, be the Kéhler metric on X \ D such that the following holds
on X5 for any P € D:

IX\D,e| X} = (€2|ZP|26 + 77%|ZP|2771) |zp|?dzp dzp.

Let A¢ denote the adjoint of the multiplication by the Kéhler form wx p . associated with gx\p .

By the isomorphisms r;: (1'%, J) >~ (T, J;) and the metrics gx\p, we obtain the Kéihler
metrics gx,\p. of X; \ D. Let A;c denote the adjoint of the multiplication by the Kéhler
form wy,\p e associated with gx,\p .-

There exists an approximation of (P*V, ]D)A)| Xp by a model filtered A-flat bundle as in Sec-
tion 3.6. By using a family of Hermitian metrics for the model A-flat bundle as in Proposi-
tion 3.26, and by using Proposition 3.27, we construct a family of metrics hi(fl) (0<e<m)of E
such that the following holds:

. hi(fl) is adapted to PEE)V.
o det h!Y = det h.
o hi(li) — hi(g) locally on X \ D in the C*°-sense as ¢ — 0.

e There exists C7 > 0 such that ‘G(hl(fl))} < (4 for any e.

gX\D,ezhi(;)

Let v; be the function on X; \ D determined by ( fi ) (det hg) = € det h; o. We obtain the
Hermitian metrics h := e”l/rankv(f ) (h(e)) (0 < € < ng9) of E;. Then, by Proposition 3.27,

?, in
we obtain the followmg

° h( ) is adapted to P,EE)VZ'.

’Lln

o deth! = dethip.

7,1n

O — L) locally on X \ D in the C*°-sense as ¢ — 0.

7,11’1 7,11’1

()

e By replacing C) with a larger constant, we may assume ‘G(hi’in) ‘g PR

(o < Cj for any

7,in

e and any 4.

Lemma 4.6. Let u(® (e; — 0) be automorphisms of E; which are self-adjoint with respect to hg 13
such that the following holds:
o Tr (u(i)) =0.
i ( ) i . . . .
hgenge“ € 7-[( (6)), i.e., supHu(Z)theﬂ + HID)f‘u(Z)HLQ + HD?D;\Z@)“@HD < o0, where
the LP-norms are taken with respect to hz(?n)
estimate is uniform in .

and gx,\p.;- We do not assume that the

11n

e There exists Co > 0 such that |A1 e,G h( i) qult ))‘h(e o < Co for any 1.

7,in

Then, there exists Cg,Cy > 0 such that the following holds for any ¢;

) < Cs+ CyM (B Bl

¥
Sup‘u 2,ln’ " 77,In

R

Proof. By identifying the vector bundles E; and E by f;, we apply the same argument as in
the proof of [49, Lemma 2.45]. |
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Let bl(ﬁl) be the automorphism of F; which is self-adjoint with respect to A9 and hge) and

i,in
determined by h(e) = hgel)nbgel) Note that det(b(e)) = 1. Take any sequence ¢; — 0. By Propo-
sition 4.4 and Lemma 4.6, there exists a constant C19 > 0 such that the following holds for
any 1:
(€i)
sup () < Cho, sup | (b, (<) < Cho.
QGXZ'\D‘ 7 1|Q‘h QEXi\Dl( 1,1|Q) ‘h

Lemma 4.7. [ A;., (dx,0x, Tr (b,g6 )))wX \D,e; = 0 holds.

)

Proof. We use Proposition 4.4. Because ]D)’\]D)’\*b(el) is L' with respect to K<) and IX\D,eis

11n

we obtain that A; EZaX Ox, Tr (b;l)) is L' with respect to gx;\D,e;- Because D;\bl( 1) is L? with
(€1)

respect to gx,\ p,e, and hl ins We obtain that Ox, Tr (bfef)) is L? with respect to 9x:\D,e;- Therefore,
we obtain the claim of the lemma by using [62, Lemma 5.2]. |

By [62, Lemma 3.1], the following holds:

a €; ez 1/2
VTN B0, T (4F) = = T A GOE) — D2 6) - () ™

Therefore, there exists C'12 > 0 such that the following holds for any :

[l

We also obtain

IR

Let (Ei,ggz), H(E")) be the Higgs bundles underlying (EZ-,]D))‘, hgei)). Then, there exists Ci3 > 0

7

such that the following holds for any :

/‘9(62

Then, by applying the argument in [49, Section 4.5.3], we obtain the desired convergence of the

h(? X i\D,e Xi\D75i < 012

h< ,in 9IX, i\ D,e Xi\D7€i < 012 (42>

M v 2Xi\D < O

sequence hgei) . [ |

4.2.3 Continuity of some families of Hermitian metrics

For P € D, we set X} := Xp \ {P}. We may naturally regard X} as a subset of X; \ D.
Fix N > 10. Let g;. be a sequence of Kahler metrics of X; \ D, such that g; — g (i = 00)
and that
dzpdz
s = (N2, )2¢ 2\ 4<=p Y<p

Jie| X3, (6 |zp|* + |zP] ) l2p |2
Let ¢; (i =1,2,...) be a sequence such that ¢; — 0. The following proposition is a variant and
a refinement of [49, Proposition 5.1].

Proposition 4.8. Let hz(»eli) (i = 1,2,...) be Hermitian metrics of E; satisfying the following
conditions:

o deth(? = dethyp.
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i HG(hE,Ef)) ) — 0 asi— oo.

HL2agi,67h§',1

o Let s9) be the automorphism of E; which is self-adjoint with respect to hl(-ei) and determined

by hz(ef) = hz(-ei)s(i). Then, s and (s(i))_1 are bounded with respect to B on X \ D,

i

and ]D)g\s(i) are L? with respect to hl(q) and g; ;. The estimates may depend on 1.

Then, the sequence {fz* (s(i))} is weakly convergent to idg in L? locally on X \ D. Moreover,
there exists A > 0 such that }s(i)‘h<_q) < A and }(s(i))_l‘h@i) < A for any 1.

Proof. This is essentially the same as [49, Proposition 5.1]. We explain an outline of the proof.
We identify E; with E by f;. We set

¢; = sup ‘s(i)‘

(e5)+
S\D hi

We set 50 := ¢; 1s(). We set El(el’) = ci_lhgff) = hl(e")?s("). The following holds.

(L AP A T3 = T30V =T, G (BF)) + V1A, Tr(D)F (30) 7D 30).
From the boundedness of 39 and the L2-property of D*3("), we obtain / Ag, o Tr (E(’)) dvoly, , =0
as in Lemma 4.7. We obtain the following for some A > 0 and A’ > 0:

/‘D)\ (g(l)) (g(i))_lﬂ‘gi 0, dVOlQi,o <A /’TI‘ Agi,oG(%z(',eli))‘ ’ dVOIs]i,o
=4 /‘Tr Agi,eG(%z(,Eli)) ‘ ' dVOlgi,e

< AIGED) | 2o,

Hence, the sequence 3 is L2-bounded on any compact subset of X\ D. By taking an appropriate
subsequence, it is weakly convergent in L? locally on X \ D. Let 5() denote the weak limit
of the sequence. We obtain D*3(>) = 0. Because 3 are self-adjoint and uniformly bounded
with respect to hgq), 500 s self-adjoint and bounded with respect to h(®). We can prove that
5(°®) =£ 0 by the same argument as in the proof of [49, Lemma 5.2]. Hence, 5(*) is a non-zero
endomorphism of (P*V, ]D))‘). It implies that 3(°°) is a multiplication by a positive constant .

Note that the sequence 319 is convergent in LP for any p locally on X \ D, and hence det (é(’))

is convergent to det (E(OO)) in LP for any p locally on X \ D. Because det (s(i)) = 1, we obtain

that the sequence c; rank(V) 4 convergent to u‘;‘g“k("). In particular, it implies that the sequence ¢;

is bounded. Then, we obtain the claim of the proposition. |

4.3 Tensor product of stable filtered A-flat sheaves

Let us state a consequence of Theorem 4.1 on the tensor product of reflexive filtered A-flat
sheaves on arbitrary dimensional projective varieties.

Let X be an n-dimensional non-singular projective variety equipped with a very ample line
bundle L. Let H be a simple normal crossing hypersurface of X with the irreducible decom-
position H = (J,c H;. Let (P.V;, D7) (i = 1,2) be reflexive filtered A-flat sheaves on (X, H).
We assume the following condition:

Condition 4.9. There exists a Zariski closed subset Z C H with dimZ < n — 1 such that

(P*Vi’DiA)\X\Z (1 =1,2) are good filtered A-flat bundles on (X \ Z,H \ Z).
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For example, if D is logarithmic and if A # 0, Condition 4.9 is satisfied.
We set V =V ®@X(* /) V2 which is equipped with the induced flat A-connection D*. Note

that Z C H and that V|X\Z is a locally free Ox\z(*(H \ Z))-module. There exists the natural
morphism

o: V— PV = Home (i) (Homo . (+1) (17,(’)X(*H)), Ox(xH)).

