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Abstract. An enumerative invariant theory in algebraic geometry, differential geometry,
or representation theory, is the study of invariants which ‘count’ τ -(semi)stable objects E
with fixed topological invariants JEK = α in some geometric problem, by means of a virtual
class [Mss

α (τ)]virt in some homology theory for the moduli spaces Mst
α (τ) ⊆ Mss

α (τ) of τ -
(semi)stable objects. Examples include Mochizuki’s invariants counting coherent sheaves on
surfaces, Donaldson–Thomas type invariants counting coherent sheaves on Calabi–Yau 3-
and 4-folds and Fano 3-folds, and Donaldson invariants of 4-manifolds. We make conjectures
on new universal structures common to many enumerative invariant theories. Any such
theory has two moduli spaces M, Mpl, where the second author (see https://people.

maths.ox.ac.uk/~joyce/hall.pdf) gives H∗(M) the structure of a graded vertex algebra,
andH∗

(
Mpl

)
a graded Lie algebra, closely related toH∗(M). The virtual classes [Mss

α (τ)]virt
take values inH∗

(
Mpl

)
. In most such theories, defining [Mss

α (τ)]virt whenMst
α (τ) ̸= Mss

α (τ)
(in gauge theory, when the moduli space contains reducibles) is a difficult problem. We
conjecture that there is a natural way to define invariants [Mss

α (τ)]inv in homology over Q,
with [Mss

α (τ)]inv = [Mss
α (τ)]virt when Mst

α (τ) = Mss
α (τ), and that these invariants satisfy

a universal wall-crossing formula under change of stability condition τ , written using the
Lie bracket on H∗

(
Mpl

)
. We prove our conjectures for moduli spaces of representations

of quivers without oriented cycles. Versions of our conjectures in algebraic geometry using
Behrend–Fantechi virtual classes are proved in the sequel [arXiv:2111.04694].
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1 Introduction

For us, an enumerative invariant theory in algebraic or differential geometry or representation
theory is the study of invariants Iα(τ) which ‘count’ τ -semistable objects E with fixed topo-
logical invariants JEK = α in some geometric problem, usually by means of a virtual class
[Mss

α (τ)]virt in some homology theory for the moduli space Mss
α (τ) of τ -semistable objects, with

Iα(τ) =
∫
[Mss

α (τ)]virt
µα for some natural cohomology class µα. Often the invariants Iα(τ) have

a deformation-invariance property.
We say the enumerative invariant theory is C-linear if the objects E to be counted live in

a C-linear additive category A. (The algebro-geometric version of our theory should extend to
K-linear additive categories, for K an algebraically closed field.) Here are some examples of such
C-linear theories:
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(i) Invariants counting Gieseker semistable coherent sheaves on complex projective surfaces,
as in Mochizuki [79].

(ii) Donaldson–Thomas invariants counting semistable coherent sheaves on Calabi–Yau or
Fano 3-folds, as in Thomas [100] and Joyce–Song [60].

(iii) Donaldson–Thomas type invariants counting semistable coherent sheaves on Calabi–Yau
4-folds, as in Borisov–Joyce [11] and Oh–Thomas [87].

(iv) Donaldson invariants counting anti-self-dual U(n)- or SU(n)-connections on compact ori-
ented 4-manifolds, as in Donaldson–Kronheimer [22, 23, 69].

(v) Invariants counting semistable representations of quivers, or quivers with relations, and
similar representation-theoretic problems.

A non-example is Gromov–Witten invariants counting Deligne–Mumford stable J-holomorphic
curves j : Σ → X, since these do not form a C-linear category.

We discuss some new universal mathematical structures that we expect to underlie most of
the C-linear enumerative invariant theories above. We explain our conjectural picture in detail
in Section 4. Here is a brief partial sketch, for simplicity in the algebraic geometry case with
A = coh(X) for a smooth projective C-scheme X, as in (i), (ii) above.

(a) There are two ways to form a moduli stack of objects in A: the usual moduli stack
M, in which a C-point [E] ∈ M corresponding to an object E ∈ A has isotropy group
IsoM([E]) = Aut(E), and the ‘projective linear’ moduli stack Mpl, in which IsoMpl([E]) =
Aut(E)/(Gm · idE). There is a morphism M → Mpl which is a [∗/Gm]-fibration over
nonzero objects.

The second author [58] explains how to give H∗(M,Q) the structure of a graded vertex
algebra, and H∗

(
Mpl,Q

)
a graded Lie algebra (both with nonstandard gradings). Here

by a well-known construction in vertex algebra theory H∗(M,Q)/D(H∗(M,Q)) is a Lie
algebra, and H∗

(
Mpl,Q

) ∼= H∗(M,Q)/D(H∗(M,Q)), giving the Lie algebra structure.

Note that H∗(M,Q) and H∗
(
Mpl,Q

)
, with their vertex algebra/Lie algebra structures,

can often be written down quite explicitly (see [42]).

(b) Let τ be a suitable stability condition on A, and write Mst
α (τ) ⊆ Mss

α (τ) for the moduli
schemes of τ -stable and τ -semistable objects in A with Chern class α. Then the coarse
moduli schemeMss

α (τ) is proper. In the cases we are interested in, eitherMst
α (τ) is smooth,

or has a natural perfect obstruction theory in the sense of [6]. Also Mst
α (τ) ⊂ Mpl is an

open substack.

Hence if Mst
α (τ) = Mss

α (τ) (that is, if there are no strictly τ -semistable objects in class α)
we have a virtual class [Mss

α (τ)]virt in the homology H∗(Mss
α (τ),Z) or H∗(Mss

α (τ),Q), and
we may regard [Mss

α (τ)]virt as lying in the Lie algebra H∗(Mpl,Q) from (a). We consider
[Mss

α (τ)]virt for all α to be the family of invariants we want to study.

(c) If Mst
α (τ) ̸= Mss

α (τ), the question of defining virtual classes [Mst
α (τ)]virt or [Mss

α (τ)]virt is
a well known, mostly unsolved problem. In algebraic geometry, the issue is that Mst

α (τ)
is not proper, and Mss

α (τ) does not have an obstruction theory, so we cannot use [6]. In
differential geometry, the problem is reducible connections giving singularities in mod-
uli spaces.

We conjecture that there are natural invariants [Mss
α (τ)]inv ∈ H∗

(
Mpl,Q

)
for all α, with

[Mss
α (τ)]inv = [Mss

α (τ)]virt in (b) when Mst
α (τ) = Mss

α (τ), which satisfy a package of
properties including (d), (e) below. Here we must work in homology over Q, not Z,
if Mst

α (τ) ̸= Mss
α (τ).
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(d) Let τ , τ̃ be two suitable stability conditions on A, for instance, Gieseker stability on
coh(X) with respect to two polarizations L, L̃→ X.

We conjecture that the invariants [Mss
α (τ)]inv, [Mss

α (τ̃)]inv are related by the universal
wall-crossing formula taken from the second author [53]:

[Mss
α (τ̃)]inv =

∑
α1+···+αn=α

Ũ(α1, . . . , αn; τ, τ̃) ·
[[
. . .

[
[Mss

α1
(τ)]inv,

[Mss
α2
(τ)]inv

]
, . . .

]
, [Mss

αn
(τ)]inv

]
, (1.1)

where the Ũ(α1, . . . , αn; τ, τ̃) ∈ Q are a combinatorial coefficient system with only finitely
many non-zero terms (see [53, Definition 4.4], [60, Section 3.3]), and (1.1) uses the Lie
bracket [ , ] on H∗

(
Mpl,Q

)
from (a).

(e) We do not currently have a direct definition of [Mss
α (τ)]inv in (c) when Mst

α (τ) ̸= Mss
α (τ).

However, as for Donaldson–Thomas invariants in [60, Section 5.4] and Mochizuki’s use of
‘L-Bradlow pairs’ in [79, Section 7.3], there is an indirect way to define [Mss

α (τ)]inv using
the wall-crossing formula (1.1) in an auxiliary category B of ‘pairs’ V ⊗O(−N) → E in A.

Our theory is inspired by two main sources. The second author has a general theory of motivic
invariants in algebraic geometry [48, 49, 50, 51, 52, 53], including a wall crossing formula [53,
Theorems 5.2 and 5.4] of the form (1.1) in a Lie algebra of ‘stack functions’, which was applied
to Donaldson–Thomas theory in [60]. This does not apply to the enumerative invariants above,
which are not motivic. But his recent work on vertex algebra and Lie algebra structures on
homology of moduli spaces [58] provides the tools we need to extend it to enumerative invariants.

We hope that in the future our theory will lead to a better understanding of deep properties
of enumerative invariants. In particular, the connection between vertex algebras and invariants
is relatively unexplored. For example, can we explain modular properties and other structural
features of generating functions of invariants in terms of the vertex algebras appearing in (a)?

So far we have described only conjectures. The main results of this paper, stated in Section 5
and proved in Section 6, are to prove our conjectures in (c)–(e) above when A = mod-CQ is the
abelian category of C-representations of a quiver Q without oriented cycles. In a sequel [59], the
second author will prove the conjectures in other cases in algebraic geometry using Behrend–
Fantechi virtual classes [6], including A = mod-CQ/I for (Q, I) a quiver with relations, and
A = coh(X) for X a smooth projective complex curve, surface, or Fano 3-fold.

We define our invariants in ordinary homology H∗
(
Mpl,Q

)
. To form virtual classes in or-

dinary homology, one needs proper moduli schemes, as in (b) above. One might hope that
there should be a version of our theory in Borel–Moore homology HBM

∗
(
Mpl,Q

)
, that would not

require properness.

However, this does not work, as pushforwards are only defined in Borel–Moore homology for
proper morphisms, but we need pushforwards along non-proper morphisms at several crucial
points, in particular to define the vertex algebra on H∗(M,Q) and Lie algebra on H∗

(
Mpl,Q

)
in (a). Also if Mst

α (τ) = Mss
α (τ) we need to push [Mss

α (τ)]virt forward along the not necessarily
proper inclusion Mst

α (τ) ↪→ Mpl
α to regard [Mss

α (τ)]virt as an element of H∗
(
Mpl

α

)
.

2 Background on vertex algebras and Lie algebras

In this section, we review some material from the second author [58]. Throughout this section R
is a commutative Q-algebra, for instance R = Q,R or C.
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2.1 Vertex algebras and Lie algebras

For background on vertex algebras, we recommend Frenkel–Ben-Zvi [28], Kac [62], Lepowsky–
Li [73], and the second author [58]. As we work over a Q-algebra R, there are a few simplifications
to the general theory. Here is one of several equivalent definitions of vertex algebra.

Definition 2.1. Let V∗ =
⊕

n∈Z Vn be a graded R-module. Write V∗((z)) := V∗[[z]]
[
z−1

]
for

the R-module of Laurent series in a formal variable z. The R-modules V∗[[z]], V∗((z)) are made
Z-graded by declaring deg z = −2.

A field on V∗ is an R-module homomorphism V∗ → V∗((z)). The set of all fields on V∗ is
denoted F(V∗) and is considered as a graded R-module by declaring F(V∗)n to be the set of
degree n fields V → V ((z)) for n ∈ Z.

A graded vertex algebra
(
V∗,1, e

zD, Y
)
over R is a Z-graded R-module V∗ with an identity

element 1 ∈ V0, a grading-preserving operator ezD : V → V [[z]] with ezDv =
∑

n⩾0
1
n!D

n(v) zn

for D : V∗ → V∗+2 the translation operator, and a grading-preserving state-field correspondence
Y : V∗ → F(V∗)∗ written Y (u, z)v =

∑
n∈Z un(v)z

−n−1, where un maps V∗ → V∗+a−2n−2 for
u ∈ Va, satisfying:

(i) Y (1, z)v = v for all v ∈ V .

(ii) Y (v, z)1 = ezDv for all v ∈ V .

(iii) For all u ∈ Va and v ∈ Vb, there exists N ≫ 0 such for all w ∈ V∗

(z1 − z2)
N
(
Y (u, z1)Y (v, z2)w − (−1)abY (v, z2)Y (u, z1)w

)
= 0 in V∗

[[
z±1
1 , z±1

2

]]
.

Part (iii) is called the weak commutativity property.
Let

(
V∗,1, e

zD, Y
)
and

(
V ′
∗ ,1

′, ezD
′
, Y ′) be graded vertex algebras over R. A morphism

ϕ :
(
V∗,1, e

zD, Y
)
→

(
V ′
∗ ,1

′, ezD
′
, Y ′) is an R-module morphism ϕ : V∗ → V ′

∗ which preserves all
the structures. That is, ϕ maps Vn → V ′

n, and ϕ(1) = 1
′, and ϕ ◦ D = D′ ◦ ϕ, and ϕ ◦ Y =

Y ′ ◦ (ϕ⊗ ϕ). Such morphisms make graded vertex algebras over R into a category VertAlggr
R .

Vertex algebras are very complicated objects, and the above brief definition probably com-
municates little real understanding of them – we refer readers to [28, 58, 62, 73] for more. In
this paper, the main property of (graded) vertex algebras we use is that they have a functor to
(graded) Lie algebras.

Definition 2.2. A graded Lie algebra over R is a pair (V∗, [ , ]), where V∗ =
⊕

a∈Z Va is a graded
R-module, and [ , ] : V∗ × V∗ → V∗ is an R-bilinear map called the Lie bracket, which is graded
(that is, [ , ] maps Va×Vb → Va+b for all a, b ∈ Z), such that for all a, b, c ∈ Z and u ∈ Va, v ∈ Vb
and w ∈ Vc we have

[v, u] = (−1)ab+1[u, v], (−1)ca[[u, v], w] + (−1)ab[[v, w], u] + (−1)bc[[w, u], v] = 0.

Let (V∗, [ , ]), (V
′
∗ , [ , ]) be graded Lie algebras over R. A morphism ϕ : (V∗, [ , ]) → (V ′

∗ , [ , ])
is an R-module morphism ϕ : V∗ → V ′

∗ which preserves all the structures. That is, ϕ maps
Vn → V ′

n and ϕ
(
[u, v]

)
=

[
ϕ(u), ϕ(v)

]
. Such morphisms make graded Lie algebras over R into

a category LieAlggr
R .

The next proposition is due to Borcherds [10, Section 4].

Proposition 2.3. Let
(
V∗,1, e

zD, Y
)
be a graded vertex algebra over R. We may construct

a graded Lie algebra
(
V̌∗, [ , ]

)
over R as follows. Noting the shift in grading, define a Z-graded

R-module V̌∗ by

V̌n = Vn+2/D(Vn) for n ∈ Z,
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so that V̌∗ = V∗+2/D(V∗). If u ∈ Va+2 and v ∈ Vb+2, the Lie bracket on V̌∗ is[
u+D(Va), v +D(Vb)

]
= u0(v) +D(Va+b) ∈ V̌a+b.

A morphism ϕ :
(
V∗,1, e

zD, Y
)
→

(
V ′
∗ ,1

′, ezD
′
, Y ′) induces a morphism ϕ̌ : (V∗, [ , ])→(V ′

∗ , [ , ])

by ϕ̌
(
u + D(V∗)

)
= ϕ(u) + D′(V ′

∗). Mapping
(
V∗,1, e

zD, Y
)
7→ (V̌∗, [ , ]) and ϕ 7→ ϕ̌ defines

a functor VertAlggr
R → LieAlggr

R .

2.2 Stacks, and their homology groups

In Section 2.3 we will explain that if A is a suitable C-linear abelian category, or T is a suitable
C-linear triangulated category, and M is the moduli stack of objects in A or T , and we choose
a little extra data, then [58] makes the homology H∗(M) into a graded vertex algebra. First we
give some brief background on stacks M and their homology groups H∗(M).

Stacks are a class of spaces in algebraic geometry. In this paper, two types of algebro-
geometric stacks are relevant: Artin C-stacks, as in Gómez [33], Laumon and Moret-Bailly [72]
and Olsson [89], which form a 2-category ArtC, and higher C-stacks, as in Toën and Vezzosi
[102, 103, 105, 106], which form an ∞-category HStaC containing ArtC ⊂ HStaC as a full
discrete 2-subcategory.

The general rule is that for any algebro-geometric C-linear abelian or exact category A
appearing in this paper, such as A = coh(X) or A = vect(X) for X a smooth projective C-
scheme, the moduli stack M of objects in A is an Artin C-stack, and for any algebro-geometric
C-linear triangulated category T , such as T = Db coh(X), the moduli stack M is a higher
C-stack.

If S is an Artin or higher C-stack, we write S(C) for the set of 2-isomorphism classes [x] of
1-morphisms x : SpecC → S. Elements of S(C) are called C-points, or geometric points, of S.
If ϕ : S → T is a 1-morphism then composition with ϕ induces a map of sets ϕ∗ : S(C) → T (C).

If S is an Artin C-stack, each C-point x ∈ S(C) has an isotropy group IsoS(x), an algebraic
C-group. We say that S has affine geometric stabilizers if IsoS(x) is an affine algebraic C-group
for all x ∈ S(C).

An important class of Artin C-stacks are quotient stacks [S/G], where S is a C-scheme and
G is an algebraic C-group acting on S. When M = [S/G], the C-points are G(C)-orbits xG(C)
for C-points x ∈ S(C), and the isotropy groups are Iso[S/G](xG(C)) = StabG(C)(x).

As in Simpson [95] and Blanc [8, Section 3.1], any Artin C-stack or higher C-stack M has
a topological realization Mtop, which is a topological space (in fact, a CW-complex) natural up
to homotopy equivalence. Topological realization gives a functor (−)top : Ho(HStaC) → Topho

from the homotopy category Ho(HStaC) to the category Topho of topological spaces with
morphisms homotopy classes of continuous maps.

Let M be an Artin C-stack, or higher C-stack, and R be a commutative Q-algebra, such as
R = Q,R or C. We define the homology H∗(M) = H∗(M, R) of M with coefficients in R to be
H∗(M) = H∗(Mtop, R), the usual homology of the topological space Mtop. Similarly we define
the cohomology H∗(M) = H∗(M, R) = H∗(Mtop, R). These are sometimes called the Betti
(co)homology, to distinguish them from other (co)homology theories of stacks. We usually omit
the coefficient Q-algebra R from our notation H∗(M), H∗(M).

The following properties of H∗(M), H∗(M) will be important later:

(a) Let S be a C-scheme, and San the underlying complex analytic space. Then H∗(S) ∼=
H∗(S

an) and H∗(S) ∼= H∗(San).

