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Abstract. In this semi-expository paper, we define certain Rawnsley-type coherent and
squeezed states on an integral Kähler manifold (after possibly removing a set of measure
zero) and show that they satisfy some properties which are akin to maximal likelihood pro-
perty, reproducing kernel property, generalised resolution of identity property and overcom-
pleteness. This is a generalization of a result by Spera. Next we define the Rawnsley-type
pullback coherent and squeezed states on a smooth compact manifold (after possibly remo-
ving a set of measure zero) and show that they satisfy similar properties. Finally we show
a Berezin-type quantization involving certain operators acting on a Hilbert space on a com-
pact smooth totally real embedded submanifold of U of real dimension n, where U is an
open set in CPn. Any other submanifold for which the criterion of the identity theorem
holds exhibit this type of Berezin quantization. Also this type of quantization holds for
totally real submanifolds of real dimension n of a general homogeneous Kähler manifold of
real dimension 2n for which Berezin quantization exists. In the appendix we review the
Rawnsley and generalized Perelomov coherent states on CPn (which is a coadjoint orbit)
and the fact that these two types of coherent states coincide.
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1 Introduction

LetM be a compact Kähler manifold with ω an integral Kähler form and let L be a prequantum
line bundle (obtained from geometric quantization), i.e., its curvature is proportional to the
Kähler form. Then one can take as the Hilbert space of quantization the space of holomorphic
sections of L⊗µ for µ ∈ Z large enough. See [17] for an explanation. Coherent states arise
very naturally in geometric quantization. The Hilbert space obtained in geometric quantization
could provide the starting point of Berezin quantization. For details on Berezin quantization
see Berezin [2], Perelomov [11].

The mathematical physics literature on coherent states is vast, see for example [6]. To name
a few other works, we mention [1, 5, 8, 10, 11, 13, 15, 18]. For a survey on squeezed states, see
for example [14].

In this article we will be focussing greatly on Rawnsley coherent states. In [13], Rawnsley has
defined coherent states on a compact Kähler manifold with an integral Kähler form which arise
naturally out of geometric quantization. This goes as follows. Let H be space of holomorphic
square integrable sections of the quantum bundle L, the measure being e−Fdµ, where F is
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the Kähler potential and dµ proportional to the volume form. Rawnsley defines the coherent
states by considering the section-evaluation functional and writing it as an inner product with
a coherent state vector (using Riesz representation theorem).

Spera [15] had shown that under certain conditions the Rawnsley coherent states satisfy the
maximal likelihood property, reproducing kernel property, the generalised resolution of identity
and overcompleteness.

We define certain Rawnsley-type coherent states and squeezed states on an integral compact
Kähler manifold. We generalize the result by Spera to show that this type of coherent states sati-
sfy properties akin to maximal likelihood property, reproducing kernel property, the generalised
resolution of identity and overcompleteness.

The high point of this paper is the definition of certain Rawnsley-type pullback coherent
states on an arbitrary compact smooth manifold M . M need not have a symplectic structure
and hence no geometric quantization. It may not have a group action as well. But we can still
talk of Rawnsley-type coherent states on it, using pullback by a smooth embedding in CPn.
The Rawnsley-type coherent states (which are related to the pull backs of the coherent states
on CPn) are given. We show that these satisfy properties akin to the maximal likelihood prop-
erty, reproducing kernel property, the generalised resolution of identity and overcompleteness.
Similarly we define the pullback squeezed states and show that they exhibit similar properties.
These definitions depend on the embedding. The pullback coherent states are useful in defining
Berezin quantization of arbitrary smooth submanifolds of CPn under certain conditions. This
is work in progress.

Finally we show a Berezin-type quantization involving certain operators acting on a Hilbert
space on compact smooth totally real submanifolds of U of real dimension n, where U is an
open set of CPn which is biholomorphic to Cn. The conditions ensure that the identity theorem
holds, namely if two holomorphic functions defined on U agree on the submanifold, they must
agree on U . Any other submanifold for which the criterion of the identity theorem holds (see [3,
Chapter 9, Lemma 2]) will also exhibit this type of Berezin quantization.

There is nothing special about CPn as this type of quantization holds for totally real sub-
manifolds of real dimension n of a general homogenous Kähler manifold of real dimension 2n
(or any other submanifolds for which the identity theorem criterion holds).

Perelomov coherent states are defined by Perelomov as generalized coherent states in [11,
p. 40]. The generalized coherent states of geometric quantization of CP1 have been described
in Radcliffe [12] and Nair [8, p. 501] in the context of spin quantization. Recall that CP1 is

a coadjoint orbit of the form SU(2)
U(1) and the generalized coherent states can be found in the sense

of Perelomov [11] and Rawnsley [13]. The connection between Borel–Weil theory and Perelomov
coherent states is reviewed in Spera [16].

In the appendix we review the generalised Perelomov coherent states (defined in [11, p. 40])

for CPn which is a coadjoint orbit of the form SU(n+1)
S(U(n)×U(1)) . We use the general result in [7].

We then explicitly describe the Rawnsley coherent states and review the fact that they are the
same as the Perelomov coherent states for CPn following an argument in [13].

2 Rawnsley-type coherent and squeezed states
on an integral compact Kähler manifold

2.1 Rawnsley-type coherent states on integral compact Kähler manifold

In Spera [15] (amongst other papers and books), the properties of Rawnsley coherent states,
namely, maximum likelihood property, reproducing kernel property, generalized resolution of
identity, overcompleteness etc. have been spelt out under certain conditions. We define certain
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Rawnsley-type coherent states on an integral compact Kähler manifold. We do this by modifying
some of the ideas in the articles by Rawnsley [13], Kirwin [5], Spera [15], Perelomov [11]. We show
that these Rawnsley-type coherent states satisfy properties akin to the properties mentioned
above, thus generalizing Spera’s result, i.e., we do not impose any conditions except that the
Kähler form is integral (and thus there is a large enough k such that Lk is very ample where L
is a prequantum bundle). They are called Rawnsley-type because we show that they arise from
a modification of the section-evaluation functional.