The Ox (*H )-modules Ker ¢ and Cok ¢ are coherent, and their supports are contained in Z C H.
Hence, we obtain that Ker ¢ = Cok ¢ = 0. It implies that V ~ VYV, i.c., Vis a reflexive Ox (+H)-
module. For a € R?, we set

PV = > Im(Py, Vi @0y PoV2 — V).
bi1+ba=a

Let Pa)7 denote the coherent reflexive subsheaf of % generated by 77[1)7 Thus, we obtain a re-
flexive filtered A-flat sheaf (P.V,D*) on (X, H).

Proposition 4.10. If (P*Vi,]D);\) are pr-stable, then (P*i,ﬁk) 1s pr,-polystable.

Proof. According to Propositions 3.8, 3.9 and Condition 4.9, there exists a positive integer m
such that the following holds for any general complete intersection curve Y of L& ™.

. (P*vi,DiA)lY

e The natural morphism

are stable good filtered A-flat bundles.

Hom((P*f/,]IN)))‘), (P*lj,f))k)) — Hom((P*lN),fDA)‘Y, (P*v,ﬁk)n,)
is an isomorphism.

Because (P*Vi, ]D)f‘) y are stable good filtered A-flat bundles, each A-flat bundle (V;, Dg\)‘y\ H
are equipped with a Hermitian-Einstein metric h; adapted to the filtered bundle P.V; by Theo-
rem 4.1. Because h1®hs is a Hermitian—Einstein metric of the A-flat bundle (V, ID>>‘) adapted

to the filtered bundle P*]~/, we obtain that (77*]7, ]ﬁ))‘) v
tain that (73*17,]13))‘) is pz-polystable. |

IY\H
is polystable. By Corollary 3.10, we ob-

5 Preliminary existence theorem for Hermitian—Einstein
metrics

5.1 Statements
5.1.1 Kahler metrics

Let X be a smooth projective surface with a simple normal crossing hypersurface H = (J,;c H;.
Let L be an ample line bundle on X. Let gx be the Kahler metric of X such that the associated
Kahler form wx represents c;(L).

We take Hermitian metrics g; of O(H;). Let 0;: Ox — Ox(H;) denote the canonical section.
Take N > 10. There exists C' > 0 such that the following form defines a Kahler form on X \ H
for any 0 < e < 1/10:

We = wx + Z C-eNt2. \/—185\01»@5.

1SN

It is easy to observe that [, w? = [, w% and that [, wer = [, wx7 for any closed C*-(1,1)-
form 7 on X.
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5.1.2 Condition for good filtered A-flat bundles and initial metrics

Let (P*V,ID)/\) be a good filtered A-flat bundle on (X, H) satisfying the following condition:
We set e := rank(V)!.

Condition 5.1.

e There exists ¢ € R and m € eZwq such that Par(P.V,i) = {c; +n/m | n € Z} for
each i € A.

e The nilpotent part of Res; (DA) on Z'G‘rrfﬁ(73*V) are 0 for any i € A, a € R and b €
]ai — 1, a,-[.

Let (E, ID))‘) denote the A-flat bundle on X \ H obtained as the restriction of (P*V,ID))‘).

Let P be any point of H; \ ;. Hj. Let (Xp,z1,22) be an admissible coordinate neigh-
bourhood around P. There exists an open subset X5 in C? = {((1,{2)} such that the map
op: Xp — Xp given by ¢p((1,¢2) = ((f", (2) is a ramified covering. We set Hp := {¢; = 0}
N Xp. We obtain the induced good filtered A-flat bundle (PippV, ¢pD*) on (X}, H}) such
that Par(PuphV) = {m- ¢} + Z.

Definition 5.2. A Hermitian metric hp of Ejx,,\ g is called strongly adapted to P,V x,, if there
exists a C°° Hermitian metric h'p of P, (QO}EV) on X} such that o1 (hp) = || 2™ by,

Let P be any point of H;NH; (i # j). Let (Xp, 21, 22) be a admissible coordinate neighbour-
hood around P such that Xp N H; = {#1 =0} and Xp N H; = {#2 = 0}. There exists an open
subset X} in C? = {((1,(2)} such that the map pp: Xp — Xp given by pp((1,¢) = (¢, )
is a ramified covering. We set Hp = {(1¢{z = 0} N Xp. We obtain the induced good fil-
tered A-flat bundle (P.¢hV,¢*D*) on (X, H}) such that Par(P.opV,1) = {m- ¢} + Z and
Par(PuppV,2) = {m- ¢} + Z.

Definition 5.3. A Hermitian metric hp of Ejx,\p is called strongly adapted to PV x,, if there
exists a C°°-Hermitian metric hp of Ple, me;)@p(V) such that o*(hp) = (1|77 (o| 7" hp.

Definition 5.4. A Hermitian metric h of E is called strongly adapted to P,V if the following
holds:

e For any P € H, there exists a neighbourhood Xp of P such that h|x,\ g is strongly
adapted to P.V|x, in the sense of Definitions 5.2 and 5.3.

Lemma 5.5. Let h be a Hermitian metric of E strongly adapted to P.V. Then, the following
holds:

Proof. It is the equality (36) in the proof of [46, Proposition 4.18]. [

For each i € A, we choose b; € Par(P,detV,i). Set b = (b;) € RY. We take a Hermitian
metric hger(py of det(E) such that haey(my [1icn |ai\§fi induces a Hermitian metric of Ppdet V
of C"*°-class.

Proposition 5.6. There exists a Hermitian metric hy, of E such that the following holds:

e hiy is strongly adapted to P,V .

e G(hin) is bounded with respect to hy, and w,, where € :=m™".
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e The following holds:

c(R(h)2) — L ()2
/X T R)) = s /X (), (5.1)

o det(hin) = hqet(E)-
Such a Hermitian metric hy, is called an initial metric of (P*V,DA).

The case A = 1 was studied in [51, Sections 14.1, 14.2 and Lemma 14.4.2]. The case X\ # 1
can be argued in the essentially same way. We shall explain the construction in the case A =0
in Section 5.4 after preliminaries in Sections 5.2-5.3.

5.1.3 Preliminary existence theorem for Hermitian—Einstein metrics

Let (P*V,ID))‘) be a good filtered A-flat bundle satisfying Condition 5.1. Let hy, be an initial
metric for (P*V, ]D)A) as in Proposition 5.6. We shall prove the following theorem in Section 5.5.

Theorem 5.7. Suppose that (P*V,ID)‘) s pr-stable. Then, there exists a Hermitian—Einstein
metric hyg of (E,]D)’\) with respect to the Kdhler form w. (6 = m_l) satisfying the following
conditions:

(i) hug and hi, are mutually bounded.

(i) D> (hHE . hi;l) is L? with respect to hi, and we.
(7i7) det(hpg) = det(hin) holds. In particular, the following holds:

(Glhie)) = 75 Tr (Glhin)) = Tr (R(hin))-

T - -
T+ 2 1+ |2

(tv) The following equality holds:

VTN .
< 2 ) 1+ M\2)?2 /X\HTr(G(hHE) ) —2/ chy(P.V). (5.2)

X

5.2 Around cross points
Let Xo := {(21,22) € C* | || < 1}. Weset H; := XoN{z = 0} and H := HiUH,. Let (P,V,6)
be a good filtered Higgs bundle on (Xo, H). We choose b; € Par(P.V,i) (i = 1,2), and set
b = (b1,b2). We also choose any Hermitian metric hgey(g) of det(E) such that hgey(g) |21 |2b1 25|02
is a Hermitian metric of Pp(det V) of C*-class.
5.2.1 Unramified case
Suppose that (P,V, 0) satisfies the following condition:
Condition 5.8.
e There exists c = (c1,c2) € R? such that (i) —1 < ¢; <0, (i1) Par(P,V,i) = {c;+n | n € Z}.
e There exists a decomposition of good filtered Higgs bundles

(P*Vv 0) = @ @ (P*Vu,ayeu,a) (5.3)

a€Z aeC?

such that Oq — (da +> aidzi/zi) idy, ., induce holomorphic Higgs fields of PeVao,a-
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We take any holomorphic frame v = (v;) of P,V compatible with the decomposition (5.3).
For j = 1,...,r, we obtain (aj,a;) determined by v; € PeVy, ;- Let ho be the metric of
Vixou determined by ho(vi,v;) = |z1]72[22] 72 and ho(vi,v;) = 0 (i # j). Note that
Ohyv = 'v(— Zk:l,Q ckdzk/zk) I, where I denotes the identity matrix. Hence, [aho,é] =0
holds. We obtain the description fv = ’U(Ao + A1) such that the following holds:

o (Mo)ii = (da; + 32—y o airdzy/z1) and (Ag)i; = 0 (i # 7).
e (A1);j are holomorphic 1-forms for any ¢ and j. Moreover, (A1);; = 0 holds unless (a;, ;) =

(aj’aj)-

We obtain (9;201) = ’U(Ko + ’Kl) and [6,920]11 = U[Al,ﬁl], where the entries of [Al,‘ﬁl} are
C* on Xy. We have (0p,0)v = v(90A1), where any entries of 9A; are holomorphic 2-forms, and
(OA1)ij = 0 unless (a;, ;) = (aj, ;).

