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Abstract. We develop an algebraic theory of colored, semigrouplike-flavored and pathlike
co-, bi- and Hopf algebras. This is the right framework in which to discuss antipodes
for bialgebras naturally appearing in combinatorics, topology, number theory and physics.
In particular, we can precisely give conditions for the invertibility of characters that is needed
for renormalization in the formulation of Connes and Kreimer. These are met in the relevant
examples. In order to construct antipodes, we discuss formal localization constructions and
quantum deformations. These allow to define and explain the appearance of Brown style
coactions. Using previous results, we can interpret all the relevant coalgebras as stemming
from a categorical construction, tie the bialgebra structures to Feynman categories, and
apply the developed theory in this setting.
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1 Introduction

Although the use of Hopf algebras has a long history, the seminal paper [13] led to a turbocharged
development for their use which has penetrated deeply into mathematical physics, number theory
and also topology, their original realm – see [1] for the early history. The important realization
in [13, 14, 15] was that the renormalization procedure in quantum field theory can be based
on a character theory for Hopf algebras via the so-called Birkhoff factorization and convolution
inverses. The relevant Hopf algebras are those of trees with a coproduct given by a sum over
so-called admissible cuts – with the factors of the coproduct being the left-over stump and
the collection of cut-off branches – and Hopf algebras of graphs in which the factors of the
summands of the coproduct are given by a subgraph and the quotient graph. A planar version
of the tree formalism was pioneered in [22], see also [54]. The appearance in number theory
of this type of coproduct goes back to [27]. It was developed further and applied with great
success in [7]. In all these cases, the product structure is free and the coproduct is the carrier
of information. The group of characters was previously studied in [9]. A precursor to the
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Hopf algebraic considerations can be found in [4]. In [24, 25], we gave the details to prove the
results announced in [41] that all these structures stem from a categorical framework, where
the coproduct corresponds to deconcatenation of morphisms. Such coproduct structures can
be traced back to [47] and appear in combinatorics [29, 58]. Dual algebra structures can be
found in [57] and [18].1 In [41], we developed a theory of so-called Feynman categories, which
are essentially a special type of monoidal category and could connect the product structure to
the monoidal structure on the level of morphisms. Special cases are related to operads, the
simplicial category and categories whose morphisms are classified by graphs. In [25], we could
show that the monoidal product in these categories is compatible with the deconcatenation co-
product thus yielding bialgebras. This generalizes those of Baues and Goncharov [4, 27] which
are simplicial in nature, the Connes–Kreimer tree Hopf algebras, which have operadic origin [24],
and the Connes–Kreimer Hopf algebras of graphs as well as the core Hopf algebra [44], which
are graphical and more categorical in nature.

The co- and bialgebras which have a categorical interpretation also include path coalgebras
and incidence coalgebras, as for instance considered in [29, 58], see Section 2.2.1. There are
two versions of the story, one is symmetric and yields cocommutative bialgebras and the second
is non-symmetric and in general yields to non-cocommutative bialgebras, such as those from
planar structures. In all the examples one passes from the bialgebras to a connected quotient
to obtain an antipode by invoking Quillen’s formalism [56].

In this paper, we address the question of obstructions to constructing antipodes on the
bialgebra level. The questions that we can now answer is:

What structures precisely exist already on the bialgebra level, and what is their role
in the inversion of characters and the construction of antipodes?

To this end, we give an algebraic characterization of a classes of bialgebras amenable to such con-
siderations. These are colored, sg-flavored (sg stands for semigrouplike), and pathlike coalgebras.
They capture and generalize the essential features of categorical coalgebras, whose paradigmatic
example are path algebras for quivers. This allows us to specify effective criteria for the existence
of antipodes and convolution invertibility of characters. We also work over an arbitrary com-
mutative ground ring. The origins for the theory of sg-flavored coalgebras can be traced back
to [59] and with hindsight, several of the quotient construction are foreshadowed in [58] for the
special case of incidence bialgebras.2 The existence of antipodes is usually often established via
some sort of connectivity of a filtration [56, 60]. The problem is that the bialgebras in question
are usually not connected for the standard filtrations, which is why quotients are taken.

Concretely, after reviewing some basic structures in the generality we need in Section 2.1,
providing a short list of paradigmatic examples to illustrate and motivate the constructions
Section 2.2, and touching upon the complications from isomorphisms, we introduce the first
key notion, that of colored coalgebras in Section 2.3. This allows us to generalize Quillen’s
connected coalgebras and conilpotent coalgebras to many colors. In the categorical setting, the
colors are the objects and algebraically speaking they correspond to grouplike elements. The
main structural result is Theorem 2.18. The basic examples like path algebras are of this type,
and appear as the dual coalgebras CrM s to colored monoids M . Proposition 2.24 classifies their
properties and gives criteria for color connectedness. Dualities in a general setting are tricky;
we provide some technical details and the dual notion of colored algebras in Appendix A.

To construct antipodes and convolution inverses, we introduce the fundamental concept of
a QT-filtration (Quillen–Takeuchi) in Section 3.1, which generalizes the commonly used filtra-
tions. Such a filtration is called a sequence if it is exhaustive. This is what is needed to make
Takeuchi’s argument work and results in:

1We thank a referee for pointing out this reference.
2We thank D. Kreimer for pointing this out.
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Theorem 3.3. Consider a coalgebra C with counit ϵ and an algebra A with unit η. Given
a QT-sequence tFiu

8
i�0 on C, such that Ext1RpC{F0C,Aq � 0, for any element f of HompC,Aq,

f is �-invertible if and only if the restriction f |F0C is �-invertible in HompF0C,Aq.

A special type of QT-filtration, which we call the bivariate Quillen filtration (see Section 3.2),
arises by considering skew primitive elements. These are the essential actors for so-called sg-
flavored coalgebras and are key to understanding the structures of the bialgebras before taking
quotients. In the applications a slightly stronger condition is satisfied for the level 0 part of the
filtration, which leads to the central notion of pathlike co/bialgebras, cf. Section 3.3.

Theorem 3.21. Let C be pathlike coalgebra and A algebra with Ext
�
C{FQ



0 C,A
�
� 0. An

element f P HompC,Aq has an �-inverse in the convolution algebra HompC,Aq if and only if for
every grouplike element g, fpgq has an inverse as ring element in A.

In particular, in this situation, a character is �-invertible if and only if it is grouplike inver-
tible.

Furthermore, a pathlike bialgebra B is a Hopf algebra if and only if the set of grouplike
elements form a group.

Color connected coalgebras are pathlike and hence these general results apply to them.
These results are then directly applicable to renormalization via Rota–Baxter algebras and

Birkhoff decompositions, which are briefly reviewed in Section 4.1, with more details in Ap-
pendix B. A closer inspection of this framework yields two paths of actions. The first is to
realize that for invertibility of specific characaters the bialgebras need not necessarily be Hopf
algebras. Thus limiting the characters by imposing certain restrictions on them or the target
algebra will ensure their invertibility in the pathlike case. The second avenue is to formally
invert the grouplike elements. Combining the two approaches yields several universal construc-
tions, through which characters with special properties factor, cf. Section 4. This for instance
naturally leads to quantum deformations of the algebras. These results generalize and explain
similar constructions in [24]. They allow us to construct Brown style coactions [7], see Propo-
sition 3.18. Applying this to pathlike bialgebras, viz. bialgebras whose coalgebras are pathlike
yields:

Theorem 4.14. Let B be a pathlike bialgebra: Every grouplike invertible character has a �-
inverse and vice-versa.

The quotient bialgebra B{IN of Proposition 4.2 is connected and hence Hopf.
In particular, every grouplike normalized character ϕ P HompB,Aq, when factored through

to ϕ̄ P HompB{IN , Aq, has an inverse computed by ϕ̄�1 � ϕ̄ � S.
The bialgebra Bq{I is Hopf and the � inverse of a grouplike central character ϕ P HompB,Aq,

when lifted and factored through ϕ̂ P HompBq{I, Aq, has an inverse computed by ϕ̂
�1

� ϕ̂ � S.
Let S � gplpBq, viz. the grouplike elements, then the left localization BS�1 is a Hopf algebra.

Moreover if S is satisfies the Ore condition and is cancellable, there is an injection B Ñ BS�1

and Bq{I � BS�1{J , where J is the ideal generated by pbg � gbq for all b P B, g P gplpBq.

This framework is applicable to bialgebras arising from Feynman categories, as we show in
Section 5, resulting in the main structural Theorem 5.7 in the non-symmetric case and Theo-
rem 5.9 in the symmetric case. We concretely apply this to the classes of Feynman categories,
set based or simplicial, (co)operadic and graphical corresponding to the examples mentioned in
the beginning. To be more self-contained, these are given in a new set-theoretical presentation
in an Appendix C.

We end in Section 6 with a conclusion and an outlook, which in particular discusses strate-
gies going beyond the pathlike setting by using double categories and Drinfel’d doubles, cf. Sec-
tion 6.2.
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2 Colored algebras and coalgebras

Before delving into the constructions, we review the general notions, recall the key examples
and introduce the notion of colored coalgebras, which formalizes the type of coalgebra obtained
from a category or equivalently a partial monoid that is colored. We end with a short overview
of the complications that arise in the presence of isomorphisms. One resolution to this problem
is to work with equivalence classes, which is done in Section 5.

2.1 Setup and basic notation

We provide some of the relevant notions and refer to [10, 53] for more details. Throughout
we work over a commutative unital ground ring R. If this is taken to be a field, then it is
denoted by k. We will denote the free R-module on a set X by RpXq �

À
xPX R. Tensors

are understood to be over the ground ring, thus b means bR. For an R-module M there is
a canonical isomorphism M b R � M given by the R-module structure on M , and we will
simply implement this isomorphism as an identification-effectively making R a strict monoidal
unit. We will either work in the category of R-modules or graded R-modules. In the second
case, we assume that R is concentrated in degree 0 and the grading is by N unless otherwise
stated. We will assume that algebras have a unit and coalgebras have a counit unless otherwise
stated. A graded coalgebra is connected if C0 � R.

2.1.1 Internal product

There are several complications when working over a commutative ring. First, there is no
canonical way to identify a tensor product of submodules with a submodule. This may lead
to different subcoalgebra structures. Second, a submodule with the restriction of the coalgebra
structure may not yield a coalgebra. It may not even be possible to give a coalgebra structure.
To avoid these issues, we will use an internal product denoted by b for the underlying R-
submodules.

Given a coalgebra pC,∆, ηq over R and two submodules M , N of C, their internal product
M bN is defined to be the following submodule of C b C:

M bN :� tfinite sums of xp1q b xp2q P C b C |xp1q PM, xp2q P Nu.

For two families of subcomodules tNju, tMiu, we will also use the notation ∆pxq P
°

i,j MibNj .
This means ∆pxq can be decomposed as a finite sum of xp1q b xp2q such that every summand
belongs toMibNj for some i, j. IfM �M 1 and N � N 1 as submodules, thenMbN �M 1bN 1.
For a submodule S, we say that V is a subcoalgebra, if ∆pSq � S b S. Note that the counit
ϵ|S : S Ñ R satisfies the equations of a counit.

Example 2.1 ([55]). Consider the Z-module C � Z
8Z `

Z
2Z . Let x � p1, 0q and z � p0, 1q and

endow C with a coalgebra structure by setting ∆pxq � 0 and ∆pzq � 4xb x . Since 4xb x has
order of 2 in CbC the coproduct is well-defined. Also, ϵpxq � ϵpzq � 0, because they are torsion
elements. Let y � 2x and consider V � Zy � Zz � C. As ∆pzq � y b y, ∆pV q � V b V . But,
there is no coalgebra structure on V such that the natural inclusion is a coalgebra morphism.
Indeed, the map ∆: V Ñ C b C has no lifting to V b V because every preimage of ∆pzq has
order 4.

The complication arises due to torsion elements, in the case that R � k is a field, we can
work with the usual monoidal product b.
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2.1.2 Semigrouplikes and connected coalgebras

Given a coalgebra C, an element g in C is said to be semigrouplike if ∆pgq � gbg. If additionally
ϵpgq � 1 then g is said to be grouplike. Note that 0 is always semi-grouplike, but never grouplike.
The set of non-zero semigrouplike elements in C is denoted by sgplpCq and the set of grouplike
elements in C by gplpCq. If the coalgebra has a counit ϵ, then for g P sgplpGq: p1�ϵpgqqg � 0 that
is 1� ϵpgq P AnnRpgq. Hence such a g is a torsion element, if it is not grouplike. Let g and h be
grouplike elements in C, an element x in C is called pg, hq-skew primitive if ∆pxq � xbg�hbx.
When g � h, it is called g-primitive element.

In a coaugmented coalgebra, the coaugmentation η : R Ñ C preserves the counit. Thus,
setting e � ηp1q, ∆peq � e b e, there is a splitting C � Re ` C and C � kerpϵq. The reduced
diagonal ∆ is defined by ∆pxq � ∆pxq � e b x � x b e. In a graded coalgebra all grouplike
elements are necessarily in degree 0 as 2i � i implies i � 0. In a connected graded coalgebra
therefore e, which is the generator of C0, is the unique grouplike element.

In a bialgebra, the semigrouplike elements form a monoid: for two semigrouplike elements
g, h : ∆pghq � gh b gh. The grouplike elements form a submonoid: ϵpghq � ϵpgqϵphq � 1. If C
is coaugmented, these structures are unital with unit e.

In a Hopf algebra any semigrouplike element g satisfies Spgqg � gSpgq � ϵpgqe. In particular,
if an element is grouplike, Spgq � g�1 is the only possible value for an antipode.

2.1.3 Convolution algebra and characters

Recall that given a coalgebra C and an algebra A, the convolution algebra is the R-module
HompC,Aq with multiplication given by pf � gqpxq � m � pf b gq � ∆pxq �

°
x fpxp1qqgpxp2qq.

If A is unital with unit η and C is counital with counit ϵ then η � ϵ is a unit for the convolution
algebra.

Lemma 2.2. Given a subcoalgebra S, HompS,Aq is a unital subalgebra of the convolution algebra
with unit pη b ϵq|S � η � ϵ|S.

Proof. One has to check that HompS,Cq is closed under composition and that it contains the
unit. Since ∆pSq � S b S, the formula pf � gqpsq � mpf b gq � ∆psq �

°
fpsp1qqgpsp2qq yields

a function from S b S Ñ C. The unit restricts appropriately. ■

Lemma 2.3. If C is coaugmented and A is augmented, then if f preserves the augmentation
or the coaugmentation, so does its convolution inverse.

Proof. Assume fp1Cq � 1A, we need to show gp1Cq � 1A. On one hand

pf � gqp1Cq � mA � pf b gq �∆Cp1Cq � pmA � pf b gqqp1C b 1Cq � fp1Cqgp1Cq � gp1Cq.

On the other hand, pf � gqp1Cq � ηAϵCp1Cq � 1A. The compatibility with the counit is estab-
lished by:

ϵCpaq � ϵCpaq1R � ϵCpaqϵAp1Aq � ϵApϵCpaq1Aq � ϵApϵCpaqηAp1Aqq � ϵApηApϵCpaqqq

� ϵA

�¸
a

fpap1qqgpap2qq



�

¸
a

ϵApfpap1qqqϵApgpap2qqq �
¸
a

ϵCpap1qqϵApgpap2qqq

� ϵA

�¸
a

ϵCpap1qqgpap2qq



� ϵA

�
g

�¸
a

ϵCpap1qqap2q




� ϵApgpaqq. ■

An important fact is that an antipode S for a Hopf algebra H is a convolution inverse to
id P HompH,Hq, where on the left the coalgebra structure of H is used and on the right, the
algebra structure of H is used. As id preserves the coaugmentation and augmentation, so does S.
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If B is a bialgebra over R and A is algebra over R, then the set of characters of B with values
in A are the algebra homorphisms HomR�algpB,Aq.

Definition 2.4. We say a character is grouplike invertible, if for every grouplike element
g : ϕpgq P A�, grouplike central if for all g P gplpCq : ϕpgq P ZpAq, grouplike scalar if ϕpgq P R�

and grouplike normalized if ϕpgq � 1 for all grouplike g.

Recall that in a graded setting, the grouplike elements are in degree 0, and if A is graded
and ϕ preserves the grading, then the grouplike elements have to land in A0. It is quite common
that, even if A is not commutative, A0 is. In this case all the characters preserving the grading

will be grouplike central. In several applications, the characters are scalar and take values
�

1
2πi

�k
,

which in turn is also a form of grading, cf. Section 4.2.

Lemma 2.5. Any �-invertible character is grouplike invertible.

Proof. This follows from the fact that for any grouplike ϕ��1 � ϕpgq � ϕ��1pgqϕpgq � 1B. ■

The converse of this is true under a specific conditions on A for pathlike bialgebras, see
Theorem 3.21 and Section 4.