Let (L,∇, 2πiΩ) −→ (M,Ω) be a line bundle with Ω an integral Kähler form on M . Let h be
a Hermitian metric on Lk, where k is such that Lk is very ample. Let Γ be the space of global
holomorphic sections of Lk.

We choose the inner product on Γ w.r.t. h, namely ⟨ϕ1, ϕ2⟩ =
∫
M ϕ1ϕ2hdV , to be antilinear

in the first term and linear in the second (unlike Rawnsley’s convention). We will retain this
convention henceforth. Let H be the space of square integrable sections in Γ. Let {ψi}mi=1 be an
orthonormal basis for H which is basepoint free. Let ϕ ∈ H, a square integrable holomorphic
section of Lk then ϕ can be expressed as a linear combination of the orthonormal basis ele-
ments {ψi}mi=1. Then ϕ =

∑m
i=1⟨ψi, ϕ⟩ψi. Let µ ∈M and χ(µ)2 =

∑m
i=1 |ψi(µ)|2. Since {ψi}mi=1

is a basepoint free basis, they do not simultaneously vanish. Thus χ(µ) ̸= 0. Let ψi = fis0,
where s0 is a fixed section such that its zero set is M0 ⊂ M and fi are meromorphic functions
which are holomorphic on M \M0.

Definition 2.1. For µ ∈M we define

ϕµ =
1

p(µ)

m∑
i=1

fi(µ)ψi,

where ψi = fis0, fi is a meromorphic function on M , which is holomorphic on M \M0 and
p(µ)2 =

∑m
i=1 |fi(µ)|2.

For µ ∈M \M0 one sees that

ϕµ =
s0(µ)

|s0(µ)|χ(µ)

m∑
i=1

ψi(µ)ψi,

where χ(µ)2 =
∑m

i=1 |ψi(µ)|2 ̸= 0. Note that ϕµ is a smooth section of Lk. One can check that

∥ϕµ∥2 = 1 and ϕµ(µ) = τ(µ), where τ(µ) = s0p(µ) =
s0(µ)
|s0(µ)|χ(µ). It is non zero for µ ∈M \M0

since χ is non zero and s0(µ) ̸= 0.
We have a generalization of Spera’s result [15, Theorem 2.1] as follows:

Theorem 2.2. Let M be a integral compact Kähler manifold and let H, s0, ϕµ and τ be as
defined above. Then, for all µ ∈M , we have

(a) ϕµ are Rawnsley-type coherent states of M . In fact, for µ ∈ M the general formula is

⟨ϕµ, ϕ⟩ = g(µ)
p(µ) , where ϕ = gs0. Also, ⟨ϕµ, ϕ⟩ = ϕ(µ)

τ(µ) for µ ∈M \M0.

(b) ϕµ satisfy

(i) the maximal likelihood property, namely, |ϕµ(µ)|2 ≥ |ϕ(µ)|2 for all µ and all ϕ ∈ H
such that ⟨ϕ, ϕ⟩ = 1,

(ii) the property that |ϕµ(µ)|2 ≥ |ϕµ′(µ)|2,
(iii) the modified reproducing kernel property, namely,

⟨ϕµ, ϕ⟩ =
1

χ(µ)2
ϕµ(µ)ϕ(µ) for µ ∈M,
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(iv) the modified generalized resolution of identity, namely,

⟨ψ1, ψ2⟩ =
∫
M
⟨ψ1, ϕµ⟩⟨ϕµ, ψ2⟩χ(µ)2h(µ) dV (µ),

(v) overcompleteness, namely, ⟨ϕµ, ψ⟩ = 0 ∀µ imples ψ = 0.

Proof. (a) follows from a simple calculation. (b) The proof follows by modifications of [15] as
below:

(i) |ϕµ|2 = χ2 and ∥ϕµ∥2 = 1 and by (a) we have

|ϕ(µ)|2 = |⟨ϕµ, ϕ⟩|2χ(µ)2 ≤ ∥ϕµ∥2∥ϕ∥2χ(µ)2 = χ(µ)2 = |ϕµ(µ)|2.

(ii) This follows along similar lines as (i).
(iii) This follows from (a) and the fact that ϕµ(µ) = s0p(µ) (= τ(µ)).
(iv) Using (a),

⟨ψ1, ψ2⟩ =
∫
M
ψ1(µ)ψ2(µ)h(µ) dV (µ) =

∫
M

⟨ϕµ, ψ1⟩⟨ϕµ, ψ2⟩χ(µ)2h(µ) dV (µ)

=

∫
M
⟨ψ1, ϕµ⟩⟨ϕµ, ψ2⟩χ(µ)2h(µ) dV (µ).

(v) This follows from (a). ■

2.2 Squeezed states on an integral compact Kähler manifold

We define squeezed states in a similar fashion as the coherent states in the previous section.
Let M be an integral compact Kähler manifold of dimension d. Let q ∈ U ⊂M , where U is an
open neighbourhood of q such that ϕU is a biholomorphism to an open ball V ⊂ Cd to U . Let
q = ν = ϕU (ν1 + iν2), where ν1 + iν2 ∈ V . Let ζ ∈ R be such that ν1 + iζν2 belongs to V . Then
νζ = ϕU (ν1 + iζν2) ∈ U . Let qζ = νζ .

Proposition 2.3. Let M be a 2d-dimensional compact smooth manifold. Then there exists
a subset M̃ of dimension at most (2d − 1)such that M \ M̃ admits an open cover by a single
open set U of the above kind.