Note that there exists a C°°-function u on X such that det(hg) = e“hqct(p). We set hiy :=
hoe—u/ rank £

Lemma 5.9. [0, 9:%] , Op, 0 and 59:% are bounded with respect to hiy, and Zk:w dzp dzp.

5.2.2 Ramified case

Let ¢: C? — C2 be given by ¢((1,(2) = (¢ (). We set X)) := p~1(Xy), H! := X{N 1 (H;)
and H' := Hj U Hj). We set Gal(p) := {(k1,k2) € C? | k* = 1}, which acts on X} by
(k1, £2)(C15 G2) = (K1C1, K2C2).

Suppose that ¢*(P.V,0) satisfies Condition 5.8 on (X', H"). We construct a C*°-metric hy,
of *(E)|x;\my as in the previous subsection. We may assume that hy is Gal(p)-invariant. Note
that there exists a Gal(p)-invariant C*°-function u on X{ such that det(h() = "o~ (hget(r))-
We set h = h6e_“/ rank(E) - Because it is Gal(p)-invariant, we obtain the induced metric hi,
of E.

Let gy, denote the Kahler metric >, o d d¢;, on X|). Because p: X\ H — X\ H is
a covering map, it induces a Kéhler metric . (g X()) of Xo\ H.

Lemma 5.10. [9, G;fbin], Oh,, 0 and 59:% are bounded with respect to (hin, gp*gX()).

5.2.3 An estimate

We set Y (€) := {(21,22) € Xo | min(|2;]) = €}.
Lemma 5.11. We obtain !g% fy(e) Tr (GEGT) =0 and lg% fy(e) Tr (9@9) =0.

Proof. It is enough to consider the case where Condition 5.8 is satisfied for (P.V,0). Let f be
any anti-holomorphic function on Xy. Let us consider fy(é) da fdz;dz2. We set Yi(€) := {|z1| =
€, |z2| > €} and Ya(e) := {|22]| = ¢, |21| > €}. We have

/ dafdzidzs = / Osadzs fdz1dZs.
Yl (5) Y1 (E)

It is of the form

b(z1, 2 S
/ %f(zwz)dzldzz o
Yi(e)

21 %2
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Here, b is a holomorphic function. We consider the Taylor expansion of b and f. Then, the
contributions of the terms

k1=m1 ko

217z _ oz _
1 31 dz1%222d22d22
z 2y

to (5.4) is 0 unless k&1 — ¢1 — m1 = 1 and ko — f5 — my = 0. If the equalities hold, we have
ki—f014+mi =2m1+1>1and kg — f5+msy = 2ms > 0. Hence, we obtain liné le(E) daf dzidzs
e—

= 0. Similarly, we obtain lin% ng(e) dafdzidzs = 0. Similarly and more easily, we obtain
€E—>

liH(l) fy(e)(aidzi /z;) fdz1dZs = 0. Then, the claim of the lemma follows. [ |
e—

5.3 Around smooth points

We set Xg := {(21,22) € C* | |z| < 1} and H := {z1 = 0}. Let v: Xo\ H — Rg be
a C°°-function such that v|z;|~! induces a nowhere vanishing C*°-function on Xj. Let (P.V,0)
be a good filtered Higgs bundle on (Xy, H). Let (E,EE, 0) be the Higgs bundle obtained as the
restriction of (P.V,0) to Xo \ H. We choose b € Par(P, det V) and a Hermitian metric hge(p)
of det(E) such that hge(z)r? induces a C> metric of Py(det V).

5.3.1 Unramified case

Suppose that (P,V, 0) satisfies Condition 5.12.
Condition 5.12.

o There ezists —1 < ¢ <0 such that Par(PsV) ={c+n|n € Z}.
e There exists a decomposition of good filtered Higgs bundles

(P*Va 0) = @ @(P*Va,on aa,a)-

acZ acC

® 040 — (da+ adzy/z1)idy, ,, are holomorphic Higgs fields of PcVa -

We take C*°-metrics hq o 0f PV, and we set hy = @V*QChava. We may assume that
det(ho) = Rget(m)-

Let v = (v1,...,v,) be any holomorphic frame of P.V compatible with the decomposition.
For each 4, a; and «o; are determined by the condition that v; is a section of P.Vy, «,. There exist
matrix valued C*°-(1,0)-forms A, , such that

Onyv = v((—c -O0log VQ)I + ZACW),

where I denotes the identity matrix, and (Aqq)i; = 0 unless (a;,;) = (aj,a5) = (a, ).
Let A denote the matrix valued holomorphic 1-form determined by fv = vA. There exists the
decomposition A = Ag + A; such that the following holds:

° (AO)ij = (da,- + aidzl/zl) if ¢ = j, and (AO)ij =0if i # j.

e (A1)i; are holomorphic 1-forms, and (A;);; = 0 unless (a;, ;) = (a;, a;).

There exists a matrix valued C* (0,1)-form Ay such that HITLO'U = v(Ao + Az). Moreover,
(A2)ij = 0 holds unless (ai,ai) = (Clj, Ozj).
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We have R(hg) = (—c00logo?)I + @ R(ha), where R(hqq) are C*°. Note that dAg = 0
and [Ag, A;] = [Ag, A;] = 0. Hence, [0, 9;20], Oh, 0 and 5920 are C*°. We also have

(9ne0)v = v (001 + [ Awas M), (80],)0 = v(O0s).

We set wy = 21|21~ 'v and wy = z3. Then, it is easy to check that (w1, ws) is a C* complex
coordinate system. Clearly, dza = dwsy. There exists a C*°-function v and a C* (0, 1)-form &
such that dz; = ydw; + wik;. We set Y(e) = {v =€} = {|w1| = €}.

Lemma 5.13. lim [, Tr (090") = 0 and lim [, Tr (6700) = 0 hold.

. . YaY T _ . .
Proof. It is enough to prove lgl% fy(e) Tr (980 ) = 0. It is easy to see that

ll_l)l[l) Yo Tr (A18A2) =0.

Let us study fy(e) Tr (AOEAQ). For any C'°°-function g, we consider the following integral:

/ g(da - dz; dz2) :/ (97) - dadw, dw2+/ gw; - da k dws. (5.5)
Y (€) Y (e) Y (e)

We can rewrite the first term in the right hand side of (5.5) as follows, for some non-negative
integer ¢ and for a C'°°-function b:

/ (gv) dadw, dwy = / (gvb)wf‘/Z dw; dwsy dws
Y(e) Y (e)

Take N > £. We consider the expansion

g0 =Y (970)km(w2)wiw] + O(jun|"V).
k.m>0
k4+m<N

Here, (g7b)km(w2) are C*°-functions of wy. The contributions

whw
/ (975) km (w2) ——-dw1 dwy dws
Y(e) wy

are Qunless k —¢—m=1. If k—¢—m =1, then k — ¢+ m = 2m + 1 > 1 holds. Hence, we
obtain

lim (gv) da dwdws = 0.
e—0 Y (e)

We rewrite the second term in the right hand side of (5.5) as follows, for some C*°-functions f;
(1 =1,2) and a non-negative integer ¢:

/ gw - dakdwe = / flwlieilﬁl dw; dwsy dwg + / fgwfe w1 dwy dwy dws.
Y (e) Y (e) Y (e)