Proposition 2.6. If A is commutative, the characters form an algebra under convolution.
If B is a Hopf algebra, then ϕ � S � ϕ�1 is the convolution inverse.
If B is Hopf and A is commutative, then the characters form a group.

Proof. For the first statement:

pf � gqpabq � pf b gq

�¸
ap1qbp1q b ap2qbp2q



�

¸
fpap1qqfpbp1qqgpap2qqgpbp2qq

�
¸
fpap1qqgpap2qqfpbp1qqgpbp2qq � pf � gqpaqpf � gqpbq.

For the second statement:

ppϕ � Sq � ϕqpaq �
¸
a

ϕpSpap1qqqϕpap2qq �
¸
a

ϕpap1qSpap2qqq � ϕpη � ϵpaqq � pη � ϵqpaq.

For the last statement, we need to show that the inverse of a character is a character. Indeed,
ϕ�1pabq � ϕpSpabqq � ϕpSpbqSpaqq � ϕpSpbqϕpSpaqq � ϕpSpaqqϕpSpbqq, where the last equation
holds since A is commutative. ■

2.2 Key examples of coalgebras and complications

2.2.1 Path coalgebra

The paradigmatic example and namesake for the article is the path coalgebra of a quiver. Given
a quiver Q, that is a graph with directed edges, a path is given by a sequence of consecutive
directed edges p � pe⃗1 � � � e⃗nq. Consecutive means that the target vertex tpe⃗iq of e⃗i is the source
vertex spe⃗i�1q of e⃗i�1. By definition for each vertex v there is an empty path of length 0, with
source and target v. This the identity at v, which is traditionally denoted simply by v. Using
this notation, let P pQq be the set of paths of Q, then RpP pQqq has the coalgebra structure

∆pe⃗1 � � � e⃗nq � spe⃗1q b pe⃗1 � � � e⃗nq �
n�1̧

i�1

pe⃗1 � � � e⃗iq b pe⃗i�1 � � � e⃗nq � pe⃗1 � � � e⃗nq b tpe⃗nq.

The counit is ϵpvq � 1 and ϵpe⃗1 � � � e⃗nq � 0, n ¥ 0. There is a grading given by the length
of a path. The grouplike elements are exactly the length 0 paths v. The paths of length 1
are exactly the skew primitive, with pe⃗q being pspe⃗q, tpe⃗qq-skew primitive. This coalgebra is not
connected if there is more than one vertex.
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Remark 2.7. A special important case arises if one considers the quiver for a complete graph,
that is one directed edge per pair of vertices. A path is then equivalently given by a sequence
of vertices, that is simply a word in vertices. In particular, the complete graph on two vertices
t0, 1u, yields the quiver ü 0 Ô 1 ý whose path algebra underlies Goncharov’s and Brown’s
Hopf algebras for polyzetas [7, 27]. This is also the fundamental path groupoid for Czt0, 1u with
tangential base points and is directly linked, cf. [24, Section 1], to Chen iterated integrals [12].
The case with many vertices corresponds to polylogs. The bi-algebra structure is actually
founded in a simplicial structure, see [24, Section 4], [25, Section 3.3.1].

2.2.2 Incidence coalgebra

Another big source of inspiration and examples comes from combinatorics via incidence coalge-
bras, as studied in [29, 58]. This is a coalgebra on the free R module on the set of intervals rx, ys

∆prx, ysq � rx, xs b rx, ys �
¸

z : x z y

rx, zs b rz, ys � rx, ys b ry, ys.

The co-unit evaluates to 1 on rx, xs and 0 else.

2.2.3 Categorical coalgebra

These two examples are special cases of coalgebras stemming from a category with finite decom-
position, which will be the main case of interest in the applications. Let C be a small category.
This means that both the objects X � ObjpCq and the morphisms M � MorpCq are sets. The
mapping x to idx identifies X with a subset X �M and M � X >M . The free R modules split
accordingly RpMq � RpIq `RpMq.

Furthermore, restrict to the case where C is decomposition finite, this is for each ϕ PM , there
are only finitely many pairs pϕ0, ϕ1q PM �M such that ϕ0 � ϕ1 � ϕ1 � ϕ0 � ϕ.

The categorical monoid coalgebra CrM s is defined to be the free R-module RpMq with co-
product for ϕ : xÑ y given by

∆pϕq �
¸

pϕ0,ϕ1q : ϕ0�ϕ1�ϕ

ϕ0 b ϕ1 � idx b ϕ� ϕb idy �
¸

pϕ0,ϕ1qPM�M : ϕ0�ϕ1�ϕ

ϕ0 b ϕ1

and counit ϵpidxq � 1 for the identity maps and ϵpϕq � 0 if ϕ is not an identity map. So,
letting ϵX be the projection onto RpXq, ϵ factors through ϵX .

These coalgebras were analyzed in [24, 25, 41], and their history goes back to [47], see also [29].

Remark 2.8. Note that there are two equivalent, opposite, ways to write down the composition
maps, which correspond to the two ways to write the compositions Mor s�tMor Ñ Mor or
Mor t�sMorÑ Mor

HompX,Y q �HompY, Zq Ñ HompX,Zq, pϕ0, ϕ1q ÞÑ ϕ0 � ϕ1 :� ϕ1 � ϕ0, (2.1)

HompZ, Y q �HompX,Y q Ñ HompX,Zq, pϕ0, ϕ1q ÞÑ ϕ0 � ϕ1. (2.2)

We will call the first monoidal and the second categorical. The two coproducts are opposites,
i.e., ∆ and ∆op � τ �∆, where τ is the flip. The first version of this for the coproduct is what is
used for posets and quivers and fits with the Connes–Kreimer coproduct [13, 24, 25], where the
subgraph is on the left and the cograph is on the right, cf. (5.3). The second one is more natural
from a category point of view and corresponds to the tree Hopf algebra, where the stump is on
the left and the branches on the right, cf. (5.2).

Note that this ambiguity is non-essential for a coalgebra or a bialgebra. For a Hopf algebra,
it might a priori make a difference, – Hop,cop is a Hopf algebra, but Hcop may not be – but if
the Hopf algebra comes from a category Hcop, is also Hopf, cf. Proposition 3.23.
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Remark 2.9. Path and incidence coalgebras arise from categories as follows: For P pQq the
objects are the vertices of Q and M � P pQq. The source s and target map t map a path to
its start and end vertices, respectively. The composition is the concatenation of paths, and
the identities are the length 0 paths. This is the free category generated by the morphisms
corresponding to the edges.

A poset pS, q defines a category whose objects are S and whose morphisms are defined
as follows. There is one exactly one morphism ϕxÑy between x and y if and only if x ¨ y.
The category is locally finite when the poset is. The categorical coproduct is ∆pϕxÑyq �°

zPrx,ys ϕxÑy bϕyÑz or in the usual poset notation, where one identifies ϕxÑy with the interval
rx, ys. The identities are idx � rx, xs.

This category is the quotient of a quiver category. The quiver has vertices S and directed
edges given by the px, yq-skew primitives. These are the elements x   y, x � y, where there
is no z : x   z   y. The quotient is given by identifying two morphisms, i.e., paths, p and q
whenever they have the same source and target. Categorically speaking this trivializes π1 of the
category making each component simply connected.

Algebraically speaking, a small category is the same as a colored monoid which is a particular
type of partial monoid.

Definition 2.10. A colored monoid M is a set together with the following data. A set X of
colors, two morphisms s, t : M Ñ X, and a partial product � : M s�tM ÑM which is associative
in the sense that pabqc exists, then so does apbcq and they coincide.

It is unital if there is morphism id: X Ñ M , which is a section of both s and t such that
a � idptpaqq � idpspaqq � a � a. M � >x,yMx,y, where Mx,y � ta | spaq � x, tpaq � yu.

A colored monoid is called decomposition or locally finite, if all the fibers ��1pmq for m PM
are finite.

It is graded if there is a degree function deg : M Ñ N0 such that degpabq � degpaq � degpbq.
A degree function is proper is degpaq � 0 if and only if a is invertible.

The equivalence between colored monoids and categories is given by the identifications X �
Obj C and M � MorpCq with Mx,y � Hompx, yq.

We will need the following result [25, Lemma 1.11], which rephrased for colored monoids
states that:

Lemma 2.11. In a decomposition finite colored unital monoid any left or right invertible element
is invertible.

A categorical coalgebra is a dual construction to that of a colored monoid. In the case of
finite X this is straightforward. If X is not finite there are subtleties which are relegated to
Appendix A. The class of the resulting coalgebras is codified as colored coalgebras.

2.2.4 Complications from isomorphisms

A colored unital monoid is a groupoid, if all of its elements are invertible in the colored sense, viz
there is a morphism �1 : M ÑM , such that ϕ�1 �ϕ � idspϕq and ϕ�ϕ

�1 � idtpϕq. As a category,
this means that all morphisms are isomorphisms. Given a category C, the underlying groupoid
IsopCq is defined by the objects of C with only the isomorphisms. This groupoid acts from the
left and right on morphisms by conjugation ϕÑ pσóσ1qpϕq :� σ1 � ϕ � σ�1.

Lemma 2.12. The product of M being locally finite necessitates that there are only finitely
many objects in each isomorphism class and that all automorphism groups are finite.

An identity morphism idx is grouplike in CrM s, if and only if x is the only element in its
isomorphism class and it has no non-trivial automorphisms.
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If there is a skew-primitive morphism ϕ : xÑ y, then x and y are the only elements in their
isomorphism class and both have no non-trivial automorphisms.

Proof. For an identity idx the deconcatenation coproduct will have a term σ b σ�1 of any
σ P Isopx,�q, which proves the first two statements.

For a decomposition finite noninvertible ϕ : x Ñ y in the monoidal convention (2.1) the
coproduct is

∆pϕq �
¸

σxPIsopX,�q,σyPIsopY,�q

�
σx b σ�1

x � ϕ� ϕ � σy b σ�1
y

�
� � � � , (2.3)

where the first summands are always present. The element ϕ being skew-primitive means that
all the terms except ϕb idy � idx b ϕ are not present, which is the third statement. ■

We will call a morphism ϕ essentially indecomposable if the only decompositions into two
factors have at least one factor which is an isomorphism. For an identity these are the terms
σ b σ�1, and if ϕ is not an identity, the corresponding terms of ∆pϕq are the displayed terms
in (2.3).

Taking isomorphism classes will make it possibly to remedy the situation arising from too
few grouplikes and skew-primitives in case the action of IsopCq behaves nicely; which it does for
a Feynman category, see Section 5.2.

If there is only one object in each isomorphism class of objects, i.e., C is skeletal, then the
sum will only be over automorphisms. In the case of a finite groupoid with just one color, i.e.,
M � G is a finite group, the deconcatenation coproduct is simply the familiar

∆pgq �
¸
hPG

ghb h�1 �
¸
hPG

hb h�1g.

2.3 Colored co- and bialgebras

2.3.1 Colored coalgebras

The coalgebra on X, denoted by CrXs, is the coalgebra structure on RpXq, defined by letting
all generators be grouplike, i.e., ∆pxq � xb x and ϵpxq � 1. Such a coalgebra, viz. a coalgebra
freely generated by grouplikes, is often called setlike.

Lemma 2.13. A right por leftq coaction ρ by CrXs on an R module M is equivalent to grading
by X, that isM �

À
xPX Mx. Similarly having a right and a left coaction is the same as a double

grading by X, that is M �
À

px,yqPX�X Mx,y.

Proof. Given a coaction, setMx � tm | ρpmq � mbxu. Each ρpmq �
°

xmxbx is a finite sum
and thus the module is the sum of the Mx. Furthermore ∆pxq � xb x so that pmxqy � δx,ymx.
and the sum is direct. Vice-versa setting ρpmxq � m b x for mx P Mx defines a coaction. One
can proceed similarly for a left coaction. The fact that left and right coactions commute proves
the last statement. ■

For a coalgebra, given a left comodule N , λ : N Ñ N bC and a right comodule M , ρ : M Ñ
C bM the cotensor product Mλ�ρN is defined as the coequalizer

Mλ�ρN M bR N M bR C bR N.
ρRbRidN

idMbRρL

This is generated by elements c � c1 with ρpcq � λpc1q which is dual to the condition that
tpm1q � spm2q.
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Definition 2.14. A colored coalgebra C with colors X is a coalgebra C together with a bi-co-
module structure of C over CrXs, that is λ : C Ñ CrXs b C, ρ : C Ñ CrXs b C such that the
comultiplication map is a morphism in the category of CrXs bi-comodules and that ∆ factors
through the cotensor product:

C
∆ //

##

C b C

Cλ�ρC.
+ �

99

When omitting the mention of the colors, we implicitly assume the coalgebra is colored by its
semigrouplike elements. A colored coalgebra with colors X is color counital, if there is a map
of CrXs bi-comodule co-algebras ϵX : C Ñ CrXs such that

pϵX b idq∆ � λ and pidb ϵxq∆ � ρ,

and color coaugmented if there is a coalgebra map of CrXs bi-comodules iX : CrXs Ñ C split-
ting ϵX . A graded color coaugmented coalgebra colored by X is color reduced if C0 � CrXs.

By Lemma 2.13 a coalgebra colored byX decomposes as C �
À

px,yqPX�X Cx,y. The condition
of begin a map of CrXs bi-comodules factoring through the cotensor product means that

∆pCx,yq �
à
z

Cx,z b Cz,y.

If C is color coaugmented, C � CrXs ` C, where C � kerpϵXq with iXpxq P Cx,x. Moreover,
Cx,x � RiXpxq ` Cx,x. Setting Cx,y � Cx,y this means that C �

À
px,yqPX�X Cx,y. Since ϵX is

a coalgebra map ϵ|C � 0.

Remark 2.15. If C is co-augmented as a coalgebra, settingX � teu, λpcq � ebc and ρpcq � cbe
defines a coloring with one color Ce,e � C. Thus, a color coaugmented coalgebra colored by X
generalizes the notion of a coaugmented coalgebra to many colors corresponding to sets of
grouplike elements.

Definition 2.16. For a color coaugmented coalgebra colored by X, we define the reduced diago-
nal to be ∆ � ∆� λ̃� ρ̃, where λ̃ � piX b idqλ � iXϵX b∆ and ρ̃ � pidb iXqρ � pidb iXϵXq∆.

Note that πX � iXϵX is the projection to the factor CrXs.

Definition 2.17. The Quillen filtration of a color coaugmented coalgebra C colored by X is
defined by:

FQ
0 C � CrXs, FQ

r C �
 
x P C |∆ P FQ

r�1C b F
Q
r�1C

(
. (2.4)

If this filtration is exhaustive C �
�

i¥0 F
Q
i C, then the coalgebra will be called color connected.

If k is a field and C is colored by e, this agrees with original definition of [56], thus in the
case of just one color, we will say that C is Quillen connected precisely if it is color connected.
A graded coalgebra is Quillen connected if the degree zero part is isomorphic to R; in the
literature R is often assumed to be a field k.

Theorem 2.18. Let C be a colored coaugmented coalgebra colored by X. Then, for every
c P Cx,y, ∆pcq can be written as xb c� cb y � w with w P C b C, that is w � ∆pXq.

Additionally assuming that C �
À

i¥0Ci is graded and color reduced, and thus also C is

graded, we moreover have that for c P Cn and n ¡ 0, w P
Àn�1

i�1 Ci b Cn�i.
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Proof. First, say that c P Cx,y with x � y. We decompose (omitting the additional Sweedler
sum symbols)

∆pcq �
¸
t

c
p1q
x,t b c

p2q
t,y �

�
rp1qx� c̄p1qx,x

�
b c̄p2qx,y � c̄p1qx,y b

�
rp2qy � c̄p2qy,y

�
�

¸
zRtx,yu

c̄p1qx,z b c̄p2qz,y,

where we used the decomposition Cx,x � Rx ` Cxx and Cx,y � Cx,y for x � y. Applying the

left counit constraint pϵb idq �∆ � id to c, we see that rp1qc̄
p2q
x,y � c and the right unit constraint

gives c̄
p1q
x,yrp2q � c. For c P Cx,x

∆pcq �
¸
t

c
p1q
x,t b c

p2q
t,x �

�
rp1qx� c̄p1qx,x

�
b
�
rp2qx� c̄p2qx,x

�
�

¸
z�x

c̄p1qx,z b c̄p2qz,y.

From the left unit constraint, we obtain that c � rp1qrp2qx� rp1qc̄
p2q
x,x, but as ϵpcq � 0, rp1qrp2q � 0

and rp1qc̄
p2q
x,x � c. Similarly from the right unit constraint c̄

p1q
x,xrp2q � c.