(b) If M is a quotient stack [S/G], we have a homotopy equivalence

Mtop ≃ (San × EGan)/Gan,
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where EGan → BGan is a classifying space for the complex analytic topological group
Gan = G(C). If S is contractible (e.g., if S is a point ∗ or an affine space An) this implies
that Mtop ≃ BGan.

(c) For a disjoint union M =
∐
i∈I Mi we have H∗(M) ∼=

⊕
i∈I H∗(Mi) and H∗(M) ∼=∏

i∈I H
∗(Mi).

(d) H∗(−) is covariantly functorial, and H∗(−) is contravariantly functorial, under morphisms
of stacks, in the obvious way.

(e) Cap and cup products ∩, ∪ are defined and have the usual properties, e.g., if f : S → T is
a morphism of stacks and α ∈ H∗(S), β ∈ H∗(T ) then

H∗(f)(α ∩H∗(f)(β)) = H∗(f)(α) ∩ β.

(f) The Künneth theorem gives isomorphisms H∗(S×T ) ∼= H∗(S)⊗RH∗(T ) and H
∗(S×T ) ∼=

H∗(S)⊗R H
∗(T ), as R is a Q-algebra.

(g) Let E• → M be a perfect complex (e.g., a vector bundle). Then E• corresponds to a mor-
phism ϕE• : M → PerfC, where PerfC is a higher stack which classifies perfect complexes,
as in Toën and Vezzosi [106, Definition 1.3.7.5]. The topological realization of PerfC is
BU × Z, where BU = lim−→n→∞BU(n) is the stable unitary classifying space, so that

BU × Z is the classifying space for topological complex K-theory K0(−), as in May [76,
Sections 23–24]. Thus ϕtopE• : Mtop → BU × Z defines a K-theory class [E•] ∈ K0(Mtop).
Hence we may define the Chern classes ci(E•) = ci([E•]) in H2i(M) = H2i(Mtop). These
have the usual properties of Chern classes, e.g., ck(E• ⊕F•) =

∑
i+j=k ci(E

•) ∪ cj(F•).

As BGm ≃ CP∞, using (b) above and CPn ↪→ CP∞ we have an isomorphism

H∗([∗/Gm]) ∼= R[[z]] as R-algebras, with deg z = 2, so that

H2n([∗/Gm]) = ⟨zn⟩R, normalized so that

∫
CPn

zn = 1. (2.1)

Our conjectures in Section 4 involve fairly general Artin and higher stacks. However, our
main results in Sections 5–6 involve only moduli stacks M of abelian categories of quiver repre-
sentations mod-CQ. These are of a very simple kind: we have M =

∐
d∈NQ0 Md, where Md is

a quotient stack [Vd/Πv∈Q0 GL(d(v),C)] for Vd a C-vector space. Then we can compute H∗(M),
H∗(M) using (b), (c) above. So Sections 5–6 do not need a detailed knowledge of stacks.

There is also a theory of topological stacks due to Metzler [77] and Noohi [85, 86], which we
can use to write the differential-geometric version of our conjectural picture in Section 4. In this
paper, by ‘topological stacks’ we mean hoparacompact topological stacks in the sense of Noohi
[86, Section 8.3], which form a 2-category TopSta. These are a generalization of topological
spaces, which as in [86] have a well-behaved homotopy theory. As for the algebraic case, there
is a topological realization functor (−)top : Ho(TopSta) → Topho. If B is a topological stack
we define H∗(B) = H∗(Btop, R) and H∗(B) = H∗(Btop, R), as above.

We will be primarily interested in the following case (see [61] for more details). Let X be
a compact manifold, P → X a principal U(n)-bundle, AP the infinite-dimensional affine space
of all connections ∇P on P , and GP = Aut(P ) the infinite-dimensional Lie group of gauge
transformations of P . Then GP acts continuously on AP , and we define BP = AP /GP to be the
quotient topological stack. Since AP is contractible, we have

H∗(BP ) := H∗
(
Btop
P , R

)
= H∗((AP × EGP )/GP , R) ∼= H∗(BGP , R).
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2.3 A geometric construction of vertex algebras

In [58], amongst other things, the second author defines new graded vertex algebra structures
on the homology H∗(M) of moduli stacks M of objects in suitable abelian categories A or
triangulated categories T . We explain the construction in a special case. The next assumption
sets out the data we need. As in Section 2.2, throughout R is a fixed Q-algebra, and H∗(−) =
H∗(−, R) and H∗(−) = H∗(−, R) denote (co)homology over R.

Assumption 2.4. LetA be a C-linear abelian or exact category coming from algebraic geometry
or representation theory, e.g., we could take A = coh(X) or vect(X) for X a smooth projective
C-scheme, or A = mod-CQ the category of C-representations of a quiver Q. Assume:

(a) We can form a natural moduli stack M of objects in A, an Artin C-stack, locally of finite
type. Then C-points of M are isomorphism classes [E] of objects E ∈ A, and the isotropy
groups are IsoM([E]) = Aut(E).

(b) There is a natural morphism of Artin stacks Φ: M × M → M which on C-points acts
by Φ∗ : ([E], [F ]) 7→ [E ⊕ F ], for all objects E,F ∈ A, and on isotropy groups acts
by Φ∗ : IsoM×M([E], [F ]) ∼= Aut(E) × Aut(F ) → IsoM([E ⊕ F ]) ∼= Aut(E ⊕ F ) by
(λ, µ) 7→

(
λ 0
0 µ

)
for λ ∈ Aut(E) and µ ∈ Aut(F ), using the obvious matrix notation

for Aut(E ⊕ F ). That is, Φ is the morphism of moduli stacks induced by direct sum in
the abelian category A. It is associative and commutative in Ho(ArtC).

(c) There is a natural morphism of Artin stacks Ψ: [∗/Gm] × M → M which on C-points
acts by Ψ∗ : (∗, [E]) 7→ [E], for all objects E in A, and on isotropy groups acts by
Ψ∗ : Iso[∗/Gm]×M(∗, [E]) ∼= Gm × Aut(E) → IsoM([E]) ∼= Aut(E) by (λ, µ) 7→ λµ =
(λ · idE) ◦ µ for λ ∈ Gm and µ ∈ Aut(E). Note that Ψ is not the same as the projection
πM : [∗/Gm]×M → M from the product [∗/Gm]×M, which acts on isotropy groups as
(πM)∗ : (λ, µ) 7→ µ. We have identities in Ho(ArtC):

Ψ ◦ (id[∗/Gm] × Φ) = Φ ◦
(
Ψ ◦Π12,Ψ ◦Π13

)
: [∗/Gm]×M2 −→ M,

Ψ ◦ (id[∗/Gm] ×Ψ) = Ψ ◦ (Ω× idM) : [∗/Gm]
2 ×M −→ M,

where Πij projects to the ith and jth factors, and Ω: [∗/Gm]
2 → [∗/Gm] is induced by the

morphism Gm ×Gm → Gm mapping (λ, µ) 7→ λµ.

(d) We are given a surjective quotient of abelian groups K0(A) ↠ K(A) of the Grothendieck
group K0(A) of A. We write JEK ∈ K(A) for the class of E ∈ A. We suppose that if
E ∈ A with JEK = 0 in K(A) then E = 0.

We require that the map M(C) → K(A) mapping E 7→ JEK should be locally constant.
This gives a decomposition M =

∐
α∈K(A)Mα of M into open and closed C-substacks

Mα ⊂ M of objects in class α, where M0 = {[0]}. We write M ̸=0 = M\M0. We write
Φα,β = Φ|Mα×Mβ

: Mα ×Mβ → Mα+β and Ψα = Ψ|[∗/Gm]×Mα
: [∗/Gm]×Mα → Mα.

(e) We are given a symmetric biadditive form χ : K(A)×K(A) → Z.
(f) We are given signs ϵα,β ∈ {±1} for all α, β ∈ K(A), such that for all α, β, γ ∈ K(A)

we have

ϵα,β · ϵβ,α = (−1)χ(α,β)+χ(α,α)χ(β,β), (2.2)

ϵα,β · ϵα+β,γ = ϵα,β+γ · ϵβ,γ , (2.3)

ϵα,0 = ϵ0,α = 1. (2.4)

(g) We are given a perfect complex Θ• onM×M, such that the restriction Θ•
α,β := Θ•|Mα×Mβ

to Mα ×Mβ has rank χ(α, β) for all α, β ∈ K(A), and there are isomorphisms of perfect
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complexes

σ∗M(Θ•) ∼= (Θ•)∨[2n], (2.5)

(Φ× idM)∗(Θ•) ∼= Π∗
13(Θ

•)⊕Π∗
23(Θ

•), (2.6)

(idM × Φ)∗(Θ•) ∼= Π∗
12(Θ

•)⊕Π∗
13(Θ

•), (2.7)

(Ψ× idM)∗(Θ•) ∼= Π∗
1(L[∗/Gm])⊗Π∗

23(Θ
•), (2.8)

(Π2,Ψ ◦Π13)
∗(Θ•) ∼= Π∗

1(L
∗
[∗/Gm])⊗Π∗

23(Θ
•). (2.9)

Here (2.5) is on M×M, where σM : M×M → M×M exchanges the factors, and n ∈ Z.
Equations (2.6)–(2.7) are on M×M×M, and (2.8)–(2.9) on [∗/Gm]×M×M. We write
Πi for the projection to the ith factor, and Πij for the projection to the product of the
ith and jth factors. We write L[∗/Gm] → [∗/Gm] for the line bundle corresponding to the
weight 1 representation of Gm = C \ {0} on C.

Although Assumption 2.4(a)–(g) look like a lot of rather arbitrary data, as explained in
[58, 59] and Section 4, there are natural choices for all this data in many large classes of interesting
examples.

Definition 2.5. Suppose Assumption 2.4 holds. Given all this data, we define a graded vertex
algebra structure on the homology H∗(M) from Section 2.2. The inclusion of the zero object
0 ∈ A gives a morphism [0] : ∗ ↪→ M inducing R ∼= H∗(∗) → H∗(M), and we define 1 ∈ H∗(M)
to be the image of 1 ∈ R under this map. Taking homology of Ψ gives a map

H∗([∗/Gm])⊗RH∗(M)
⊠ // H∗([∗/Gm]×M)

H∗(Ψ) // H∗(M).

As H∗([∗/Gm]) ∼= HomR(H∗([∗/Gm]), R), this is equivalent to a map

H∗(M) // H∗(M)⊗̂RH
∗([∗/Gm])

(2.1) // H∗(M)[[z]],

using equation (2.1), and we denote the composition ezD.

The decomposition M =
∐
α∈K(A)Mα induces an identification

H∗(M) =
⊕

α∈K(A)

H∗(Mα). (2.10)

For u ∈ Ha(Mα) ⊂ H∗(M) and v ∈ Hb(Mβ) ⊂ H∗(M), define

Y (u, z)v = Y (z)(u⊗ v) = ϵα,β(−1)aχ(β,β)
∑

i⩾0
zχ(α,β)−i

×H∗(Φ) ◦
(
ezD ⊗ id

)
((u⊠ v) ∩ ci(Θ•)). (2.11)

Using (2.10), for n ∈ Z and α ∈ K(A) we write

Ĥn(Mα) = Hn−χ(α,α)(Mα), Ĥn(M) =
⊕

α∈K(A)

Ĥn(Mα). (2.12)

That is, Ĥ∗(M) is H∗(M), but with grading shifted by −χ(α, α) in the component H∗(Mα) ⊂
H∗(M). The second author [58] proves:

Theorem 2.6. In Definition (2.5),
(
Ĥ∗(M),1, ezD, Y

)
is a graded vertex algebra over R.
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Many examples of vertex algebras can be found in Frenkel–Ben-Zvi [28], Kac [62], and
Lepowsky–Li [73]. They are generally complicated to write down, as all nontrivial (i.e., non-
holomorphic) vertex algebras are infinite-dimensional. When we can compute the vertex algebras
arising from Theorem 2.6 explicitly, they are usually minor modifications of (super-)lattice vertex
algebras [28, Section 5.4], [62, Section 5.4]. See Theorem 4.8 below for a class of examples for
A = Db coh(X) in which we can describe Ĥ∗(M) and its vertex algebra structure explicitly.

Vertex algebras from quiver categories A = mod-CQ or A = Dbmod-CQ can also be written
down explicitly [58]. That for A = Dbmod-CQ is the lattice vertex algebra used to construct
the Kac–Moody Lie algebra g associated to the underlying Dynkin diagram (undirected graph)
of Q, as in Kac [63, Sections 1 and 5], and A = mod-CQ gives the vertex subalgebra yielding
the positive part n+ of g.

2.4 Lie algebras from the vertex algebras of Section 2.3

In the situation of Section 2.3, Proposition 2.3 makes Ĥ∗+2(M)/D
(
Ĥ∗(M)

)
into a graded Lie

algebra. We can interpret this as the shifted homology Ȟ∗
(
Mpl

)
of a modification Mpl of M,

which we now describe.

Definition 2.7. Continue in the situation of Assumption 2.4 and Definition 2.5. Then [∗/Gm]
is a group stack, and Ψ: [∗/Gm]×M → M is an action of [∗/Gm] on M = M0 ⨿ M̸=0, which
is trivial on M0 = {[0]}, and free on M̸=0. As explained in [58], we may take the quotient
of M by Ψ to get a stack Mpl, which we call the projective linear moduli stack, with projection
Πpl : M → Mpl, in a 2-co-Cartesian square in ArtC:

[∗/Gm]×M
HP Ψ

//

πM
��

M
Πpl
��

M Πpl
//Mpl.

The construction of Mpl as M/[∗/Gm] is known in the literature as rigidification, as in
Abramovich–Olsson–Vistoli [1] and Romagny [92], and is written Mpl = M( Gm in [1, 92].
It is used, for example, to rigidify the Picard stack Pic(X) of line bundles on a projective
scheme X to get the Picard scheme Pic(X)( Gm. A typical example is that M contains
a component [∗/GL(n,C)], and Mpl contains a corresponding component [∗/PGL(n,C)], where
PGL(n,C) = GL(n,C)/(Gm · Idn). That is, the passage M → Mpl converts general linear
isotropy groups GL(n,C) to projective linear isotropy groups PGL(n,C), which is why we call
Mpl ‘projective linear’.

We regard Mpl as the moduli stack of all objects in A ‘up to projective linear isomorphisms’.
Since Πpl : M → Mpl is a [∗/Gm]-bundle it is an isomorphism on C-points. Thus, C-points
x ∈ Mpl(C) correspond naturally to isomorphism classes [E] of objects E ∈ A, as for M(C),
and we will write points of Mpl(C) as [E], and then Πpl(C) maps [E] 7→ [E].

The isotropy groups of Mpl satisfy IsoMpl([E]) ∼= IsoM([E])/Gm for E ̸= 0, where the
Gm-subgroup of IsoM([E]) is determined by the action of Ψ on isotropy groups. Thus by
Assumption 2.4(c) we see that

IsoMpl([E]) ∼= Aut(E)/(Gm · idE). (2.13)

The action of Πpl on isotropy groups is given by the commutative diagram

IsoM([E])
Πpl

∗

//

∼=��

IsoMpl([E])

∼=(2.13)
��

Aut(E)
ϵ 7−→ ϵGm // Aut(E)/(Gm · idE).
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The splitting M =
∐
α∈K(A)Mα descends to Mpl =

∐
α∈K(A)M

pl
α , with Mpl

α = Mα( Gm

for α ̸= 0 and Mpl
0 = M0 = ∗. Thus as for (2.10) we have

H∗
(
Mpl

)
=

⊕
α∈K(A)

H∗
(
Mpl

α

)
. (2.14)

In a similar way to (2.12), using (2.14), for n ∈ Z and α ∈ K(A) we write

Ȟn

(
Mpl

α

)
= Hn+2−χ(α,α)

(
Mpl

α

)
, Ȟn

(
Mpl

)
=

⊕
α∈K(A)

Ȟn

(
Mpl

α

)
. (2.15)

That is, Ȟ∗
(
Mpl

)
is H∗

(
Mpl

)
, but with grading shifted by 2 − χ(α, α) in the component

H∗
(
Mpl

α

)
⊂ H∗

(
Mpl

)
.

Remark 2.8. We now have two different versions M and Mpl of the moduli stack of ob-
jects in A. Most of the literature on moduli stacks focusses on M. However, for enumerative
invariants, Mpl is often more useful.

To see why, observe that one often forms enumerative invariants by forming moduli schemes
Mst

α (τ) ⊆ Mss
α (τ) of τ -(semi)stable objects in A in class α in K(A), for τ a suitable stabil-

ity condition. In good cases Mst
α (τ) has a perfect obstruction theory, and Mss

α (τ) is proper.
If Mst

α (τ) = Mss
α (τ), then by Behrend and Fantechi [6] we have a virtual class [Mss

α (τ)]virt
in H∗(Mss

α (τ)).

If E ∈ A is τ -stable then Aut(E) = Gm, and thus IsoM([E]) = Gm and IsoMpl([E]) = {1}.
Now C-schemes may be regarded as examples of Artin C-stacks with trivial isotropy groups.
Then Mst

α (τ) ⊆ Mpl is an open substack, so we can regard [Mss
α (τ)]virt as lying in H∗

(
Mpl

)
.

But in general there is no natural morphism Mst
α (τ) → M, so we cannot map [Mss

α (τ)]virt
to H∗(M).

The next theorem, proved in [58], gives a geometric interpretation of the graded Lie alge-
bra Ĥ∗+2(M)/D

(
Ĥ∗(M)

)
.

Theorem 2.9. Work in the situation of Assumption 2.4 and Definitions 2.5 and 2.7, and
consider the graded Lie algebra Ĥ∗+2(M)/D

(
Ĥ∗(M)

)
constructed by combining Proposition 2.3

and Theorem 2.6. Then Πpl : M → Mpl gives a morphism H∗
(
Πpl

)
: H∗(M) → H∗

(
Mpl

)
. It is

surjective, with kernel D(H∗(M)). This induces an isomorphism

H∗
(
Πpl

)
∗ : H∗(M)/D(H∗(M)) −→ H∗

(
Mpl

)
.

Comparing (2.12) and (2.15), we see this is an isomorphism for all n ∈ Z:

Ĥn+2(M)/D
(
Ĥn(M)

)
−→ Ȟn

(
Mpl

)
. (2.16)

Thus there is a unique Lie bracket [ , ] on Ȟ∗
(
Mpl

)
making it into a graded Lie algebra, such

that (2.16) is a Lie algebra isomorphism. Hence Ȟ0

(
Mpl

)
is a Lie algebra.