Take N > ¢+ 1. Consider the expansions f; = > (f;)km(w2) wfw + O(Jwq|V). The contribu-
tions

k—m+1

wyw
(f1)km(w2) —— 2 dwy dws diws
1
Y (e) wy
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are O unless k — ({+1)— (m+1)=—-1. If k— (£ + 1) — (m+ 1) = —1 holds, then we have
k—({+1)4+(m+1)=2m+1> 1. The contributions

wk@m—&—l
/ (f2)k,m (w2) % dw; dws dwas
Y (¢) wy

are O unless k —¢ — (m+1) =1. If k — ¢ — (m+ 1) = 1 holds, then we have k — ¢+ (m +1) =
2(m +1) 41 > 3. Hence, we obtain

lim gwi - dakdwe = 0.
e—0 Y (e)
Similarly and more easily, we obtain lir% fy(e) g(adz1/z1)dz1dZe = 0 for any a € C and for
€E—r

any C'*°-function g. Thus, we obtain the claim of the lemma. |

5.3.2 Ramified case

Let ¢: C? —s C? be given by ¢((1,(2) = (¢, (). We set X := ¢ 1(Xo) and H' := ¢ ' (H).
Let Gal(p) := {n € C| p™ = 1}, which acts on Xg by p- (¢1,¢2) = (uC1, G2)-

Suppose that ¢*(P.V,0) satisfies Condition 5.12. We construct a Hermitian metric hy,
for ¢*(P.V,0) as in the previous subsection. We may assume that h{ is Gal(p)-invariant.
There exists a C*-function f on X determined by det(h{)) = e/ o™ (hgeq(m)). We set bl :=
hf)e_f /rank(E) -~ Because hyy is Gal(p)-invariant, we obtain a Hermitian metric hj, of E induced
by hl,. Let ¢, (gX(/)) denote the Kéhler metric of X\ Hy induced by Zk:m d¢x Al

Lemma 5.14. R(hiy,), [9, Hltin], Op,, 0 and 5(9:% are bounded with respect to P+9x; and hg.
We also have

: o ) , t _
lgr(l) o Tr (986hm) =0, lli% e Tr (670, 0) = 0.

5.4 Proof of Proposition 5.6

Let X, H and L be as in Section 5.1.1. Let (P,V,0) be a good filtered Higgs bundle on (X, H)
satisfying Condition 5.1. Note that (P.V,0) is as in Section 5.2.2 around any cross point of H,
and (P.V,0) is as in Section 5.3.2 around any smooth points of H. There exists a Hermitian
metric hiy of E such that (i) det(hin) = hge(r), (ii) the restriction of hi, around any points
of H are as in Section 5.2.2 or Section 5.3.2. By the construction, hj, is strongly adapted to
P.V. By Lemmas 5.10 and 5.14, we obtain that R(hiy), [9, 9};”], O, 0 and 59};} are bounded
with respect to hi, and we. As in the proof of [46, Proposition 4.18], we have

Tr(G(hin)?) = Tr(R(hin)?) + d(Tx (696, ) + Tr (6], 05,.0)).

Then, we obtain (5.1) from Lemmas 5.11 and 5.14. Thus, we obtain Proposition 5.6. |

5.5 Proof of Theorem 5.7

Let £’ C E be any coherent \-flat Ox\ g-subsheaf. We assume that E' is saturated, i.e., E/FE’
is torsion-free. Let (E’,D7,) be the induced A-flat sheaf on X \ H. There exists a discrete
subset Z C X \ H such that E(X\(HUZ) is a subbundle of Ejx\(guz). Let A’ denote the met-

ric of E|’ x\(guz) induced by hin. We obtain the Chern connection Vs of (E',d},, 1) and
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the operator D3 ,, from D}, and h’. Let R(E’,h’) denote the curvature of V.. We obtain
G(E', I') := [D},, D% ,/]. Following [62], we define

V-1 1

d E' hiy) = ———

/ Tr(Ay, G(E', 0, R")) dvol,, .
X\H

It is well defined in RU {—o0} by the Chern—Weil formula [62, Lemma 3.2]:

v—1 1 1 1 2
d E hyp) = —— — T Ay, G(hin)) — — ——— D gy .
egwe( s in) 21 1+ |A~2 /X\H 1"(7TE Gl )) 21 1+ | A2 /X\H‘ TE }hinywe

Here, g/ denotes the orthogonal projection of F|x\(guz) onto E"X\(HUZ).

Lemma 5.15. If deg,, (E',0) # —oc, then E' extends to a filtered subsheaf P! E' of P,V and
deg,, (E', hin) = / 1 (P Ewx
X

holds. As a result, (E,EE,H, hin) is analytically stable in the sense of [62] (see also [49, Sec-
tion 2.3]).

Proof. If deg,, (E', hin) # —oc0, we obtain [ |d"mg/|* < co. As studied in [37, 38] on the basis
of [68], we obtain a coherent O (+H)-submodule P* (E') C V as an extension of E’. Moreover,
as proved in [46, Lemma 4.20], we obtain the equality deg,, (E', hin) = [y c1 (Pf,E’)wX. [

According to the fundamental theorem of Simpson [62, Theorem 1] and its variant [49, Propo-
sition 2.49], there exists a Hermitian—Einstein metric hyg of (E,ID)’\) satisfying the conditions
(1), (#4) and (éi7). By [62, Proposition 3.5] and [62, Lemma 7.4] (see also [49, Proposition 2.49]),
we obtain

() e fu ) = (57) st o 0,

It is equal to 2 [ + ¢h2(P,V) by Lemma 5.5 and Proposition 5.6. Thus, Theorem 5.7 is proved.
|

6 Bogomolov—Gieseker inequality

Let X be any dimensional smooth connected projective variety with a simple normal crossing
hypersurface H = (J;c, H;. Let L be any ample line bundle on X.

Theorem 6.1. Let (P*V,ID)’\) be a pp-polystable good filtered \-flat bundle on (X, H). Then,
the Bogomolov—Gieseker inequality holds:

) B P*V)261(L)dimx_2
) dimX-2 fX ci(
/Xchg(P V)e1(L) < S rank U

Proof. By the Mehta—Ramanathan type theorem (Proposition 3.8), it is enough to study the
case dim X = 2, which we shall assume in the rest of the proof. We use the notation in Sec-
tion 3.7.2. Let (P*V, D’\) =& (P*Vj,]]])?) be the decomposition into the stable components.

We set e := rank(V)!. We choose n > 0 such that 0 < 10en < gap(P.V). We take a € R*
for Par(P.V,1) (i € A) as in Lemma 3.19.
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Let m € eZsg such that ¢ := m~! < /10rank(V). For any b € Par(P,V,i), we set b(e) :=
max{d € eZ | d < b}. We set

1 .
Cij = Z (b — ble)) rank ‘Grf (P V;).
rans vy bePar(PyV;,a,i)

We have 0 < ¢; j < e. For any b € 73\2;}(77*1@, i), we set e j(b) := b(€) + ¢; ;. Then, we obtain
[thei j(b) — b] < 2€ and the following equalities:

Z Ve (b) rank ‘Grp (P V;) = Z brank ‘Gri (PgV;).
bePar(P.Vj,a,i) bePar(P.Vj,a,i)

Moreover, we have v ; ;(b) — ¢; ; € €Z.

Applying the construction in Section 3.7.2, we obtain good filtered A-flat bundles (P,Ee)Vj, ]D)j‘)
on (X, H). By the construction, they satisfy Condition 5.1. By Lemma 3.25, there exists my
such that (Pie)Vj, ]D)g\) are pr-stable if m > mqg. Let (Ej, ]D);‘) be the A-flat bundle obtained as
the restriction of (’P*Vj, ]D;‘) to X \ H. We use the Kéhler metric g. of X \ H as in Section 5.1.1.
There exist Hermitian—Einstein metrics hg.el){E of the A-flat bundles (Ej,]D)j‘) as in Theorem 5.7
for the good filtered A-flat bundles (PEE)VJ-,ID);‘). Note that @hg%E is a Hermitian—Einstein
metric of @ (Ej, ID);‘)

By Proposition 3.1, the equality (5.2), and the equality g H‘l)\'g Tr G(hg) ) = gR(hdet E)s

we obtain

(€)y,)2
© Jx a(P7Y)
/X chy (P* V) = 2rankV

By taking the limit as m — o0, i.e., ¢ — 0, we obtain the desired inequality. |

Corollary 6.2. Let (P*V, ID)A) be a pr-polystable good filtered A-flat bundle on (X, H). Suppose
that

/ CI(P*V>CI (L)dimX—l — 0, / Ch2(P*V)Cl(L>dimX—2 = 0.
X X
Then, c1(P.V) =0 holds.