In the graded case ∆pCnq �
Àn

i�0Ci b Cn�i and w P
Àn

i�1Ci b Cn�i �
Àn

i�0Ci b Cn�i,
but C0 � 0, so the first and the last summand vanish. ■

Lemma 2.19. In a color coaugmented coalgebra colored by X the reduced comultiplication is

coassociative, and thus there are unique n-th iterates ∆
rns

: C Ñ Cbn.

Proof. Because of linearity, it suffices to show it holds for c P Cx,y. Using the following
abbreviated Sweedler notation for the comultiplication ∆pcq � cp1q b cp2q and ∆p3qpcq � cp1q b
cp2q b cp3q, calculating the left and right hand sides yields:

�
∆̄b idC

�
� ∆̄pcq �

�
∆̄b idC

�
� ∆̄pcq �

�
∆̄b idC

��
∆� λ̃� ρ̃

�
pcq

�
��
∆� λ̃� ρ̃

�
b idC

�
p∆pcq � xb c� cb yq

�
�
∆� λ̃� ρ̃

��
cp1q

�
b cp2q �

�
∆pxq � λ̃pxq � ρpxq

�
b c

�
�
∆pcq � λ̃pcq � ρ̃pcq

�
b y

� ∆
�
cp1q

�
b cp2q � xb cp1q b cp2q � ρ̃

�
cp1q

�
b cp2q

� pxb x� xb x� xb xq b c�
�
cp1q b cp2q � xb c� cb y

�
b y

� cp1q b cp2q b cp3q � xb cp1q b cp2q � ρ̃
�
cp1q

�
b cp2q

� xb xb c� cp1q b cp2q b y � xb cb y � cb y b y,�
idC b ∆̄

�
� ∆̄pcq �

�
idC b ∆̄

�
� ∆̄pcq � pidC b ∆̄q

�
∆� λ̃� ρ̃

�
pcq

�
�
idC b

�
∆� λ̃� ρ̃

��
p∆pcq � xb c� cb yq

� cp1q b
�
∆� λ̃� ρ̃

��
cp2q

�
� xb

�
∆pcq � λ̃pcq � ρ̃pcq

�
� cb

�
∆pyq � λ̃pyq � ρ̃pyq

�
�

�
cp1q b cp2q b cp3q � cp1q b λ̃

�
cp2q

�
� cp1q b cp2q b y

�
� xb

�
cp1q b cp2q � xb c� cb y

�
� cb py b y � y b y � y b yq

� cp1q b cp2q b cp3q � cp1q b λ̃
�
cp2q

�
� cp1q b cp2q b y � xb cp1q b cp2q

� xb xb c� xb cb y � cb y b y.

These agree if ρ̃
�
cp1q

�
b cp2q � cp1q b λ̃

�
cp2q

�
, which readily follows the assumption of being

color coaugmented. ■



12 R.M. Kaufmann and Y. Mo

The lemma allows us to introduce the colored conilpotent coradical filtration by

FN
0 C � ipCrXsq, FN

r C � ipCrXsq `
 
x P C |∆

rr�1s
pxq � 0

(
, r ¥ 1. (2.5)

This is the generalization of the conilpotent coradical filtration, see, e.g., [48].

Definition 2.20. We call a color coaugmented co-algebra colored by CrXs conilpotent if the
filtration FNC is exhaustive. A color coaugmented coalgebra colored by X is called ∆ flat, if for

all n, ker
�
∆
rns

b id
�
� ker

�
∆
rns�

b C and and ker
�
idb∆

rns�
� C b ker

�
∆
rns�

.

For a coaugmented coalgebra with one color e, the filtration coincides with the conilpotent
coradical filtration and color conilpotence agrees with notion of conilpotence for coaugmented
coalgebras, see, e.g., [48].

Corollary 2.21. A graded color coaugmented color reduced coalgebra colored by X is conilpotent.

Proof. This follows directly from Theorem 2.18. ■

The notions of color conilpotent and color connected are related. Color conilpotence is easier
to check, but color connectedness is better to argue with.

Proposition 2.22. A color connected coalgebra is a color conilpotent coalgebra and a ∆-flat
conilpotent coalgebra is color connected.

Proof. If C is color connected, say c P FQ
n pCq X C, by induction there is some N such that

∆
rNs

pcq � 0. This is clear for c P FQ
0 C and if c P FQ

n�1CXC then ∆pcq P FQ
n CbF

Q
n C so there is

some N such that
�
∆
rNs

b id
�
∆pcq � ∆

rN�1s
pcq � 0. Vice-versa, assume that C is ∆-flat color

conilpotent. Again using induction, as FN
0 C � FQ

0 C, we can assume that FN
n�1C � FQ

n�1C.

Now, if c P ker
�
∆
rns�

, then, since C is ∆-flat, ∆pcq P ker
�
∆
rn�1s

b id
�
X ker

�
id b ∆

rn�1s�
�

ker
�
∆
rn�1s�

b C X C b ker
�
∆
rn�1s�

� FQ
n�1F b FQ

n�1C and c P FQ
n C. ■

Lemma 2.23. A color coaugmented coalgebra C colored by X is ∆-flat if C is flat. In particular,
∆ flatness is automatic over a field or if C is free.

Proof. Consider the short exact sequence 0 Ñ ker
�
∆
rns�

Ñ C Ñ im
�
∆
rns�

Ñ 0. By right

exactness of b: ker
�
∆
rns�

b C Ñ C b C Ñ im
�
∆
rns�

b C Ñ 0 is exact. If C is flat, 0 Ñ

im
�
∆
rns�

bCbn Ñ C bC is exact and hence ker
�
∆
rns�

bC
ibid
Ñ C bC

∆
rns

bid
Ñ CbnbC is exact

and ker
�
∆
rns

b id
�
� ker

�
∆
rns�

b C. ■

Proposition 2.24. For a decomposition finite colored monoidM, the categorical coalgebra CrM s
is colored by its objects and color coaugmented.

If M only has identities as invertibles, then CrM s is colored by its grouplikes. If additionally,
CrM s is color nilpotent, then it is color connected.

In particular, if M has a proper degree function, is locally finite and has no non-trivial
identities, then it is colored by its grouplikes and is color connected.

Proof. The first statement is clear by construction. If identities are the only invertible elements,
then by Lemma 2.12 they are grouplike, and these are also the only semigrouplike elements.
Hence, CrM s is colored by its grouplikes. As CrM s is free being color nilpotent implies being
color connected by Lemma 2.23 and Proposition 2.22. The last statement follows from the
previous ones and Corollary 2.21. ■
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2.3.2 Colored bialgebras and the free bialgebra FB [M ] on a colored monoid

Generally, we will say that a bialgebra has an attribute like colored, color connected etc. if its
coalgebra does.

Lemma 2.25. Given a colored connected bialgebra colored by X the ideal I generated by x� y,
for x, y P X is a coideal and C{I is Quillen connected.

Proof. Indeed, ϵpx� yq � 1� 1 � 0 and ∆px� yq � xb x� y b y � xb px� yq � px� yq b y,
so I is a coideal. C{I is single colored and coaugmented as CrXs{I � R. The induced filtration
FQ
r pC{Iq � FQ

r C{
�
I X FQ

r C
�
is still exhaustive. ■

The following construction is key for many examples. In particular for constructing bialgebras
from posets or quivers.

For a set X let X� � >nPN0X
�n be the free monoid on X. The unit 1 is represented

by the empty product. If M is a monoid then M� additionally carries a componentwise
monoidal structure: pa1, . . . , anqpb1, . . . , bnq � pa1b1, . . . , anbnq. Consider RpM�q as the free
unital algebra on M�. If M is decomposition finite, this has a coalgebra structure induced
by that of CrM s, whose comultiplication is given by ∆p1q � 1 b 1 and ∆ppa1, . . . , anqq �°�

a
p1q
1 , . . . , a

p1q
n

�
b
�
a
p2q
1 , . . . , a

p2q
n

�
, where ∆paiq �

°
a
p1q
i b a

p2q
i is the coproduct of CrM s. The

counit is ϵppa1, . . . , anqq � ϵpa1q � � � ϵpanq. These structures make RpM�q into a unital counital
bialgebra with counit ϵ and unit 1, which we will denote by FBrM s.

Proposition 2.26. If M is a monoid colored by X, then M� is colored by X�. In this case the
underlying algebra structure of FBrM s is graded by the monoid X� and the underlying coalgebra
of FBrM s is a X� colored, and Proposition 2.24 applies.

Proof. The coloring is given by spa1, . . . , anq � pspa1q, . . . , spanqq and tpa1, . . . , anq � ptpa1q,
. . . , tpanqq. The computations are then straightforward. ■

In this construction the original composition is turned into a coproduct. Then a free product
is added to make a bialgebra. IfM is interpreted as a category C, this is the categorical coalgebra
for the free monoidal category Cb. The case were there already is a monoidal structure, which
is not necessarily free, is treated in Section 5.

3 Path-like co- and bialgebras, convolution inverses
and antipodes

3.1 QT-filtration and convolution inverses

In order to define antipodes, or more generally convolution inverses, it is useful to regard filtra-
tions, as in good cases one can recursively build up the antipode from its value on the degree 0
part. To this end, we put forward the definition of a QT-filtration (Quillen–Takeuchi) that
generalizes the classical graded, coalgebra, coradical, Quillen [56] filtrations and their colored
conilpotent versions. This notion is what is needed to prove a general version of Takeuchi’s
Lemma [60], for the existence of convolution inverses.

Definition 3.1. A QT-filtration of a coalgebra C is a filtration of C by R-submodules FQT
p pCq,

p ¥ 0 such that:

1. FQT
0 C � S is a subcoalgebra.

2. ∆
�
FQT
p C

�
� FQT

p�1C b C � C b FQT
p�1C.
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We call a QT-filtration a QT-sequence if the filtration is exhaustive, i.e., C �
�8

i�0 FiC and call

the QT-sequence split, if FQT
0 C is a direct summand, that is 0Ñ FQT

0 C Ñ C Ñ FQT
0 C{C Ñ 0

is split.
A coaugmented coalgebra is QT-connected if is has a QT-sequence whose degree 0 part is Re.

Remark 3.2. Note that a QT-filtration is defined by specifying a base, that is a subcoalgebra S
and setting: FQT

0 C � S and FQT
r C �

 
x |∆pxq P C b FQT

0 C � FQT
p�1C b F

QT
p�1C � FQT

0 C b C
(
.

Quillen’s original filtration [56] for a coaugmented coalgebra is obtained from S � FQT
0 � Re.

In the category of R-coalgebras, every coalgebra filtration gives rise to a QT-filtration with S
being the degree 0 part.

The filtration associated with the grading of an N-graded coalgebra
�
FQT
r :� tx |degx ¤ ru

�
is a QT-filtration based on FQT

0 , because FQT
i � FQT

r if i ¤ r. FQT
i b FQT

j � FQT
r b FQT

q

if i ¤ r and j ¤ q. Given a Z graded filtration, with C0 a subcoalgebra, and with ∆pFpq �

Fp�1bC �C bFp�1, p ¡ 0 and ∆pFpq � Fp�1bC �C bFp�1, p   0, setting FQT
p � Fp�F�p,

p ¥ 0 produces a QT-filtration.

Theorem 3.3. Consider a coalgebra C with counit ϵ and an algebra A with unit η. Given a QT-
sequence

 
FQT
i

(8
i�0

on C, such that Ext1R
�
C{FQT

0 C,A
�
� 0, for any element f of HompC,Aq,

f is �-invertible if and only if the restriction f |
FQT
0 C

is �-invertible in Hom
�
FQT
0 C,A

�
.

Proof. First assume that f is convolution invertible in HompC,Aq, and let g be �-inverse
of f . By restriction to FQT

0 C, see Lemma 2.2, it follows that pη � ϵq|
FQT
0 C

� pf � gq|
FQT
0 C

�

f |
FQT
0 C

�g|
FQT
0 C

and pη�ϵq|
FQT
0 C

is the unit of the restricted convolution algebra Hom
�
FQT
0 C,A

�
.

Thus g|
FQT
0 C

is a right �-inverse of f |
FQT
0

. By symmetry, it is also a left �-inverse and thus the

�-inverse in the restricted algebra.
Conversely, assume that f |

FQT
0 C

is convolution invertible in Hom
�
FQT
0 C,A

�
. Thus, there

is an element g of Hom
�
FQT
0 C,A

�
such that f � g � η � ϵ � g � f on FQT

0 C. We can ex-

tend the R-linear map g to C as the restriction morphisms HompC,Aq Ñ Hom
�
FQT
0 C,A

�
is surjective due to the assumption that Ext

�
C{FQT

0 C,A
�
� 0. Because the convolution al-

gebra pHompC,Aq, �, η � ϵq is a unital monoid, if we show that both f � g and g � f have
a �-inverse this will imply f has a �-inverse. Thus, replacing f with f � g, we may assume
f |

FQT
0 C

� η � ϵ|
FQT
0 C

that is η � ϵ|
FQT
0 C

� f |
FQT
0 C

� 0. Since the filtration is exhaustive, for

every x P C, there exists a natural number N such that x P FN and pf � η � ϵq�pNqpxq � 0.
Indeed, after using the coassociativity for the diagonal to decrease the filtration degree, every
summand from ∆rN�1spxq �

°
x xp1qxp2qxp3q � � �xpN�1q has to contain a factor in F0C accord-

ing to the definition of the QT-filtration, and hence η � ϵ � f annihilates each term. So, the
infinite sum h �

°8
i�0pη � ϵ � fq�i is locally finite and yields a well defined map, where we set

pη � ϵ � fq�0 � η � ϵ. It is easy to verify that h is R-linear, so h P HompC,Aq. That h is the
inverse of f follows by computation: f � h � pf � η � ϵq � h � η � ϵ � h � pf � η � ϵq � h � h �
�
°8

i�1pη � ϵ� fq�i �
°8

i�0pη � ϵ� fq�i � pη � ϵ� fq�0 � η � ϵ. The fact that h � f � η � ϵ can be
checked in the same way. Therefore, we conclude h is �-inverse of f . ■

Note that if FQT
0 C is a direct summand, i.e., the sequence 0Ñ FQT

0 C Ñ C Ñ C{FQT
0 C Ñ 0

splits, the Ext group vanishes, and the first condition is automatically met.
We say that a bialgebra has a QT-sequence, if the coalgebra has a QT-sequence. In this

situation, Theorem 3.3 yields the generalization of the results of Quillen and Takeuchi, and we
recover many of the existence theorems for antipodes as special cases.

Theorem 3.4. A bialgebra with a QT-sequence and Ext1R
�
C{FQ

0 C,C
�
� 0 is Hopf, i.e., has an

antipode, if and only if id|
FQT
0 C

has a � inverse.
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Corollary 3.5. A bialgebra with a split QT-sequence is Hopf if and only if id
FQ
0 C

has a convo-

lution inverse. In particular, if C is a split QT-connected bialgebra, then it is Hopf.

Proof. The first part directly follows from Theorem 3.4. If C is QT-connected then Speq � e
is the required antipode on FQ

0 C. ■

Proposition 3.6. The Quillen filtration FQC, cf. (2.4), for a color coaugmented coalgebra
colored by X is a QT-filtration and a QT-sequence if C is connected. For a ∆-flat color coaug-
mented coalgebra colored by X the conilpotent filtration FNC, cf. (2.5), is a QT-filtration with
FQT
0 C � CrXs which is exhaustive if ∆ is conilpotent.

Proof. The first part follows from the fact that in this situation, ∆ �
À

g,hPX�X ∆g,h and

thus FQT
r C � FQ

r pCq with FQT
0 C � CrXs �

À
gPsgplpCqRg. For the second part: decompose

c P FrpCq as c0 � c̄ P C � CrXs ` C̄ with c̄ in ker
�
∆
rrs�

, then by Theorem 2.18 ∆pcq �

c0 b c0 � iXλpc̄q b c̄ � c b iXρpc̄q �∆pc̄q with ∆pc̄q P ker
�
∆
rr�1s�

b id. Thus, by definition of
∆-flatness ∆pcq P F0C b C ` C b F0C ` Fr�1 b C. ■

Corollary 3.7. A bialgebra whose coalgebra is colored by X and color connected, or whose
coalgebra is a ∆-flat color coaugmented coalgebra with colors X has an antipode if and only if
every generator x P CrXs has a algebra inverse x�1.

The Proposition allows to give a recursive definition in both cases.

3.2 Sg-flavored bi- and coalgebras

In this section, we introduce a type of coalgebra which has a QT-filtration based on a decom-
position according to pg, hq-primitives. This generalizes path-coalgebras and colored coalgebras
and subsumes the notions of graded connected coalgebras and May’s component coalgebras [51].
This type of idea is also used in [59].

Definition 3.8. Let C be a R-coalgebra and g and h be semigrouplike elements. We define the
pg, hq-reduced comultiplication to be ∆g,hpxq � ∆pxq � xb g � hb x.