Proof. A 2d-dimensional manifold admits a cell-decomposition as a single 2d-dimensional cell
glued to a skeleton of dimension at most (2d− 1) [4]. Let M̃ be this skeleton. Then M \ M̃ is
homeomorphic to Cd. Thus one open set U is enough to cover M \ M̃ . ■

Let {ψi}mi=1 be the orthonormal basis for the Hilbert space of geometric quantization as
described in the previous section, with inner product ⟨·, ·⟩. Let µ = ϕU (µ1 + iµ2) and µζ =
ϕU (µ1 + iζµ2). We define χ(µζ)

2 =
∑m

i=1 |ψi(µζ)|2 which is non-zero since {ψi} is a base-point
free basis.

Let us define the squeezed states as follows. Let s0 be a fixed holomorphic section of the
prequantum bundle whose vanishing set is M0 ⊂ M . Then for µζ ∈ M \

(
M̃ ∪M0

)
we define

the squeezed states as follows.

Definition 2.4.

ϕζµ(ν) =
s0(µζ)

|s0(µζ)|χ(µζ)

m∑
i=1

ψi(µζ)ψi(ν).

Let τ(µζ) =
s0(µζ)χ(µζ)

|s0(µζ)| . It can be shown that they satisfy properties same as mentioned in

the theorem below.
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Theorem 2.5. The ϕζµ satisfy the following properties:

1.
〈
ϕζµ, ϕ

ζ
µ

〉
= 1.

2.
〈
ϕζµ, ϕ

〉
= 1

τ(µζ)
ϕ(µζ).

3. The maximal likelihood property, namely,
∣∣ϕζµ(µζ)∣∣2 ≥ |ϕ(µζ)|2 for all µζ ∈ U and all

ϕ ∈ H such that ⟨ϕ, ϕ⟩ = 1.

4. The property that
∣∣ϕζµ(µζ)∣∣2 ≥ ∣∣ϕζµ′(µζ)

∣∣2.
5. The modified reproducing kernel property, namely,

〈
ϕζµ, ϕ

〉
= 1

χ(µζ)2
ϕζµ(µζ)ϕ(µζ) for µζ ∈U .

6. Modified resolution of identity: ⟨ϕ1, ϕ2⟩ =
∫
M χ(µζ)

2
〈
ϕ1, ϕ

ζ
µ

〉〈
ϕζµ, ϕ2

〉
h(µζ) dV (µζ).

7. Overcompleteness:
〈
ϕζµ, ϕ

〉
= 0 for all µ iff ϕ = 0.

Proof. The proof is simple and similar to Theorem 2.2. We have to use crucially that M̃ ∪M0

is of measure zero and removing this set does not affect the integrals. ■

For µζ ∈M \
(
M̃ ∪M0

)
one can define the second type of squeezed states by

Definition 2.6.

ϕ̃ζµ(ν) =
s0(µζ)

|s0(µζ)|χ(µζ)

m∑
i=1

ψi(µ)ψi(νζ).

Let ψ̃i(ν) = ψi(νζ). Then ψ̃ is again a section and has an expansion in terms of the basis

{ψk}mk=1. Let b
ζ
ik be complex numbers such that

ψi(νζ) =

m∑
k=1

bζikψk(ν). (2.1)

Proposition 2.7. If bζik = bζki, then ϕ
ζ
µ = ϕ̃ζµ.

Proof.

ϕζµ(ν) =
s0(µζ)

|s0(µζ)|χ(µζ)

m∑
i,k=1

bζikψk(µ)ψi(ν) =
s0(µζ)

|s0(µζ)|χ(µζ)

m∑
i,k=1

bζkiψi(µ)ψk(ν)

by interchanging dummy indices, and

ϕ̃ζµ(ν) =
s0(µζ)

|s0(µζ)|χ(µζ)

m∑
i=1

ψi(µ)ψi(νζ) =
s0(µζ)

|s0(µζ)|χ(µζ)

m∑
i,k=1

ψi(µ)b
ζ
ikψk(ν).

Since bζik = bζki we have the result. ■

The second type of squeezed states also have the properties akin to coherent states.

Theorem 2.8. If the orthonormal basis satisfies the condition ψ(ν) = ψ(ν) then ϕ̃ζµ satisfy the
following properties (1)–(7) as in Theorem 2.5.
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Proof. Let bζik be complex numbers such that ψi(νζ) =
∑m

k=1 b
ζ
ikψk(ν) as in equation (2.1).

Proof of (1) goes as follows:〈
ϕ̃ζµ, ϕ̃

ζ
µ

〉
=

1

χ(µζ)2

∫
M
ϕ̃ζµ(ν)ϕ̃

ζ
µ(ν)h(ν) dV (ν).

Using equation (2.1) and ⟨ψi, ψj⟩ = δij we have〈
ϕ̃ζµ, ϕ̃

ζ
µ

〉
=

1

χ(µζ)2

∑
i,j,k

ψi(µ)ψj(µ)b
ζ
ikb

ζ
jk =

1

χ(µζ)2

∑
k

ψk(µζ)ψk(µζ) = 1.