Moreover, for any decomposition (P*V, ]D)/\) =& (P*Vj, ]D);‘) into pr-stable good filtered A-flat
bundles, we obtain c1(P:V;) =0 and [y cho(PyV;)er(L)ImX=2 = 0.

Proof. On one hand, because of the Hodge index theorem and [y c1(PV)er(L)Im*=1 = 0,
we obtain

/ e1(PoV)2ey (L)W X2 <
X

and the equality holds if and only if ¢; (P,V) = 0. On the other hand, by the Bogomolov—Gieseker
inequality and [ cha(PxV)cq (L)3™¥~2 = 0, we obtain

/ e1(PV)2er (D) FmX -2 >
X

Hence, we obtain ¢1(P,V) = 0.



54 T. Mochizuki

Let (P*V, D’\) =& (P*Vj, ]D);‘) be a decomposition into pp-stable good filtered A-flat bundles.
We have [y c1(PuV;)er (L)%™ *~1 = 0. Hence, by the Hodge index theorem, we obtain

/ Cl(p*Vj)zcl(L>dimX_2 S 0.
X
By the Bogomolov—Gieseker type inequality, we obtain
/ cha(P.V;)er (L)X =2 < 0.
X
Because Y, [ cha(PuVj)er (L)W X2 = [| chy(P,V) = 0, we obtain

/ cha(PV;)er (L)FmX =2 —
X

Thus, we obtain the claim of the corollary. |

Remark 6.3. Although H was assumed to be ample in [51, Section 14.4, Corollary 14.5.1],
it is not essential. Indeed, for any simple normal crossing hypersurface H, there exists an ample
simple normal crossing hypersurface H' such that H C H'. Let (PLV,]D)A) be the filtered \-flat
bundle on (X, H') naturally induced by (P.V,D*). The Chern characters of P,V and P,V are
equal, and hence the Bogomolov—Gieseker inequalities for P,V and P,V are equivalent.

7 Existence theorem of pluri-harmonic metrics

7.1 Statement

Let us prove Theorem 2.23. According to Corollary 6.2, it is enough to study the case where
(P*V, ]D)’\) is a pr-stable good filtered A-flat bundle on (X, H) such that

c1(P.V) =0, / chy(P,V)ey (L)X =2 — 0.
X
Let (E, ]DV\) be the A-flat bundle obtained as the restriction (P*V,]D)‘)'X\H.

the pluri-harmonic metric of (det(E),]D);}et( E)) strongly adapted to P.(det(E)). For the proof
of Theorem 2.23, it is enough to prove the following theorem.

Let hqet(p) denote

Theorem 7.1. There exists a unique pluri-harmonic metric h of the A-flat bundle (E, D)‘) such
that PLE = P,V and det(h) = hqey(p)-

The proof is given in the rest of this section.

7.2 Surface case

Let us study the case dim X = 2. The following argument is essentially the same as the proof
of [49, Theorem 5.5]. Let (P*V,]D)’\) be as in Section 7.1. We use the notation in the proof

of Theorem 6.1. For large m € eZ~q, we set € := m~'. We have the perturbations (P;EE)V, ]D))‘).

We use the Kéhler metrics g. of X \ H as in Section 5.1.1. There exist the Hermitian-Einstein
metrics h%ﬁﬂ of (E , ID)A) adapted to (Pie)v, ]D)A) such that det (hgl)s) = hget(E)-

Proposition 7.2. For any sequence m; — 0o, we set €; := mi_l.
sequence, hgﬁ) is convergent almost everywhere on X \ H, and the limit h is a pluri-harmonic

metric of the A-flat bundle (E,]D)’\) adapted to P,V such that det(h) = hget E-

Then, after going to a sub-
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7.2.1 Family of ample hypersurfaces

There exists a 0-dimensional closed subset Z C H such that (i) Z contains the singular points
of H, (ii) any P € H \ Z has a neighbourhood Hp in H on which the conjugacy classes
of Res(]]])/\)@ (Q € Hp) are constant.

Take a sufficiently large integer M. We set 35 := HO(X,L®M) \ {0}. It is equipped with
a natural C*-action. Let p; denote the projection of X X 3j3; onto the i-th component. There
exists the universal section s of pj (L®M ) Let Xj denote the scheme obtained as s~1(0).
Let Py: X3y — X and Py: Xy — 3 denote the morphism induced by p;. For each s € 3y,
let X denote the fiber product of Py and the inclusion {s} — 3.

There exists the C*-invariant maximal Zariski open subset 39, C 3 such that (i) the

(0}

induced morphism P§: X5, := X x3,, 3%, — 3%, is smooth, (i) XU H is normal crossing
for any s € 39,, (iti) (Xs N H)NZ = &. Let P} denote the restriction of P; to X3,. For
any () € X3, we obtain the subspace Tp, () Xp,(Q) C Tp, (@)X of codimension 1. It determines

a point in P(T;l(Q)X). Hence, we obtain the natural morphism Pj: X3, — P(IT7X). If M is
sufficiently large, P{ and Fi are surjective.

By the Mehta—Ramanathan type theorem (Proposition 3.8), there exists a non-empty C*-
invariant Zariski open subset 3]\% of 3%, such that the following holds:

e For each s € 3]\%, (P*V,]D)A)|XS is stable.

We set .’{ﬁ = Xy X3q, BAA/I. Note that Wy = X \ P} (.’{ﬁ) is a finite set. For each
P e X\ (H UWyy), the intersection P, (%AA/[) NP(TpX) in P(T*X) is Zariski dense in P(TpX).

We set H, := X, N H. Let (Es,]D)?) denote the A-flat bundle on X \ Hy obtained as the

restriction of (E,]D)A). For each s € BAA/[, there exists a pluri-harmonic metric hg of (ES,]DQ)
such that (i) hs is adapted to P.V|x,, (ii) det(hs) = het(E)|x,\H,-

Let PIA: %ﬁ — X be the induced map. Let f)]\A/[ = (PlA)fl(H). We set (EA,]D)%A) =
(PIA)_1 (E, ]D’\) on %ﬁ \f_)]\%. By Lemma 3.21 and Proposition 4.5, the family of pluri harmonic

metrics hg (s € 3]\&4) induces a continuous Hermitian metric k> of E®. We also obtain Hermitian
metrics h2(6) = (PlA)f1 (hg]g))

7.2.2 Local holomorphic coordinate systems

Let P € X \ Wy We take s € SJ\A/[ such that P ¢ X, . The following is clear because
Py (X5;) NP(TEX) is dense in P(THX).

Lemma 7.3. There exist s; € SJ\A/[ (1=1,2) and § > 0 such that the following holds:

e PeX, (i=1,2).
o X, and X,, are transversal at P.

o {s1t+ass | |a| <8}, {s2+ase | |a] <6}, {s1+s2+asw | la] <6} and {s1+v/—1s2+ass |
la| < 6} are contained in Bﬁ.

We set z; := s;/So0 (i = 1,2). There exists a neighbourhood Up of P in X \ H such that
(x1,x2) is a holomorphic coordinate system on Up. Note that {E bix; = c} N Up is equal
to UP N Xb131+b232—csoo‘
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7.2.3 Proof of Proposition 7.2

Take a sequence m; — oo in Z. We set ¢; := mi_l. By Proposition 3.1, we obtain the following

convergence:
: (€:) _
zli>rgo X\H|G(hH€E) ‘hgﬁ)’w% =0

Let h( ) be a Hermitian metric for (P(EZ)V ID)’\) as in Proposition 5.6. Let b; be the automorphism
of E determined by thE) = hi(;’) -b;. Then, for each i, D*(b;) is L? with respect to h%E) and w, .
Let we, s denote the Kéahler form of X, \ Hy induced by we,. Let hgei) denote the restriction
of h&) to X, \ H.
By Fubini’s theorem, after going to a subsequence, there exists a C*-invariant subset 33\/[ C SAA/[
with the following property:

(al) lim fXS\Hs G (hs 6’) |h(‘ L= 0 holds for each s € 35\/1.