Lemma 3.9. Pairs of ∆g,hs have the following associators:

�
∆g,h b id

�
∆g,hpxq �

�
idb∆g,h

�
∆g,hpxq

� xp1q b ph� gq b xp2q � xb ph� gq b g � hb ph� gq b x.

The ∆g :� ∆g,g are coassociative, thus, the iterated reduced comultiplication ∆
rns
g pxq is well-

defined. Furthermore, if g is grouplike and x P ker ϵ, then pϵb idq∆gpxq � pidb ϵq∆gpxq � 0.

Proof. The first claim follows from the calculation:

�
∆g,h b id

�
∆g,hpxq �

�
idb∆g,h

�
∆g,hpxq

�
¸
x

xp11q b xp12q b xp2q �
¸
x

xp11q b xp21q b xp22q � xp1q b g b xp2q

� hb xp1q b xp2q � xp1q b xp2q b g � xb g b g � hb xb g � hb g b x

�
�
xp1q b xp2q b g � xp1q b hb xp2q � xb hb g � hb xp1q b xp2q � hb xb g

� hb hb x
�
� xp1q b ph� gq b xp2q � xb ph� gq b g � hb ph� gq b x.

The second claim is straightforward, e.g., pϵb idq∆gpxq � x� ϵpxqg � ϵpgqx � 0. ■
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Given a coalgebra C, we will inductively define R-modules each depending on two semigroup-
like elements g, h P sgplpCq. These are simultaneously defined for all pairs of such elements and
yield pieces of a filtration.

1. For any two g, h P sgplpCq : FQ
0 Cg,h :� Rg XRh is the base R-module.

2. Inductively over all pairs: FQ
n Cg,h :�

 
x |∆g,hpxq �P

°
tPsgplpCq F

Q
n�1Cg,t b F

Q
n�1Ct,h

(
.

In words, FQ
n Cg,h is the subset in which every element x has the property that if ∆g,hpxq �°

xp1q b xp2q then for each summand xp1q b xp2q there exists a semigrouplike element t with
xp1q P FQ

n�1Cg,t and xp2q P FQ
n�1Ct,h. This is also a R-module as every FQ

n Cg1,g2 with g1, g2 P
sgplpCq is a R-module inductively. The pg, hq-Quillen component of C is defined to be FQCg,h �°

i¥0 F
Q
i Cg,h.

Lemma 3.10. The FQ
i Cg,h yield filtrations of the FQCg,h; that is FiC

Q
g,h � Fi�1C

Q
g,h for i ¥ 0.

Proof. We use induction. Base case: to show that Rg X Rh � FQ
0 Cg,h � FQ

1 Cg,h pick

x P FQ
0 Cg,h, say x � rg, then ∆g,hpxq � �x b h P F0C

Q
g,h b F0C

Q
h,h. By induction assume

that Fn�1C
Q
g,h � FnC

Q
g,h. Let x P FQ

n Cg,h. Then ∆g,hpxq P
°

tPsgplpCq F
Q
n�1Cg,t b Fn�1C

Q
t,h �°

tPsgplpCq FnC
Q
g,t b FnC

Q
t,h by induction hypothesis, and thus x P Fn�1C

Q
g,h . ■

Definition 3.11. The filtrations of CQ
g,h yield a common filtration FQ



r C :�
°

g,h F
Q
r Cg,h – the

bivariate Quillen filtration. We say a coalgebra C is sg-flavored (sg stands for semigrouplike) if
the bivariate Quillen filtration is exhaustive, that is C �

°
pg,hq,g,hPsgplpCqC

Q
g,h and split if FQ



0 C
is a direct summand. A bi- or Hopf-algebra is sg-flavored if the underlying coalgebra is sg-
flavored.

Remark 3.12. Note all semigrouplike elements of C lie in FQ



0 C and all skew primitive ele-

ments C lie in FQ



1 C. The degree zero component F0C
Q
g,h may be non-empty, if g, h are two

distinct semigrouplike elements, it may happen that there exist s, t P R such that sg � th so
that Rg X Rh �� 0. This complication does not appear over a ground field R � k or if the
respective submodules are free over Z, as the equation then implies that g � h.

CQ
g,h is never empty. This is clear for g � h. For g � h ∆pg � hq � g b pg � hq � pg � hq b h

and hence ∆g,hpg � hq � 0 P FQ



0 Cg,t b FQ



0 Ct,h for any t. Thus, if there is more than one

semigrouplike element, the sum C �
°

g,hC
Q
g,h is never direct, as g�h is in

�
CQ
g,g�C

Q
h,h

�
XCQ

g,h.

In the case of a field R � k, g � h generates the intersection and in fact over a field one can
make the sum direct by reducing Cg,h by kpg � hq following the line of arguments presented
in [53]. Note that the corresponding splittings are not unique.

Lemma 3.13. The R-modules FQ


r C :�

°
g,h FrC

Q
g,h for r ¥ 0, form a QT-filtration, which is

a QT-sequence if C is sg-flavored.

Proof. By definition the elements in FQ



0 C are multiples of semigrouplike elements and hence
F0C is a subcoalgebra. Condition (2) for a QT-filtration is satisfied by construction. In the
sg-flavored case, the filtration is exhaustive by definition. ■

Theorem 3.14. For an sg-flavored coalgebra with Ext1R
�
C{FQ



0 C,A
�
� 0, an element f

of HompC,Aq, f is �-invertible if and only if the restriction f |
FQT
0 C

is �-invertible in

Hom
�
FQ



0 C,A
�
.

In particular, a split sg-flavored bialgebra is a Hopf algebra if FQ



0 C is the quotient of a group
algebra by a Hopf ideal.
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Proof. By Lemma 3.13, Theorem 3.4 applies and we need that id has an antipode. Now on any
semigrouplike there is only one possible value for the antipode: Spgq � g�1, if it exists. Thus,
S being defined on g is equivalent to g being invertible.

If g is grouplike, so is g�1, so that g�1 P FQ



0 C. This follows from applying the counit

constraints to 1 b 1 � ∆p1q � ∆
�
gg�1

�
�

°
g
�
g�1

�p1q
b g

�
g�1

�p2q
. Thus for the second

statement, the antipode is fixed on the generators and descends precisely if the quotient is by
a Hopf ideal. ■

The following proposition explains the usual constructions of antipodes which pass through
a connected quotient.

Proposition 3.15. Let B be a sg-flavored split bialgebra all of whose semigrouplikes are group-
like, then the ideal I spanned by g � h for g, h P gplpCq is a coideal and Bred � B{I is a Hopf
algebra.

Proof. As before ϵpg� hq � 1� 1 � 0 and ∆pg� hq � gb pg� hq � pg� hq b h. This filtration
is exhaustive, as it is induced by the quotient FQ



r pC{Iq � FQ


r pCq{

�
I X FQ



r

�
. The bivariate

Quillen filtration on the quotient is simply the Quillen filtration. The splitting passes to the
quotient and as a Quillen connected bialgebra C{I is Hopf. ■

It is possible to truncate to only the grouplike and skew primitive elements.

Proposition 3.16. If a bialgebra B is generated by grouplike and skew primitive elements, then
it is sg-flavored.

Proof. Observe that if g, h are grouplike elements and x a skew primitive element, then gh is
grouplike and gx is a skew primitive. Therefore, we focus on the products of skew primitives
xn � � �x1. If x is a pg, hq-skew primitive and x1 is a pg1, h1q-skew primitive, it follows that

∆pxx1q � pgg1 b xx1 � xx1 b hh1q � xg1 b hx1 � gx1 b xh1,

where xg1 is a pgg1, hg1q-skew primitive, hx1 is a phg1, hh1q-skew primitive, gx1 is a pgg1, gh1q-skew
primitive and xh1 is a pgh1, hh1q-skew primitive. Therefore,

∆pxx1q � pgg1 b xx1 � xx1 b hh1q P FQ



1 Cgg1,hg1 b F
Q



1 Chg1,hh1

� FQ



1 Cgg1,gh1 b F
Q



1 Cgh1,hh1

and xx1 P FQ



2 Cgg1,hh1 . We claim any word of skew primitive elements xn � � �x1 belongs to
a component. We proceed by induction with the above observation providing the base case.
Suppose x1 � � �xn�1 belongs to some component for every possible product of skew primitive
elements. Applying Lemma 3.17 to xnpxn�1 � � �x1q finishes that proof. ■

Lemma 3.17. Let B be a bialgebra and g, h, p, q be grouplikes and x be pp, qq-skew primitive,
then pCQ

g,h � CQ
pg,ph and xCQ

g,h � CQ
pg,qh.

Proof. In fact, pFnB
Q
g,h � FnB

Q
pg,ph and xFnB

Q
g,h � Fn�1C

Q
pg,qh. We prove these relations

by induction. For the base case, we use the fact that the multiplication of two grouplike ele-
ments is grouplike and the multiplication of a grouplike element and a skew primitive ele-
ment is skew primitive. In particular, we have gx is a pgp, gqq-skew primitive element. Now
we assume pFn�1B

Q
g,h � Fn�1B

Q
pg,ph Observe for z P FnB

Q
g,h and ∆g,hpzq �

°
zp1q b zp2q P°

tPsgplpCq Fn�1B
Q
g,t b Fn�1B

Q
t,h. By algebraic manipulations, it follows ∆pg,phppzq �

°
pzp1q b

pzp2q, where ∆pg,phppzq P
°

tPsgplpCq pFn�1B
Q
g,tbpFn�1B

Q
t,h. By induction hypothesis: ∆pg,phppzq
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P
°

tPsgplpCq Fn�1B
Q
pg,pt b Fn�1B

Q
pt,ph. Therefore, pz P FnB

Q
pg,ph and pFnB

Q
g,h � FnB

Q
pg,ph. Now,

we assume xFn�1B
Q
g,h � FnC

Q
pg,qh. Observe

∆pg,qhpxzq � xg b qz �
¸
pzp1q b xzp2q �

¸
xzp1q b qzp2q � pz b xh,

so

∆pg,qhpxzq P F1B
Q
pg,qg b qFnB

Q
g,h �

¸
tPsgplpCq

pFn�1B
Q
g,t b xFn�1B

Q
t,h

�
¸

tPsgplpCq

xFn�1B
Q
g,t b qFn�1B

Q
t,h � pFnB

Q
g,h b F1B

Q
ph,qh.

Using the previous result for grouplike elements and that M �M 1 and N � N 1 as submodules,
then M bN �M 1 bN 1.

∆pg,qhpxzq P FnB
Q
pg,qg b FnB

Q
qg,qh �

¸
tPsgplpCq

FnB
Q
pg,pt b FnB

Q
xt,xh

�
¸

tPsgplpCq

FnB
Q
xg,xt b FnB

Q
qt,qh � FnB

Q
pg,ph b FnB

Q
ph,qh.

Hence, xz P Fn�1B
Q
pg,qh. ■

Proposition 3.18. Let B be a split sg-flavored bialgebra all of whose semigrouplikes are grouplike
and let π : B Ñ Bred be the projection. The Brown map defined as

∆B : B Ñ B bR B
red, ∆Bpxq �

¸
xp1q b π

�
xp2q

�

is a Hopf coaction.

Proof. The result of both iterations is
°
xp1q b π

�
xp2q

�
b π

�
xp3q

�
. ■

3.3 Pathlike coalgebras

In many applications, we need a notion which is stronger than being sg-flavored, yet is weaker
than being QT-connected.

Definition 3.19. A sg-flavored coalgebra is said to be pathlike if

1. sgplpCq � gplpCq.

2. FQ



0 C � Rpgplq �
À

gPgplpCqRg as a submodule.

We say a pathlike coalgebra is split, if F0C is a direct summand, i.e., the sequence of R modules
0Ñ F0C Ñ C Ñ C{F0C Ñ 0 is split.

A bi- or Hopf-algebra is pathlike or split pathlike if the underlying coalgebra is.

At the moment, we will disregard semigrouplike elements that are not grouplike. Handling
such elements is more tricky and they only appear in torsion, but they might be of interest in
the situation with modified counits, [25, Section 2.2] and for applications like [39].

Example 3.20. As expected by the name, the path coalgebra of a quiver Q is pathlike. Indeed,
sgpl � gpl equals the set of vertices V pQq. The base is given by the sum of the RvXRw � δv,wRv,

thus FQ

C �
À

vPV Rv. Note that C1C
Q
g,h � Re⃗�Rpg�hq, if there is a directed edge e⃗ from g

to h. It is split and FQ



0 C is free.
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The assumptions allow us to simplify and strengthen Theorem 3.14:

Theorem 3.21. Let C be pathlike coalgebra and A algebra with Ext
�
C{FQ



0 C,A
�
� 0. An

element f P HompC,Aq has an �-inverse in the convolution algebra HompC,Aq if and only if for
every grouplike element g, fpgq has an inverse as ring element in A.

In particular, in this situation, a character is �-invertible if and only if it is grouplike inver-
tible.

Furthermore, a pathlike bialgebra B is a Hopf algebra if and only if the set of grouplike
elements form a group.

Proof. By Theorem 3.14, f having a �-inverse is equivalent to the restriction of f onÀ
gPgplpCqRg considered as an element in Hom

�À
gPgplpCqRg,A

�
having a convolution inverse.

Say that for each g P gplpCq, fpgq P A has an inverse then setting hpgq � fpgq�1 defines a con-
volution inverse on FQ



0 C, as pf � hqpgq � fpgqhpgq � 1A � ηApϵCpgqq –symmetrically for h � g.
On the other hand, if f has a convolution inverse f��1, then the extension of hpgq � fpgq�1 as
above also yields a convolution inverse and these must agree.

Using Corollary 3.5, and the theorem above, having an antipode on B is equivalent to hav-
ing an antipode on FQ

0 C �
À

gPgplRg. The only possible antipode on grouplike elements is

Spgq � g�1 if the inverses exist. Hence the existence is equivalent to the existence of inverses. ■

The following proposition will cover the targeted examples.

Proposition 3.22. A color connected colored coalgebra C is a pathlike coalgebra. In particular,
a ∆-flat color conilpotent colored coalgebra is a pathlike coalgebra.

Proof. Let C be colored by X � sgplpCq. In view of Proposition 3.6, we need to check if
the sg-flavored coalgebra is pathlike. Being color coaugmented means that all semigrouplike
elements are grouplike elements, since p1� ϵpgqqg � 0, and the submodule Rg is free if and only
if ϵpgq � 1. By definition FQ



0 pCq � CrgplpCqs �
À

gPgplpCqRg. ■

Proposition 3.23. The coopposite of an sg-flavored, respectively pathlike, coalgebra is also sg-
flavored, respectively pathlike.

Proof. First, sgplpCcopq � sgplpCq. Now, the definition of the filtration is symmetric and thus
it is also exhaustive for Cop. The further conditions for pathlike then only concern the R-module
structure, which remains unchanged. ■

Remark 3.24. This means that there is a Drinfel’d double for sg-flavored or pathlike Hopf
algebras, see, e.g., [32, Section IX.4].

Corollary 3.25. The antipode of a split sg-flavored Hopf algebra H is bijective.

Proof. Using Proposition 3.23 and Theorem 3.14, it follows that Hcop is also a Hopf algebra.
Indeed, id|

FQ


0

is generated by sgplpCq, so that the antipode on the generators exists and is

fixed as Spgq � g�1. When restricted to FQ



0 Hcop � FQ



0 H, S provides a convolution inverse
for ∆op|

FQ


0 Hcop � ∆|

FQ


0 H

and hence extends to Hcop. Let T be the antipode for Hcop and S

the antipode for H.
Then for h P H, we have hp2qT php1qq � ϵphq1H � T php2qqhp1q (notice the difference from the

normal axiom of an antipode). Applying S and using the fact S is an algebra antihomomorphism,
it follows that pS �T qphp1qqSphp2qq � ϵphq1H � Sphp1qqpS �T qphp2qq. We see pS �T q is both a left
and a right convolution inverse to S. Thus, S �T � IdH since the convolution inverse is unique.
Replacing h by Sphq in hp2qT php1qq � ϵphq1H � T php2qqhp1q, it follows that Sphp1qqpT �Sqphp2qq �
ϵphq1H � pT � Sqphp1qqSphp2qq Thus, T � S � IdH , and we conclude that S is a bijection. ■
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A subclass of examples related to the topology of loop spaces [51] is of the following special
diagonal form.

Definition 3.26. A coaugmented coalgebra C over R which has a decomposition into Quillen
connected subcoalgebras, C �

À
gPgplpCqCg with Cg � Rg ` Cg, where Rg is free is called

looplike. It is a component coalgebra in case it is graded and the degree 0 part is CrXs.