Remark 2.10.

(a) The fact that (2.16) is an isomorphism depends on the assumptions that R is a Q-algebra,
that we are working with an abelian or exact category A rather than a triangulated
category T , and on another assumption we have suppressed that holds in all the cases we
will discuss, which imply that the [∗/Gm]-fibration Πpl : M → Mpl is ‘rationally trivial’
in the sense of [58].
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In the more general cases discussed in [58] – in particular, if either R is not a Q-algebra,
or we work with triangulated categories T such as Db coh(X) – then equation (2.16) need
not be an isomorphism, although under mild conditions it is an isomorphism when n = 0,
which is what matters in this paper.

Proving a conjecture in [58], Upmeier [107] gives a direct construction of the graded Lie
bracket [ , ] on Ȟ∗

(
Mpl

)
, using a new notion of characteristic class of perfect complexes

over [∗/Gm]-fibrations Π: S → T of stacks S, T , called the projective Euler class, such
that (2.16) is a morphism of graded Lie algebras in every case, whether or not (2.16) is an
isomorphism.

(b) As in [58], in cases in which we can compute Ȟ∗
(
Mpl

)
explicitly, Ȟ0

(
Mpl

)
is often (a minor

modification of) a Kac–Moody Lie algebra g as in Kac [63, Sections 1 and 5] (when A is
a derived categoryDb coh(X) orDbmod-CQ), or its positive part n+ (whenA = mod-CQ).
For example, if Q is a quiver whose underlying graph is an ADE Dynkin diagram and
A = Dbmod-CQ then Ȟ0

(
Mpl

)
= g is the corresponding finite-dimensional ADE Lie

algebra sl(n+ 1,C), so(2n,C), e6, e7, e8, and A = mod-CQ gives its positive part n+.

Vertex algebras were originally introduced in mathematics by Borcherds [10] to better
understand the construction of Kac–Moody-type Lie algebras.

2.5 Morphisms of the vertex and Lie algebras of Sections 2.3–2.4

We now construct morphisms between the graded vertex algebras and Lie algebras of Sec-
tions 2.3–2.4, that will be used in the proofs of our main results in Section 6.

Definition 2.11. Let A, M, Φ, Ψ, K(A), χ, ϵα,β, Θ
• and A′, M′, Φ′, Ψ′, K(A′), χ′, ϵ′α,β, Θ

′• be

two sets of data satisfying Assumption 2.4. Write
(
Ĥ∗(M),1, ezD, Y

)
and

(
Ĥ∗(M′),1′, ezD

′
, Y ′)

for the corresponding graded vertex algebras from Theorem 2.6. Suppose:

(a) We are given a C-linear exact functor Σ: A → A′. This should induce a morphism
σ : M → M′ of moduli stacks, which acts on C-points as σ([E]) = [Σ(E)]. The induced
morphism Σ∗ : K0(A) → K0(A′) descends to Σ∗ : K(A) → K(A′), with Σ∗(JEK) = JΣ(E)K.
In Ho(ArtC) we have

Φ′ ◦ (σ × σ) = σ ◦ Φ, Ψ′ ◦ (id[∗/Gm] × σ) = σ ◦Ψ.

(b) We are given a biadditive morphism ξ : K(A)×K(A) → Z.
(c) We are given a vector bundle F → M×M of mixed rank, such that Fα,β := F |Mα×Mβ

has
rank ξ(α, β) for all α, β ∈ K(A). We also write G → M for the vector bundle ∆∗

M(F ∗),
where ∆M : M → M×M is the diagonal morphism. Then Gα := G|Mα has rank ξ(α, α).

All this data should satisfy:

(i) χ′(Σ∗(α),Σ∗(β)) = χ(α, β) + ξ(α, β) + ξ(β, α) for all α, β ∈ K(A).

(ii) ϵ′Σ∗(α),Σ∗(β)
= (−1)ξ(α,β)ϵα,β for all α, β ∈ K(A).

(iii) As for (2.6)–(2.9), there are isomorphisms of vector bundles

(Φ× idM)∗(F ) ∼= Π∗
13(F )⊕Π∗

23(F ), (2.17)

(idM × Φ)∗(F ) ∼= Π∗
12(F )⊕Π∗

13(F ), (2.18)

(Ψ× idM)∗(F ) ∼= Π∗
1(L[∗/Gm])⊗Π∗

23(F ), (2.19)

(Π2,Ψ ◦Π13)
∗(F ) ∼= Π∗

1(L
∗
[∗/Gm])⊗Π∗

23(F ). (2.20)
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(iv) In K0(Perf(M×M)) we have

(σ × σ)∗([Θ′•]) = [Θ•] + [F ] + [σ∗M(F ∗)],

where σM : M×M → M×M exchanges the factors. (This implies (i).)

(v) There is a vector bundle Gpl → Mpl with G ∼=
(
Πpl

)∗(
Gpl

)
.

Write ctop(G) ∈ H∗(M) for the top Chern class crankG(G) of G. Note that as rankG depends
on the component Mα ⊂ M as in (c), we have ctop(G)|Mα = cξ(α,α)(Gα). Define an R-module
morphism

Ω: H∗(M) −→ H∗(M′) by Ω(u) = H∗(σ)
(
u ∩ ctop(G)

)
. (2.21)

Here if u ∈ Ha(Mα) then Ω(u) ∈ Ha−2ξ(α,α)(M′
Σ∗(α)

). Combining this with (2.12) and (i), we

see that Ω: Ĥ∗(M) → Ĥ∗(M′) is grading-preserving. The next theorem is proved in [58]:

Theorem 2.12. In Definition 2.11, Ω:
(
Ĥ∗(M),1, ezD, Y

)
→

(
Ĥ∗(M′),1′, ezD

′
, Y ′) is a mor-

phism of graded vertex algebras.

Remark 2.13. To prove Theorem 2.12, it is essential that G → M should be a vector bundle,
not just a perfect complex. This ensures that ξ(α, α) = rankGα ⩾ 0 and ci(Gα) = 0 for
i > ξ(α, α), which are used in the proof.

One consequence is that we cannot make the analogues of Definition 2.11 and Theorem 2.12
work when we replace A, A′ by triangulated categories T , T ′, such as T = Db coh(X), as
allowed in [58], because we cannot satisfy the conditions of Definition 2.11 with nonzero vector
bundles F , G in the triangulated case – for example, unless ξ ≡ 0 we would have ξ(α, β) < 0 for
some α, β with Mα,Mβ ̸= ∅, and then Definition 2.11(c) gives rankFα,β < 0, a contradiction.

Definition 2.14. Work in the situation of Definition 2.11. Then σ : M → M′ descends to
a morphism σpl : Mpl → M′pl with σpl ◦ Πpl = Π′pl ◦ σ in Ho(ArtC). As for (2.21), define an
R-module morphism

Ωpl : H∗
(
Mpl

)
−→ H∗

(
M′pl) by Ωpl(u) = H∗

(
σpl

)(
u ∩ ctop

(
Gpl

))
. (2.22)

By (2.15) we see that Ωpl : Ȟ∗
(
Mpl

)
−→ Ȟ∗

(
M′pl) is grading preserving. From σpl ◦ Πpl =

Π′pl ◦ σ, G ∼=
(
Πpl

)∗(
Gpl

)
, and (2.21)–(2.22) we see that the following diagram commutes:

H∗(M)
Ω|H∗(M)

//

H∗(Πpl)��

H∗(M′)

H∗(Π̃pl) ��
H∗

(
Mpl

) Ωpl
// H∗

(
M′pl).

Hence Theorems 2.6, 2.9, and 2.12 imply:

Corollary 2.15. In Definition 2.14, Ωpl : Ȟ∗
(
Mpl

)
→ Ȟ∗

(
M′pl) is a morphism of the graded

Lie algebras in Theorem 2.9.

3 Background on stability conditions, wall-crossing formulae,
and pair invariants

Next we explain parts of the second author’s series [48, 49, 50, 51, 52, 53], focussing in particular
on Ringel–Hall algebras and Lie algebras, motivic invariants, and their wall-crossing formulae.
Almost all of this section will not be used later, but appears only for motivation, because of the
comparison between Theorem 3.15 and Conjecture 4.2. So we omit details in places.
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3.1 Constructible functions and stack functions

The theory of constructible functions on Artin stacks was developed by the second author [49].
We use the notation on stacks from Section 2.2. All stacks in Section 3 are assumed to have
affine geometric stabilizers.

Definition 3.1. LetX, Y be Artin C-stacks. We call C ⊆ X(C) constructible if C =
⋃
i∈I Xi(C),

where {Xi : i ∈ I} is a finite collection of finite type Artin C-substacks Xi of X. Let R be
a commutative Q-algebra. A function f : X(C) → R is called constructible if f(X(C)) is finite
and f−1(c) is a constructible set in X(C) for each c ∈ f(X(C)) \ {0}. Write CF(X) for the
R-module of R-valued constructible functions on X. If C ⊆ X(C) is constructible we write
δC ∈ CF(X) for its characteristic function. If ϕ : X → Y is a representable 1-morphism then [49,
Section 4.3] defines the R-linear pushforward ϕ∗ : CF(X) → CF(Y ), using Euler characteristics.
If θ : X → Y is a finite type 1-morphism then [49, Section 5.2] defines the R-linear pullback
θ∗ : CF(Y ) → CF(X).

Here [49, Theorems 5.4, 5.6 and Definition 5.5] are some properties of these.

Theorem 3.2. Let W , X, Y , Z be Artin C-stacks, and β : X → Y , γ : Y → Z be 1-morphisms.
Then

(γ ◦ β)∗ = γ∗ ◦ β∗ : CF(X) −→ CF(Z), (3.1)

(γ ◦ β)∗ = β∗ ◦ γ∗ : CF(Z) −→ CF(X), (3.2)

supposing β, γ representable in (3.1), and of finite type in (3.2). If

W η
//

θ
��

Y

ψ
��

X
ϕ // Z

is a 2-Cartesian square with

η, ϕ representable and

θ, ψ of finite type, then

the following commutes:

CF(W ) η∗
// CF(Y )

CF(X)
ϕ∗ //

θ∗

OO

CF(Z).

ψ∗

OO

(3.3)

The second author [52] also introduced ‘stack functions’, a universal generalization of con-
structible functions on stacks. To each Artin C-stack X we assign an R-module SF(X) of ‘stack
functions’, which is generated by morphisms f : S → X with S a finite type Artin C-stack and f
a representable 1-morphism, subject to some relations we will not give. They have the same
package of properties as constructible functions above:

(i) A constructible set C ⊂ X(C) has a ‘characteristic function’ δ̄C ∈ SF(X).

(ii) There are R-linear pushforwards ϕ∗ : SF(X) → SF(Y ) by representable 1-morphisms
ϕ : X → Y .

(iii) There are R-linear pullbacks θ∗ : SF(Y ) → SF(X) by finite type 1-morphisms θ : X → Y .

(iv) The analogues of (3.1)–(3.3) hold. There are natural transformations SF(X) → CF(X),
defined using fibrewise Euler characteristics, which commute with pushforwards and pull-
backs, and map δ̄C 7→ δC in (i).

As in [48, 49, 50, 51, 52, 53], stack functions are useful for studying motivic invariants.

3.2 Ringel–Hall algebras and Lie algebras

Following [50], we now explain how to define the Ringel–Hall algebra of a C-linear abelian
category, using either constructible functions or stack functions. The next assumption sets out
the data we need. It is similar to Assumption 2.4, and often both hold at once.
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Assumption 3.3. Let A be a C-linear abelian category coming from algebraic geometry or
representation theory, e.g., we could take A = coh(X) for X a smooth projective C-scheme, or
A = mod-CQ the category of C-representations of a quiver Q. Assume:

(a) We can form a natural moduli stack M of objects E in A, an Artin C-stack, locally of
finite type. Then C-points of M are isomorphism classes [E] of objects E ∈ A, and the
isotropy groups are IsoM([E]) = Aut(E).

(b) We can form a natural moduli stack Exact of short exact sequences E• = (0 → E1 →
E2 → E3 → 0) in A, an Artin C-stack, locally of finite type. There are 1-morphisms
πi : Exact → M for i = 1, 2, 3 acting by πi : E• 7→ Ei on C-points. Here π2 : Exact → M is
representable, and (π1, π3) : Exact → M×M is finite type.

(c) We are given a surjective quotient K0(A) ↠ K(A) of the Grothendieck group K0(A)
of A. We write JEK ∈ K(A) for the class of E ∈ A. We require that the map M(C) →
K(A) mapping E 7→ JEK should be locally constant. This gives a decomposition M =∐
α∈K(A)Mα of M into open and closed C-substacks Mα ⊂ M of objects in class α. We

also suppose that M0 = {[0]}, that is, 0 ∈ A is the only object in class 0 ∈ K(A).

Define the positive cone C(A) ⊂ K(A) by C(A) =
{
JEK : 0 ̸= E ∈ A

}
.

(d) For all α, β, γ ∈ K(A) there is a 2-commutative diagram in ArtC with all squares 2-
Cartesian:

Mα×Mβ×Mγ Exactα,β×Mγ
(π1,π3)×idMγ

oo
π2×idMγ

//Mα+β×Mγ

Mα×Exactβ,γ

idMα×(π1,π3)
OO

idMα×π2��

N α,β,γ

Πα,(β,γ)oo
Π(α+β,γ) //

Π(α,β),γ

OO

Π(α,β+γ)��
HP

NV

��

��
Exactα+β,γ

(π1,π3)
OO

π2 ��
Mα×Mβ+γ Exactα,β+γ

(π1,π3)oo π2 //Mα+β+γ .

(3.4)

Here Exactα,β is the moduli stack of short exact sequences 0 → Eα → Eα+β → Eβ → 0
in A, where JEδK = δ, and N α,β,γ is the moduli stack of flags Eα ⊂ Eα+β ⊂ Eα+β+γ of
subobjects in A. In the language of [48], N α,β,γ is a moduli stack of configurations in A.

Assumption 3.3 holds in large classes of interesting examples, as in [48, 50, 51, 53].

Definition 3.4. Suppose Assumption 3.3 holds. Following [50, Section 4], define an R-bilinear
product ∗ : CF(M)× CF(M) → CF(M) by

f ∗ g = (π2)∗ ◦ (π1, π3)∗(f ⊠ g),

using π2 : Exact → M, (π1, π3) : Exact → M×M and the notation of Section 3.1. Considering
the commutative diagram from (3.3) and (3.4)

CF(Mα×Mβ×Mγ)

(idMα×(π1,π3))∗

��

((π1,π3)×idMγ )
∗

// CF(Exactα,β×Mγ)

(Π(α,β),γ)
∗

��

(π2×idMγ )∗
// CF(Mα+β×Mγ)

(π1,π3)∗

��
CF(Mα×Exactβ,γ)

Π∗
α,(β,γ) //

(idMα×π2)∗
��

CF(N α,β,γ)
(Π(α+β,γ))∗ //

(Π(α,β+γ))∗
��

CF(Exactα+β,γ)

(π2)∗
��

CF(Mα×Mβ+γ)
(π1,π3)∗ // CF(Exactα,β+γ)

(π2)∗ // CF(Mα+β+γ),

we find that (fα∗fβ)∗fγ = fα∗(fβ ∗fγ) for fα, fβ, fγ ∈ CF(M). Hence CF(M) is an associative
R-algebra, with product ∗ and identity δ[0], where δ[0] : M(C) → R is given by δ[0]([E]) = 1 if
E = 0 and δ[0]([E]) = 0 otherwise.
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The same definition makes the stack functions SF(M) into an associative R-algebra. We call
CF(M), SF(M) Ringel–Hall algebras, as the construction originated with the work of Ringel
on Hall algebras [91]. Observe that as ∗ is associative, CF(M), SF(M) are also Lie algebras
over R, with Lie bracket

[f, g] = f ∗ g − g ∗ f. (3.5)

An object E ∈ A is called indecomposable if we cannot write E ∼= E1⊕E2 for E1, E2 ̸∼= 0 in A.
A constructible function f ∈ CF(M) is called supported on indecomposables if f([E]) ̸= 0 for
[E] ∈ M(C) implies that E is indecomposable. Write CFind(M) ⊂ CF(M) for the R-submodule
of f ∈ CF(M) supported on indecomposables. Then [50, Theorem 4.9] says that CFind(M) is
closed under the Lie bracket (3.5), and so is a Lie subalgebra of CF(M). Note that CFind(M)
is generally not closed under ∗.

In [50, Section 5], the second author defines an R-subalgebra SFal(M) ⊂ SF(M) of stack
functions with algebra stabilizers, and a Lie subalgebra SFind

al (M) ⊂ SFal(M) of stack functions
supported on virtual indecomposables, which is an analogue of the Lie subalgebra CFind(M) ⊂
CF(M).

3.3 (Weak) stability conditions on abelian categories

Next we summarize some material from [51]. See also Rudakov [93].

Definition 3.5. Suppose Assumption 3.3 holds. Let (T,≤) be a totally ordered set and
τ : C(A) → T be a map. We call (τ, T,≤) a weak stability condition on A if for all α, β, γ ∈ C(A)
with β = α+ γ, either τ(α) ≤ τ(β) ≤ τ(γ), or τ(α) ≥ τ(β) ≥ τ(γ).

We call (τ, T,≤) a stability condition if for all such α, β, γ, either τ(α) < τ(β) < τ(γ), or
τ(α) > τ(β) > τ(γ), or τ(α) = τ(β) = τ(γ).

Let (τ, T,≤) be a weak stability condition. An object E of A is called

(i) τ -stable if τ([E′]) < τ([E/E′]) for all subobjects E′ ⊂ E with E′ ̸= 0, E.

(ii) τ -semistable if τ([E′])≤τ([E/E′]) for all E′ ⊂ E with E′ ̸= 0, E.

(iii) τ -unstable if it is not τ -semistable.

(iv) strictly τ -semistable if it is τ -semistable but not τ -stable.

If (τ, T,⩽),
(
τ̃ , T̃ ,⩽

)
are weak stability conditions on A, we say that

(
τ̃ , T̃ ,⩽

)
dominates

(τ, T,≤) if τ(α) ≤ τ(β) implies τ̃(α) ≤ τ̃(β) for all α, β ∈ C(A).
We call a weak stability condition (τ, T,≤) on A permissible if

(a) A is τ -artinian, that is, there are no infinite chains · · · ⊊ E3 ⊊ E2 ⊊ E1 of subobjects in A
with τ([En+1]) ≤ τ([En/En+1]) for all n = 1, 2, . . . .