1—00
(a2) For each s € 3M, D) (bi|X \#,) is L* with respect to A and We; 5+
(a3) The Lebesgue measure of 3% w\ 3 W is 0

Note that the condition (a2) implies the following.
Lemma 7.4. Let s € Bﬁ Let B\ be a harmonic metric of (Es, D)) adapted to (Pfi)v, DA)|X
such that det (h( 1)) = hdet( B)|Xs \H Let 5175 be the automorphism of E|x g, determined by
h( i) h(e’)b is- Lhen, bls and b are bounded with respect to Eggi), and D (gls) is L? with

i)

respect to hg and we, s

Proof. Let b’ be the automorphism of E; determined by h(e’) = h(ezl)X \H," Then, bf and

(b7, ,)~! are bounded with respect to h( £ am,o and D> (Vi) is L? with respect to h( I)Xs\Hs
and We; s, according to Proposition 4.4. T en, we obtain the claim of the lemma. |

Lemma 7.5. There exists a C*-invariant subset %3\4 C %ﬁ ><3$I 33\4 such that the following
holds:

e The measure of %A \%ﬁ is 0.

(i) s convergent to he, at any point of .’{g\/f

o A subsequence ofh b
1% E3¥

Proof. By Proposition 4.8, for any s € 3%/[, the sequence hgei) is weakly convergent to hy in L?
locally on X\ Hy. We set ) = h(q)h_1 We obtain det (b(e')) =1, and bl converges to the
identity locally on X\ Hs in LP for any p > 1. We set g ‘b(Q) on X\ Hs. We obtain the

function ¢(¢) on .’{M X3 33\/[ from gg (s € 33\4) By Lemma 3.21 and Proposition 4.8, for any
M

compact subset K C %ﬁ\ﬁﬁ, the restriction of ¢(¢) to KN (%ﬁ X g0 35\4) are uniformly bounded.
M

Note that the sequence (hA(ei)(hA)_l)‘KmX = biT}ng

By Fubini’s theorem and Lebesgue theorem, we obtain the LP-convergence of h(€) (hA)f1 to

is convergent in LP for any p > 1.

the identity for any p on K N (.’f o 3A 3 M) Then, after going to a subsequence, we obtain the

desired convergence. |
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Remark 7.6. If A = 0, the argument can be simplified. Indeed, by Proposition 3.31, the
curvature R(hgei)) of hg€i) are bounded locally on X\ H. Hence, we obtain that hﬁfi) is weakly
convergent to hg in L%. In particular, hfji) is convergent to hg in the C%-sense locally on X\ Hy.

There exists a subset X* C PlA (%3\/[) such that for any P € X*, the measure of (Pf)fl(P) \
(%i}w) is 0 in (PlA)fl(P), and that the measure of X \ X* is 0 in X. We obtain that the

(€:)

sequence hpp Xt

is convergent to a Hermitian metric hoo of E‘ -

Lemma 7.7. For any P € X* and s € Pg((PlA)_l(P)), we obtain (hs)p = hog|p-

Proof. For any s € Pg((PlA)_l(P)) n 3* , we obtain (hs)|p = hegp. Then, by using the
continuity of hs on s, we obtain (hs)|p = hogp for any s € Pg((PlA)fl(P)). [
1

Lemma 7.8. Let P € X \ (W) U H). Then, for any s1,s2 € Pg((PA)_l(P)), we obtain
h51|P - h52|P-

Proof. For any P € X* and for any s1,s2 € Pg((PlA)_l(P)), we obtain Ay, |p = hog)p = hgy|p-
By the continuity of hs on s, we obtain the claim of the lemma. |

Then, hy extends to a Hermitian metric of E|x\(guw,,) by setting hop = (hs)p for
A\—1
sePy((Py) (P)).

Lemma 7.9. hoo induces a Hermitian metric of E\x\(zuw,,) of C'-class. The C'-Hermitian
metric is also denoted by heo.

Proof. Let P be any point of X \ Wj,. Let (Up,x1,x2) be a holomorphic coordinate neighbour-
hood as in Section 7.2.2. By using Proposition 4.5, we define the continuous Hermitian metric hgi)

of E|yy, by the condition that hp|;,—.} 1s equal to the restriction of s, 4as,,. By the construc-
)

tion of hoo, we obtain hey, = hg . Hence, we obtain that h.y,nx: induces a continuous

Hermitian metric hp o of By, and hg) =hpoo = hg)

derivative of hg) with respect to 0., and 0z, (i # j) are continuous. We obtain that hp o is Cl.
Thus, we obtain the claim of the lemma. |

hold. Moreover, by Proposition 4.5, any

We obtain the operator ]Dﬁ; from D* and hoo. We define G(hoo) := [D?, Dﬁ;] as a current.

Lemma 7.10. G(hso)Y =0 on X\ (HU Wyy).

Proof. Let P € X \ (HUWjy). Let (Up,x1,z2) be a holomorphic coordinate neighbourhood
as in Section 7.2.2. We have the expression

G(hoo)(l’l) = G(hoo)lld$1 dz; + G(hoo)lgd$1 dzsy + G(hoo)gld.rg dz; + G(hoo)gzd.rg dzs.

Because hog|{z,—=q} is equal to hs;14s,,, We obtain G(hs)ii =0 fori=1,2.

By considering the holomorphic coordinate system (wi,ws) = (21 + z2,21 — x2) and the
coefficient of dw; dw; in G(heo)™V), we obtain G(heo)12 + G(hoo)21 = 0. By considering the
holomorphic coordinate system (21, z2) = (z1+v/—1x2, 11 —v/—122) and the coefficient of dz, dz;
in G(heo)™V, we obtain G(he)12 — G(heo)21 = 0. Therefore, we obtain that G(heo)ij =0. W

Lemma 7.11. We obtain AG(hoo) = 0 on X\(HUWy). As a result, hoo is C*° on X\(HUW ).

If moreover X\ #£ 0, then heo is a pluri-harmonic metric of (E,ID))‘)|X\HUwM.
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Proof. The first claim immediately follows from Lemma 7.10. We obtain the second claim
by the elliptic regularity and a standard bootstrapping argument. The last claim follows from
Corollary 2.16. [ |

Lemma 7.12. In the case A = 0, we obtain Oy 0 = 0, i.e., hoo is a pluri-harmonic metric of

the Higgs bundle (E,EE,H)‘X\(HUWM).

Proof. Let us observe that the sequence 0h<€ — Op,, is convergent to 0 almost everywhere
HE

on X \ H. It is enough to prove that 9 — Op, is convergent to 0 for s € 3%. Let ng)

plcd)

HE | X
be the automorphism of E|x \ g which is self-adjoint with respect to hs and hgg X, determined
by h%E) X, = hbl. By Proposition 4.8, the sequence (bgei))_lﬁhs (bgei)) is convergent to 0

weakly in L? locally on X\ H. By Proposition 3.31, the sequence (bgfi))‘lahs (bgﬁi)) is bounded
in L% locally on X, \ H for any p > 1.

Lemma 7.13. (b(;i))flﬁhs (bgei)) is convergent to 0 in LY locally on X\ H.

Proof. Let (b’;“))*lahs (b;(gi)) be any subsequence of (b(“))*lahs (bgs')). Because it is bounded
in L% locally on X\ H, it contains a subsequence (b;’(“)) 8hs( "(6’)) which is weakly conver-
gent in LY locally on X, \ H for any p > 2. By the Sobolev embedding theorem, the sequence
(b;/(q))_lahs (bg(Gi)) is convergent in L locally on X\ H. Because (bge"))_lahs (b&“’) is conver-
gent to 0 weakly in L? locally on X, \ H, the limit should be 0. Therefore, we obtain the claim
of Lemma 7.13. |

As a result, 8h(e )0 is convergent to 0 60 almost everywhere. Note that
HE

his) 82 ()
OS/X\H’@;L&)@‘;L&E’ e S/X\H]G( )|h<eE7 o 8T /XCh2 (PLV).

We also have lim [y chy (73(6’)]/) = 0. We have the following convergence almost everywhere
i—00
on X \ H:

2
Zli)rglolah(g)e}hgv e, ]8,100«9],100“.
Therefore, we obtain [ ’8;1009’]21 wy = 0 by Fatou’s lemma. [

Lemma 7.14. hy induces a C*°-metric of E on X \ H, and hence it is a pluri-harmonic metric
of (E,D?%).