The name looplike stems from the fact a path coalgebra for a category that is totally discon-
nected has such a form. Disconnected means that for any two objects X � Y , HompX,Y q � ∅
and hence all paths of composable morphisms are loops, viz. they have the same source and
target. In the particular case of a quiver, the vertex set V is the set of grouplike elements.
In the arrow set of Q there is no arrow between any distinct vertices, i.e., Qpx, yq � ∅ if
x � y P V . Note that counterintuitively, even for a looplike coalgebra, FQT

g,h is non-zero as g� h
is a pg, hq-skew primitive, as mentioned above, see Remark 3.12.

Remark 3.27. This notion of component coalgebra is motivated by H�pX,Rq and H�pΩX,Rq,
where X is a based space. If both modules are R-flat, the first homology ring is a component
coalgebra and the second ring is a component Hopf algebra. Moreover, the condition for the
second ring to be connected in the coalgebra sense is equivalent to X being connected in the
topology sense; cf. [51].

Proposition 3.28. A looplike coalgebra is a pathlike coalgebra.

Proof. By definition ∆gpcq � ∆pcq�gbc�cbg which when restricted to Cg coincides with the
comultiplication on the coaugmented algebra Cg � Rg`Cg. The latter has ϵgpgq � 1, ηgp1q � g
and ηgϵg � ϕg as the projection to the first factor. Now as ∆pCgq � Cg b Cg by assumption
and hence ∆g : Cg Ñ Cg b Cg,g and Cg � FQCg, since Cg is Quillen connected. The counit is
compatible by Lemma 3.9; viz. ϵ|Cg�FQCg,g

� ϵg. Thus, we can identify Cg as lying inside the

diagonal part FQTCg,g of the bivariate Quillen filtration. Hence the bivariate Quillen filtration
is exhaustive as the Cg already exhaust C. The degree 0 part is CrXs by definition and there
are no semigrouplike elements as ϵpgq � 0 for semigrouplikes. ■

4 Renormalization, quotients and localization

The obstruction to having a Hopf algebra structure on a pathlike bialgebra is the invertibility of
the grouplike elements. There are basically two approaches to remedy this perceived deficiency.
One is adding formal inverses, which is possible by universal constructions. But, as at the
end of the day, for renormalization à la Connes–Kreimer, one actually only needs convolution
inverses for characters, there is another option. This is to restrict the target algebras or to
place restrictions on the characters – for instance that the target algebra is commutative, or
that the characters restricted to grouplike elements have special properties. In this case there
are universal quotients that the characters factor through. The commutativity assumption is
natural. Namely, if the target algebra is not commutative, then the convolution of two characters
need not be a character. We first briefly explain the setup to give the motivation for these
constructions.

4.1 Recollections on renormalization via characters

A renormalization scheme in the Connes–Kreimer formalization of the BPHZ renormaliza-
tion [14], is defined on the convolution algebra of a bialgebra with a Rota–Baxter (RB) algebra,
see also [17, 20, 28, 50]. Readers not familiar with RB algebras may consult Appendix B.
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A Feynman rule is a character in the convolution algebra ϕ P HomR�algpB,Aq. The renormal-
ization of ϕ based on a Rota–Baxter (RB)-operator is a pair of characters ϕ� P HomR�algpB,A�q
such that ϕ � ϕ�1

� � ϕ�, see Appendix B for the definition of the subalgebras A�. The charac-
ter ϕ� is then the renormalized Feynman rule. It was shown in [14, 15] that there is a unique such
decomposition for the Connes–Kreimer Hopf algebra of graphs and a commutative RB algebra,
if ϕ is the exponential of an infinitesimal character. The solution is then given by a recursive
formula. This was generalized in [19] for B any connected bialgebra and a character that is the
exponential of an infinitesimal character. The following analysis provides the background for
a generalization of these results to the case of a bialgebra with a QT-sequence. If B is a Hopf
algebra, then the inverse is given by ϕ�1

� � ϕ� �S, see Proposition 2.6, but if A or the character
has special properties, then the full assumption of B being Hopf is not necessary.

4.2 Quotients and quantum deformations for grouplike central
and invertible characters

We have already seen that taking the somewhat drastic quotient by FQ
0 pCq makes an sg-flavored

coalgebra connected. There are, however, intermediary quotients, which make characters with
special properties invertible. These are also motivated by the natural examples [13, 14, 15, 20,
50]. We use the notation 1 � 1B.

Proposition 4.1. The ideal J � prB,Bsq spanned by the commutators is a coideal. And, if A
is commutative, then any character ϕ P HomR�algpB,Aq, factors through Bcom � B{prB,Bsq.

Proof. J is a coideal: ∆pab � baq �
°
ap1qbp1q b ap2qbp2q � bp1qap1q b bp2q b ap1q � pap1qbp1q �

bp1qap1qq b ap2qbp2q � bp1qap1qpap2qbp2q � bp2qap2qq and ϵpab � baq � 0. Since ϕ : I � kerpϕq, the
statement follows. ■

Proposition 4.2. A grouplike normalized character factors through the quotient Bred � B{IN ,
where IN is the ideal spanned by 1� g for g P gplpBq.

Proof. We need to check that IN is a coideal. Indeed, ∆p1�gq � 1b1�gbg � p1�gqbp1�gq
and ϵp1� gq � 0, since g is grouplike. Furthermore if ϕ is normalized the ϕp1� gq � 0 so that
I � kerpϕq. ■

NB: Rpg� hq � I since g� h � p1� hq � p1� gq � g� h. This is the line which keeps the sum
in a pathlike bialgebra from being direct, see Remark 3.12.

There is a further quotient that is of interest which was studied in [24]. Consider the ideal IC
generated by pag � gaq for a P B, g P gplpBq.

Proposition 4.3. IC is a coideal and the bialgebra B{IC and any grouplike central character
factors through B{IC .

Proof. The fact that IC is a coideal follows as in Proposition 4.1. For any grouplike central
character, ϕpag � gaq � 0, so kerpϕq � IC . ■

For a grouplike invertible central character, there is a universal construction which can be
viewed as a quantum deformation and gives rise to a Brown type coaction. Consider the algebra
Bq � B

�
qg, q

�1
g

�
{K : g P gplpBq, g � 1, that is the ring of Laurent polynomials with coefficients

in the possibly noncommutative B modulo the ideal K generated by qgqh � qgh, which is well
defined as the grouplikes form a monoid. The polynomial rings Bq � Brqgs{K, q P gplpBq, g � 1
is a subbialgebra. The bialgebra Bq can be viewed as a multi-parameter quantum deformation.

Note the qg lie in the center of Bq. Endow Bq with the bialgebra structure, where the qg, q
�1
g

are grouplike, then K is a coideal. Consider the ideal I of the Laurent series generated by qg�g
which descends to Bq. In the quotient Bq{I, the image of the grouplike elements lies in the
center.
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Proposition 4.4. I is a coideal for Bq and similarly for its subbialgebra Bq.
Any grouplike central character can be lifted to Bq and factors through the quotient

Bq{I � B{IC .

Any grouplike invertible central character ϕ can be lifted to a character ϕ̂ : Bq Ñ A. Fur-

thermore, ϕ̂ factors through the quotient Bq{I as ϕ̂ � ϕ̄ � π and embedding B Ñ Bq Ñ
Bq{I : ϕ̄pπpbqq � ϕpbq.

As qg Ñ 1: Bq Ñ B and Bq{I Ñ B{IN .

Proof. By definition ϵpqg� gq � 1� 1 � 0 and ∆pqg� gq � qgb qg� gb g � pqg� gqb pqg� gq,

so I is a coideal in all cases. The lift is given by ϕ̂pqgq � ϕpgq and consequentially for Bq

ϕ̂
�
q�1
g

�
� ϕpgq�1. The other statements follow from ϕpgq � ϕ̂pqgq. Note that the image of g in

Bq{I lies in the center, since qg does, which shows the isomorphism Bq{I � B{IC as exactly
these grouplike elements have been made central.

The statement about the limit of Bq is clear for Bq{I; notice that as qg Ñ 1 all the elements
g � 1 which is the quotient by IN .

The last statement is straightforward. ■

Proposition 4.5. Let B be split pathlike then Bq{I � Bred bR R
�
qg, q

�1
g

�
{K and similarly for

the polynomial subrings.

Proof. The correspondence is given by collecting the factors of qg, respectively q
�1
g on the right,

as they are central. ■

This quantum deformation also lets us make the coaction of Brown of Proposition 3.18 more
commutative and gives a nice interpretation in terms of polynomials and Laurent series.

Definition 4.6. The central quotient Hopf coaction for a split sg-flavored bialgebra is given by

∆B : Bq{I Ñ Bq{I bBred, ∆Bpxq �
¸
xp1q b πpxp2qq,

where now both factors are Hopf algebras and π simply sets the factors qg � 1 on the left to 1.

Remark 4.7. For the polynomial version in the operad case, the isomorphism in the proposition
was realized as the quotient by the ideal p| � qq in [24, Section 2.6], see also Section 5.4.

4.3 Adding formal inverses

In general, one can formally invert the grouplike elements, this is a universal construction called
the group completion if one is speaking of a monoid or the localization if one is inverting
a multiplicative subset. In the current R-linear context this becomes a subalgebra.

Given a subalgebra S of an R algebra A, the localization at S, S�1A is an object, together
with a morphism j : A Ñ S�1A with the universal property that if f : A Ñ A1 is an algebra
homomorphism such that for all s P S, fpsq is invertible, then f factors as g � j, with g : S�1A
Ñ A1. There is an abstract construction in the general case, but it is not effective if there are
no other conditions. It can be realized as a quotient of the free algebra of R-linear alternating
words in A and S. Assuming that A unital, set

TRpAb Sopq � R`Ab Sop `Ab Sop bAb Sop ` � � � ,

which is an algebra by concatenation. The unit is 1R, where we identify R bR M � M for
any R-module M . Then AS�1 � TRpA b Sopq{I, where I is the ideal spanned by be following
relations:

1q 1b 1̄ � 1R, 1̄b 1 � 1R which makes 1b 1̄ a unit,

2q sb s̄ � 1b 1̄, which inverts the elements of s,
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3q ab 1̄b a1 b s̄ � aa1 b s̄,

4q ab s̄b 1b s̄1 � ab s̄s̄1,

where we write s̄ to indicate the factors of Sop. In this notation s1s2 � s̄2s̄1 by the definition of
the opposite multiplication. We let ϵpab s̄q :� ϵpaqϵpsq�1.

If A is also a bialgebra, S is also semigrouplike, and ϵpSq � R� then we define the comulti-
plication:

∆pab s̄q �
¸�

ap1q b s̄
�
b
�
ap2q b s̄

�
.

This fixes the comultiplication on the free algebra via the bialgebra equation. Defining the
counit as ϵpab s̄q � ϵpaqϵpsq�1, defines the counit on the free algebra.

Proposition 4.8. I is a coideal and hence AS�1 is a bialgebra. Similarly one can define a left
localization S�1A by using TRpS

op bAq.

Proof. This is a straightforward calculation:

1. ∆p1b 1̄� 1Rq � 1b 1̄b 1b 1̄� 1R b 1R � p1b 1̄� 1Rq b p1b 1̄� 1Rq P I bA.

2. ∆psb s̄� 1Rq � psb s̄q b psb s̄q � 1R � psb s̄� 1Rq b psb s̄� 1Rq P Ab I.

3. ∆pab 1̄b a1b s̄� aa1b s̄q �
°
ap1qb 1̄b

°
a1p1qb s̄b ap2qb 1̄b a1p2qb s̄�

°
ap1qa

1
p1qb s̄b

ap2qa
1
p2q b s̄ � 0 mod pI bA�Ab Iq.

4. ∆pab s̄b 1b s̄1� ab s̄s̄1q �
°
ap1qb s̄b 1b s̄1b ap2qb s̄b 1b s̄1� ap1qb s̄s̄

1b a2b s̄s̄
1 � 0

mod pI bA�Ab Iq.

For the counit, it is a straightforward check that ϵpIq � 0. ■

4.4 Calculus of fractions

There is a more concise version of this construction if the Ore condition and cancellability are
met. This gives a calculus of fraction, similar to the calculus of roofs [26]. The right Ore
condition states that

@ a P A, s P S, D a1 P A, s1 P S : as � s1a1.

One also needs cancellability, or S-regularity. That is if as � 0 or sa � 0 then a � 0. This
means that sa � sb implies a � b as does as � bs.

Proposition 4.9. If these conditions are met any element of AS�1 can be written as as�1.
Furthermore, there is an injective algebra homomorphisms j : A Ñ AS�1, which is universal
in the sense that any morphisms f : A Ñ B such that fpsq is invertible has a unique lift to
g : AS�1 Ñ B such that f � gj. Finally, the left and right fractions become isomorphic.

Proof. See [2]. ■

Remark 4.10. For a free non-commutative algebra Rtx, yu and S � xyy the condition is not
met. For the Weyl algebra Rtx, yu{pxy � yx � 1q the condition is met [2].

In similar spirit, if the product is the tensor product in a monoidal category, the Ore condition
is usually not met, as X b Y is rarely Y bX. In the case of interest, where one needs to invert
the identities idX , one would need a Y and a morphism g such that for a given morphism
f b idX � idY b g. In the commutative case this always holds. In particular, it does hold in the
symmetric monoidal setting when using the coinvariants Biso, see Section 5.2.

A further route of exploration is to use higher homotopy commutativity, i.e., an E1 for the
Ore condition.
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For a grouplike central character of a pathlike coalgebra, one does not need full commutativity
of B for the Ore condition, but only that of grouplikes. In this case, one can invert the ideal
in B{IC , where the Ore condition holds. Equivalently one can work with Bq and the quotient
by I.

Lemma 4.11. In the special case of Bq the multiplicative set S spanned by the qg is Ore, since
these elements are central, and S is cancellable. The localization BqS

�1 is the Laurent-series
ring Bq.

Proof. The cancellability is clear, since a polynomial vanishes if and only if all of its coefficients
do. The isomorphisms is given by q̄g Ñ q�1

g which exists by the universal property. ■

Remark 4.12 (Abelian case, Grothendieck construction). In the fully commutative case, this
concretely boils down to the Grothendieck construction and localization. Given a monoid pM, �q,
the Grothendieck construction gives the group completion: KpMq �M �M{� where pm,nq �
pm1, n1q if m � n1 � m1 � n. There is an injection M Ñ KpMq given by m ÞÑ pm, 1q, with inverses
given by p0,mq. More generally, if R is a commutative ring and S a multiplicatively closed
subset, the localization S�1 is given by S�1R � R�S{� where pr, sq � pr1, s1q if there is a t P S
such that tprs1 � r1sq � 0. Similar constructions can be found in [58].

Remark 4.13 (braided/crossed case). The Ore condition is clearly met when S is central as
exploited above. It is more lax, though. It for instance allows for a crossed product types and
essentially formalizes bicrossed products. These appear naturally for isomorphisms [21], [41,
Section 6.2]. For the example of the algebra of morphisms of a category, the Ore condition is
guaranteed if there is a commutative diagram for every pair pa, sq:

X
s //

a1
��

Y

a
��

X 1

s1
// Y 1.

4.5 Application to pathlike bialgebras

The following results follow in a straightforward fashion from the previous ones.

Theorem 4.14. Let B be a pathlike bialgebra:

1. Every grouplike invertible character has a �-inverse and vice-versa.

2. The quotient bialgebra B{IN of Proposition 4.2 is connected and hence Hopf. In par-
ticular, every grouplike normalized character ϕ P HompB,Aq when factored through to
ϕ̄ P HompB{IN , Aq has an inverse computed by ϕ̄�1 � ϕ̄ � S.

3. The bialgebra Bq{I is Hopf and the � inverse of a grouplike central character ϕPHompB,Aq

when lifted and factored through ϕ̂ P HompBq{I, Aq has an inverse computed by ϕ̂
�1

� ϕ̂�S.

4. Let S � gplpBq, then the left localization BS�1 is a Hopf algebra. Moreover if S is satisfies
the Ore condition and is cancelable, there is an injection B Ñ BS�1 and Bq{I � BS�1{J ,
where J is the ideal generated by bg � gb with b P B, g P gplpBq.

Proof. The first part is in Theorem 3.21. The second part is an application of the same theo-
rem. The third part then follows from Lemma 4.11 and Proposition 3.16. The last part is
straightforward. ■
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5 Colored bialgebras from Feynman categories

Deconcatenation is a way to turn a category or colored monoid into a coalgebra, if certain
conditions are met. One way to obtain a bialgebra from a coalgebra C is to consider the free
algebra which is the tensor algebra TC and extend ∆ using the bialgebra equation. More
generally, if the colored monoid has a product structure, that is actually a monoidal structure
for the category, one can ask if the bialgebra equation holds for the product µ � b and the
deconcatenation coproduct ∆. The answer is that it does for Feynman categories, see [41], that
are suitably decomposition finite, so that ∆ is well defined. The axioms for a Feynman category
roughly say that the objects are a free b-monoid on basic objects and that the morphisms are
a free monoid on the so-called basic morphisms, which have b indecomposables as targets. There
are two cases: one with symmetries, i.e., a symmetric monoidal structure, and one without. The
latter is simpler as the former necessitates to pass to equivalence classes, which also makes
the product commutative. Concretely, we will consider the bialgebras BpFq for non-symmetric
and BisopFq for symmetric Feynman categories. With some conditions, both cases are color
coaugmented and hence pathlike by Proposition 3.22 and hence Theorem 4.14 applies.