The proofs of (2)–(7) are similar to Theorem 2.2. For instance the proof of (2) goes as follows.
Let ϕ =

∑m
j=1 cjψj be the basis expansion of ϕ. Recall µζ = ϕU (µ1 + iζµ2), then

〈
ϕ̃ζµ, ϕ

〉
=

〈
s0(µ)

|s0(µ)|χ(µζ)

m∑
i,k=1

ψi(µ)b
ζ
ikψk,

m∑
j=1

cjψj

〉
=

1

τ(µζ)

m∑
i=1

ψi(µ)b
ζ
ikck

=
1

τ(µζ)

m∑
i=1

ψi(µ)b
ζ
ikck =

1

τ(µζ)

m∑
k=1

ψk(µζ)ck =
ϕ(µζ)

τ(µζ)
. ■

3 Rawnsley-type coherent and squeezed states
on an arbitrary compact smooth manifold

3.1 Rawnsley-type coherent states on an arbitrary compact smooth manifold

LetM be a compact smooth l-dimensional manifold which can be embedded smoothly in R2l for
some l as a consequence of Whitney embedding theorem. Identifying R2l with Cl which can be
embedded in CPn by the following map: (z1, z2, . . . , zl) ∈ Cl → [z1, z2, . . . , zl, 1] ∈ CPn, where
n = l + 1. Let ϵ : M → ϵ(M) ⊂ CPn obtained this way. M does not need to be symplectic and
hence to be prequantized.

Let us define Γ to be consisting of ψ = ϵ∗(Φ), where Φ is a holomorphic square integrable
(w.r.t. to dVFS, the volume form induced by the Fubini–Study form on CPn) global section of H,
H being the hyperplane line bundle on CPn. In other words, the members of Γ are sections of
L = ϵ∗(H). Let ζ ∈M . Let dV be the volume form onM . Let h(ζ) dV (ζ) = dVΣ(ϵ(ζ)), where h
is such that all pullback sections are square integrable w.r.t. the measure hdV on M . Let Γ be
given an inner product defined as ⟨ϕ1, ϕ2⟩ =

∫
M ϕ1ϕ2hdV . H be the subspace of Γ such that

∥ϕ∥2 < ∞. Let the dimension of H be m, and {ψi}mi=1 be a smooth orthornormal basis for H,
i.e., ⟨ψi, ψj⟩ =

∫
M ψiψjhdV = δij .

Now we claim that

Proposition 3.1. Γ = H.

Proof. Let ψ ∈ Γ, ψ =
∑N

k=1 ckϵ
∗(Φk), where {Φk}Nk=1 is an orthonormal basis of holomorphic

square integrable (w.r.t. dVFS ) global sections of H, the hyperplane bundle on CPn. Then∫
M

|ϵ∗(Φk)|2hdV =

∫
M

|Φk(ϵ(ζ))|2h(ζ) dV (ζ) =

∫
ϵ(M)

|Φk(τ)|2dVΣ(τ),

where τ = ϵ(ζ) and h(ζ) dV (ζ) = dVΣ(ϵ(ζ)). The integral is finite. Thus ψ ∈ H. ■

Let {ψi}mi=1 be an orthonormal basis of H which has dimension m. Let ϕ ∈ H. Then ϕ can be
expressed as a linear combination of the orthonormal basis elements ψi, i.e., ϕ =

∑m
i=1⟨ψi, ϕ⟩ψi.

Let χ2 =
∑m

i=1 |ψi|2.
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Proposition 3.2. χ ̸= 0.

Proof. First we note that H = Span(ϵ∗(Φi))
N
i=1, where {Φi}Ni=1 is the orthonormal basis for

square integrable holomorphic sections of H. Now ϵ∗(Φi) =
∑m

j=1 b
i
jψj . If ψj(µ) = 0 for all j,

then ϵ∗(Φi)(µ) = 0 for all i, or Φi(ϵ(µ)) = 0 for all i. But this contradicts the fact that {Φi}Ni=1

is base point free. ■

Let s0 be a fixed global section of L in H and let M0 ⊂M be the zero set of s0. For µ ∈M
we define

Definition 3.3.

ϕµ =
1

p(µ)

m∑
i=1

fi(µ)ψi,

where f ′is are functions onM (smooth onM \M0) such that ψi = fis0 and p(µ)
2 =

∑m
i=1 |fi(µ)|2.

Note that p(µ) ̸= 0 since |s0(µ)|2p2(µ) = χ(µ)2 ̸= 0. Then for µ ∈M \M0 one sees that

ϕµ =
s0(µ)

|s0(µ)|χ(µ)

m∑
i=1

ψi(µ)ψi.

This is well defined since χ ̸= 0 and thus s0χ
|s0| ̸= 0 on M \M0. Let τ = s0χ

|s0| .

Proposition 3.4. ϕµ ∈ H, i.e., it is a section of L.

Proof. Let ψi = fis0, where fi is a function on M , which is smooth away from zeroes of s0.

By definition ϕµ = 1
p(µ)

∑m
i=1 fi(µ)ψi, where p(µ)

2 =
∑m

i=1 |fi(µ)|2. Since f i
p is a smooth func-

tion, ϕµ is a section. ■

One can check that ∥ϕµ∥2 = 1 and ϕµ(µ) = s0(µ)
|s0(µ)|χ(µ) = τ(µ) on M \ M0. Then, as in

Theorem 2.2, we have the following result.

Theorem 3.5. Let M be a smooth compact manifold with H, s0, ϕµ and τ defined above. Then,
for all µ ∈M , we have

(a) ϕµ are Rawnsley-type coherent states of M . In fact, for µ ∈ M the general formula is

⟨ϕµ, ϕ⟩ = g(µ)
p(µ) , where ϕ = gs0. Also, ⟨ϕµ, ϕ⟩ = ϕ(µ)

τ(µ) for µ ∈M \M0.

(b) ϕµ satisfy properties (b) of Theorem 2.2.

Proof. The proof is exactly the same as in Theorem 2.2. ■

Remark 3.6. Note that in the smooth category, the evaluation functional need not be con-
tinuous, since the topology on the space of sections is the L2 topology. But in the case we
restrict ourselves to pullback of holomorphic sections it works since the evaluation functional is
continuous in the holomorphic category.