Proof. It is enough to prove that h, is a C*°-metric around any point of Wy, \ H. We have
only to apply the argument in [49, Lemma 5.15]. |

If A =0, we obtain that (E,EE, 0, hoo) is a good wild harmonic bundle on (X, H), because
(PV,0) is a good filtered Higgs bundle. If A # 0, the associated Higgs bundle (E,EE,H)
with the pluri-harmonic metric ho is a good wild harmonic bundle by [51, Proposition 13.5.1].
We obtain a good filtered A-flat bundle (Pt~E,D*) on (X, H). We put H? = Uiz, (Hi 0 Hj).
For any P € H \ (WM U H[Q}), there exists s € SAA/[ such that P € X,. By the construction,
heo|x\H, = hs. Hence, we obtain P!> (E)y, = Pu(V)|x,. Let Y := (H N W) U HP), which is
a finite subset of H. We obtain that Plee (BE)ix\v = P«Vix\y- By Hartogs theorem, we obtain
that Pl (E) ~ P,V. Thus, the proof of Proposition 7.2 is completed. |
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7.3 Higher dimensional case

Let us prove Theorem 7.1 in the case dim X > 3 by an induction on dim X. Take a sufficiently
large integer M. We set 357 := HO(X, L®M)\ {0}, and let X); C X x 35 be defined as s7(0)
as in Section 7.2.1. For any s € 3y, set X := s~ 1(0). Let P(T*X) denote the projectivization
of the cotangent bundle of X. If M is sufficiently large, there exists a Zariski dense open subset
3% C 3 such that the following holds:

o PS: X§, =Xy x3,, 3%, — 3% is smooth.

e X3, U (H X 3}’\4) is simply normal crossing. Moreover the intersections of any tuple of irre-
ducible components are smooth over 39,.

e The induced map Pi: X7, — X is surjective. Moreover, the induced morphism Py
X3, — P(T*X) is surjective.

Let p; ; denote the projection of X x 3%, x 39, onto the product of the i-th component and

the j-th component. For j = 2,3, let (.’{?\4)(]‘) denote the pull back of X9, by pi1 ;. There exists
a Zariski dense open subset s C 3%, x 33, such that the following holds:

o Let (%?\/[)g]\)[ denote the fiber product of (%h)(j) and Uy over 39, x 39,. Then, (%?\/[)Zz U

(%3,) SA)/I U (H x ) is simply normal crossing. Moreover, the intersection of any tuple
of irreducible components are smooth over 4.

By the Mehta—Ramanathan type theorem (Proposition 3.8), there exists a Zariski dense open
subset ﬂﬁ C Ups such that the following holds:

e For s = (s1,82) € ilj\A/[, we set Xg := X, N X,,. Then, the restriction (P*V,]D)/\)
a pr-stable good filtered A-flat bundle on (X4, H N Xg).

is
| Xs

Hence, there exists a Zariski dense open subset BAA/I C 39, such that the following holds:

e For any s € SJ\A/[, (P*V,]D))‘) is a pr-stable good filtered A-flat bundle on (X5, H N X5).

|Xs

e For any si,s0 € 3]@, there exists a Zariski open subset U(s1,s2) C BAA/[ such that the
restrictions (P*V’DA)\X@,%) (1 =1,2) are pp-stable for any sz € U(s1, s2).

We set %ﬁ = XM X3y, 31%/[' Let PQA: %]%[ — X denote the naturally induced morphism.
Then, Wy :== X'\ P2A (.’{ﬁ) is a finite subset.

For any P € X \ (H UW)y), there exists s € SAA/[ such that P € X;. Then, (P*VS,D;\) =

(P*V, ]D)’\)|X is pr-stable, and the following holds:

/ Cl(P*Vs)Cl (L‘Xs)dime—l = 0, / ChQ(P*VS)Cl (L‘Xs)dime_Q =0.

s

There exists a pluri-harmonic metric hg of (ES,EES,}D)Q) = (E,EE,ID))‘)D( \H adapted to PV
such that det(hs) = haet(E) x,\m- Take another s e 3]\% such that P € Xy. There exists a pluri-

harmonic metric hy of (Esf,gEs/,ID)g‘,) adapted to P,Vy such that det(hy) = haet(B) X \H-
Lemma 7.15. hyp = hy|p.

Proof. Suppose that X; U Xy U H is simply normal crossing. We set X, ¢ := XN Xy, It is

smooth and connected. We obtain a good filtered A-flat bundle (P*V,]D)/\)l < ,»and hgx



60 T. Mochizuki

and hyx__, are adapted to P.V|x ,. Let by be the automorphism of E|x , which is self-
adjoint with respect to both hyx , and hy|x_,, and determined by hy|x , = hgx, , - bss-
There exists a decomposition 7 7 ’

— @D (v,

which is orthogonal with respect to both hy X,
positive constants a;.

There exists s; € U(s,s’). Then, (P.V,0)x,, , and (P*V,9)|X51Y
= h81|X51,s" We obtain that hS‘XszszS, =

s

(P.V, D) X

5,8

and hy|x_,, and by ¢ = Pa;idy, for some

’ §

. are py-stable. There-
fore, we have hS|X31’S = h81\Xs1,s and h5'|X51,S/
hS’\XslﬂXsﬁXS/- It implies that a; are 1, and hence hyp = hy/p.

In general, there exists sg € BAA/[ such that (i) P € Xs,, (i1) X; U X, UH and Xy U X, UH
are simply normal crossing. By the above consideration, we obtain hyp = hg,p = hy|p. |

Therefore, we obtain Hermitian metrics hp of Ejp (P € X \ (H UW))). By using the
argument in Lemma 7.9, we can prove that they induce a Hermitian metric i of Ejx\(zuw,,)
of Cl-class. We obtain G(h) from D* and h as a current. Because hx, (s € L(f/[) are pluri-
harmonic metrics of (E,D)‘)| xom e obtain that G(h) = 0. It also implies that h is C™
on X \ (H UW)s). By using the argument in [49, Lemma 5.15], we obtain that h induces a
pluri-harmonic metric of (E,]D))‘) on X \ H. Then, as in the proof of Proposition 7.2, we can
conclude that (E,D’\,h) is a good wild harmonic bundle, and that P?(E) = P,V. Thus, we
obtain Theorem 7.1. [ |

8 Homogeneity with respect to group actions

8.1 Preliminary
8.1.1 Homogeneous harmonic bundles

Let Y be a complex manifold. Let K be a compact Lie group. Let p: K XY — Y be
a K-action on Y such that p,: Y — Y is holomorphic for any k € K. Let k: K — S* be
a homomorphism of Lie groups.

Let (E,EE, 0, h) be a harmonic bundle on Y. It is called (K, p, k)-homogeneous if (E,EE, h)
is K-equivariant and k*0 = k(k)@.

Remark 8.1. According to s3, harmonic bundles are equivalent to polarized variation of pure
twistor structure of weight w, for any given integer w. If k is non-trivial, as studied in [53,
Section 3|, by choosing a vector v in the Lie algebra of K such that dk(v) # 0, we obtain
the integrability of the variation of pure twistor structure from the homogeneity of harmonic
bundles.

8.1.2 Homogeneous filtered Higgs sheaves and the stability condition
with respect to the action

Let X be a connected complex projective manifold with a simple normal crossing hypersur-
face H. Let G be a complex reductive algebraic group. Let p: G X Y — Y be an algebraic
G-action on Y which preserves H. Let k: G — C* be a homomorphism of complex algebraic
groups.

Let (P.V,0) be a filtered Higgs sheaf on (Y, H). It is called (G, p, k)-homogeneous if P,V
is G-equivariant and ¢g*0 = k(g)0 for any g € G.
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Let L be a G-equivariant ample line bundle on X. A (G, p, k)-homogeneous filtered Higgs
sheaf (P,V,0) on (X, H) is called pup-stable (resp. pp-semistable) with respect to the G-action
if the following holds:

e Let V' be a G-invariant saturated Higgs subsheaf of V such that 0 < rank)’ < rank V.
Then, pr(PV') < pr(PiV) (resp. pr(PV') < up(PiV)) holds.

A (G, p, k)-homogeneous filtered Higgs sheaf (P.V,0) on (X, H) is called pr-polystable with
respect to the G-action if it is pr-semistable with respect to the G-action and isomorphic to
a direct sum of (G, p, k)-homogeneous filtered sheaves @ (P V;, 0;), where each (P.V;, 0;) is pur-
stable with respect to the G-action.

Lemma 8.2. (P.V,0) is ur-semistable if and only if (P.V,0) is ur-semistable with respect to
the G-action.

Proof. The “only if” part is clear. Let us prove that the “if” part. Let Vo C V be the S-
subobject as in Proposition 3.4. Because ¢g*}, also has the same property, we obtain that V)
is G-invariant. Then, the claim of the proposition is clear. |

The following lemma is clear.
Lemma 8.3. If (P.V,0) is pr-stable, then (P, 0) is ur-stable with respect to the G-action.
Lemma 8.4. If (P.V,0) is ur-stable with respect to the G-action, then (PiV,0) is ur-polystable.