The grouplike elements correspond to the objects and are represented by their identities
idX in the absence of isomorphisms and by their classes for Biso. Note these are usually not
b-invertible. For this they would have to lie in PicpFq, which is not usually the case. It is,
however, a natural assumption, that their images under characters are invertible as this happens
in concrete applications.

5.1 Feynman categories and gradings

Notation 5.1. IsopFq is the subcategory of all objects of F with their isomorphisms. For
a category Vb will denote the free (symmetric) monoidal category. This is essentially the
category of words (with or without symmetries) in V, cf. [35, Section 2.4] for an overview and
[31, 49] for details. It comes equipped with a functor j : V Ñ Cb and the universal property that
any functor F : V Ñ C to a (symmetric) monoidal category lifts to Fb : Vb Ñ C, viz. F � Fbj.

The comma category pF Ó Gq for two functors F : D Ñ C and G : E Ñ C has as objects
pX,Y, ϕq with X P D, Y P C, and ϕ P HomCpF pXq Ñ GpY qq. The morphisms are given by
commutative diagrams. That is a morphism from pX,Y, ϕq Ñ pX 1, Y, ϕ1q is given by a pair
f : X Ñ X 1, g : Y Ñ Y 1, such that Gpgqϕ � ϕ1F pfq. If F,G are clear, we will write pD Ó Eq
for the comma category. The category IsoparpF qq, viz. the underlying groupoid of the arrow
category, has the morphisms of F as objects while the morphisms of the category are given by
pairs of isomorphisms pσ, σ1q which map f ÞÑ σ�1fσ1 when the compositions are defined.

A slice category is the comma category pC Ó Xq, where pX, idxq is a viewed as a subcategory
with one object.

Definition 5.2. A Feynman category is a triple pV,F , ıq, where V is groupoid, F is a (symmet-
ric) monoidal category and ı : V Ñ F is a functor, such that

1. The free (symmetric) monoidal category Vb is equivalent to IsopFq via ıb.
2. The groupoid of morphisms IsoparpFqq is equivalent to the free (symmetric) monoidal cate-

gory on the morphisms from objects from Vb to V. In formulas IsoparpFqq � IsopVb Ó Vqb.
3. All slice categories F are essentially small.

A Feynman category is strict if its monoidal structure is strict.

The objects of V, sometimes called vertices, are the basic objects in the following sense. The
first condition says that every object of F decomposes as X � ıp�1q b � � � b ıp�nq essentially
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uniquely, where this means up to isomorphisms on the indecomposables and in the symmetric
case up to permutations.

Dropping the ı, the second condition means that any morphism ϕ : Y Ñ X of F decomposes
into indecomposables as well ϕ � ϕ1 b � � � b ϕn, where each of the ϕi : Yi Ñ �i is a basic
morphism, with X � �1 b � � � b �n and Y � Y1 b � � � b Yn. Again this is essentially unique, that
is up to isomorphisms on the ϕi and permutations in the symmetric case. The third condition
is technical and used for the existence of certain colimits.

In general there is a natural grading given by |X| � word length. That is if X � �1b� � �b�n
then |X| � n. This is well defined due to axiom (i). This give a grading on the morphisms as
|ϕ| � |X| � |Y |. All the algebras/coalgebra structures are graded by | � |.

Definition 5.3. A degree function on a Feynman category F is a map deg : MorpFq Ñ N0, such
that: degpϕ � ψq � degpϕq � degpψq and degpϕb ψq � degpϕq � degpψq, and every morphism is
generated under composition and monoidal product by those of degree 0 and 1.

For a weak degree function, the first condition is relaxed to degpϕ � ψq ¥ degpϕq � degpψq.
In addition, a (weak) degree function is called proper if degpϕq � 0 if and only if ϕ is an
isomorphism.

In practice, Feynman categories come with a presentation. This is a set of generators of the
basic morphisms together with relations among them, cf. [41, Section 5]. The generators are
a set P pFq � pF Ó Vq of non-invertible elements such that any morphism in pF Ó Vq up to
isomorphism can be written as ϕ̂nϕ̂n�1 � � � ϕ̂2ϕ1, where ϕi P P pFq and we use the short hand
notation ϕ̂ � id�1b� � �b id�k�1

bϕb id�k�1
b� � �b id�n with ϕ in the k-th position and the factors

of id�i are identities of some of the basic objects. Note that generators ϕi : Xi Ñ � can have
sources with |Xi| ¥ 0. Commonly the sources can be restricted to |Xi| P t0, 1, 2u or even t1, 2u.
The relations are given by commutative diagrams in the ϕ̂k. We call F primitively generated, if
it has a set of generators which are essentially irreducible under composition.

We call a presentation effective if for each ϕ P pV Ó Fq there is a maximal number |ϕ|max of
generators in any decomposition as above. Defining |ϕ0 b ϕ1|max :� |ϕ1|max � |ϕ2|max extends
|�|max to all morphisms. The following is straightforward:

Lemma 5.4. For a Feynman category with an effective presentation |�|max is a weak degree
function. A presentation in which the relations are homogenous in the number of generators is
effective and |�|max is a degree function.

Remark 5.5. These considerations also work in an enriched setting, that is if the morphisms
themselves are objects of a symmetric monoidal category, e.g., R-modules. We will not consider
the details of this situation more deeply here and refer to [36].

5.2 Colored bialgebras from Feynman categories

We recall [25, Theorem 1.20]:

Theorem 5.6. If a locally finite strict monoidal category F is part of a Feynman non-symmetric
category F, then the algebra structure of b and coalgebra structures of deconcatenation give
a bialgebra structure on BpFq.

This bialgebra is neither commutative nor cocommutative in general. If Fop satisfies the
condition of the Theorem, we define BpFq :� BpFopqcop.

Theorem 5.7. With the assumptions as in the theorem above, B is colored by its objects and
color coaugmented. If F additionally has a proper degree function, then it graded. If furthermore
there are no isomorphisms except for the identities, it is color nilpotent and color connected.
It is then pathlike and Theorem 4.14 applies.
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Proof. That the coalgebra is colored and color coaugmented follows from Lemma 2.24. The
grading is clear. The assertions in the case that there are no isomorphisms except the identities
follow from Propositions 2.24 and 3.22. ■

We now treat the case with isomorphisms. This will yield commutative but generally non-
cocommutative bialgebras. In order to define the coproduct, some modifications are needed to
avoid an over-counting of decompositions due to the isomorphisms given by the permutations.
Otherwise, the coproduct will not be coassociative, see [41, Example 2.11].

Definition 5.8 ([25]). A weak decomposition of a morphism ϕ is a pair of morphisms pϕ0, ϕ1q
for which there exist isomorphisms σ, σ1, σ2 such that ϕ � σ � ϕ1 � σ

1 � ϕ0 � σ
2. We introduce

an equivalence relation which says that pϕ0, ϕ1q � pψ0, ψ1q if they are weak decompositions of
the same morphism. An equivalence class of weak decompositions will be called a decomposi-
tion channel which is denoted by rpϕ0, ϕ1qs. F is called essentially decomposition finite, if the
following sum is finite:

∆isoprϕsq �
¸

rpϕ0,ϕ1qs

rϕ0s b rϕ1s, (5.1)

where the sum is over a complete system of representatives for the decomposition channels for
a fixed representative ϕ.

Note that parallel to (2.1) this is the monoidal version of the coproduct. The categorical
version is given by ∆op.

If the category F is symmetric monoidal, there are extra symmetries permuting objects and
morphisms, and the behavior of these automorphism groups is not bialgebraic. Therefore one
has to take coinvariants under the action of the automorphism groups of the objects acting on the
morphisms. Because the commutators and associators are isomorphisms, the coinvariants are
associative, commutative monoids. To take the coinvariants, consider the R-module RrMorpFqs
with f � g if there are isomorphisms σ, σ1, s.t. f � σ1fσ�1. Note the product descends since
if ϕ � ϕ1 and ψ � ψ1 then ϕ b ψ � ϕ1 b ψ1. We denote the quotient by RrMorpFqsiso �
RrMorpFqs{�.

The following is contained in [41, Theorem 2.1.5]:

Theorem 5.9. If a channel decomposition finite monoidal category F is part of a Feynman
category F, then the algebra structure defined by b together with the coalgebra structure given
by (5.1) define a bialgebra structure on RrMorpFqsiso. The counit is given by ϵpridXsq � 1 and
ϵprϕsq � 0 if rϕs � ridspϕqs.

If Fop satisfies the conditions of the Theorem, we define BisopFq :� BisopFopqcop.
Note that without changing the coalgebra, we can assume that F is strict and skeletal.

Lemma 5.10. In the situation of the theorem above, the semigrouplike elements are the classes
of the identities ridXs and they are grouplike.

Proof. Consider the coproduct of any ϕ for which rϕs � ridspϕqs � ridtpϕqs has at least two
distinct terms

∆isoprϕsq � ridspϕqs b rϕs � rϕs b ridtpϕqs � � � � .

These are the only two terms precisely if rϕs is skew-primitive. No such rϕs is semigrouplike, but,
if rϕs � ridXs, then these two decomposition channels coincide and ∆pridXsq � ridXs b ridXs
as there are no left or right invertible elements by Lemma 2.24. Since ϵprϕsq � 1, these are
grouplike. ■
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Using ∆iso thus turns essentially indecomposable morphisms into skew primitives.

Remark 5.11. For a proper (weak) degree function the degree 0 part is free on the grouplikes,
which are the classes ridxs. The degree 1 part is generated by the isomorphisms classes of essen-
tially indecomposable elements, whose classes are skew-primitive. If F is primitively generated,
then the classes of the generators are in degree 1.

Theorem 5.12. If F satisfies the assumptions of Theorem 5.9, the bialgebra BisopFq is colored,
color coaugmented, color conilpotent and color connected and hence pathlike and Theorem 4.14
applies.

If F additionally has a proper degree function, then it is graded, color nilpotent and color
connected. Thus, it is pathlike and Theorem 4.14 applies.

Proof. The colors are the isomorphism classes of objects which are grouplikes by Lemma 5.10.
It is freely generated as a module by the isomorphism classes of morphisms, so the grouplike
elements split off as a direct summand CrRs �

À
xPRridxs, where R is a set of isomorphism

classes of objects which can be identified with the set of objects of the skeleton of F .
The left and right coactions are given by λprϕsq � ridspϕqsbrϕs and ρprϕsq � rϕsbridtpϕqs. This

is well defined as can easily be checked. By definition of a composition channel spϕ1q � tpϕ0q,
so that the decomposition is colored. The coaugmentation comes from the splitting.

Since isomorphisms have degree 0, a proper degree function descends to the isomorphism
classes: degprϕsq :� degpϕq. For the same reason the coproduct (5.1) is graded. As all the
isomorphisms are in the classes of the identities, Biso is color reduced and hence conilpotent by
Corollary 2.21. As Biso is a free R-module, Lemma 2.23 applies and it is connected. Proposi-
tion 3.22 guarantees that Biso is pathlike in this case. ■

Remark 5.13. In these cases the localization and the Laurent series will give Hopf algebras.
The q deformations will have parameters given by the isomorphism classes of basic objects.
The ridxs are also the classes that will be formally inverted. This can be thought of as extend-
ing F to a localized category S�1F such that the x live in the Picard subcategory Pic

�
S�1F

�
.

Remark 5.14. The characters need not be graded, but what is common is that they map the
additive degree to a multiplicative one as in n ÞÑ qn, where q can be of degree 0, which can also
be achieved by shifting degrees or inverting elements in the target. One typical such q would
be 1

2πi , see [46], or factors of ζmp2q in the framework of Brown, see [7].

5.3 Details for the main examples

We will give the details for three types of examples, which cover the main applications.

5.3.1 Set based/simplicial examples

The category F inSet is a Feynman category. There is only one basic object up to isomorphism,
which is a one element set. The basic degree function |X| coincides with the cardinality. This
is not a proper degree function, but it is proper when restricted to the Feynman subcategory
of finite sets and surjections FS. Similarly, �|ϕ| is a proper degree function for the Feynman
subcategory of finite sets and injections FI, cf. [25]. The category F inSet¡ of ordered finite
sets with order preserving maps is a non-symmetric Feynman category, cf. [35]. As before, |ϕ| is
a degree function which is proper when restricted to the non-symmetric Feynman subcategory OS
of ordered finite sets and surjections, and �|ϕ| is a degree function for OI, that is ordered sets
and injections. The skeleton of F inSet¡ is the augmented simplicial category ∆� and the
subcategories of surjections and injections restrict as ∆surj

� and ∆inj
� . For a skeletal V there

is only one basic object r0s � t0u. Its powers can be identifies with r0s0 � ∅ �: r�1s and
r0sbn � rn� 1s � t0, . . . , n� 1u – using the traditional simplicial notation.
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Proposition 5.15. The bialgebras B
�
∆surj
�

�
, B

�
∆inj
�

�
, BisopFIq, BisopFSq as well as their coop-

posites are all colored connected pathlike bialgebras. The colors can be identified with N0. The
only grouplike elements are the idrns which are monoidally generated by id1 and idr0s, respectively
their isomorphism classes.

In the case of surjection the σni : rn � 1s Ñ rns are prn � 1s, rnsq skew primitive µ � σ11:
r1s Ñ r0s, respectively its class, is a skew primitive generator. In the case of injection the
δni : rn � 1s Ñ rns are prn � 1s, rnsq-skew primitive and δ01 : ∅ Ñ r0s, respectively its class, is
a skew-primitive generator.

Any character χ for which χidr0s is invertible is invertible. Normalized characters pass through

the quotient Bred. A character is normalized if and only if χidr0s � 1.

In the localized version Spµq � �id�1
r1sµid

�1
r0s , as id�1

r1s � id�2
r0s and in Laurent series Spµq �

�q�3µ.

Proof. The first set of statements follows from Theorem 5.7 and Theorem 5.12 together with
Proposition 3.23. The claims about generation are straightforward. As idrns � idbn�1

r0s , for any

character χpidrnsq � χpidr0sq
n�1 which proves the statements about the characters. The last

statement follows from the definitions. ■

Remark 5.16. By Proposition 3.23 the coopposite bialgebras are pathlike, and Joyal duality,
cf. [30], takes on the following form: B

�
∆surj
�

�cop
� B

��
∆surj
�

�op�
� B

�
∆inj
�,�

�
, where ∆inj

�.� � ∆�,�

is the subcategory of the double base point preserving injections. It is this bialgebra that is used
by Goncharov and Brown, cf. [25, Section 3.6.5] for details. The condition that χidr0s � 1
which under Joyal duality reads χpidr1sq � 1 is implemented as Ip0,∅, 1q � 1 in [27], cf. [24,
equation (1.5)]. Any such character is group normalized.

Goncharov’s symbols Îpa0 : a1, . . . , an : an�1q can be understood as formal characters for
a decoration of ∆inj

�,�, see, e.g., [24, Section 1.1.5]. The equation that Îpa : ∅ : bq � 0 then means
that these characters factor through the connected quotient given by the coideal id1 � idr1s
in ∆�.� Not insisting on this relation, one can actually assign any invertible value to Îpa : ∅ : bq,
which is then captured by the Laurent series quotient and Brown’s coaction. In fact, the symbols
of Goncharov are characters with values in a commutative ring, so that one can reduce to Bcom.

Contrarily to this, the coproduct of Baues, which is also a decoration, is not commutative.
The normalization condition in this case is given by insisting that the space be simply connected
implemented by collapsing the 1-skeleton, see the discussion in [24].

Remark 5.17. Localizing idr0s, we obtain a Hopf algebra with an invertible antipode. This
means that one can construct the Drinfel’d double, which is then a sort of bicrossed product of
surjections and double base point preserving injections. This should correspond to the Reedy
category on structure on the simplicial category. The precise analysis will appear in future work.

5.4 (Co)operadic examples

The second type of Feynman category is an enrichment FSO of FS or ∆surj
�O of ∆surj

� as defined
in [36, 41]. Note that we can enrich in any monidal category E . For the current purposes this
category should be Set or R-mod, where R � Homp1E ,1Eq is commutative.