3.2 Squeezed states for compact smooth manifolds

Let M be an even-dimensional smooth manifold of dimension 2d which is embedded in CPn by
an embedding ϵ. Let Σ = ϵ(M) ⊂ CPn. Let Γ, H, ψi etc be defined as in the previous section.

Let q ∈ U ⊂ M , where U is an open neighbourhood of q such that there exists ϕU , a home-
omorphism to an open ball V ⊂ Cd to U . Let q = ν = ϕU (ν1 + iν2), ν1 + iν2 ∈ V , and ζ ∈ R
be such that ν1 + iζν2 belongs to V . Then νζ = ϕU (ν1 + iζν2) ∈ U . Let qζ = νζ , then there is
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a subset M̃ of M of dimension at most (2d − 1) such that M \ M̃ can be covered by a single
open set U of the above kind. This follows from Proposition 2.3.

Let M be a 2d-dimensional smooth compact manifold, M̃ be as in Proposition 2.3, {ψi}mi=1

be the orthonormal basis for the Hilbert space as described in the previous section, with inner
product ⟨·, ·⟩, and µ = ϕU (µ1+iµ2) and µζ = ϕU (µ1+iζµ2). We define χ(µζ)

2 =
∑m

i=1 |ψi(µζ)|2
which is non-zero since {ψi} is a base-point free basis.

Let s0 be a fixed element of H which vanishes on an subset M0 of M . Then M̃ ∪M0 is of

measure zero in M . As before let τ(µζ) =
s0(µζ)χ(µζ)

|s0(µζ)| . For µζ ∈ M \
(
M̃ ∪M0

)
we define the

squeezed states as follows.

Definition 3.7.

ϕζµ(ν) =
s0(µζ)

|s0(µζ)|χ(µζ)

m∑
i=1

ψi(µζ)ψi(ν).

Then as before we have the following theorem.

Theorem 3.8. The squeezed states ϕζµ satisfy the properties (1)–(7) of Theorem 2.5.

Proof. The proof is similar to Theorem 2.2. ■

Example 3.9 (example of the Lobachevsky plane, unit discD = {z : |z| < 1}). For non-compact
manifolds the Hilbert space of quantization is usually infinite-dimensional. We give the example
of the Lovachevsky plane.

The quantization on the Lobachevsky plane has been explained in Perelomov [11, Chapter 16].
Consider the space of functions analytic in the domain D with the inner product

⟨f, g⟩ =
(
1

ℏ
− 1

)∫
f(z)g(z)

(
1− |z|2

) 1
ℏ dµ(z, z),

where dµ(z, z) = 1
2πi

dz∧dz
(1−|z|2)2 . The Hilbert space H consists of square integrable analytic func-

tions with respect to this inner product. The orthonomal basis is given in [11], for instance. In

fact ψi(z) = (i!)−1/2
[(

1
ℏ · · ·

(
1
ℏ − 1 + i

)]1/2
zi are an orthonormal basis for the Hilbert space H.

Notice ψi(z) = ψi(z) for all i.
Let µζ = µ1+iζµ2 and νζ = ν1+iζν2, ζ ∈ R such that µζ and νζ belong toD. Then, according

to our definition (adapted to the infinite-dimensional Hilbert space), the squeezed states are ϕζµ
and ϕ̃ζµ, where ϕ

ζ
µ(ν) = 1

χ(µζ)

∑∞
i=1 ψi(µζ)ψi(ν) and ϕ̃ζµ(ν) = 1

χ(µζ)

∑∞
i=1 ψi(µ)ψi(νζ). One can

show that both series converge.

4 Berezin quantization of pullback operators on totally
real submanifoldsof open sets in CPn

CPn is a compact homogeneous Kähler manifold. Berezin quantization of CPn is described in [2].
Let Σ be a compact smooth manifold. Supposing U is an open subset of CPn. Suppose ϵ : Σ → U
is a smooth embedding such that ϵ(Σ) ⊂ U is a submanifold which is totally real and of real
dimension n. The conditions ensure that the identity theorem holds, namely if two holomorphic
functions on U agree on ϵ(Σ) they are identical on U . Any other submanifold for which the
criterion for the identity theorem holds will also exhibit this type of Berezin quantization, see
for instance [3, Chapter 9, Lemma 2].

Let H be the hyperplane bundle on CPn restricted to U . Let L = ϵ∗(H) be a line bundle
on Σ with an inner product. Let HΣ, the Hilbert space on Σ given by the space of square
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integrable sections f of L, where f = ϵ∗
(
f̃
)
and f̃ is a holomorphic, local (defined on the open

set U ⊂ CPn), square integrable section of the hyperplane bundle on CPn. We will think of f̃
as a holomorphic function defined on U .

Note 4.1. Since ϵ(Σ) is such that the criterion of the identity theorem holds, there is a unique f̃
such that f = ϵ∗

(
f̃
)
. For if g̃ be another holomorphic function defined on U such that f = ϵ∗(g̃),

then f̃ , g̃ agree on ϵ(Σ), and hence f̃ = g̃ on U , since they are holomorphic, by the identity
theorem.

Let â be a linear bounded operator acting on HΣ such that there exists an operator Â acting
on holomorphic square integrable sections f̃ on CPn with the property that â(f) = â

(
ϵ∗
(
f̃
))

=

ϵ∗Â
(
f̃
)
and Â takes square integrable holomorphic sections to square integrable holomorphic

sections on U .
If such an operator Â, exists, it is unique. Indeed, if there are two such operators A and B then

ϵ∗Â
(
f̃
)
= ϵ∗B̂

(
f̃
)
for all f̃ , holomorphic section on U . In other words, on ϵ(Σ),

(
Â− B̂

)(
f̃
)
= 0

for all holomorphic sections f̃ . Since
(
Â−B̂

)(
f̃
)
is holomorphic and zero on ϵ(Σ), it is identically

zero (since ϵ(Σ) is totally real and of real dimension n). Thus Â = B̂.