Proof. According to Lemma 8.2, (P,V,6) is pr-semistable. Let Vi be the socle of (P,V,0)
as in Proposition 3.5. Because ¢g*V; also has the same property, Vi is G-invariant. Moreover,
wr,(PV1) = ur(P.V) holds. Hence, we obtain V; = V. According to Proposition 3.5, (P.V,0)
is pr-polystable. |

Remark 8.5. In general, even if (P.V, 0) is ur-stable with respect to the G-action, (P,V,0) is
not necessarily pr-stable.

8.1.3 Actions of a complex reductive group and its compact real form

Let X be a complex projective manifold equipped with an algebraic action of a complex reductive
group G. Let L be a G-equivariant ample line bundle on X. Let K be a compact real form of G.

Let (E,EE) be a G-equivariant holomorphic vector bundle on X. Then, as the restriction,
we may naturally regard (E , 5E) as a K-equivariant holomorphic vector bundle on X.

Lemma 8.6. The above procedure induces an equivalence between G-equivariant holomorphic
vector bundles and K -equivariant holomorphic vector bundles on X.

Proof. Let (E , 51;) be a K-equivariant holomorphic vector bundle on X. There exists mg > 0

such that E® L®™ is globally generating. We set Gy := H°(X, E®@ L®™) ® (L% mo)_l. There
exists a naturally induced epimorphism of Ox-modules Go — E. Let K denote the kernel.
There exists m; > 0 such that K ® L®™ is globally generating. We set G; := H" (X,/C ®

L®m1) ® (L® ml)_l. There exists a naturally induced epimorphism G; — K. Thus, we obtain
a resolution G; — Gy of E. Because E is K-equivariant, H° (X JE® L®m0) is naturally
a K-representation, Gy is a K-equivariant holomorphic vector bundle on X, and Gy — F is K-
equivariant. Hence, K is a K-equivariant holomorphic vector bundle. Similarly H° (X , K®L®m2)
is a K-representation, and G; is K-equivariant holomorphic vector bundle, and G; — Ko is
K-equivariant.

The K-representations on H°(X,E ® L®™) and H°(X,K ® L®™2) naturally induce G-
representations on H%(X, E® L®™) and H°(X,K ® L®™2). Hence, G; are naturally algebraic
G-equivariant vector bundles on X. Moreover, the morphism G; —> Gy is G-equivariant and
algebraic. Hence, E is a G-equivariant algebraic vector bundle on X. |
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8.2 An equivalence

8.2.1 Good filtered Higgs bundles associated with homogeneous good wild Higgs
bundles

Let X be a connected complex projective manifold with a simple normal crossing hypersurface H.
Let G be a complex reductive group acting on (X, H). Let K be a compact real form of G.
The actions of G and K on X are denoted by p. Let k: G — C* be a character. The induced
homomorphism K — S! is also denoted by x.

Let (E,EE, 0, h) be a (K, p, k)-homogeneous harmonic bundle on X \ H which is good wild
on (X,H). We obtain a good filtered Higgs bundle (P!E,6) on (X, H). Because each PLE
is naturally a K-equivariant holomorphic vector bundle on X, P!E is naturally G-equivariant
by Lemma 8.6. Because k*0 = k(k)0 for any k € K, we obtain ¢*0 = k(g)f for any g € G.
Therefore, (PfE, 9) is a (G, p, k)-homogeneous good filtered Higgs bundle on (X, H).

Let L be a G-equivariant ample line bundle on X.

Proposition 8.7. (PfE, 9) s pr-polystable with respect to the G-action, i.e., there exists a de-
composition (E,EE,G,h) = P(E;, g, 0, hi) of (G, p,k)-homogeneous harmonic bundles such
that each (Pi”Ei, 97;) 18 pug,-stable with respect to the G-action.

Proof. Because (PfE, 6?) is pr-polystable, we obtain that (PfE, 0) is pur-semistable with res-
pect to the G-action. Let V; C P"E be a G-invariant saturated Higgs O (*H )-submodule such
that ur,(PV1) = pr (PfE) = 0. Let E be the Higgs subsheaf of E obtained as the restriction
of V1 to X\ H. Then, by the argument in the proof of [51, Proposition 13.6.1], we obtain that E
is a subbundle, and the orthogonal complement Ey := Ej- is also a holomorphic subbundle.
Moreover, (E2) C FEy ® Qﬁ(\ ;> and Eo is K-equivariant. Hence, we obtain a decomposition
(E,EE,H, h) = (E1,5E1,01,h1) &) (E25E2,02,h2) of (K, p, k)-homogeneous harmonic bundles.

Then, the claim of the proposition is clear. |

8.2.2 TUniqueness

Let (E,EE, 0, h) be a (K, p, k)-homogeneous harmonic bundle on X \ H which is good wild on
(X,H). Let i/ be another pluri-harmonic metric of (E,dg,0) such that (i) &’ is K-invariant,
(i) P¥ E = PME. The following is clear from Proposition 2.22.

Proposition 8.8. There exists a decomposition (E,gE, 9) =h, (Ei,gEi, Qi) such that (i) the
decomposition is orthogonal with respect to both h and ', (ii) there exist a; >0 (i =1,...,m)
such that h‘/Ei = a;hg,, (ii1) the decomposition E = € E; is preserved by the K-action.

8.2.3 Existence theorem

Let (P.V,0) be a (G, p, k)-homogeneous good filtered Higgs bundle on (X, H) such that
/ CI(P*V)Cl (L)dimX_l = 0, / ChQ(P*V)Cl (L)dimX_Q =0.
X X

Let (E,0p,0) be the Higgs bundle on X \ H obtained as the restriction of (P,V,6).

Theorem 8.9. Suppose that (P.V,0) is ur-stable with respect to the G-action. Then, there
exists a K-invariant pluri-harmonic metric h of (E,(?E,H) such that PPE = P,V. If W is

another K-invariant pluri-harmonic metric of (E,gE, 9), there exists a positive constant a such
that h' = ah.
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Proof. By Lemma 8.4, (P.V,0) is pr-polystable. There exists the canonical decomposition

m

(P.V,0) = P (P.Vi,0:) @ Ui,

i=1

where (P.V;,0;) are pp-stable good filtered Higgs bundles such that (P.V;,0;) # (P.V;,05)
(1 # j), and U; are finite dimensional complex vector spaces. Let (E,-,@Ei,ei) denote the
Higgs bundle obtained as the restriction of (V;,6;) to X \ H. There exist pluri-harmonic met-

rics h; of (Ei,gEi,Qi) adapted to the filtered bundles P.,V;. Let hg? be Hermitian metrics

of U;. We obtain a pluri-harmonic metric h(9) = &b (hl- ® hg?) of (E,EE, 9) adapted to P,V.
By Proposition 2.22 and the uniqueness of the canonical decomposition, we obtain the following
lemma.

Lemma 8.10. For any pluri-harmonic metric h(Y) of (E,gE, 9) adapted to PV, there uniquely
exist Hermitian metrics h&) of U; such that h) = & (hi & h&_)).

For any k € K, we obtain a pluri-harmonic metric k*h(©) of (E, g, k(k)0) adapted to P,V.
Because |k(k)| = 1, k* (h(o)) is also a pluri-harmonic metric of (E,EE,H) adapted to P.V.
Hence, there uniquely exist Hermitian metrics hy, (k) of U; such that k*(h) = @)~ (hi @ hy, (k)).
By using the Haar measure dk on K with [, dk = 1, we define the Hermitian metric h of E as
follows:

h::/Kk*(h(o))dk:é(hi@)/l{hw(k)dk).

i=1

Then, h is also a pluri-harmonic metric. By the construction, h is K-invariant.

Let i’ be another K-invariant pluri-harmonic metric of (E 08, 9) adapted to P,V. We obtain
the decomposition (E ,0R, 6) =6h (Ez‘,gE,-, HZ-) as in Proposition 2.22, which induces a decom-
position of good filtered Higgs bundles (P.V) = @(P.V;,6;). Because both h and h' are
K-invariant, the decompositions are also K-invariant. Hence, the decomposition (P.V) =
P (P.Vi,0;) is G-invariant. By the pp-stability of (P.V), we obtain m = 1, i.e., b’ = ah
for a > 0. |

Corollary 8.11. We obtain the equivalence between the isomorphism classes of the following
objects:

e (K, p, k)-homogeneous good wild harmonic bundles on (X, H).

e (G, p, k)-homogeneous good filtered Higgs bundles (PV,0) such that (i) it is ur,-polystable
with respect to the G-action, (ii) pr(P.V) =0, [y cho(PiV)er(L)4mX=2 = 0.
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