Switching to the notation n for the set t1, . . . , nu and setting HomFSOpn, 1q � Opnq the second
axiom of a Feynman category yields that HomFSOpn,mq � Oncpn,mq, where up to isomorphism:

Oncpn, kq �
à

pn1,...,nkq°k
i�1 ni�n

Opn1q b � � � bOpnkq.
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Here and in the following
À

stands for colimit and we will use b for the monoidal product in E .
If the Opnq are sets, then these are simply > and �. The basic compositions Oncpn, kqbOncpk, 1q
give maps

γk,n1,...,,nk
: Opkq bOpn1q b � � � bOpnkq Ñ O

�¸
ni � n

	
.

In the non-symmetric case, this is the data for a non-symmetric operad and in the symmetric
case, the automorphisms Sn act on the objects yielding a compatible action by pre- and post-
composition on theOncpn, kq which is compatible with maps γ and the data is that of a symmetric
operad. Vice-versa, specifying a non-symmetric or a symmetric operad fixes an enrichment under
the condition that Op1q splits as 1` Ōp1q, where 1 is the component of id1 and Ōp1q does not
contain any invertible elements, [36, Proposition 3.20]. An operad is called reduced, if Ōp1q
vanishes. The natural grading is |Oncpn, kq| � n� k.

We will assume that Op0q � ∅; if it is not, the considerations of [25, Section 2.11] apply.

Proposition 5.18. For a non-sigma operad O, with split Op1q as above, ∆surj
�O is decomposition

finite if and only if Op1q is decomposition finite. In this case, B � B
�
∆surj
�O

�
is a bialgebra. The

basic grading induces a grading for B.
The elements idn � idbn

1 are the grouplike elements and there are no other semigrouplike

elements. Bp∆surj
�Oq is a colored bialgebra, and it is color nilpotent precisely if CrOp1qs is. In this

case, it is color connected and pathlike if it is ∆-flat, e.g., if O is set valued.
A normalized character factors through Bred in which all objects are identified. The defor-

mation Bq has one deformation parameter q � qid1 and a character χ is grouplike invertible if
and only if χpid1q is.

Proof. The first assertion follows from the fact that the natural degree allows to reduce the
question of decomposition finiteness and nilpotence to Op1q, cf. [24] for more details.

The next statement follows from Theorem 5.7. The statement of being color nilpotent follows
directly from the fact that the degree function is a grading for the coalgebra structure. The final
statements are then straightforward. ■

Analogously one can prove:

Theorem 5.19. For a symmetric operad O with split Op1q as above FSO is channel decomposi-
tion finite, if and only if Op1q is. In this case, BisopFSOq is a bialgebra. The basic grading gives
a degree function. The elements ridns � rid1s

bn are the grouplike elements and there are no
other semigrouplike elements and BpFSOqq is a colored bialgebra. It is color nilpotent precisely
if its restriction to the isomorphism classes of Op1q is. In this case, it is color connected and
pathlike if is ∆-flat, which is the case if O is set valued.

A normalized character factors through Bred in which all objects are identified. The defor-
mation Bq has one deformation parameter q � qrid1s and a character χ is grouplike invertible if
and only if χprid1qs is.

Example 5.20 (CK-tree bialgebras). Concretely consider the operad of rooted trees or the non-
sigma operad of planar planted trees, where Opnq are the trees with n leaves and the composition
is given by gluing on leaves. Then the coproduct is the familiar Connes–Kreimer type coproduct
[13, 22, 34]:

∆prτ sq �
¸
τ0�τ

rτ0s b rτzτ0s, respectively ∆pτq �
¸
τ0�τ

τ0 b τzτ0, (5.2)

where τ0 is a rooted subtree – stump – including all its tails and τzτ0 removes all the vertices
and half edges of τ0, viz, the set of cut-off branches, see [24] for details. A summand is depicted
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:
X

Figure 1. A summand of the coproduct for (planar) trees with leaves and roots. In the planar case, the

r.h.s. is either in the order depicted and in the non-planar it is a symmetric product.

in Figure 1. The classes are the Sn coinvariants which can be thought of as unlabeled. In the
symmetric case the r.h.s. is symmetric, that is a commutative product.

This Feynman category is primitively generated by the τn which are the trees with n leaves
and one vertex. The relations are homogeneous amounting to associativity. The corresponding
degree function |�|max is proper and is equal to the number of vertices. Thus the bialgebras are
graded and color connected.

In this language a particular property of the CK-Hopf algebra becomes apparent. It is
a pathlike coalgebra whose grouplike elements are generated by e � id1 and | � id1 and it
has a unique id1 primitive |
 which generates a split line R |
. This yields the special properties
explored in [52] and its generalizations, [24, Example 2.50], where, via coloring, many of these
are introduced as additional direct components, so that the bialgebras are still pathlike.

In the localized Hopf algebra, Sp|
q � �id�1
1 b |
 bid�1

1 and hence in the Laurent series
Sp|
q � � |
q�2. More generally, for the skew primitive τn, Spτnq � �id�1

1 bτnbid�1
n , respectively,

Spτnq � �q�pn�1qτn. The Brown coaction is given by setting the q terms on the right in ∆ to 1.

This explains the fact that the infinitesimal structure can be given by a q-shifted comultipli-
cation and a residue, see [24, Corollary 2.2.5]. This generalizes Brown’s infinitesimal structure
to the level of operads.

5.5 Feynman categories of graphs

There is a basic Feynman category of graphs called G, see [41, Section 2.1]. We review salient
features here. In the appendix there is a purely set-theoretical version, which is of inde-
pendent interest and makes things even more combinatorial and hence is conducive to pro-
gramming.

The category V has S-labeled corollas �S as objects with Autp�Sq � AutpSq. This means
that a general object is a forest or aggregate of such corollas. The connected version Gctd has
morphisms generated by simple edge contractions: s�t : �S >�T Ñ �Szσ>T zttu and simple loop
contractions �ss1 : �S Ñ �Szts,s1u. These satisfy quadratic relations and are crossed with respect
to the isomorphisms. For any ϕ and any isomorphism σ there are unique ϕ1 and σ1 such that
ϕ � σ � σ1 � ϕ1. Each morphism has an underlying graph �pϕq which is the source corolla, but
with one edge for each operation s�t or �st. The edges are glued from the half edges s and t.
It is defined in a way such that �pϕ � σq � �pϕ1q, in the notation above, and its automorphisms
are induced from those of the source, see [5, 41]. The isomorphism class of this graph gives the
isomorphism class of ϕ: r�pϕqs � rϕs.

Gctd � G is a sub-Feynman category whose basic morphisms have a connected ghost graph.
A morphism ϕ in Gctd is basic if and only if �pϕq is connected; see Figure 2.

For the non-connected version, there is one more generator SaT : �S >�T Ñ �S>T . In this
case, there is a non-homogeneous relation s�t � �s,t SaT which allows one to replace the edge
contractions and only retain loop contractions and mergers as generators. The basic morphisms
now need not to have connected underlying graph anymore.
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s

t

s t
st

s t

v wv
w

Figure 2. The basic morphisms: Edge contraction loop contraction and merger, whose ghost graph is

not connected. The shading is extra data not captured by the ghost graph.

Each corolla �S is isomorphic to �|S| –n is again short hand for the set t1, . . . , nu – and hence
rid�S s � rid|S|s. Furthermore fixing isomorphisms σ : S Ñ S, with σpsq � 1, σps1q � 2 and
σ1 : T Ñ T with σ1ptq � 1, r s�ts � r 0�1s, r�s,s1s � r�1,2s and r SaT s � |S|a |T |. Thus there is
only one isomorphism class per basic morphism of generating type.

Beside the natural grading | � |, which is 1 for an edge contraction or a merger and 0 for an
isomorphism or a loop contraction, there is an additional degree given by degp�Sq � |S| which is
additively continued degp�S>�T q � |S|�|T |, to count the total number of legs in the forest. This
yields degpϕq :� 1

2pdegpspϕqq�degptpϕqq, which is integer, since both loop and edge contractions
reduce the set of legs by an even number, while isomorphisms and mergers keep this number
fixed. The degree of an isomorphism or a merger is hence 0 and that of a simple loop or edge
contraction is 1. In this way degpϕq � |Ep�pϕqq|. The sum wtpϕq � degpϕq � |ϕ| is 1 for the
mergers and loop contractions and 2 for the edge contractions. This is also the degree |�|max

for the presentation in terms of the s�t, �ss1 and vaw and hence is a proper degree function.

Remark 5.21 (loop number and Euler characteristic). In the graphical interpretation for a ba-
sic morphism wtpϕq � |Ep�pϕqq| � b0pϕq, where b0 is the number of components of �pϕq.
This is related to the Euler characteristic as follows χp�pϕqq � wtpϕq � |ϕ|, where χp�pϕqq �
b0p�pϕqq � b1p�pϕqq � |V p�pϕqq| � |Ep�pϕqq| and b1 is the loop number, aka. first Betti num-
ber.

The coproduct in Biso is given by [25, Section 3.6].

∆rϕs � ∆r�pϕqs �
¸

γ��pϕq

rγs b r�pϕq{γs. (5.3)

This is a version of the core Hopf algebra [44], but with legs and at a bialgebra level. See Figure 3
for an example of a summand.

Theorem 5.22. Both BisopGctdq and BisopGq are color connected and hence pathlike. They are
graded by deg, | � | and wt, with wt being a proper degree function on G and deg being proper
on Gctd. For BisopGctdq the bivariate Quillen index is given by deg and for BisopGq the bivariate
Quillen index is given by wt.

More precisely, the grouplike elements are rid1s and ridXs which are generated by the classes
rid�S s � rid|S|s. In the connected case, the skew primitive elements are generated by the r s�ts
and the r�s,s1s while in the connected case these are generated by the r�s,s1s and the r SaT s via
products with grouplikes.
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Figure 3. A summand of the coproduct (5.3) in terms of morphisms of aggregates. Note in the actual

morphisms all flags and vertices are labeled. In the figure only the vertices are tracked to avoid clutter.

For the coproduct only the isomorphism classes of the morphism are involved.

The antipodes for the skew primitives in the localization and the single parameter Laurent
polynomials are given as follows:

Sp namq � �ridns
�1ridms

�1ridn�ms
�1

namSp namq � �q�2pn�mq
nam,

Spr s�tsq � rid|S|s
�1rid|T |s

�1rid|S|�|T |�2s
�1r s�tsSr s�ts � �q�2p|S|�|T |�1q

s�t,

Spr�s,s1sq � rid|S|s
�1rid�1

|T |srid|S|�|T |�2s
�1r�s,s1sSr s�ts � �q�2p|S|�|T |�1qr�s,s1s.

The connected Hopf quotient identifies all the objects with 1 and hence all grouplikes idX with
1 � id1. The Brown coaction again sets the q variables on the right to 1, which halves the q
degrees in the above formulae.

Proof. The first assertions follows from Theorem 5.12 and the rest is straightforward from the
definitions. ■

Remark 5.23. Besides the core Hopf algebra of all graphs, one can restrict and decorate as is
done in [8, 44]. For instance Figure 3 only contains 3-valent vertices, which corresponds to ϕ3

theory. It is also possible to retract the legs, cf. [24, 25].

6 Conclusion and outlook

6.1 Conclusion

We have shown that pathlike coalgebras in addition to quiver and incidence coalgebras cap-
ture the two types of bialgebras stemming from Feynman categories, such as those of Baues,
Goncharov and those of Connes–Kreimer. This realization provides several outcomes.

The structure of path-like coalgebras exactly answers the question of what the harbinger of
the antipode in the various constructions is. It precisely identifies the grouplike elements as the
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obstruction to the existence of the antipode. For characters, their values on theses elements de-
termines their �-invertibility. This also explains the appearance of quotients. These correspond
to restrictions on the characters. The most common, which says that all grouplike elements
have character value 1, leads to the connected quotient. Other restrictions, like grouplike invert-
ible or grouplike central, yield different quotients and explain the universality of the quantum
deformation, which in turn explain the naturally of Brown’s coaction.

This sets the stage for further work.

6.2 Outlook

Our analysis is based on using filtrations to reduce to an initial part, where the antipode or
convolution inverse is known. The notion of pathlike coalgebras codifies this situation if the
initial part is setlike. Section 2.2.4, however, can be taken as a clue that there could be some other
structures, which do not necessitate only grouplike elements, but allows for more information
about the isomorphisms. The following example of the Drinfel’d double leads the way to a new
research in this direction. Physically this corresponds to a (finite) gauge group. In the infinite
case, one has to take the precautions spelled out in Appendix A.

In particular, we present a double categorical interpretation in which the antipode basically
switches the horizontal and vertical composition. The appearance of double categories is natural
in view of [5, 36]. It opens the way to a different version of connectedness, whose lowest degree
is of Drinfel’d double type rather than setlike, but keeps a link between the two approaches.
We will consider the generalization of the bialgebra and Hopf structures along these lines in
[42]. There is a general construction, see [32, Section IX.4] of a Drinfel’d double for a finite
dimensional Hopf algebra with invertible antipode; we will concentrate on the case krGs. This
is an interesting Hopf algebra whose algebra part comes from a category.

Definition 6.1. For a finite group G the Drinfel’d double DpkrGsq is the quasi-triangular quasi-
Hopf algebra whose underlying vector space has the basis gl

x
with x, g P G DpkrGsq �

À
k gl

x
with bialgebra structure and antipode given by

g l
x
hl
y
� δg,xhx�1 gl

xy
, ∆p gl

x
q �

¸
g1g2�g

g1 l
x
b g2l

x
, Sp gl

x
q � x�1g�1x l

x�1
.

The unit is
°

gPG gl
e
and the counit is defined by ϵp el

x
q � 1 and ϵp gl

x
q � 0 if g � e.

The algebra structure is the algebra of morphisms of the so-called loop groupoid, ΛG. This
is the category which has the object set G and the morphism set gl

x
P Hompg, x�1gxq, see,

e.g., [40, 61]. It is hence a colored monoid with colors G with sp gl
x
q � g and t

�
gl
x
� x�1gx

�
.

The coalgebra structure is not the dual, but the categorical coalgebra for the groupoid >xPGG
which has X � G as objects and has morphisms gl

x
: x Ñ x. Accordingly, the coalgebra is

simply colored for the comodule structures for the set-like coalgebra krGs : λp gl
x
q � x b gl

x
,

ρp gl
x
q � g l

x
bx.

The notation gl
x

goes back to [16], where these are partition functions on a torus for a field

theory with finite gauge group. The two indices stand for the monodromies around the funda-
mental cycles, cf. [33, 40].

Lemma 6.2. The dual of DpkrGsq is a Hopf algebra, whose coproduct is the coalgebra structure
coming from the morphisms of a category. In particular, let δ gl

x
be the dual basis then

δ gl
x
δhl
y
� δx,y ghl

x
, ∆pδ gl

x
q �

¸
y

δ gl
y
b δ y�1gy l

y�1x

, Spδ gl
x
q � δxg�1x�1 l

x�1
.
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Proof. Straightforward computation using the dual basis δ gl
x
. ■

The product structure uses the underlying monoid structure of the objects/colors. This is
not quite a monoidal structure on the category ΛG. The definition of the antipode uses that
the objects (as colors) are invertible. But note, that g l

x
bhl

y
would need to be a morphism

from gh to x�1gxy�1hy and if x � y indeed ghl
x

is such a morphism. In general, if G is not

Abelian no such morphism needs to exist. The correct notion is that the Drinfel’d double is
a subcategory of a natural double category structure on IsopCq, see [36, Appendix C], where
in this particular case C � G. This is commensurate with the dictum: “A monoidal category
is a two category with one object”. The composability of horizontal 2-cells is then exactly the
condition that x � y in the above calculation. In particular, the symbols gl

x
are two-morphisms

with the following horizontal and vertical composition:

�
g //

x

��
ó gl
x

�

x

��
�

xgx�1
// �

,

�
g //

x

��
ó gl
x

�

x

��
�

xgx�1
//

y

��

ó

xgx�1l
y

�

y

��
�
xygy�1x�1

// �

=

�
g //

xy

��

ó g l
xy

�

xy

��
�
xygpxyq�1

// �

,

�
g //

x

��
ó gl
x

�

x

��

h //

ó kl
x

�

x

��
�

xgx�1
// �

hxx�1
// �

=

�
gh //

x

��
ó gl
x

�

x

��
�
xghx�1

// �

The algebra structure is given by the categorical algebra for the vertical composition, viz. �h,
as the colored multiplication with svp gl

x
q � tvp gl

x
q � x:

g l
x
�hl
y
� δsp gl

x
q�tphl

y
q g lx

�v hl
y

and ∆ will be given as the dual of the horizontal composition with shp gl
x
q � g, thp gl

x
q � xgx�1

∆p gl
x
q �

¸
phl
y
, kl
z
q : hl

y
�h kl

z
� gl
x

hl
y
b kl

z
,

where we dropped the dual notation δ.