Definition 4.2. For p, q ∈ Σ, let us define the CPn-symbol of â as

â(p, q) = A
(
ϵ(p), ϵ(q)

)
=

〈
Φ̃
ϵ(p)

, ÂΦ̃
ϵ(q)

〉
CPn〈

Φ̃
ϵ(p)

, Φ̃
ϵ(q)

〉
CPn

,

where ⟨·, ·⟩CPn is the ⟨· | ·⟩ used in [11, equation (16.5.13)] and Φ̃ζ is the coherent state on CPn

parametrized by ζ ∈ CPn. Note that the integral in the inner product is taken on entire CPn

and not on ϵ(Σ). It is the symbol of the operator Â evaluated at
(
ϵ(p), ϵ(q)

)
(see [2] and [11,

equation (16.5.14)]). Thus it is named as the CPn-symbol of â.

The operator â can be derived from the CPn-symbol of â:

âf(p) = â
(
ϵ∗ ◦ f̃

)
(p) = ϵ∗Â

(
f̃
)
(p) =

(
Âf̃

)
(ϵ(p))

= c(ℏ)
∫
CPn

A
(
ϵ(p), ζ

)
f̃(ζ)Lℏ

(
ϵ(z), ζ

)
exp

(
−1

ℏ
F
(
ζ, ζ

))
dµ

(
ζ, ζ

)
,

where Lℏ
(
η, ζ

)
= Φ̃ζ(η) (see [2, 11] for more details).

If we choose B̂ instead, the integral will not change
(
since ϵ∗Â

(
f̃
)
(p) = ϵ∗B̂

(
f̃
)
(p) for all f̃

holomorphic on CPn
)
. Let â1 and â2 be two bounded linear operators on H such that âi(f) =

ϵ∗
(
Âi

)(
f̃
)
, i = 1, 2.

Definition 4.3. One can define the star product (a1 ⋆ a2)(p, p) = (A1 ⋆ A2)
(
ϵ(p), ϵ(p)

)
.

Proposition 4.4. (a1 ⋆ a2)(p, p) is the CPn-symbol of â1 ◦ â2.

Proof. Let â = â1 ◦ â2. Let Â, Â1, Â2 be the corresponding operators for â, â1, â2 respectively.
It is easy to show that Â = Â1 ◦ Â2. It follows from Berezin [2] that (A1 ⋆ A2)

(
ϵ(p), ϵ(p)

)
is the

CPn-symbol of Â1 ◦ Â2. Thus we are done. ■

Let F , G be smooth functions on Σ such that F = ϵ∗
(
F̃
)
, G = ϵ∗

(
G̃
)
, where F̃ , G̃ are local

holomorphic functions on U ⊂ CPn. Recall F̃ , G̃ are unique, since ϵ(Σ) satisfies the criterion of
the identity theorem. Let

{F,G}PB ≡
∑
ij

Ωij
FS

(
∂F̃

∂zi

∂G̃

∂zi
− ∂F̃

∂zi

∂G̃

∂zi

)∣∣∣∣
ϵ(Σ)
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be a Poisson bracket on such functions F , G on Σ, where Ωij is the inverse matrix to that of
the Fubini–Study form.

Proposition 4.5. The star product defined above satisfies the correspondence principle.

Proof. By [2] (see also [11, Chapter 16.5])

lim
ℏ→0

(a1 ⋆ a2)(p, p) = A1

(
ϵ(p), ϵ(p)

)
A2

(
ϵ(p), ϵ(p)

)
,

and

lim
ℏ→0

1

ℏ
((a1 ⋆ a2)(p, p)− (a2 ⋆ a1)(p, p))

= lim
ℏ→0

1

ℏ
(
(A1 ⋆ A2)

(
ϵ(p), ϵ(p)

)
− (A2 ⋆ A1)

(
ϵ(p), ϵ(p)

))
= ι

{
A1

(
ϵ(p), ϵ(p)

)
, A2

(
ϵ(p), ϵ(p)

)}
FS
,

where { , }FS stands for the Poisson bracket on CPn induced by the Fubini–Study form ΩFS.
Thus

lim
ℏ→0

1

ℏ
((a1 ⋆ a2)(p, p)− (a2 ⋆ a1)(p, p)) = ι{a1, a2}PB. ■

Remark 4.6. There is nothing special about CPn in this type of Berezin quantization. If we
can embed Σ (of real dimension n) in a general homogeneous Kähler manifold M (of real
dimension 2n and which has Berezin quantization) as a totally real submanifold (or if the
embedding satisfies the criterion of the identity theorem), then we can define the M -symbol of
operators of the above type and define the star product analogously such that the correspondence
principle is satisfied. Then Σ has the above type of Berezin quantization (which depends on the
embedding).

Remark 4.7. The pullback coherent states are useful in defining Berezin quantization of arbi-
trary smooth submanifolds of CPn under certain conditions. This is work in progress.

A Review of Rawnsley and Perelomov coherent states on CPn

Let CPn with kΩFS, k is a positive integer and ΩFS is the Fubini–Study form. Let us consider the
geometric quantization of CPn, where the quantum line bundle is Hk, H being the hyperplane
line bundle.

CPn is to be thought of as a coadjoint orbit Op. In fact Op is diffeomorphic to SU(n+1)
S(U(n)×U(1)) .