(b) For each α ∈ K(A), write Mss
α (τ) =

{
[E] ∈ M(C) : E is τ -semistable, JEK = α

}
. Then

Mss
α (τ) is a constructible set, as in Definition 3.1.

We also write Mst
α (τ) =

{
[E] ∈ M(C) : E is τ -stable, JEK = α

}
.

Remark 3.6.

(a) As in [51, Section 4.1], there are some theorems which hold for stability conditions but are
false for weak stability conditions. However, we will not use any of these in this paper, so
we will work with weak stability conditions.

(b) In the examples we will be interested in,Mst
α (τ) andMss

α (τ) will actually be finite type open
substacks in M, but for the theory of [51, 53] it is sufficient to suppose only that Mss

α (τ)
is a constructible set.
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Example 3.7. For any A satisfying Assumption 3.3, we may take T = ∗ to be the point, ⩽ the
unique order on ∗, and τtr : C(A) → ∗ to be the projection. Then (τtr, ∗,⩽) is a stability condition
on A, the trivial stability condition. Every E ∈ A is τtr-semistable, so Mss

α (τtr) = Mα(C) for
α ∈ C(A). Thus (τtr, ∗,⩽) is permissible if and only if Mα is of finite type for all α ∈ C(A).
The trivial stability condition dominates all weak stability conditions on A.

The next two examples are taken from [51, Sections 4.3–4.4].

Example 3.8. As explained in more detail in Section 5, let Q = (Q0, Q1, h, t) be a quiver,
and A = mod-CQ be the abelian category of C-representations of Q. Write objects of A as
(V ,ρ) = ((Vv)v∈Q0 , (ρe)e∈Q1), where Vv is a finite-dimensional C-vector space and ρe : Vt(e) →
Vh(e) a linear map. Define the dimension vector of (V ,ρ) to be d = dim(V ,ρ) ∈ NQ0 ⊂ ZQ0 ,

where d(v) = dimC Vv for v ∈ Q0. Define K(A) = ZQ0 to be the lattice of dimension vectors,
with J(V ,ρ)K = dim(V ,ρ). Then the positive cone is C(A) = NQ0 \ {0}.

Choose real numbers µv ∈ R for all v ∈ Q0. Define a map µ : C(A) → R by

µ(d) =

∑
v∈Q0

d(v)µv∑
v∈Q0

d(v)
.

Then [51, Example 4.14] shows that (µ,R,⩽) is a permissible stability condition on mod-CQ,
called slope stability. We call µ a slope function.

Example 3.9. Let X be a smooth projective C-scheme of dimension m, and A = coh(X)
the abelian category of coherent sheaves on X. Let K(A) = Knum(coh(X)) be the numerical
Grothendieck group. Define G to be the set of monic rational polynomials in t of degree at
most m:

G =
{
p(t) = td + ad−1t

d−1 + · · ·+ a0 : d = 0, 1, . . . ,m, a0, . . . , ad−1 ∈ Q
}
.

Define a total order ‘⩽’ on G by p ⩽ p′ for p, p′ ∈ G if either

(a) deg p > deg p′, or

(b) deg p = deg p′ and p(t) ⩽ p′(t) for all t≫ 0.

We write p < q if p ⩽ q and p ̸= q. Note that deg p > deg p′ in (a) implies that p(t) > p′(t) for
all t≫ 0, which is the opposite to p(t) ⩽ p′(t) for t≫ 0 in (b).

Fix a very ample line bundle OX(1) on X. For E ∈ coh(X), the Hilbert polynomial PE is
the unique polynomial in Q[t] such that PE(n) = dimH0(E(n)) for all n ≫ 0. Equivalently,
PE(n) = χ̄

(
[OX(−n)], [E]

)
for all n ∈ Z. Thus, PE depends only on the class α ∈ Knum(coh(X))

of E, and we may write Pα instead of PE . Define τ : C(coh(X)) → G by τ(α) = Pα/rα, where Pα
is the Hilbert polynomial of α, and rα is the leading coefficient of Pα, which must be positive.
Then as in [51, Example 4.16], (τ,G,⩽) is a permissible stability condition on coh(X), called
Gieseker stability. Gieseker stability is studied in [46, Section 1.2].

3.4 Constructible and stack functions ϵα(τ ), ϵ̄α(τ )

Definition 3.10. Suppose Assumption 3.3 holds, and let (τ, T,⩽) be a permissible weak stability
condition on A. Then for each α ∈ C(A) we have a constructible set Mss

α (τ) ⊂ M(C), so as in
Section 3.1 we have δMss

α (τ) ∈ CF(M) and δ̄Mss
α (τ) ∈ SF(M), where in fact δ̄Mss

α (τ) ∈ SFal(M).
Following [51, Definitions 7.6 and 8.1], define elements ϵα(τ) ∈ CF(M) and ϵ̄α(τ) ∈ SFal(M)
for α ∈ C(A) by

ϵα(τ) =
∑

n⩾1, α1,...,αn∈C(A) :
α1+···+αn=α, τ(αi)=τ(α), all i

(−1)n−1

n
δMss

α1
(τ) ∗ δMss

α2
(τ) ∗ · · · ∗ δMss

αn
(τ), (3.6)
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ϵ̄α(τ) =
∑

n⩾1, α1,...,αn∈C(A) :
α1+···+αn=α, τ(αi)=τ(α), all i

(−1)n−1

n
δ̄Mss

α1
(τ) ∗ δ̄Mss

α2
(τ) ∗ · · · ∗ δ̄Mss

αn
(τ), (3.7)

where ∗ is the Ringel–Hall multiplication, and there are only finitely many nonzero terms in
(3.6)–(3.7) by [51, Definition 7.6]. Then [51, Theorems 7.7 and 8.2] prove

δMss
α (τ) =

∑
n⩾1, α1,...,αn∈C(A) :

α1+···+αn=α, τ(αi)=τ(α), all i

1

n!
ϵα1(τ) ∗ ϵα2(τ) ∗ · · · ∗ ϵαn(τ), (3.8)

δ̄Mss
α (τ) =

∑
n⩾1, α1,...,αn∈C(A) :

α1+···+αn=α, τ(αi)=τ(α), all i

1

n!
ϵ̄α1(τ) ∗ ϵ̄α2(τ) ∗ · · · ∗ ϵ̄αn(τ), (3.9)

with only finitely many nonzero terms in (3.8)–(3.9). Formally, for each t ∈ T we may
rewrite (3.6) and (3.8) as

∑
α∈C(A) : τ(α)=t

ϵα(τ) = log

[
1 +

∑
α∈C(A) : τ(α)=t

δMss
α (τ)

]
,

1 +
∑

α∈C(A) : τ(α)=t

δMss
α (τ) = exp

[ ∑
α∈C(A) : τ(α)=t

ϵα(τ)

]
.

Then [51, Theorems 7.8 and 8.7] prove:

Theorem 3.11. In Definition 3.10, ϵα(τ) lies in the Lie subalgebra CFind(M)⊂ CF(M) from
Section 3.2, and ϵ̄α(τ) lies in the Lie subalgebra SFind

al (M) ⊂ SFal(M).

Here is a way to think about the point of all this:

� Knowing the δMss
α (τ), δ̄Mss

α (τ) for α ∈ C(A) is equivalent to knowing the subsets of τ -
semistable objects Mss

α (τ) ⊂ M(C).

� By (3.6)–(3.9), knowing the δMss
α (τ), δ̄Mss

α (τ) for all α ∈ C(A) is equivalent to knowing the
ϵα(τ), ϵ̄α(τ) for all α ∈ C(A).

� The δMss
α (τ), δ̄Mss

α (τ) tend to satisfy identities in the algebras (CF(M), ∗) and (SFal(M), ∗),
but the ϵα(τ), ϵ̄α(τ) satisfy corresponding identities in the Lie algebras (CFind(M), [ , ])
and (SFind

al (M), [ , ]).

� Thus, working with the ϵα(τ), ϵ̄α(τ) may be useful if we want to use a construction which
works for Lie algebras, but not for associative algebras.

This occurs in Donaldson–Thomas theory of Calabi–Yau 3-folds [60, Section 5.3], where
there is a Lie algebra morphism from SFind

al (M) which does not extend to SFal(M). It
also occurred in Section 2.3, when we had a Lie algebra structure on Ȟ∗

(
Mpl

)
, but no

corresponding associative algebra.

3.5 Wall-crossing under change of stability condition

In [53] the second author proved transformation laws for the δMss
α (τ), δ̄Mss

α (τ) and ϵα(τ), ϵ̄α(τ)
under change of stability condition. These involve combinatorial coefficients S(∗; τ, τ̃) ∈ Z and
U(∗; τ, τ̃) ∈ Q defined in [53, Section 4.1]. Following [60, Section 3.3], we have changed some
notation from [53].



Universal Structures in C-Linear Enumerative Invariant Theories 19

Definition 3.12. Suppose Assumption 3.3 holds, and let (τ, T,⩽),
(
τ̃ , T̃ ,⩽

)
be weak stability

conditions on A.
Let n ⩾ 1 and α1, . . . , αn ∈ C(A). If for all i = 1, . . . , n− 1 we have either

(a) τ(αi) ⩽ τ(αi+1) and τ̃(α1 + · · ·+ αi) > τ̃(αi+1 + · · ·+ αn), or

(b) τ(αi) > τ(αi+1) and τ̃(α1 + · · ·+ αi) ⩽ τ̃(αi+1 + · · ·+ αn),

then define S(α1, . . . , αn; τ, τ̃) = (−1)r, where r is the number of i = 1, . . . , n− 1 satisfying (a).
Otherwise define S(α1, . . . , αn; τ, τ̃) = 0. Now define

U(α1, . . . , αn; τ, τ̃) = (3.10)∑
1⩽l⩽m⩽n, 0=a0<a1<···<am=n, 0=b0<b1<···<bl=m :
Define β1, . . . , βm ∈ C(A) by βi = αai−1+1 + · · ·+ αai .

Define γ1, . . . , γl ∈ C(A) by γi = βbi−1+1 + · · ·+ βbi .

We require τ(βi) = τ(αj), i = 1, . . . ,m, ai−1 < j ⩽ ai,
and τ̃(γi) = τ̃(α1 + · · ·+ αn), i = 1, . . . , l

(−1)l−1

l

l∏
i=1

S(βbi−1+1, βbi−1+2, . . . , βbi ; τ, τ̃)

m∏
i=1

1

(ai − ai−1)!
.

Here are some properties of the coefficients U(−). Equations (3.11)–(3.12) come from [53,
Theorem 4.8], and (3.13) follows from (3.10) and [53, equation (60)].

Theorem 3.13. Let Assumption 3.3 hold, and (τ, T,⩽),
(
τ̂ , T̂ ,⩽

)
,
(
τ̃ , T̃ ,⩽

)
be weak stability

conditions on A. Then for all α1, . . . , αn ∈ C(A) we have

U(α1, . . . , αn; τ, τ) =

{
1, n = 1,

0, otherwise,
(3.11)

∑
m,a0,...,am : m=1,...,n,
0=a0<a1<···<am=n,

set βk = αak−1+1 + · · ·+ αak ,
k=1,...,m

U(β1, . . . , βm; τ̂ , τ̃)
m∏
k=1

U(αak−1+1, αak−1+2, . . . , αak ; τ, τ̂)

= U(α1, . . . , αn; τ, τ̃).
(3.12)

If also
(
τ̃ , T̃ ,⩽

)
dominates (τ, T,⩽), as in Definition 3.5, then

U(α1, . . . , αn; τ, τ̃) = U(α1, . . . , αn; τ̃ , τ) = 0 unless τ̃(α1) = · · · = τ̃(αn). (3.13)

Then in [53, Theorem 5.2] the second author derives wall-crossing formulae under change of
stability condition from (τ, T,⩽) to

(
τ̃ , T̃ ,⩽

)
:

Theorem 3.14. Let Assumption 3.3 hold, and (τ, T,⩽),
(
τ̃ , T̃ ,⩽

)
be permissible weak stability

conditions on A. Suppose also that there exists a permissible weak stability condition
(
τ̂ , T̂ ,⩽

)
on A which dominates both (τ, T,⩽),

(
τ̃ , T̃ ,⩽

)
in the sense of Definition 3.5. Then for all

α ∈ C(A) we have

δMss
α (τ̃) =

∑
n⩾1, α1,...,αn∈C(A) :

α1+···+αn=α

S(α1, . . . , αn; τ, τ̃) · δMss
α1

(τ) ∗ δMss
α2

(τ) ∗ · · · ∗ δMss
αn

(τ), (3.14)

δ̄Mss
α (τ̃) =

∑
n⩾1, α1,...,αn∈C(A) :

α1+···+αn=α

S(α1, . . . , αn; τ, τ̃) · δ̄Mss
α1

(τ) ∗ δ̄Mss
α2

(τ) ∗ · · · ∗ δ̄Mss
αn

(τ), (3.15)

ϵα(τ̃) =
∑

n⩾1, α1,...,αn∈C(A) :
α1+···+αn=α

U(α1, . . . , αn; τ, τ̃) · ϵα1(τ) ∗ ϵα2(τ) ∗ · · · ∗ ϵαn(τ), (3.16)
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ϵ̄α(τ̃) =
∑

n⩾1, α1,...,αn∈C(A) :
α1+···+αn=α

U(α1, . . . , αn; τ, τ̃) · ϵ̄α1(τ) ∗ ϵ̄α2(τ) ∗ · · · ∗ ϵ̄αn(τ), (3.17)

where there are only finitely many nonzero terms in (3.14)–(3.17).

Here the third weak stability condition
(
τ̂ , T̂ ,⩽

)
does not enter (3.14)–(3.17), but is used to

prove that there are only finitely many nonzero terms. For the case of quivers in Sections 5–6,
we may take

(
τ̂ , T̂ ,⩽

)
to be the trivial stability condition (τtr, ∗,⩽) in Example 3.7, which

dominates any (τ, T,⩽),
(
τ̃ , T̃ ,⩽

)
.

Theorem 3.13 implies that using (3.16)–(3.17) to transform from ϵ∗(τ), ϵ̄∗(τ) to ϵ∗(τ̂), ϵ̄∗(τ̂),
and then to transform from ϵ∗(τ̂), ϵ̄∗(τ̂) to ϵ∗(τ̃), ϵ̄∗(τ̃), is equivalent to transforming from ϵ∗(τ),
ϵ̄∗(τ) to ϵ∗(τ̃), ϵ̄∗(τ̃), as you would expect.

The next result is proved in [53, Theorem 5.4]. We have no explicit definition for Ũ(α1, . . . , αn;
τ, τ̃), we only show that (3.17) can be rewritten in the form (3.18).

Theorem 3.15. In Theorem 3.14, equations (3.16)–(3.17) may be rewritten as equations in
the Lie algebras CFind(M), SFind

al (M) using the Lie brackets [ , ], rather than as equations in
CF(M), SFal(M) using the Ringel–Hall product ∗. That is, we may rewrite (3.17), and simi-
larly (3.16), in the form

ϵ̄α(τ̃) =
∑

n⩾1, α1,...,αn∈C(A) :
α1+···+αn=α

Ũ(α1, . . . , αn; τ, τ̃) · [[· · · [[ϵ̄α1(τ), ϵ̄α2(τ)], ϵ̄α3(τ)], . . . ], ϵ̄αn(τ)], (3.18)

for some system of combinatorial coefficients Ũ(α1, . . . , αn; τ, τ̃) ∈ Q, with only finitely many
nonzero terms, such that if we expand [f, g] = f ∗ g − g ∗ f then (3.18) becomes (3.17).

Alternatively, we may interpret (3.16)–(3.17) as holding in the universal enveloping alge-
bras U(CFind(M)), U(SFind

al (M)).

It will be very important later that (3.16)–(3.18) are universal wall-crossing formulae in a Lie
algebra. So we can make sense of the same wall-crossing formulae in the Lie algebras Ȟ0(M)
of Section 2.4.

These results are applied in [53, Sections 6.4–6.5] and [60] in the following way. Suppose
we can define a Lie algebra morphism Ψ: SFind

al (M) → LK(A), where LK(A) is an explicit Lie
algebra, often of the form ⟨λα : α ∈ K(A)⟩R for some commutative ring R, with Lie bracket
[λα, λβ] = cα,βλ

α+β for coefficients cα,β in R. Then we may define motivic invariants Jα(τ) ∈ R
by Ψ(ϵ̄α(τ)) = Jα(τ)λα. Applying Ψ to (3.17), interpreted using Theorem 3.15, then gives
a wall-crossing formula for the invariants Jα(τ). This is used in [60, Theorem 3.14] to prove
a wall-crossing formula for Donaldson–Thomas invariants of Calabi–Yau 3-folds.

4 A conjectural picture of universal structures
for enumerative invariant theories

4.1 General statement of the conjecture

We first describe our conjectural picture, in a way that tries to unify several rather different
contexts in algebraic geometry and differential geometry. Sections 4.3–4.6 will explain these
contexts. Our initial statement will be imprecise, with details added in Sections 4.3–4.6. We
write it as Assumption 4.1 followed by Conjecture 4.2. The assumption covers material which is
basically already known, and we can provide explicit definitions and proofs for (much of them
in [58]).
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Assumption 4.1. Let A be a C-linear additive category. Some examples we have in mind are,
in algebraic geometry, A = coh(X) or A = Db coh(X) for X a smooth projective C-scheme; in
representation theory, A = mod-CQ or A = Dbmod-CQ for Q a quiver without oriented cycles;
and in differential geometry, A could be the category of pairs (E,∇E) for E → X a unitary
complex vector bundle on a fixed compact manifold X, and ∇E a connection on E. Assume:

(a) We can form two natural moduli spaces M and Mpl of objects E in A, where the usual
moduli spaceM parametrizes such E up to isomorphism, and the ‘projective linear’ moduli
space Mpl parametrizes E up to isomorphisms modulo Gm · idE . There is a morphism
Π: M → Mpl.

HereM,Mpl may be Artin C-stacks, or higher C-stacks, or derived C-stacks, or topological
stacks, or topological spaces up to homotopy equivalence, depending on the context.

There is a morphism Φ: M×M → M mapping ([E], [F ]) 7→ [E ⊕ F ].