Another direction of further research is the connection to the cubical structure of the co-
product, whose analysis in this context appeared in [24, Section 4.5]. Cubical complexes more
generally appear for cubical Feynman categories, [6]. These are intimately related to Cutkosky
rules [45] and the work [46]. To illustrate the cubical structure, we recall, cf. [24, equation (4.29)],
that simplicial objects have a coproduct whose summands are

xp0,i1,...,ik�1,nq � xp0,1,...,i1qxpi1,i1�1,...,i2q � � �xpik�1,ik�1�1,...,nq. (6.1)

This has a cubical structure, which can be understood in terms of the Serre diagonal:

δ : P � r0, 1sn�1 �
ÝÝÑ

¤
KYL�t1,...,n�1u

B�Kr0, 1s
n�1 � B�L r0, 1s

n�1 �
ÝÝÑ P � P.

The term given in (6.1) is identified with the subset L � ti1, . . . , ik�1u. In view of [46] one has
an additional interpretation. The right hand side can be seen as cuts (or stops) in the path
from 0 to n on the quiver rns � 0 Ñ 1 Ñ � � � Ñ n and these can be viewed as cuts of a linear
graph. This is in line with the simplicial structure of iterated integrals.
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Furthermore, there is a symmetry in the Serre diagonal of the cube given by interchan-
ging 0 and 1 in the standard presentation. This switches the coproduct to its opposite. These
two observations should generalize to the categorical setting, and when applied to graphs may
explain some of the results of [46]. A last aspect is functoriality of the construction, see [25,
Section 1.7], which is likely related the structure of cointeracting coalgebras [23, 46] in the
present context.

Furthermore, we identified the skew primitive elements (as indecomposables) as being of
central importance. This parallels the role of primitives in the usual connected case. In par-
ticular, there should be B� operators associated to them. These are indeed explicitly present
and key elements for E2-operads and hence for Gerstenhaber brackets and Deligne’s conjec-
ture [43]. Moreover, there is a connection between these elements and the terms of the master
equations [38] and [41, Section 7.5]. The general structure of B� operators will be taken up
in [37], where we will also make the connection to Hochschild complexes.

A Duals, actions and colored algebras

A.1 Duals

The dual of an R module M� is the R-module HomRpM,Rq. If M is graded, M �
À

xPX Mx

then the graded dual is M̌ �
À

xPX M�
x .

The dual of a coalgebra C is the algebra C� :� HompC,Rq with product fgpcq � pfbgqp∆cq.
If C has a counit ϵC as a coalgebra then ϵC P C� is a unit for the product by definition.

The dual of a finite dimensional algebra A� � HomRpA,Rq is a coalgebra with the comul-
tiplication ∆pfqpa b bq :� fpabq. In general, ∆� is a morphism A� Ñ pA b Aq� and there is
an injection A� b A� Ñ pA b Aq�, which is an isomorphism in the case of a finite dimensional
algebra. Therefore, one restricts to the so-called finite dual A� which is the maximal subspace
of A� such that ∆pA�q � A� bA�. For a Dedekind ring, this is [11]:

A� � tf P A� | Kerpfq contains an ideal I for which A{I is finitely generatedu.

The Hopf-dual of a Hopf algebra over a field is defined to be H� with the induced structures.
For a graded algebra A �

À
xPX Ax, we can consider the graded finite dual Ǎ� �

À
xPX X�

x.

A.2 Colored coalgebras and algebras

If CrXs is the setlike coalgebra on X, CrXs� has multiplication fgpxq � fpxqgpxq and the
constant function upxq � 1 is the unit. In particular, for the dual basis δxδy � δx,yδx and
u �

°
xPX δx. This is well defined as the application to any c P CrXs yields only a finite sum.

Define the algebra ArXs as the R algebra on the monoid X defined by xy � δx,yy. This is
a subalgebra of the dual algebra ArXs � C�rXs using the identification xØ δx. Generators are
the functions with finite support on X. ArXs is not unital unless X is finite, but it is almost
unital in the sense that u �

°
x x P CrXs

� acts as a unit, and when u is restricted to ArXs, it
acts locally as a finite sum.

If X is finite, this yields a bialgebra structure on RpXq. This is a Hopf algebra if and only
if X only has one element, as the putative antipode must satisfy Spxq � x�1, but the x act as
projectors.

Lemma A.1. If R is a Dedekind ring then ArXs� � ǍrXs� � CrXs under the identification
xØ δx. The coproduct is given by decomposition:

∆pδxq �
¸

px1,x2q : x1x2�x

δx1 b δx2 .
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Proof. By [11] f P ArXs� if and only if ArXsf is finitely generated. Since xfpyq � fpyxq �
δx,yfpxq, we see that fpxqδx P ArXsf . As the δx are a basis, ArXsf being finitely generated is
equivalent to almost all fpxq � 0. The coproduct on ǍrXs� is given by ∆pδxq � δxb δx and the
identification is again by xØ δx. ■

Linearizing the construction above yields the following definition whose unital version is
equivalent to a category enriched in R-Mod.

Definition A.2. A colored algebra is double graded R module A �
À

px,yqPX�X Ax,y with R-
bilinear associative multiplications Ax,zbAz,y Ñ Ax,y. It is unital if there are elements idx P Ax,x

which are left and right units under the multiplication. It is split unital if Ax,x � Ridx ` Āx,x.

For a colored monoid the associated colored algebra is given by Ax,y � RpMx,yq with the
induced multiplication. The unital structure is the induced structure.

Suppose M is graded, M �
À

xPX Mx, and hence has a right coaction by CrXs. Specializing
the general formula for an algebra action induced from a right coalgebra coaction, f � m �
pid b fqpρpmqq, the coaction corresponding to a grading in turn defines an action of ArXs in
which the δx act by a complete set of orthogonal projectors πx : M ÑMx, that is δxm � πxpmq.
The operation u �

°
xPX δx acts as unit. This sum is finite when acting on any m PM as M is

the direct sum of its graded components.

Lemma A.3. A colored algebra is an algebra in the category of Arxs-bimodules.

Proof. The multiplication respects the outer grading and taking the product bArXs amounts
to having the inner gradings coincide. ■

Remark A.4. Note that if one defines a colored algebra as an algebra in Arxs-bimodules
then one does not obtain finiteness. Indeed C�rXs is an ArXs bialgebra. To remedy this one
can postulate that u acts locally finitely. The question that remains is where the finiteness
assumptions should be kept and where they could be relaxed.

B Rota–Baxter operators and algebras

Definition B.1. A Rota–Baxter (RB) operator of weight λ on an associative R-algebra A a is
a linear operator T : AÑ A that satisfies the equation

T pXqT pY q � T pT pXqpY qq � T pXT pY qq � λT pXY q. (B.1)

A Rota–Baxter (RB) algebra is a unital associative algebra with a choice of Rota–Baxter ope-
rator.

Note that if T is an RB-operator, so is p1 � T q, furthermore (B.1) says that ImpT q, and
similarly Imp1�T q, are subalgebras of A, which will be called A� and A�. As p1�T q�T � 1,
we see that A � A� �A�.

NB: This sum does not need to be direct.

The pair pA�, A�q is called the Birkhoff decomposition of A defined by T .

Remark B.2 (scaling). Scaling the RB operator by µ, we see that µT is a RB algebra of
weight λµ, so that if λ P R� is invertible, we can always scale to have λ � 0 or λ � �1.

Example B.3. The standard example are Laurent series kppxqq � krrxss
�
x�1

�
, with T being

the projection onto the pole part, is an RB-algebra with λ � �1.
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A generalization of this uses projectors, which are operators with T 2 � 1. In this case, 1� T
is also a projector and the two projectors are orthogonal T p1�T q � 0. For a projector T on an
algebra A, set p1� T qA � A� and T pAq � A�; then A � A� `A�.

Proposition B.4 (projectors and subalgebras). Given a projector T , if A� and A� are sub-
algebras, then T is an RB-operator with weight λ � �1. Furthermore, T p1q is an idempotent,
T p1q2 � T p1q, and multiplication by T p1q is a projector onto a subspace of A�.

In particular, if T p1q � 0, then A� is a unital subalgebra, and, if T p1q is regular, then
T p1q � 1 and A� is a unital subalgebra.

Proof. The conditions means that p1�T q and T are the projectors onto A � A�`A�. Since A�

is a subalgebra, we have that

0 � p1� T qrT pXqT pY qs � T pXqT pY q � T pT pXqT pY qq. (B.2)

Since A� we have that

0 � T rp1�T qpXqp1�T qpY qqs � T pXY q�T pT pXqY q�T pXT pY qq � T pT pXqT pY qq. (B.3)

Plugging (B.2) into (B.3), we obtain (B.1) for λ � �1. Plugging in X � Y � 1 and using that
T 2p1q � T p1q we obtain that T p1q2 � T p1q and hence multiplication by T p1q is a projector.
Plugging in Y � 1 we obtain T p1qp1� T qpXq � 0. ■

If A is regular, e.g., a domain, then there are only two possibilities T p1q � 0 or T p1q � 1.
Thus after possibly switching T and 1 � T , we have that A � A� ` A� with A� a unital
subalgebra and A� a non-unital subalgebra. Vice-versa an RB-operator for λ � �1 comes from
a subdirect sum.

Definition B.5 ([3]). Two subalgebras pA�, A�q form a subdirect sum of A if there exists
a subalgebra C P A � B which satisfies that for any a P A there is a unique representation
a � a� � a�, with pa�, a�q P C.

Such a decomposition defines T paq � a� which satisfies (B.1) for λ � �1. Vice-versa given
an RB T with λ � �1, setting A� � T pAq, A� � p1�T qpAq, C � tpT paq, p1�T qpaqq : a P Au �
A� �A� gives the subdirect sum.

Theorem B.6 ([3]). The set of RB-operators T with weight λ � �1 is in bijection with the
subdirect sum decomposition of A under the above correspondence.

C Set version of graphs

We give a purely set based, non-graphical version here. A reference for the graphical ver-
sion is [41, Section 2.1, Appendix A]. The basic objects will be V � IsopF inSetq. This
fixes the IsopVbq to have as objects finite tuples of sets pS1, . . . , Snq, where the empty set
is allowed both as a tuple and in the entries. The morphisms are componentwise or in-
ner isomorphisms together with outer permutations, which act as follows: A permutation
p P Sn acts by ppS1, . . . , Snq � pSpp1q, . . . , Sppnqq. The inner isomorphisms σ P AutpSiq act
as pid, . . . , id, σ, id, . . . , idq. The monoidal product is the joining of tuples. In graphical form,
these are aggregates, that is a disjoint unions of corollas. The outer permutations permute the
corollas and the inner isomorphisms the flags of the individual corollas.

There are two versions of the category: the connected and the non-connected version. To
write the relations in a concise fashion, we abuse notation and write ϕ for pid, . . . , id, ϕ, id, . . . , idq.
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For the connected version the morphisms are generated under the monoidal product and
concatenation by the isomorphisms and the following morphisms, which called simple edge
contractions and simple loop contractions:

s�t : pS, T q Ñ pSzσ > T zttuq, �ss1 : pSq Ñ pSzts, s1uq.

These satisfy the following relations.

1. The basic morphisms are equivariant with respect to isomorphisms in the sense that: For
σ P AutpSq, σ1 P AutpT q:

σpsq�σ1ptqpσ, σ
1q � σ > σ1|Sztsu>T zttu s�t, �σpsq,σps1qσ � σ|Szts,s1u �s,s1 .

For an outer permutation:

p �s,s1 � �s,s1p, p1 ppsq�pptq � s�tp,

where p1 is the image of the permutation in the embedding Sn�1 Ñ Sn given by the induced
block permutation.

2. Loop contractions commute:

�s1,s11�s2,s12 � �s2,s12 �s1,s11 .

3. Loop and edge contractions commute:

s1�t1�s2s12 � �s2s12 s1�t1 .

4. Edge contractions commute if the “edges” do not form a cycle. For s1 P S1, t1 P T1,
s2 P S2, t2 P T2 and |tS1, T1, S2, T2u| ¥ 3

s1�t1 s2�t2 � s1�t1 s2�t2 .

5. Edge contractions commute even if they form a cycle, only that after one edge contraction,
the second edge contraction is a loop contraction. For s1, s2 P S, t1, t2 P T ,

�s2,t2 s1�t1 � �s1,t1 s2�t2 .

In the non-connected case, there is an additional generating morphism called simple merger:

SaT : pS, T q Ñ pS > T q.

These satisfy the relations:

1. Mergers are equivariant with respect to the internal action

SaT pσ, idq � pσ > idq SaT .

2. Mergers are equivariant with respect to the outer action. On pS1, . . . , Snq:

Si�1aSi � SiaSi�1τi,i�1 and p SiaSi�1 � Sp1piq
aSp1pi�1

p1,

where p1 is the image of the permutation p under the embedding Sn�1 Ñ Sn given by the
block permutation with block pi, i� 1q.

3. Simple mergers commute

S1aT1 S2aT2 � S2aT2 S1aT1 .

4. Mergers and edge/loop contractions on different sets commute.

5. If s P S and t P T , then

s�t � �st SaT .
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[48] Loday J.-L., Cyclic homology, 2nd ed., Grundlehren der mathematischen Wissenschaften, Vol. 301, Springer-
Verlag, Berlin, 1998.

[49] Mac Lane S., Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, Vol. 5,
Springer-Verlag, New York, 1978.

https://doi.org/10.1088/0305-4470/38/50/R01
https://doi.org/10.1088/0305-4470/38/50/R01
https://arxiv.org/abs/hep-th/0510202
https://doi.org/10.2307/2001855
https://doi.org/10.2307/2001855
https://doi.org/10.1016/S0007-4497(02)01113-2
https://arxiv.org/abs/math.QA/0105212
https://doi.org/10.4310/CNTP.2020.v14.n1.a1
https://arxiv.org/abs/1607.00196
https://doi.org/10.4310/CNTP.2020.v14.n1.a2
https://arxiv.org/abs/1607.00196
https://doi.org/10.1007/978-3-662-12492-5
https://doi.org/10.1215/S0012-7094-04-12822-2
https://arxiv.org/abs/math.AG/0208144
https://doi.org/10.1002/sapm197961293
https://doi.org/10.1006/aima.1993.1055
https://doi.org/10.1007/978-1-4612-0783-2
https://doi.org/10.1142/S0129167X03001831
https://arxiv.org/abs/math.AG/0107163
https://doi.org/10.1016/j.top.2006.10.002
https://doi.org/10.1007/978-3-319-72299-3_19
https://arxiv.org/abs/1702.06843
https://doi.org/10.1090/conm/769/15419
https://arxiv.org/abs/1911.10169
https://doi.org/10.1007/BF02101297
https://arxiv.org/abs/alg-geom/9604001
https://doi.org/10.1515/forum-2020-0296
https://arxiv.org/abs/2010.02571
https://doi.org/10.1142/S0129167X09005431
https://arxiv.org/abs/0708.4006
https://arxiv.org/abs/1312.1269
https://doi.org/10.1515/forum-2016-0052
https://doi.org/10.1016/j.aop.2009.10.011
https://arxiv.org/abs/0902.1223
https://arxiv.org/abs/1607.04861
https://arxiv.org/abs/2105.05948
https://doi.org/10.1007/978-3-662-11389-9
https://doi.org/10.1007/978-3-662-11389-9
https://doi.org/10.1007/978-1-4757-4721-8


42 R.M. Kaufmann and Y. Mo

[50] Marcolli M., Ni X., Rota–Baxter algebras, singular hypersurfaces, and renormalization on Kausz compacti-
fications, J. Singul. 15 (2016), 80–117, arXiv:1408.3754.

[51] May J.P., Ponto K., More concise algebraic topology. Localization, completion, and model categories,
Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2012.

[52] Moerdijk I., On the Connes–Kreimer construction of Hopf algebras, in Homotopy Methods in Algebraic
Topology (Boulder, CO, 1999), Contemp. Math., Vol. 271, Amer. Math. Soc., Providence, RI, 2001, 311–
321, arXiv:math-ph/9907010.

[53] Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics,
Vol. 82, Amer. Math. Soc., Providence, RI, 1993.

[54] Munthe-Kaas H.Z., Wright W.M., On the Hopf algebraic structure of Lie group integrators, Found. Comput.
Math. 8 (2008), 227–257, arXiv:math.AC/0603023.

[55] Nichols W., Sweedler M., Hopf algebras and combinatorics, in Umbral Calculus and Hopf Algebras (Norman,
Okla., 1978), Contemp. Math., Vol. 6, Amer. Math. Soc., Providence, R.I., 1982, 49–84.

[56] Quillen D.G., Homotopical algebra, Lecture Notes in Math., Vol. 43, Springer-Verlag, Berlin – New York,
1967.

[57] Rota G.-C., On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrschein-
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