(For a proof, one can adapt the proof for the Grassmannian in [9, p. 183] and note that the
inclusion of SU(n+1)/S(U(n)×U(1)) in U(n+1)/U(n)×U(1) is a diffeomorphism. This can be
seen by the fact that both the quotients have the same dimension. Here S(U(n)×U(1)) denotes
the collection of pairs (x, y), x ∈ U(n), y ∈ U(1) such that detx · det y = 1.)

Let p ∈ Op ⊂ X = su(n+1)∗. Given ζ ∈ su(n+1), there is a natural function λζ(p) = ⟨ζ, p⟩.
Let λ̂ζ be the geometric quantization operator acting on sections of Hk. Then by a result of

Kostant [7], we have ζ → λ̂ζ is a representation of the Lie algebra of SU(n+1) and exponentiating
we get a unitary representation of SU(n+ 1).

The fact (implicit in Kostant’s paper) that ζ → λ̂ζ is a representation can be seen as follows.
Let Θ = Θ1,0+Θ0,1 be the Kähler potential of the Fubini–Study form ΩFS. LetM be a coadjoint
orbit of a Lie group with integral Kähler form. Let τ1 be a function on M and let ξ1 be its
Hamiltonian vector field. Then

τ̂1(ψ) = −iℏ
[
ξ1(ψ)− i

(
ξ1⌟Θ

)
ψ
]
+ τ1ψ,

where Θ is a Kähler potential of the Kähler form on the coadjoint orbit.
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The first term,[
ξ1(ψ)− i

(
ξ1⌟Θ

)
ψ
]
=

[(
∂ + ∂

)
ψ
(
ξ1
)
− i

(
Θ1,0 +Θ0,1

)(
ξ1
)
ψ
]
.

But ψ satisfies the polarization equation
(
∂ − iΘ0,1

)
ψ = 0, so that

∂ψ − i
∑
i

gidziψ = 0,

locally. Thus ψ = e−
∑

gih(z), where h(z) is holomorphic and Θ0,1 = i
∑

i gidzi. Only the first
term in τ̂1, namely

[
∂ψ

(
ξ1
)
− iΘ1,0

(
ξ1
)
ψ
]
survives.

Let

Θ = i

[∑
i

hidzi +
∑
i

gidzi

]
= Θ1,0 +Θ0,1,

where

Θ1,0 = i
∑
i

hidzi and Θ0,1 = i
∑
i

gidzi.

Since Θ is a unitary connection, we have Θ1,0 = −Θ0,1. Now

Θ1,0 = −i
∑
i

hidzi = −i
∑
i

gidzi = −Θ0,1.

Thus hi = gi and hence Θ1,0 = i
∑

i gidzi. We have

∂ψ − iΘ1,0ψ = e−
∑

gi
[∑

(−∂gi + gidzi)h(z) + ∂h(z)
]
.

The geometric quantization operator acts as follows

τ̂1(ψ) =
(
∂ψ − iΘ1,0ψ

)(
ξ1
)
+ τ1ψ = e−

∑
gi [T1(h(z))],

where

T1h(z) =
∑

(−∂gi + gidzi)
(
ξ1
)
h(z) + ∂h

(
ξ1
)
+ τ1h(z).

Suppose τ1, τ2 be two functions on the coadjoint orbit. Then by definition of τ̂i, i = 1, 2,

we have [τ̂1, τ̂2] = −i ̂{τ1, τ2} [17]. We wish to see the action on the holomorphic part of ψ,

namely h(z). Let us denote by ̂̂τ1 = T1 and ̂̂τ2 = T2, where

T1(h) =
∑

G
(
ξ1
)
h+ ∂h

(
ξ1
)
+ τ1h,

T2(h) =
∑

G
(
ξ2
)
h+ ∂h

(
ξ2
)
+ τ2h,

G =
∑

(−∂gi + gidzi).

Then,

τ̂1(ψ) = e−
∑

gi
(̂̂τ1(h)) = e−

∑
giT1(h), τ̂2(ψ) = e−

∑
gi
(̂̂τ2(h)) = e−

∑
giT2(h).

We want to show that
[̂̂τ1, ̂̂τ2] = −i

̂̂{τ1, τ2}:[̂̂τ1, ̂̂τ2]h = [T1, T2]h = (T1T2 − T2T1)h.
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Thus T1(h) = e
∑

gi τ̂1(ψ) and T2(h) = e
∑

gi τ̂2(ψ). Hence

T1T2(h)− T2T1(h) = T1
(
e
∑

gi τ̂2(ψ)
)
− T2

(
e
∑

gi τ̂1(ψ)
)
.

Let h2 be such that τ̂2(ψ) = ψ2 = e−
∑

gih2, then e
∑

gi τ̂2(ψ) = h2, T1(h2) = e
∑

gi τ̂1(ψ2) and
T2(h1) = e

∑
gi τ̂2(ψ1). Then[̂̂τ1, ̂̂τ1] = [T1, T2](h) = T1(h2)− T2(h1) = e

∑
gi τ̂1(ψ2)− e

∑
gi τ̂2(ψ1)

= e
∑

gi τ̂1τ̂2(ψ)− e
∑

gi τ̂2τ̂1(ψ) = e
∑

gi
(
τ̂1τ̂2(ψ)− τ̂2τ̂1(ψ)

)
= −ie

∑
gi
( ̂{τ1, τ2}(ψ)

)
= −ie

∑
gi(P̂ (ψ)) = −i

̂̂
P (h), (A.1)

where P = {τ1, τ2}, the Poisson bracket.

Now, by the coadjoint action definition, (λi, g · p) = (g · λi, p), where λi are the generators of
the Lie algebra. Let

gi = etλ
#
i and τi = (λi, p),

λ#i (τj) = λ#i (λi, p) =
d

dt
(λj , gi · p)

∣∣∣∣
t=0

=

(
d

dt
etλ

#
i λje

−tλ#
i

∣∣∣∣
t=0

, p

)
= ([λi, λj ], p).