(b) We are given a surjective quotient K0(A) ↠ K(A) of the Grothendieck group K0(A)
of A. We write JEK ∈ K(A) for the class of E ∈ A. There should be splittings M =∐
α∈K(A)Mα, Mpl =

∐
α∈K(A)M

pl
α such that Mα, Mpl

α parametrize objects in class
α ∈ K(A). We write Φα,β = Φ|Mα×Mβ

: Mα ×Mβ → Mα+β.

(c) We are given a symmetric biadditive form χ : K(A)×K(A) → Z.

(d) We are given some natural additional geometric structures G, Gpl onM,Mpl. In the case of
abelian categories in algebraic geometry, for G we mean the data Ψ, Θ• in Assumption 2.4.

Using G, Gpl, there are notions of real virtual dimension of M, Mpl, with vdimRMα =
−χ(α, α) and vdimRMpl

α = 2− χ(α, α) for α ∈ K(A).

(e) There is a notion of orientation on M, Mpl, defined using the geometric structures G, Gpl.
In some contexts the complex geometry induces a natural orientation, just as a complex
manifold has a natural orientation considered as a real manifold, so issues of orientations
can largely be ignored. In other contexts there is no natural choice. The morphism
Π: M → Mpl identifies orientations on M and Mpl.

We suppose that M is orientable (this can often be proved), and that an orientation has

been chosen for M, the natural one if this is defined. We write oα, o
pl
α for the orientations

on Mα, Mpl
α .

(f) The morphism Φ: M×M → M has a natural relative orientation, so orientations on M
pull back under Φ to orientations on M×M. Using this, there are signs ϵα,β ∈ {±1} for
all α, β ∈ K(A) with Mα,Mβ ̸= ∅ such that oα⊠ oβ = ϵα,β ·Φ∗(oα+β). These ϵα,β satisfy
(2.2)–(2.4).

(g) Define Ĥ∗(M) to be H∗(M) with grading shifted as in (2.12). Then, as described in [58],
and in Section 2.3 for abelian categories A in algebraic geometry, using the data G and
signs ϵα,β in (d),(f) we can make Ĥ∗(M) into a graded vertex algebra over R.

(h) Define Ȟ∗
(
Mpl

)
to be H∗

(
Mpl

)
with grading shifted as in (2.15). Then, as described

in [58], and in Section 2.4 for abelian categories A in algebraic geometry, using the data Gpl

and signs ϵα,β in (d), (f) we can make Ȟ∗
(
Mpl

)
into a graded Lie algebra over R. Thus

Ȟ0

(
Mpl

)
is a Lie algebra.

Note that in many situations one can compute Ĥ∗(M) and Ȟ∗
(
Mpl

)
very explicitly (of-

ten Ĥ∗(M) is a lattice vertex algebra), and they are not difficult to work with in examples.

(i) There is a notion of stability condition τ on A, which induces notions of when objects
E ∈ A are τ -stable or τ -semistable. For example:
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• When A is an abelian category in algebraic geometry, we take τ to be a permissible
weak stability condition as in Section 3.3.

• When A is a triangulated category such as Db coh(X) or Dbmod-CQ, we may take τ
to be a suitable Bridgeland stability condition.

• When X is a compact oriented 4-manifold with b2+(X) = 1, and we wish to study
Donaldson theory on X, and A is the category of unitary complex vector bundles
E → X with connections ∇E , a stability condition is a Riemannian metric g on X,
which induces a splitting H2

dR(X,R) = H2
+ ⊕ H2

− of the de Rham 2-cohomology
into harmonic self-dual and anti-self-dual forms, with H2

+ = ⟨ω+⟩. Then (E,∇) is τ -
semistable if F+

∇E
= ic · idE⊗ω+ for c ∈ R. We call (E,∇) τ -stable if it is τ -semistable

and irreducible.

(j) If τ is a stability condition on A, we form moduli spaces Mst
α (τ) ⊆ Mss

α (τ) ⊆ Mpl
α of

τ -(semi)stable objects E ∈ A in each class α ∈ K(A).

Here Mss
α (τ) is compact (or has a compact ‘coarse moduli space’), and Mst

α (τ) has the
structure of a ‘virtual manifold’ (for example, Mst

α (τ) may be a smooth C-scheme, or
a C-scheme with perfect obstruction theory [6], or a smooth manifold, or a derived smooth
manifold [54, 55, 56, 57]). The orientation on Mpl

α in (e) induces an orientation on Mst
α (τ).

Thus, if Mst
α (τ) = Mss

α (τ) (that is, if there are no strictly τ -semistables in class α) then
Mss

α (τ) is a compact, oriented virtual manifold of virtual dimension vdimRMss
α (τ) =

2 − χ(α, α), so it has virtual class [Mss
α (τ)]virt in homology H2−χ(α,α)

(
Mpl

α

)
, which is

Ȟ0

(
Mpl

α

)
by (2.15).

In fact [Mss
α (τ)]virt may be defined in Z-homology H2−χ(α,α)(Mα,Z).

As in Sections 4.3–4.6 and [58, 59], there are many interesting enumerative invariant theories
in which we can define all the data of Assumption 4.1.

The following conjecture should not be regarded as a precise statement, nor are we claiming
that it should hold in every theory for which some version of Assumption 4.1 holds. It is intended
as an outline of a general structure we expect to see in many enumerative invariant theories,
which may need modification in particular cases. We make some more exact conjectures in
Sections 4.3–4.6.

Conjecture 4.2. Suppose Assumption 4.1 holds. Then:

(i) For all α ∈ K(A) we may define invariants [Mss
α (τ)]inv ∈ Ȟ0

(
Mpl

α

)
. If Mst

α (τ) = Mss
α (τ)

then Assumption 4.1(j) gives a virtual class [Mss
α (τ)]virt in Ȟ0

(
Mpl

α

)
, and then [Mss

α (τ)]inv
= [Mss

α (τ)]virt. It is crucial that Ȟ0

(
Mpl

α

)
= H2−χ(α,α)

(
Mpl

α

)
is homology over a Q-algebra

R, as [Mss
α (τ)]inv may exist in Q-homology but not in Z-homology.

(ii) Let τ , τ̃ be stability conditions on A as in Assumption 4.1(i). It may be necessary to
impose a condition on τ , τ̃ to ensure that (4.1)–(4.2) below have only finitely many nonzero
terms – see the notion of ‘globally finite change of stability condition’ in [53, Definition 5.1].
Roughly, this says that τ , τ̃ are sufficiently close in the space of stability conditions on A.

Then for all α ∈ K(A) (or in a ‘positive cone’ C(A) ⊂ K(A)), the analogue of (3.18) holds
in the Lie algebra Ȟ0

(
Mpl

)
from Assumption 4.1(h):

[Mss
α (τ̃)]inv =

∑
n⩾1, α1,...,αn∈C(A) :

α1+···+αn=α

Ũ(α1, . . . , αn; τ, τ̃) ·
[[
· · ·

[
[Mss

α1
(τ)]inv,

[Mss
α2
(τ)]inv

]
, . . .

]
, [Mss

αn
(τ)]inv

]
.

(4.1)
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Equivalently, as in Theorem 3.15, the analogue of (3.17) holds in the universal enveloping
algebra

(
U
(
Ȟ0

(
Mpl

))
, ∗
)
:

[Mss
α (τ̃)]inv =

∑
n⩾1, α1,...,αn∈C(A) :

α1+···+αn=α

U(α1, . . . , αn; τ, τ̃) · [Mss
α1
(τ)]inv∗

[Mss
α2
(τ)]inv ∗ · · · ∗ [Mss

αn
(τ)]inv.

(4.2)

We call (4.1)–(4.2) wall-crossing formulae for the invariants [Mss
α (τ)]inv.

We have only defined the U(α1, . . . , αn; τ, τ̃), Ũ(α1, . . . , αn; τ, τ̃) in Section 3.5 in the
abelian category case, in which the ‘positive cone’ C(A) makes sense. There should be
a way to extend the theory to triangulated categories such as Db coh(X), Dbmod-CQ.
Then we no longer have a good definition of ‘positive cone’ C(A) ⊂ K(A), so it is more
difficult both to define the U(α1, . . . , αn; τ, τ̃), and to ensure that (4.1)–(4.2) have only
finitely many nonzero terms. This extension was discussed in [53, Problem 7.1].

(iii) We currently have no direct definition of the invariants [Mss
α (τ)]inv in (i) when Mst

α (τ) ̸=
Mss

α (τ), starting from the moduli space Mss
α (τ) ⊆ Mpl

α and the geometric structures

Gpl
α , oplα upon it. However, in many cases there is an indirect definition, by making use of

the wall-crossing formulae (4.1)–(4.2) in an auxiliary category B. We call this the method
of pair invariants, and it is used in [60, Sections 5.4 and 13.1] to define Donaldson–Thomas
invariants of Calabi–Yau 3-folds. (These are used by Tanaka–Thomas [97] to study Vafa–
Witten invariants. See also Mochizuki’s use of ‘L-Bradlow pairs’ in [79, Section 7.3].)
When it applies, it shows that classes [Mss

α (τ)]inv satisfying (i),(ii) must be unique. We
explain it in the next definition.

Definition 4.3. Let Assumption 4.1 and Conjecture 4.2(i), (ii) hold for A. For clarity, suppose
also that A is a C-linear abelian category in algebraic geometry as in Assumption 3.1, and that
‘stability conditions’ τ in Assumption 4.1(i) mean permissible weak stability conditions (τ, T,⩽)
in Section 3.3.

To use the method of pair invariants, we should construct a second abelian category B satis-
fying Assumption 4.1 and Conjecture 4.2(i), (ii), such that:

(i) There is a C-linear inclusion i : A ↪→ B as a full abelian subcategory.

(ii) There is a distinguished object I ∈ B, with HomB(I, I) = C. Every object B ∈ B fits into
an exact sequence in B, unique up to isomorphism:

0 // i(A) // B // V ⊗C I // 0, (4.3)

where A ∈ A and V is a finite-dimensional C-vector space, so that V ⊗CI ∼=
⌜ n copies ⌝
I ⊕ I ⊕ · · · ⊕ I

if dimC V = n.

(iii) There is an identification K(B) = K(A) ⊕ Z with JBK =
(
JAK, dimC V

)
in (4.3). Then

C(B) =
(
(C(A)⨿ {0})× N

)
\ {(0, 0)}.

(iv) Writing χ, χ̃ for χ in Assumption 4.1(c) for A,B, we have χ(α, β) = χ̃((α, 0), (β, 0)) for
α, β ∈ K(A) and χ̃((0,m), (0, n)) = 2mn for m,n ∈ Z.

(v) Write M, Mpl for the moduli spaces for A, and M̃, M̃pl for the moduli spaces for B. Then
the inclusion i : A ↪→ B in (i) induces morphisms i : M → M̃, ipl : Mpl → M̃pl, which are

isomorphisms i : Mα → M̃(α,0) and i
pl : Mpl

α → M̃pl
(α,0) for α ∈ K(A). These isomorphisms

identify the extra data Gα, Gpl
α and G̃(α,0), G̃pl

(α,0) in Assumption 4.1(d) for A, B, and

the orientations oα, o
pl
α and õ(α,0), õ

pl
(α,0) in Assumption 4.1(e). The signs ϵα,β, ϵ̃α̃,β̃ in

Assumption 4.1(f) satisfy ϵα,β = ϵ̃(α,0),(β,0).
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(vi) i∗ : Ĥ∗(M) → Ĥ∗
(
M̃

)
and ipl∗ : Ȟ∗

(
Mpl

)
→ Ȟ∗

(
M̃pl

)
should be morphisms of the graded

vertex and Lie algebras in Assumption 4.1(g), (h).

For example, as in [60, Section 5.4], if A = coh(X) for X a smooth projective C-scheme, we
may define B to be the category of morphisms ϕ : V ⊗C OX(n) → A for n ∈ Z fixed, and V
a finite-dimensional C-vector space, and A ∈ coh(X).

Now suppose (τ, T,⩽) is a permissible weak stability condition on A. Define permissible weak
stability conditions (τ+, T+,⩽) and (τ−, T−,⩽) on B, such that T+ = (T × {0, 1})⨿ {+∞} and
T− = (T × {−1, 0})⨿ {−∞}, where:

� The order ⩽ on T+ is given by (t1, n1) ⩽ (t2, n2) for (t1, n1), (t2, n2) in T ×{0, 1} if either
t1 < t2 in T , or t1 = t2 and n1 ⩽ n2, and (t, n) < +∞ for all (t, n) ∈ T × {0, 1}.

� The order ⩽ on T− is given by (t1, n1) ⩽ (t2, n2) for (t1, n1), (t2, n2) in T ×{−1, 0} if either
t1 < t2 in T , or t1 = t2 and n1 ⩽ n2, and −∞ < (t, n) for all (t, n) ∈ T × {−1, 0}.

� If α ∈ C(A) then τ±(α, 0) = (τ(α), 0) and τ±(α, n) = (τ(α),±1) for n > 0.

� If n > 0 then τ±((0, n)) = ±∞ ∈ T±.

We should then be able to easily prove that:

(a) If α ∈ C(A) then ipl identifies Mss
α (τ) with M̃ss

(α,0)(τ±). Hence ipl∗ maps [Mss
α (τ)]inv 7→[

M̃ss
(α,0)(τ±)

]
inv

.

(b) M̃st
(0,1)(τ±) = M̃pl

(0,1) = {[I]} is a point, and
[
M̃ss

(0,1)(τ±)
]
inv

= 1
H0(M̃pl

(0,1)
)
in Ȟ0

(
M̃pl

(0,1)

)
=

H0

(
M̃pl

(0,1)

)
= R.

(c) If α ∈ C(A) then M̃ss
(α,1)(τ−) = ∅, as if B ∈ B with JBK = (α, 1) then (4.3) gives

a subobject i(A) ⊂ B with B/i(A) ∼= I, and τ−(i(A)) > −∞ = τ−(I), so B is τ−-unstable
by Definition 3.5. Hence

[
M̃ss

(α,1)(τ−)
]
virt

= 0.

(d) If α ∈ C(A) then M̃st
(α,1)(τ+) = M̃ss

(α,1)(τ+), as if B ∈ B with JBK = (α, 1) then there

can exist no subobjects 0 ̸= B′ ⊊ B with τ+(B
′) = τ+(B/B

′). Hence the virtual class[
M̃ss

(α,1)(τ+)
]
virt

is defined in Assumption 4.1(j), without using Conjecture 4.2.

Now consider the wall-crossing formula (4.1) for B with (α, 1), τ−, τ+ in place of α, τ , τ̃ , for
α ∈ C(A). It turns out that this may be written[

M̃ss
(α,1)(τ+)

]
virt

= (4.4)∑
n⩾1, α1,...,αn∈C(A) :

α1+···+αn=α,
τ(αi)=τ(α), i=1,...,n

(−1)n

n!
·
[[
· · ·

[[
M̃ss

(0,1)(τ−)
]
inv
,
[
M̃ss

(α1,0)
(τ−)

]
inv

]
, . . .

]
,
[
M̃ss

(αn,0)
(τ−)

]
inv

]
.

This holds because using [60, Proposition 13.8] one can show that

U
(
(α1, 0), . . . , (αk−1, 0), (0, 1), (αk, 0), . . . , (αn, 0); τ−, τ+)

=


(−1)n−k

(k − 1)!(n− k)!
, if τ(αi) = τ(α), i = 1, . . . , n,

0 otherwise,

and then equation (4.4) follows from (4.2) as in [60, Proposition 13.10].
Using (a),(b) above, let us rewrite (4.4) as[

M̃ss
(α,1)(τ+)

]
virt

=
[
ipl∗

(
[Mss

α (τ)]inv
)
, 1
H0(M̃pl

(0,1)
)

]
+ lower order terms, (4.5)



Universal Structures in C-Linear Enumerative Invariant Theories 25

where the ‘lower order terms’ are those with n ⩾ 2 in the sum in (4.4). Our goal is to define
[Mss

α (τ)]inv uniquely in the case when Mst
α (τ) ̸= Mss

α (τ). We do this by induction on α in
some order in C(A) compatible with addition, for instance by induction on rankα = 1, 2, . . .
if this is defined. Then by induction we can suppose the ‘lower order terms’ are uniquely
defined. The left-hand side of (4.5) is determined by (d) above. Hence in the inductive step,[
ipl∗

(
[Mss

α (τ)]inv
)
, 1
H0(M̃pl

(0,1)
)

]
is uniquely defined. If we have chosen B such that

[
−, 1

H0(M̃pl
(0,1)

)

]
is injective, then as ipl∗ is an isomorphism, this shows [Mss

α (τ)]inv is uniquely determined.
There is an alternative version of the method of pair invariants in which we replace (4.3) by

the exact sequence

0 // V ⊗C I // B // i(A) // 0,

and exchange (τ+, T+,⩽) and (τ−, T−,⩽) in the argument above.

Remark 4.4. In defining enumerative invariants in algebraic or differential geometry, there are
usually three main difficulties:

(a) transversality, whether we can make the moduli spaces smooth.

(b) compactness, whether the moduli spaces are compact, or can be compactified by including
singular solutions.

(c) strictly semistable or reducible points in the moduli spaces, which cause problems with the
definition of virtual classes when Mst

α (τ) ̸= Mss
α (τ).

An important aspect of Conjecture 4.2 is that it offers a new, universal, systematic approach to
problem (c).

With a proper understanding of obstruction theories [6], derived algebraic geometry [102, 103,
104, 105, 106], and derived differential geometry [54, 55, 56, 57], part (a) is really not a problem
(though people still make a fuss about it): virtual classes are well defined and well behaved even
when moduli spaces are not transverse.

For (b), in algebraic geometry we usually get compactness for free by considering moduli
spaces of the right kind of objects (for example, torsion-free sheaves rather than vector bundles).
In differential geometry, compactifying moduli spaces by singular solutions usually involves
difficult analytic issues. We have nothing new to say about this, we will just assume it works.

A common approach to problem (c) is to avoid it, by only considering classes α ∈ K(A) for
which Mst

α (τ) = Mss
α (τ), or by restricting to α for which there are very few strictly τ -semistable

points in Mss
α (τ), which can be understood and dealt with ‘by hand’. Some examples of this:

Thomas [100] originally defined Donaldson–Thomas invariants of Calabi–Yau 3-folds only when
Mst

α (τ) = Mss
α (τ). In Donaldson theory of 4-manifolds [23], almost all work focusses on SU(2)-

or SO(3)-instantons, rather than G-instantons for other Lie groups G, and on simply-connected
4-manifolds. This is because reducibles for SU(2)- or SO(3)-instantons come from line bundles,
and are easily understood. Similar comments apply to Casson invariants of 3-manifolds [2, 98],
in which restricting to SU(2) and to homology 3-spheres is used to control reducibles.