Now

ω
(
Xτj , λ

#
i

)
= −dτj

(
λ#i

)
= −λ#i (τj) =

(
[λj , λi], p

)
= ω

(
λ#j , λ

#
i

)
.

Therefore Xτi = λ#i , i runs over the generator indices.

Suppose
[
λ#i , λ

#
j

]
=

∑
aki,jλ

#
k . Then [Xτi , Xτj ] =

∑
aki,jXτk = X{τi,τj}. Therefore

X{τi,τj} =
∑

aki,jXτk = X(
∑

aki,jτk)
and {τi, τj} =

∑
aki,jτk.

Then we have [τ̂i, τ̂j ] = −i{̂τi, τj} = −i
∑
aki,j τ̂k. Similarly, [̂̂τ i, ̂̂τ j ] = −i

∑
aki,j

̂̂τk, by equa-

tion (A.1). Thus we have the commutation relation for τ̂i, τ̂j and ̂̂τ i, ̂̂τ j as the generators λi, λj
upto a factor of −i. If we write χ̂j = iτ̂j , where j runs over the generators of the Lie algebra,
then [χ̂i, χ̂j ] =

∑
aki,jχ̂k, i.e., they satisfy the same commutation relation as the Lie algebra.

Similarly, [̂̂χi,
̂̂χj ] =

∑
aki,j

̂̂χk, the same commutation relation as the Lie algebra.

A.1 Perelomov coherent states for CPn

Let the Hilbert space for quantization of CPn be identified with holomorphic sections of the
hyperplane bundle, as before. CPn = SU(n+1)

S(U(n)×U(1)) is a coadjoint orbit. A point A in CPn

is identified with a projection operator PA as before. The generators of su(n + 1) give rise
to Hamiltonian functions χj(A) = iτj(A) = iTr

(
PAλ

T
j

)
, j runs over the generators. Then

the geometric quantization operators χ̂j corresponding to the Fubini–Study form on CPn give
a representation of su(n+1) on the Hilbert space of geometric quantization, in accordance with
what we showed above (implicit in [7]).

Then we have the well known result that exponentiating the above representation gives rise
to a unitary representation of SU(n + 1) on the Hilbert space [7]. Take a fiducial vector Ψ0

which is invariant under S(U(n) × U(1)) and let the group elements act on it. This gives the
Perelomov coherent states g ·Ψ0 = eiαΨ(g·p), where p is an element of the coadjoint orbit and eiα

is a phase factor [11].
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A.2 Rawnsley coherent states on CPn

Let L be the line bundle obtained by geometric quantization (namely the hyperplane bundle)
and L0 = L \ {0}, L with zero section removed.

We have shown that

ϕµ =
1

p(µ)

∑
fi(µ)ψi and ⟨ϕµ, ψ⟩ =

ψ(µ)

τ(µ)
,

where

τ(µ) =
s0(µ)

|s0(µ)|
χ(µ), χ(µ) =

(∑
|ψi(µ)|2

) 1
2
.

Let a(µ) = χ(µ)
|s0(µ)| . Then a(µ) is a smooth function where s0(µ) ̸= 0, µ ∈ M . Let τ(µ) =

s0(µ)a(µ), eq := a(µ)ϕµ, and q := s0(µ) ∈ π−1(µ). Then as in [13], we have ⟨eq, ψ⟩ · q = ψ(µ).
Let q′ ∈ π−1(µ) such that

q′ = c · q, eq′ = c−1 · eq, ⟨eq′ , ψ⟩ · q′ = ⟨c−1eq, ψ⟩ · cq = c−1 · c⟨eq, ψ⟩ · q = ψ(µ).

We give an explicit local description of Rawnsley coherent states on CPn. Let U be an
open subset of CPn given by {z0 ̸= 0}, where [z0, . . . , zn] is a coordinate system on CPn. Let
(µ1, µ2, . . . , µn) be coordinates on U such that µi = zi/z0, i = 1, . . . , n. Let s0 be a holomorphic
section of H (the hyperplane bundle on CPn) such that∫

U

|s0(µ)|2

(1 + |µ|2)2s
dµ1dµ2 · · · dµn = 1.

Let

cp(µ) =
1∑

|µ1|2p1 |µ2|2p2 · · · |µn|2pn
,

where the sum runs over p1 + p2 + · · ·+ pn = p, p = 0, 1, . . . , 2s. Let

Φ(p1,p2,...,pn;p)(µ) =
√
cp(µ)

µp11 · · ·µpnn
(1 + |µ|2)s

s0(µ),

where p1 + · · · + pn = p. These form an orthonormal basis for sections of H when restricted
to U .

The Rawnsley coherent states are given on U by ψµ reading as follows

ψµ(ν) :=
(
1 + |µ|2

)2s ∑
p1+p2+···+pn=p; p=0,1,...,2s

Φ(p1,p2,...,pn;p)(µ)Φ(p1,p2,...,pn;p)(ν).

Then ψµ(µ) = |s0(µ)|2 and ⟨ψµ, ψµ⟩ = 1.

A.3 Rawnsley and Perelomov coherent states are equivalent for CP n

This follows from [13] as mentioned below. Let G = SU(n + 1), K = S(U(n) × U(1)) ⊂ G
and ψ0 be a non-zero vector in the Hilbert space of geometric quantization such that there
exists a character χ : K → C∗ such that Ukψ0 = χ

(
k−1

)
ψ0. Let Ug be an unitary representation

of G on the Hilbert space. Then for g ∈ G, e(g) = Ugψ0 are the states of the Hilbert space which
are the global Perelomov states as in [13, pp. 403–404] and they coincide with the Rawnsley
coherent states.
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