However, if we wish to study wall-crossing for enumerative invariants, we cannot restrict to
α with Mst

α (τ) = Mss
α (τ), as the wall-crossing may involve other moduli spaces Mss

β (τ) with

Mst
β (τ) ̸= Mss

β (τ). Conjecture 4.2 aims to solve problem (c) of defining invariants in the presence
of strictly semistables/reducibles, and understanding their wall-crossing, simultaneously, and
Conjecture 4.2(iii) uses the wall-crossing formula to define the invariants.

Remark 4.5 (on orientations). In contexts in which we are free to choose the orientation oplα
on Mpl

α in Assumption 4.1(e), we can change the sign of each invariant [Mss
α (τ)]inv arbitrarily

by changing the sign of oplα .
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This may seem to contradict the identities (4.1), (4.2), (4.4) which mix [Mss
α (τ)]inv for differ-

ent α. However, changing the oplα changes the ϵα,β in Assumption 4.1(f), and the Lie bracket [ , ]
on Ȟ∗

(
Mpl

)
and product ∗ on U

(
Ȟ∗

(
Mpl

))
used in (4.1), (4.2), (4.4) depend on the ϵα,β. The

combined effect of the sign changes on [Mss
α (τ)]inv and [ , ], ∗ cancels out.

As in [58], we can set the theory up in an orientation-independent way, by replacing Ȟ∗
(
Mpl

)
by homology Ȟ∗

(
Mpl, Opl

)
twisted by a principal Z2-bundle O

pl → Mpl of orientations on Mpl,
which is assumed to be trivializable (though not canonically trivial) in Assumption 4.1(e). Then
[Mss

α (τ)]inv, [ , ], ∗ exist in and on Ȟ∗
(
Mpl, Opl

)
canonically, without having to choose orienta-

tions.

4.2 Rewriting the wall-crossing formula in the style of Kontsevich–Soibelman

The second author developed the wall-crossing story for motivic invariants in Section 3 and
[48, 49, 50, 51, 52, 53] in 2003–2005, and applied it to Donaldson–Thomas invariants of Calabi–
Yau 3-folds in 2008 [60]. Independently, Kontsevich and Soibelman [66, Section 1.4] in 2008
wrote down their own wall-crossing formula for motivic Donaldson–Thomas invariants, which
is equivalent to a special case of (3.14)–(3.15) in a suitable associative algebra. Kontsevich and
Soibelman’s version has proved more popular with subsequent authors, possibly because the
coefficients S(−), U(−) in (3.14)–(3.17) are not easy to understand and compute.

We now explain how to rewrite our conjectured wall-crossing formulae (4.1)–(4.2) in the
style of Kontsevich–Soibelman [66, Section 1.4]. We work in the universal enveloping algebra
U
(
Ȟ0

(
Mpl

))
, an associative R-algebra with product ∗. As Ȟ0

(
Mpl

)
⊂ U

(
Ȟ0

(
Mpl

))
, the

invariants [Mss
α (τ)]inv in Conjecture 4.2(i) lie in U

(
Ȟ0

(
Mpl

))
, as we used in equation (4.2).

In the situation of Assumption 4.1 and Conjecture 4.2(i), in an analogue of (3.8)–(3.9), define
elements δssα (τ) ∈ U

(
Ȟ0

(
Mpl

))
for α ∈ C(A) by

δssα (τ) =
∑

n⩾1, α1,...,αn∈C(A) :
α1+···+αn=α, τ(αi)=τ(α), all i

1

n!
[Mss

α1
(τ)]inv ∗ · · · ∗ [Mss

αn
(τ)]inv. (4.6)

As for (3.6)–(3.7), this equation can be inverted to give

[Mss
α (τ)]inv =

∑
n⩾1, α1,...,αn∈C(A) :

α1+···+αn=α, τ(αi)=τ(α), all i

(−1)n−1

n
δssα1

(τ) ∗ · · · ∗ δssαn
(τ).

Let (τ,R,⩽) and (τ̃ ,R,⩽) be permissible slope stability conditions on A in the sense of
Section 3.3. (See Example 3.8 and Section 5.2 on slope stability.) Suppose that a < b in R
are such that the quasi-abelian subcategories A[a,b], Ã[a,b] ⊂ A generated by τ - and τ̃ -semistable

objects E, Ẽ ∈ A with τ(E), τ̃(Ẽ) ∈ [a, b] satisfy A[a,b] = Ã[a,b]. Then the Kontsevich–Soibelman
style analogue of (4.2) is

1 +
∑

n⩾1, α1,...,αn∈C(A) :
a⩽τ(α1)<τ(α2)<···<τ(αn)⩽b

δssα1
(τ) ∗ · · · ∗ δssαn

(τ)

= 1 +
∑

n⩾1, α1,...,αn∈C(A) :
a⩽τ̃(α1)<τ̃(α2)<···<τ̃(αn)⩽b

δssα1
(τ̃) ∗ · · · ∗ δssαn

(τ̃),

when this makes sense (we do not claim that it always does). As the sums in (4.2) are infinite,
they should be interpreted as lying in a completion Ū

(
Ȟ0

(
Mpl

))
of U

(
Ȟ0

(
Mpl

))
with respect

to a suitable ideal. Morally speaking, both sides of (4.2) count all objects in A[a,b] = Ã[a,b].
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Remark 4.6. As in Zhu [109], the graded vertex algebra Ĥ∗(M) has a Zhu algebra A
(
Ĥ∗(M)

)
=

Ĥ∗(M)/I, an associative R-algebra, with a natural morphism U
(
Ȟ0

(
Mpl

))
→ A

(
Ĥ∗(M)

)
.

It might be interesting to interpret (4.2) and (4.6)–(4.2) as equations in A
(
Ĥ∗(M)

)
or its

completion Ā
(
Ĥ∗(M)

)
.

4.3 The conjecture in algebraic geometry and representation theory

We now give more details on the ideas of Section 4.1 for C-linear enumerative invariant theories
coming from algebraic geometry and representation theory. But we exclude Donaldson–Thomas
type invariants of Calabi–Yau 4-folds [11, 19, 87], which will be discussed in Section 4.4. In the
sequel [59, Sections 6–8] we prove Conjecture 4.2 for most of the situations discussed in this
section.

4.3.1 General discussion for abelian categories

We first discuss the case of C-linear abelian categories A, such as coh(X) for X a smooth
projective C-scheme, or compactly-supported coherent sheaves cohcs(X) forX smooth and quasi-
projective, or mod-CQ for Q a quiver, or mod-CQ/I for (Q, I) a quiver with relations.

Then we have Ext groups Extk(E,F ) for E,F ∈ A and k = 0, 1, . . . , with Ext0(E,F ) =
HomA(E,F ), which are finite-dimensional C-vector spaces. We say that the category A has
dimension dimA = m if Extk(E,F ) = 0 for all E, F and k > m, and Extm(E,F ) ̸= 0 for
some E, F . For example, if X is a smooth (quasi-)projective m-fold then coh(X) (or cohcs(X))
has dimension m, and if Q is a quiver then mod-CQ has dimension 1 (or 0 if Q has no edges).

The Euler form of A is the biadditive map χA : K0(A)×K0(A) → Z with

χA([E], [F ]) =
dimA∑
k=0

(−1)k dimC Extk(E,F ).

It need not be symmetric. The numerical Grothendieck group is Knum(A) = K0(A)/KerχA. It
is usually a good choice for K(A) in Assumption 4.1(b).

In all these cases Assumption 2.4 applies, and the vertex algebra Ĥ∗(M) and Lie algebra
Ȟ∗

(
Mpl

)
in Assumption 4.1(g), (h) are constructed as in Sections 2.3–2.4. There is a nat-

ural perfect complex Ext• on M × M called the Ext complex, whose cohomology at a C-
point ([E], [F ]) ∈ (M×M)(C) is Hk(Ext• |([E],[F ])) = Extk(E,F ), with rank

(
Ext• |Mα×Mβ

)
=

χA(α, β) for α, β ∈ K(A).

As in [58], in Assumption 2.4(g) we define Θ• = (Ext•)∨ ⊕ σ∗M(Ext•)[2n] for some n ∈ Z,
where σM : M × M → M × M swaps the factors. Then (2.5)–(2.9) hold. We set χ(α, β) =
χA(α, β)+χA(β, α), so that χ is symmetric with rank

(
Θ•|Mα×Mβ

)
= χ(α, β). In all these cases,

there are canonical orientations on M, Mpl in Assumption 4.1(e) coming from the complex
geometry. For these orientations, the signs in Assumption 4.1(f) are ϵα,β = (−1)χA(α,β).

All the material of Assumption 4.1(a)–(i) works for abelian categories A of any dimension
m ⩾ 0, e.g., whenA = coh(X) forX a smooth projectivem-fold. However, in Assumption 4.1(j),
the formation of virtual classes [Mss

α (τ)]virt depends critically on dimA:

(i) If dimA = 1 then moduli spaces Mst
α (τ) are smooth C-schemes. If Mst

α (τ) = Mss
α (τ) then

Mss
α (τ) is a compact complex manifold, and thus has a fundamental class [Mss

α (τ)]fund in
homology. This case includes A = coh(X) for X a projective curve, and A = mod-CQ
for Q a quiver.

(ii) If dimA = 2 then moduli spaces Mst
α (τ) have perfect obstruction theories in the sense of

Behrend–Fantechi [6]. If Mst
α (τ) = Mss

α (τ) then Mss
α (τ) is proper, and thus has a virtual
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class [Mss
α (τ)]virt by [6]. This case includes A = coh(X) for X a projective surface, and

A = mod-CQ/I for (Q, I) a quiver with relations (though see Remark 4.7).

In general if dimA ⩾ 3 there is no way to define virtual classes [Mss
α (τ)]virt, and enumerative

invariants do not exist. However, there are three special cases in which [Mss
α (τ)]virt can be

defined by a mathematical trick:

(iii) If A = coh(X) for X a Calabi–Yau 3-fold, as in Donaldson–Thomas [24], Thomas [100] and
Joyce–Song [60]. (Essentially the same idea is used for Vafa–Witten invariants of surfaces
in Tanaka–Thomas [96, 97].)

(iv) If A = coh(X) for X a Fano 3-fold, as in Thomas [100].

(v) If A = coh(X) for X a Calabi–Yau 4-fold, as in Borisov–Joyce [11], Oh–Thomas [87] and
Cao–Leung [19].

We will discuss (iii), (iv) in Section 4.3.6, and (v) in Section 4.4.

Remark 4.7. A well behaved abelian category A has an inclusion A ↪→ DbA, and then
Extk(E,F ) = HomDbA(E,F [k]) for E,F ∈ A and k ∈ Z.

For abelian categories mod-CQ/I of representations of a quiver with relations (Q, I), this
definition of Ext groups may have Extk(E,F ) ̸= 0 for infinitely many k, and Ext• is not perfect,
so the theory above does not work. However, there is a way to fix this. One can define a trian-
gulated category T , similar to DbA, with an inclusion A ↪→ T as the heart of a t-structure, such
that ExtkT (E,F ) = HomT (E,F [k]) has the properties we need, and then we replace Extk(E,F )
above by ExtkT (E,F ). See [60, Remark 7.10] for discussion of this.

4.3.2 General discussion for triangulated categories

Next we discuss our programme for triangulated categories, such as derived categoriesDb coh(X)
and Dbmod-CQ. The moduli spaces M, Mpl of objects in such categories are higher stacks or
derived stacks in the sense of [102, 103, 104, 105, 106].

One surprising fact is that the homology H∗(M), H∗
(
Mpl

)
is usually simpler and easier to

compute than for abelian categories. For abelian categories, the direct sum ⊕ makes M into a
commutative monoid in stacks, and Mtop into an H-space. In triangulated categories, the shift
operator [1] acts as an inverse for ⊕ up to homotopy, making M into (roughly) an abelian group
in stacks, and Mtop into a grouplike H-space, which are nicer than general H-spaces.

In the triangulated case, as in [58] it is generally no longer true that Ȟk

(
Mpl

) ∼= Ĥk+2(M)/

D
(
Ĥk(M)

)
, but this still holds under reasonable conditions when k = 0, and the Lie algebra

Ȟ0

(
Mpl

)
is what we need for applications to enumerative invariants. Here is the main result of

the first author [42, Theorem 1.1]:

Theorem 4.8. Suppose X is a smooth projective C-scheme which is either a curve, a surface,
a rational 3- or 4-fold, a toric variety, a flag variety, or one of some other classes we will
not give.

Write Ki(Xan) for i = 0, 1 for the topological K-theory groups of the complex analytic topo-
logical space Xan of X, and K0

sst(X) for the 0th semi-topological K-theory group of X, in the
sense of Friedlander and Walker [29].

Let M be the moduli stack of objects in Db coh(X), a higher C-stack, which exists by [104].
Then there is a canonical isomorphism of graded R-modules:

Ĥ∗(M) ∼= R
[
K0

sst(X)
]
⊗R Sym∗(K0(Xan)⊗Z t

2R
[
t2
])

⊗R

∧
∗(K1(Xan)⊗Z tR

[
t2
])
. (4.7)
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Here Ĥ∗(M) is H∗(M, R) with grading shifted as in (2.12). The group ring R[K0
sst(X)] :=

⟨eα : α ∈ K0
sst(X)⟩R is graded by deg eα = −χ(α, α). In the symmetric and exterior prod-

ucts Sym∗(· · · ),
∧∗(· · · ), we take Ki(Xan) to have degree 0, and t to be a formal variable

with deg t = 1.
The vertex algebra structure on Ĥ∗(M) is also equally explicit. By [58], this gives an explicit

description of the Lie algebra Ȟ0

(
Mpl

)
= Ĥ2(M)/D

(
Ĥ0(M)

)
.

Even if we only want to study enumerative invariants for the abelian category coh(X), it may
still be helpful to work with Ĥ∗(M), Ȟ0

(
Mpl

)
for M, Mpl the moduli of objects in Db coh(X),

as these are easy to write down.
It is an important problem to extend Conjecture 4.2 to Bridgeland stability conditions [15] on

triangulated categories such as Db coh(X) and Dbmod-CQ. This raises several difficult issues.
There is already a significant literature for related questions on derived category versions of
Donaldson–Thomas invariants of Calabi–Yau 3-folds. We make some remarks:

(a) The authors expect the issues of defining invariants [Mss
α (τ)]inv counting strictly τ -semi-

stables in Conjecture 4.2(i), and their characterization via pair invariants in Conjec-
ture 4.2(iii), to extend to Bridgeland stability conditions τ = (Z,P) on triangulated cate-
gories T with essentially no changes. This is because both these issues can be written in
the abelian subcategory T ϕ ⊂ T of τ -semistable objects with phase ϕ ∈ R.

(b) The authors only expect (4.1)–(4.2) to make sense in a triangulated category T , and to
have finitely many nonzero terms, if τ , τ̃ are sufficiently close in the moduli space of
Bridgeland stability conditions on T .

If τ = (Z,P) and τ̃ =
(
Z̃, P̃

)
are close, then there should exist a unique third Bridgeland

stability condition τ̂ =
(
Ẑ, P̂

)
on T such that:

(i) The central charges Z, Z̃, Ẑ satisfy Re Ẑ = ReZ and Im Ẑ = Im Z̃.

(ii) Write A[ϕ,ϕ+π), Ã[ϕ,ϕ+π), Â[ϕ,ϕ+π) ⊂ T for the abelian subcategories generated by τ -,

τ̃ - and τ̂ -semistable objects with phases in [ϕ, ϕ+ π), for ϕ ∈ R. Then Â[−π/2,π/2) =

A[−π/2,π/2) and Â[0,π) = Ã[0,π).

Then wall-crossing from τ to τ̂ is equivalent to wall-crossing in the abelian category
Â[−π/2,π/2), and wall-crossing from τ̂ to τ̃ is equivalent to wall-crossing in Â[0,π), as ex-
plained in [53, Section 7]. Hence Conjecture 4.2(ii) for triangulated categories reduces to
Conjecture 4.2(ii) for abelian categories.

(c) Bridgeland [16] has some interesting work on encoding Donaldson–Thomas invariants of
a 3-Calabi–Yau triangulated category T into geometric structures (attractively called
‘Joyce structures’) on the space of Bridgeland stability conditions Stab(T ) on T . The
Kontsevich–Soibelman wall-crossing formula [66] discussed in Section 4.2 is an ingredient
in [16, Definition 5.3]. By replacing this by (4.2) and basing the definition on U

(
Ȟ0

(
Mpl

))
,

it may be possible to generalize [16] to enumerative invariants in other triangulated cate-
gories, for example T = Db coh(X) for X a projective surface.

(d) Work by Halpern-Leistner and coauthors (see [43] and references therein) generalizes the
requirement in Assumption 4.1(j) thatMss

α (τ) should have a compact ‘coarse moduli space’
to triangulated categories.

4.3.3 Representations of quivers, and quivers with relations

We will discuss these at length in Sections 5–6 and [59], so we say only a few words here.
Sections 5–6 will prove Conjecture 4.2 when A = mod-CQ for Q a quiver without oriented
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cycles (‘without oriented cycles’ makes Mss
α (τ) compact). This will be generalized in [59] to

A = mod-CQ/I for (Q, I) a quiver with relations. There may be other categories of interest in
representation theory that we can study using similar techniques.

4.3.4 Vector bundles and coherent sheaves on curves

Let X be a projective complex curve, that is, a compact Riemann surface. Then we can study
moduli spaces Mr,d = Mss

(r,d)(µ) of µ-semistable vector bundles (for r > 0) or coherent sheaves

(for r = 0) on X with rank r and degree d, where µ is slope stability. This was done by
Harder–Narasimhan [44] in algebraic geometry and Atiyah–Bott [5] in differential geometry,
and many subsequent authors. It is common to restrict to r, d coprime, as in [5, Section 9], as
then Mst

(r,d)(µ) = Mss
(r,d)(µ) is nonsingular, and a compact complex manifold.

There is only really one nice stability condition on coh(X), namely slope stability µ. So wall-
crossing as in Conjecture 4.2(ii) is not interesting for curves. However, Conjecture 4.2(i), (iii)
may still have something new to say. They predict that there are classes [Mr,d]inv in H∗

(
Mpl,Q

)
for all (r, d), equal to the fundamental class of Mr,d in H∗

(
Mpl,Z

)
when r, d are coprime, which

could be computed using Definition 4.3. For example, one could ask whether these classes have
any interesting number-theoretic properties, as in [44].

4.3.5 Coherent sheaves on surfaces

Next consider our programme when A = coh(X) for X a projective complex surface. We take
stability conditions on A to be Gieseker stability for an ample line bundle L → X. Invari-
ants counting Gieseker semistable sheaves on X have been studied in depth by Mochizuki [79],
and should be understood as an algebro-geometric analogue of Donaldson invariants of 4-
manifolds [23].

When Mst
α (τ) = Mss

α (τ), the virtual classes [Mss
α (τ)]virt in Assumption 4.1(i) are defined

using Behrend–Fantechi [6] perfect obstruction theories ϕ : F• → LMpl as in [79, Sections 5
and 6.1]. If the geometric genus pg = h2,0(X) has pg > 0, and rankα > 0, there is a trivial factor
in h−1(F•) which causes [Mss

α (τ)]virt = 0, see [79, Proposition 6.2.2]. As in [79, Section 6.2], we
can obtain nonzero invariants by fixing determinants, but that takes us outside the framework
of Conjecture 4.2. So here we restrict to the case pg = 0.

Conjecture 4.9. Conjecture 4.2 holds for A = coh(X) with X a projective complex surface
with pg = 0, with ‘stability condition τ ’ meaning Gieseker stability for an ample line bundle
on X, and other details as in Section 4.3.1.

This is proved in the sequel [59, Section 7.7], which also covers the case pg > 0. It builds on
previous work by Mochizuki [79] and others.

4.3.6 Donaldson–Thomas theory for Calabi–Yau and Fano 3-folds

Donaldson–Thomas invariants counting semistable coherent sheaves on Calabi–Yau 3-folds were
proposed by Donaldson–Thomas [24] and defined by Thomas [100], who also gave a version for
Fano 3-folds. The Calabi–Yau 3-fold version was extended in Joyce–Song [60] and Kontsevich–
Soibelman [66].

Let X be a Calabi–Yau or Fano 3-fold, and τ be Gieseker stability on A = coh(X), and
α ∈ K(A) with Mst

α (τ) = Mss
α (τ). Since dimA = 3 in Section 4.3.1, the natural obstruction

theory F• → LMpl on Mss
α (τ) is perfect in [−2, 0], and it is perfect in [−1, 0] (which is necessary

for the virtual class [Mss
α (τ)]virt from [6] to be defined) if h2

(
(F•)∨

)
= 0. For a C-point [E]

in Mss
α (τ) we have

h2
(
(F•)∨|[E]

)
= Ext3(E,E) ∼= Hom(E,E ⊗KX)

∗.
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(a) If X is a Calabi–Yau 3-fold then KX
∼= OX , and as E is stable we have Hom(E,E ⊗

KX) = C, so that h2
(
(F•)∨

)
= OMss

α (τ). As in [100] we may modify F• → LMpl by
deleting the line bundle h2

(
(F•)∨

)
, and then [6] gives a virtual class [Mss

α (τ)]virt of real
dimension −2χA(α, α) = 0.

Donaldson–Thomas theory of Calabi–Yau 3-folds does not fit into the set-up of Assump-
tion 4.1 and Conjecture 4.2, as deleting h2

(
(F•)∨

)
means that [Mss

α (τ)]virt ∈ Ȟ−2

(
Mpl

)
,

which is the wrong dimension.

In the sequel [59, Section 1.5], the second author explains a modification of Conjecture 4.2
adapted to Donaldson–Thomas theory of Calabi–Yau 3-folds. The graded vertex algebra
structure on Ĥ∗(M) in Assumption 4.1(g) is replaced by a graded vertex Lie algebra.

(b) If X is a Fano 3-fold and dim suppE > 0, that is, if dimα > 0, then using τ -semistability
of E and KX negative one can show that Hom(E,E ⊗KX) = 0, so F• → LMpl is perfect
in [−1, 0], and [6] gives a virtual class [Mss

α (τ)]virt of real dimension 2 − 2χA(α, α). If
dimα = 0 this argument does not work, and [Mss

α (τ)]virt is undefined. The sequel [59,
Section 7.8] proves Conjecture 4.2 for A = coh(X) for classes α ∈ K(A) with dimα > 0
only.

Note that Donaldson–Thomas theory for Calabi–Yau 3-folds, and for Fano 3-folds, are signifi-
cantly different, because of the difference in virtual dimension.

4.3.7 Theories of vector bundles or sheaves with extra data

There are also enumerative invariant theories in the literature, in which the objects to be counted
are one or more vector bundles or coherent sheaves on a smooth projective C-scheme X, together
with some morphisms between these sheaves. Such theories are usually special cases of the
following general definition of Álvarez-Cónsul and Garćıa-Prada [3].

Definition 4.10. Let Q = (Q0, Q1, h, t) be a quiver, and X be a smooth projective C-scheme.
Assign a vector bundle Ee → X to each edge e ∈ Q1. Following [3], define a C-linear abelian
category A whose objects are tuples ((Vv)v∈Q0 , (ϕe)e∈Q1), where Vv ∈ coh(X) and ϕe : Vt(e) →
Vh(e) ⊗ Ee is a morphism in coh(X). Objects of A are called twisted quiver sheaves, or twisted
quiver bundles if the Vv are vector bundles. If Ee = OX for all e ∈ Q1 they are called quiver
sheaves, or quiver bundles.

Álvarez-Cónsul and Garćıa-Prada [3] prove a Hitchin–Kobayashi correspondence for twisted
quiver bundles, identifying solutions of a gauge theory equation with τ -polystable objects inA for
a stability condition τ onA. This extends previously known Hitchin–Kobayashi correspondences.
For example:

� If X is a Riemann surface, and Q =
v• ⟲ e, and Ee = KX , then twisted quiver bundles are

Higgs bundles, as in Hitchin [45].

� If Q =
v• e−→w• then semistable pairs as in Bradlow and Daskalopoulos [12, 13, 14], Garćıa-

Prada [31, 32], Thaddeus [99] (who studies wall-crossing under change of stability condi-
tion), and others, are examples of τ -semistable quiver bundles with Vv = OX .

We usually have dimA = dimX +1 (or dimA = dimX for some moduli spaces, under extra
conditions). To fit such categories A into the enumerative invariant set-up of Section 4.3, we
need dimA ⩽ 2 for virtual classes [Mss

α (τ)]virt to be defined, as in Section 4.3.1, so we take X
to be a curve (or possibly a surface, under extra conditions). We also require the quiver Q to
have no oriented cycles, to ensure that Mss

α (τ) is compact. Under these conditions we expect
Conjecture 4.2 to hold. Note that in contrast to Section 4.3.4, there are usually many suitable
stability conditions on A, so wall-crossing in Conjecture 4.2(ii) is nontrivial.
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4.3.8 Theories using equivariant homology

Several interesting enumerative invariant theories involve moduli spaces M, Mpl with the action
of an algebraic torus T ∼= Gk

m, and we form virtual classes [Mss
α (τ)]virt in the equivariant homol-

ogy HT
∗
(
Mpl

)
. See for example Tanaka–Thomas [96, 97] for the case of Vafa–Witten invariants.

Then an equivariant version of Conjecture 4.2 may apply. This is discussed in the sequel [59].

One useful property of the equivariant setting, as used in [96, 97] for instance, is that to
define virtual classes [Mss

α (τ)]virt in H
T
∗
(
Mpl

)
we do not need Mss

α (τ) to be compact, but only
that the T -fixed locus Mss

α (τ)
T should be compact, which is often easier to satisfy.

4.4 The conjecture for Calabi–Yau 4-fold DT4 invariants

We summarize some ideas from derived algebraic geometry [90, 102, 103, 104, 105, 106] and
Donaldson–Thomas type invariants of Calabi–Yau 4-folds [11, 17, 19, 87]:

(a) Let X be a smooth projective C-scheme. Then Toën and Vaquié [104] construct a derived
moduli stackM of objects in coh(X) or inDb coh(X), as a locally finitely presented derived
C-stack in the sense of Toën and Vezzosi [102, 103, 105, 106]. It has a virtual dimension
vdimCM, a locally constant map M → Z. The classical truncation M = t0(M) is the
usual moduli stack, as an Artin C-stack or higher C-stack.

(b) Pantev, Toën, Vaquié and Vezzosi [90] introduced a theory of shifted symplectic derived
algebraic geometry, defining k-shifted symplectic structures ω on a derived stack S for
k ∈ Z. If X is a Calabi–Yau m-fold and M is a derived moduli stack of objects in coh(X)
or Db coh(X) then M has a (2−m)-shifted symplectic structure, [90, Corollary 2.13].

(c) If (S, ω) is a k-shifted symplectic derived stack for k even, Borisov–Joyce [11, Section 2.4]
define a notion of orientation on (S, ω).

(d) Let (S, ω) be a proper, oriented −2-shifted symplectic derived scheme with S = t0(S).
Then Borisov–Joyce [11, Corollary 1.2] construct a virtual class [S]virt in H∗(S,Z) using
derived differential geometry [54, 55, 56, 57], of real dimension vdimC S = 1

2 vdimR S. Note
that this is half the expected dimension. Oh–Thomas [87] provide an alternative definition
of [S]virt in the style of Behrend–Fantechi [6].

(e) Let X be a Calabi–Yau 4-fold, and (M, ω) the −2-shifted symplectic derived moduli stack
of objects in coh(X) orDb coh(X) from (a),(b). Then Cao–Gross–Joyce [17, Corollary 1.17]
prove that (M, ω) is orientable in the sense of (c). By taking a shifted symplectic quotient
by [∗/Gm], one can show that

(
Mpl, ω

)
is also −2-shifted symplectic and orientable.

Choose an orientation on
(
Mpl, ω

)
.

(f) Suppose α ∈ K(coh(X)) with Mst
α (τ) = Mss

α (τ), where τ is Gieseker stability. Then
Mss

α (τ) is a proper, oriented −2-shifted symplectic derived scheme, and has a virtual class
[Mss

α (τ)]virt in H∗
(
Mpl

)
. Borisov–Joyce [11] propose to define Donaldson–Thomas type

‘DT4 invariants’ of X using these virtual classes. Cao–Leung [19] make a similar proposal
using gauge theory rather than derived algebraic geometry.

We can now extend Section 4.1 to A = coh(X) for X a Calabi–Yau 4-fold. This works as in
Section 4.3.1, with the following important differences:

(i) In Section 4.3.1 we took Θ• = (Ext•)∨ ⊕ σ∗M(Ext•)[2n] in Assumption 2.4(g), where
Ext• is the Ext complex on M × M, and χ(α, β) = χA(α, β) + χA(β, α) in Assump-
tion 4.1(c). As in [58], in the Calabi–Yau 2m-fold case we instead set Θ• = (Ext•)∨
and χ(α, β) = χA(α, β), and use these to define the vertex and Lie algebra structures
on Ĥ∗(M), Ȟ∗

(
Mpl

)
in Assumption 4.1(g), (h) as in Sections 2.3–2.4. Serre duality for
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Calabi–Yau 4-folds implies that (2.5) holds with n = 2, and χ is symmetric. Note that Θ•

and χ are both (roughly speaking) half of their values in Section 4.3.1. This is parallel to
the virtual class [S]virt in (d) above having half the expected dimension.

(ii) In contrast to Section 4.3.1, in the Calabi–Yau 4-fold case the complex geometry does not
determine canonical orientations in Assumption 4.1(e), but we must instead use Borisov–
Joyce orientations [11] as in (c) above. As in (e), orientations exist on M, and we must
choose one.

(iii) As in (d), we use Borisov–Joyce or Oh–Thomas virtual classes [11, 87] instead of Behrend–
Fantechi virtual classes [6] (which are undefined in this case) in Assumption 4.1(j) when
Mst

α (τ) = Mss
α (τ).

Conjecture 4.11. Conjecture 4.2 holds for A = coh(X) when X is a Calabi–Yau 4-fold, with
details in Assumption 4.1 as above.

4.5 Donaldson theory for 4-manifolds with b2+ = 1

Let (X, g) be a compact, oriented Riemannian 4-manifold, which need not be simply-connected.
Hodge theory gives a natural isomorphism H2

dR(X,R) ∼= H2, where H2
dR(X,R) is the second de

Rham cohomology group, and H2 =
{
η ∈ Γ∞(

Λ2T ∗X
)
: dη = d∗η = 0

}
is the harmonic 2-forms

on X. The splitting Λ2T ∗X = Λ2
+T

∗X⊕Λ2
−T

∗X into self-dual and anti-self-dual 2-forms induces
a splitting H2 = H2

+ ⊕ H2
−. Write H2

dR(X,R) = H2
+(X,R) ⊕ H2

−(X,R) for the corresponding
splitting in de Rham cohomology, and b2±(X) = dimH2

±(X,R).
Donaldson theory is the study of enumerative invariants (called Donaldson invariants) that

‘count’ connections with anti-self-dual curvature (called instantons) on vector or principal bun-
dles E → X, as in Donaldson and Kronheimer [23]. They have the amazing property that they
can distinguish different smooth structures on the same topological 4-manifold. Most work on
Donaldson theory takes E → X to be a principal SU(2)- or SO(3)-bundle, but we will consider
U(m)-bundles for m ⩾ 0.

We divide into three cases:

(i) If b2+(X) = 0 then Donaldson invariants cannot be defined.1

(ii) If b2+(X) = 1 then Donaldson invariants can be defined. They depend on the splitting
H2

dR(X,R) = H2
+(X,R)⊕H2

−(X,R) induced by g, and have wall-crossing behaviour under
changes of this splitting.

(iii) If b2+(X) > 1 then Donaldson invariants can be defined, and are independent of g and the
splitting H2

dR(X,R) = H2
+(X,R)⊕H2

−(X,R).

We are interested here in case (ii). We will sketch how Donaldson theory for U(m)-bundles
on X when b2+(X) = 1 can be made, conjecturally, into a theory with the structure described
in Section 4.1. The sequel [59, Section 7.7] will study case (iii) for coherent sheaves on surfaces.
We have nothing new to say about case (i).

Some papers on Donaldson theory with b2+ = 1 are Kotschick–Morgan [67, 68], Ellingsrud–
Göttsche [25], Friedman–Qin [30], Göttsche [34], Göttsche–Zagier [40], Moore–Witten [80], and
Göttsche–Nakajima–Yoshioka [37]. We define the moduli spaces of instantons we are interested
in.

Definition 4.12. Let (X, g) be a compact, connected, oriented Riemannian 4-manifold, and
E → X be a unitary vector bundle, that is, a complex vector bundle E → X with a Hermitian
metric h on its fibres. A unitary connection ∇E is a connection ∇E on E preserving h. Write AE

1But the moduli spaces can be used to restrict the intersection form of X, as in [21].
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for the topological space of unitary connections on E, with the C∞-topology. The group Aut(E)
of unitary automorphisms of E acts on AE , and its normal subgroup U(1) = U(1)·idE ⊂ Aut(E)
acts trivially, so that Aut(E)/U(1) also acts on AE . We call a connection ∇E irreducible if
StabAut(E)(∇E) = U(1), and reducible otherwise. Write Airr

E ⊆ AE for the open subset of

irreducible connections. Define topological stacks Birr
E ⊆ BE and Birr,pl

E ⊆ Bpl
E as in [77, 85, 86] by

Birr
E = Airr

E /Aut(E), BE = AE/Aut(E),

Birr,pl
E = Airr

E /(Aut(E)/U(1)), Bpl
E = AE/(Aut(E)/U(1)),

Then Birr,pl
E is a topological space, as Aut(E)/U(1) acts freely on Airr

E .

Let ∇E in AE have curvature F∇E , and split F∇E = F∇E
+ ⊕ F∇E

− for F∇E
± the components

in ad(E)⊗R Λ2
±T

∗X. We call ∇E an instanton if

F∇E
+ = i idE ⊗ ω for some ω ∈ H2

+. (4.8)

Define moduli spaces of instantons Mst
E ⊆ Mss

E by

Mst
E =

{
[∇E ] ∈ Birr,pl

E : ∇E is an instanton
}
⊂ Birr,pl

E ,

Mss
E =

{
[∇E ] ∈ Bpl

E : ∇E is an instanton
}
⊂ Bpl

E .
(4.9)

If g is generic then Mst
E is a smooth manifold of dimension

dimMst
E = 1 + b2+(X)− χ(JEK, JEK), (4.10)

where χ : K0(X)×K0(X) → Z is the symmetric biadditive map

χ(α, β) = −
(
1− b1(X) + b2+(X)

)
rankα rankβ − 2

∫
X
ch1(α) ch1(β)

+ 2 rankα

∫
X
ch2(β) + 2 rankβ

∫
X
ch2(α), (4.11)

with chi(−) the Chern characters. Here in (4.10), the first term 1 compensates for the quo-
tient by U(1) in (4.9), the second b2+(X) compensates for ω ∈ H2

+ in (4.8), and the third
−χ(JEK, JEK) comes from the Atiyah–Singer index theorem as in Kronheimer [69, equation (3),
p. 64]. If g is not generic then Mst

E is a derived manifold of virtual dimension (4.10), in the sense
of [54, 55, 56, 57].

As in [23], by Uhlenbeck compactification the moduli spaces Mst
E ⊆ Mss

E have completions
Mst

E ⊆ Mss
E such that Mss

E is compact, and if Mst
E = Mss

E then Mss
E should have a virtual class

[Mss
E ]virt, of dimension (4.10). Points of Mss

E \ Mss
E are singular instantons with ‘bubbles’ at

finitely many points in X.

Remark 4.13. The usual definition [23] of instantons (generally for SU(2) connections) has
F∇E
+ = 0 rather than (4.8). In fact ω in (4.8) is determined by [ω] = πH2

+(X,R)(2πc1(E)) in

H2
+(X,R), so ω = 0 if E is an SU(m)-bundle.

We now restrict to the case b2+(X) = 1. We outline the analogue of the data in Assump-
tion 4.1(a)–(j). We can take A to be the category of pairs (E,∇E) of a unitary bundle E → X
with a unitary connection ∇E . Then:

(a) The obvious choices for M, Mpl are the topological stacks

B =
∐

iso. classes [E] of
unitary bundles E → X

BE , Bpl =
∐

iso. classes [E] of
unitary bundles E → X

Bpl
E .
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These are studied in [61], and their topological realizations have homotopy equivalences

Btop ≃ MapC0

(
X,

∐
m⩾0

BU(m)

)
,

(Bpl)top ≃ MapC0

(
X,

∐
m⩾0

BU(m)

)
/BU(1).

(4.12)

However, there is a problem: it is not clear that the completions Mst
E, Mss

E of Mst
E, Mss

E

map naturally to B, Bpl, and the authors expect that they do not. So we should not
define invariants [Mss

E ]inv in H∗
(
Bpl

)
.

Instead, we define topological spaces

M = MapC0(X,BU× Z), Mpl = MapC0(X,BU× Z)/BU(1), (4.13)

which are a kind of completion of (4.12) (in fact M is the H-space completion of Btop,
and is studied in [17, 61]). We propose that invariants [Mss

E ]inv should lie in H∗
(
Mpl

)
.

See Remark 4.14 below on this.

(b), (c) We take K(A) = K0(X), and χ as in (4.11).

(e) Orientations on M are explained in Joyce–Tanaka–Upmeier [61, Section 4.2.3] and
constructed in [61, Theorem 4.6], following previous work of Donaldson.

(g), (h) The vertex algebra structure on Ĥ∗(M) will be constructed in [58]. It is the lattice
vertex algebra on the super-lattice K0(X)⊕K1(X) with intersection form χ in (4.11),
so in a similar way to (4.7) we have

Ĥ∗(M) ∼= R
[
K0(X)

]
⊗R Sym∗(K0(X)⊗Z t

2R
[
t2
])

⊗R

∧
∗(K1(X)⊗Z tR

[
t2
])
.

This gives the Lie algebra Ȟ0

(
Mpl

)
= Ĥ2(M)/D

(
Ĥ0(M)

)
.

(i) By stability condition we mean either the Riemannian metric g, or the orthogonal split-
ting H2

dR(X,R) = H2
+(X,R)⊕H2

−(X,R) induced by g, depending on your point of view.
Here H2

+(X,R) = ⟨[ω]⟩R as b2+(X) = 1, where ω ∈ H2
+ is a harmonic self-dual 2-form

on X.

For comparison, Gieseker and µ-stability conditions on coh(X) for a projective surfaceX
with b2+(X) = 1 correspond to Kähler classes [ω] in H2

dR(X,R), where H2
+ = ⟨ω⟩. For

the wall-crossing formula (4.2), the coefficients U(−) should be defined as for µ-stability
for projective surfaces.

(j) If α ∈ K(A), by Mst
α (τ), Mss

α (τ) we mean the disjoint union over isomorphism classes of
unitary bundles E → X with JEK = α of the moduli spaces Mst

E , Mss
E above, considered

as mapping to Mpl as claimed in (a). Although the moduli spaces themselves depend
on g, when Mst

α (τ) = Mss
α (τ) the virtual class [Mss

α (τ)]virt ∈ H∗
(
Mpl

)
depends only

on the splitting H2
dR(X,R) = H2

+(X,R) ⊕ H2
−(X,R), which is why we have these two

choices for stability conditions in (i). Note too that as b2+(X) = 1, equation (4.10) gives
vdimMss

α (τ) = 2− χ(α, α), as required.

Remark 4.14. Here is some justification for the choice of M, Mpl in (4.13). Let X be a pro-
jective surface. Then we can form moduli stacks Mvect ⊂ Mt-f ⊂ Mperf of vector bundles, and

torsion-free sheaves, and perfect complexes on X, and projective linear versions Mpl
vect ⊂ Mpl

t-f ⊂
Mpl

perf with Mpl
vect = Mvect/[∗/Gm], and so on. We have mapping stack presentations

Mvect
∼= Map

(
X,

∐
m⩾0

[∗/GL(m,C)]
)
, Mperf

∼= Map
(
X,Perf

C

)
.
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The analogues of Mst
E , Mss

E in Definition 4.12 are moduli spaces of (semi)stable vector

bundles, and are substacks of Mpl
vect. But the analogues of the Uhlenbeck compactifications

Mst
E , Mss

E are moduli spaces of (semi)stable torsion-free sheaves (thought of as singular vec-

tor bundles), so they are substacks of Mpl
t-f, and hence of Mperf, but not of Mpl

vect. We have
topological realizations( ∐

m⩾0

[∗/GL(m,C)]
)top

≃
∐
m⩾0

BU(m),
top

Perf
C

≃ BU× Z, [∗/Gm]
top ≃ BU(1).

Hence Mvect, Mpl
vect are analogous to Btop,

(
Bpl

)top
in (4.12), and Mperf, Mpl

perf are analogous

to M, Mpl in (4.13).

Conjecture 4.15. With the set up above, Conjecture 4.2 holds for Donaldson theory of 4-mani-
folds X with b2+(X) = 1, not necessarily simply-connected.

4.6 Other gauge-theoretic enumerative invariant theories

We comment briefly on other gauge-theoretic invariants in the literature.

Casson invariants of 3-manifolds

Casson invariants count flat connections on compact 3-manifolds, as in Akbulut–McCarthy [2],
Taubes [98] and Boden–Herald [9]. They do not fit into the set-up of Section 4.1, because
the virtual dimension is wrong, as for Donaldson–Thomas invariants of Calabi–Yau 3-folds in
Section 4.3.6(a), and for other reasons.

G2-instantons on G2-manifolds

Let X be a compact 7-manifold and (φ, g) a torsion-free G2-structure on X, as in Joyce [47]. The
G2-structure induces a splitting Λ2T ∗X = Λ2

7 ⊕ Λ2
14 into subbundles of ranks 7, 14. A connec-

tion ∇E on a vector or principal bundle E → X is a G2-instanton if πΛ2
7

(
F∇E

)
= 0. Donaldson

and Segal [20] propose defining enumerative invariants of (X,φ, g) by counting G2-instantons.
Again, these do not fit into the set-up of Section 4.1, because the virtual dimension is wrong.

Spin(7)-instantons on Spin(7)-manifolds

Let X be a compact, simply-connected 8-manifold and (Ω, g) a torsion-free Spin(7)-structure
on X, as in Joyce [47]. The Spin(7)-structure induces a splitting Λ2T ∗X = Λ2

7 ⊕ Λ2
21 into

subbundles of ranks 7, 21. A connection ∇E on a vector or principal bundle E → X is a Spin(7)-
instanton if πΛ2

7

(
F∇E

)
= 0. Donaldson and Thomas [24] propose defining enumerative invariants

of (X,Ω, g) by counting Spin(7)-instantons.
There is a strong analogy between counting Spin(7)-instantons and Donaldson theory of 4-

manifolds. Under this analogy we compare Λ2
7 ↭ Λ2

+ and Λ2
21 ↭ Λ2

−. There is a splitting
H2

dR(X,R) = H2
7 (X,R) ⊕ H2

21(X,R), with b27 = dimH2
7 (X,R) the analogue of b2+. As in Sec-

tion 4.5, we divide into three cases:

(i) b27 = 0, which happens if g has holonomy group Hol(g) = Spin(7). Then the analogy
with Donaldson theory suggests that enumerative invariants counting Spin(7) instantons
cannot be defined.

(ii) b27 = 1, which happens if Hol(g) = SU(4), and X is a Calabi–Yau 4-fold. Then the
set-up of Section 4.1 may work. Note however that this may just be a gauge-theoretic
version of the DT4 invariants of Calabi–Yau 4-folds discussed in Section 4.4, as proposed
in Cao–Leung [19].
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(iii) b27 > 1, which happens if b27 = 2 and Hol(g) = Sp(2) or b27 = 3 and Hol(g) = Sp(1)×Sp(1),
and g is hyperkähler. Then we might hope that enumerative invariants can be defined,
which are independent of g, but which do not fit into the framework of Section 4.1, though
see Question 4.19.

4.7 Questions for future work

Here are some questions that seem to the authors to be interesting.

Question 4.16. In a C-linear enumerative invariant theory of the kind discussed in Section 4.1,
can we write the family of invariants [Mss

α (τ)]inv for all α in C(A) in terms of a small amount
of data by a universal formula?

Examples of the kind of formula we have in mind are those writing the generating series
of Donaldson invariants in terms of a finite collection of Kronheimer–Mrowka basic classes, or
Seiberg–Witten invariants, as in Kronheimer–Mrowka [70], Fintushel–Stern [27], Witten [108],
Moore–Witten [80], Mariño–Moore [74], and Göttsche–Nakajima–Yoshioka [39]. Using the re-
sults of Sections 5–6, we can investigate this question for A = mod-CQ, and the authors hope
to write about this in a future paper in the series.

Question 4.17. Can we extend the set up of Section 4.1 to replace H∗(M), H∗
(
Mpl

)
by

E∗(M), E∗
(
Mpl

)
for E∗(−) a complex-oriented generalized homology theory over R, such as

K-homology?

The vertex algebra and Lie algebra parts of Assumption 4.1 will be extended to E∗(M),
E∗

(
Mpl

)
in [58]. It turns out that E∗(M) is a ‘vertex F -algebra’, where F (x, y) is the formal

group law associated to the complex-oriented cohomology theory E∗(−). There is an interest-
ing literature on K-theoretic versions of enumerative invariants, which often form generating
functions with attractive properties – see for example Göttsche–Nakajima–Yoshioka [38], Ok-
ounkov [88], Göttsche–Kool [36], Thomas [101], Laarakker [71], Arbesfeld [4], and Cao–Kool–
Monavari [18] – and also on cobordism invariants, as in Göttsche–Kool [35] and Shen [94]. In
Question 4.16 over E∗(−), should the universal formula depend on the formal group law F?
A good starting point would be to study invariants [Mss

α (τ)]inv ∈ E∗
(
Mpl

)
for A = mod-CQ,

as in Sections 5–6.

Question 4.18. Can we use the theory of vertex algebras to understand more about the struc-
ture of enumerative invariants, given the appearance of vertex algebras in Assumption 4.1? For
example, to explain modular properties of generating functions of enumerative invariants? Re-
mark 4.6 may help.

Connections between vertex algebras and Donaldson theory, Vafa–Witten theory, or Seiberg–
Witten theory of 4-manifolds are suggested by the work of Nakajima [82, 83] and Feigin–
Gukov [26].

As a possible place to start, observe that in Conjecture 4.2, for α ∈ K(A) and with R = Q
or C, we can consider the graded R-vector space

V α
∗ := [Mss

α (τ)]inv ∩H∗(Mpl
α

)
⊂ H∗

(
Mpl

α

)
.

This is finite-dimensional over R, and may be considered an approximation to the homol-
ogy H∗(Mss

α (τ)), since if Mss
α (τ) is a smooth projective C-scheme and the restriction map

H∗(Mpl
α

)
→ H∗(Mss

α (τ)) is surjective (this is called Kirwan surjectivity, and can be proved in
some situations), then V α

∗ = H∗(Mss
α (τ)). For example, if Mss

α (τ) is a moduli space of rank 1
torsion-free sheaves on a simply-connected projective surface X then Mss

α (τ) may be identified
with a Hilbert scheme Hilb(n)(X), and V α

∗
∼= H∗

(
Hilb(n)(X)

)
.



38 J. Gross, D. Joyce and Y. Tanaka

We regard V α
∗ as a ‘categorification’ of [Mss

α (τ)]inv. It would be interesting to use vertex
algebra ideas to produce representations of interesting algebras on

⊕
α∈S V

α
∗ for subsets S ⊂

K(A), just as Grojnowski [41] and Nakajima [84] find representations of Heisenberg algebras on⊕
n⩾0H∗

(
Hilb(n)(X)

)
.

Question 4.19. Donaldson theory of compact, oriented 4-manifolds X with b2+(X) = 1 fits
directly into our theory, as in Section 4.5. Can we produce a variant of our theory which
describes the case b2+(X) > 1?

This should also apply to Mochizuki-style [79] counting of coherent sheaves on smooth pro-
jective surfaces X with pg > 0, and other situations. There should no longer be wall-crossing
phenomena under change of stability condition, but counting strictly τ -semistables, as in Con-
jecture 4.2(i), and general structures in the invariants, as in Question 4.16, may still apply.

Question 4.19 is answered in the sequel [59, Section 7.6] for invariants counting coherent
sheaves on smooth projective surfaces X with pg > 0.

Question 4.20. Conjecture 4.2 gives invariants [Mss
α (τ)]inv in Q-homology rather than Z-

homology when Mst
α (τ) ̸= Mss

α (τ). The wall-crossing formulae (4.1), (4.2), (4.4) also involve
coefficients Ũ(−), U(−) in Q rather than Z.

Is there a universal way to produce invariants [Mss
α (τ)]

Z
inv in Z-homology, with an invertible

(modulo torsion) transformation law to the [Mss
α (τ)]inv similar to (3.6)–(3.9), satisfying a dif-

ferent wall-crossing formula under change of stability condition, with coefficients in Z?

As an example of what we have in mind, note that Joyce–Song [60] define ‘generalized
Donaldson–Thomas invariants’ D̄Tα(τ) ∈ Q, the analogue of our [Mss

α (τ)]inv. In [60, Section 6.2]
they also define ‘BPS invariants’ D̂Tα(τ) by

D̄Tα(τ) =
∑

m⩾1,m|α

1

m2
D̂Tα/m(τ),

and they conjecture [60, Conjecture 6.12] that D̂Tα(τ) ∈ Z when τ is ‘generic’. The authors ex-
pect the answer to Question 4.20 will involve linear operations mapping Ȟ∗

(
Mpl

α

)
→ Ȟ∗

(
Mpl

mα

)
for m = 2, 3, . . . .

Question 4.21. Do our conjectures have an interpretation in string theory?

5 An example: representations of quivers

We now prove Conjecture 4.2 when A = mod-CQ for Q a quiver without oriented cycles. The
proofs of Theorems 5.8 and 5.11 are postponed to Section 6.

5.1 Quivers, their moduli stacks, and vertex algebras

Here are the basic definitions in quiver theory, as in Benson [7, Section 4.1].

Definition 5.1. A quiver Q is a finite directed graph. That is, Q is a quadruple (Q0, Q1, h, t),
where Q0 is a finite set of vertices, Q1 is a finite set of edges, and h, t : Q1 → Q0 are maps giving
the head and tail of each edge.

A closed loop of directed edges
v0• e1−→ v1• e2−→ · · · en−→ vn=v0• is an oriented cycle in Q. Later

we will restrict to quivers with no oriented cycles.
A representation (V ,ρ) = ((Vv)v∈Q0 , (ρe)e∈Q1) of Q gives finite-dimensional C-vector spa-

ces Vv for v ∈ Q0, and linear maps ρe : Vt(e) → Vh(e) for e ∈ Q1. A morphism of representations
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ϕ = (ϕv)v∈Q0 : (V ,ρ) → (W ,σ) gives linear maps ϕv : Vv → Wv for v ∈ Q0 with ϕh(e) ◦ ρe =
σe ◦ ϕt(e) for e ∈ Q1. Write mod-CQ for the C-linear abelian category of representations of Q.

Write ZQ0 for the abelian group of maps d : Q0 → Z, and NQ0 ⊂ ZQ0 for the subset of
maps d : Q0 → N. The dimension vector dim(V ,ρ) ∈ NQ0 of a representation (V ,ρ) is
dim(V ,ρ) : v 7→ dimC Vv. This induces a surjective morphism dim : K0(mod-CQ) → ZQ0 .

We describe the moduli stacks M, Mpl for A = mod-CQ.

Definition 5.2. Let Q = (Q0, Q1, h, t) be a quiver. Write M for the moduli stack of objects
(V ,ρ) in mod-CQ. Then there is a natural decomposition

M =
∐

d∈NQ0

Md,

where Md is the moduli stack of (V ,ρ) with dim(V ,ρ) = d. For any such (V ,ρ), by con-
sidering isomorphisms Vv ∼= Cd(v) for v ∈ Q0 we see we may write Md explicitly as a quotient
stack

Md = [Rd/GLd], where Rd =
∏
e∈Q1

Hom
(
Cd(t(e)),Cd(h(e))

)
and GLd =

∏
v∈Q0

GL(d(v),C), with group action

(Av)v∈Q0 : ((Be)e∈Q1) 7−→
(
Ah(e) ◦Be ◦A−1

t(e)

)
e∈Q1

.

Write Vv → M for v ∈ Q0 for the tautological vector bundle with

Vv|[((Vv)v∈Q0
,(ρe)e∈Q1

)] = Vv,

and write Vv,d = Vv|Md
for d ∈ NQ0 , so that rankVv,d = d(v). As Rd is contractible, we have

A1-homotopy equivalences

Md ≃ [∗/GLd] =
∏
v∈Q0

[∗/GL(d(v),C)].

Thus the topological realization of Md is

Mtop
d ≃

∏
v∈Q0

BGL(d(v),C).

Let R be a commutative Q-algebra, such as Q, R or C. As GL(r,C) ≃ U(r), the computation
of H∗(BU(r)) by Milnor and Stasheff [78, Theorem 14.5] implies that the cohomology of Md

over R is

H∗(Md) = H∗(Mtop
d , R

) ∼= R
[
civ,d : v ∈ Q0, i = 1, 2, . . . ,d(v)

]
, (5.1)

where civ,d is a formal variable of degree 2i, with civ,d = ci(Vv,d). The homology H∗(Md) is the
R-linear dual of (5.1), and H∗(M) =

⊕
d∈NQ0 H∗(Md).

Similarly, the projective linear moduli stack Mpl from Definition 2.7 is

Mpl =
∐

d∈NQ0

Mpl
d , where Mpl

d = [Rd/PGLd], (5.2)

for PGLd = GLd /Gm with Gm =
{
(λ idd(v))v∈Q0 : 0 ̸= λ ∈ C

}
⊆ GLd.
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We can describe the Ext groups Exti(D,E), the Euler form χQ, and the Ext complex Ext•
explicitly for mod-CQ.

Definition 5.3. Let Q = (Q0, Q1, h, t) be a quiver. It is well known that Exti(D,E) = 0 for all
D,E ∈ mod-CQ and i > 1, and

dimCHom(D,E)− dimC Ext1(D,E) = χQ(dimD,dimE),

where χQ : ZQ0 × ZQ0 → Z is the Euler form of mod-CQ, given by

χQ(d, e) =
∑
v∈Q0

d(v)e(v)−
∑
e∈Q1

d(t(e))e(h(e)). (5.3)

The Ext complex Ext• → M×M may be written explicitly as the two-term complex of vector
bundles in degrees 0, 1:

Ext• =
[ ⊕

v∈Q0
V∗
v ⊠ Vv

0

λ //
⊕

e∈Q1
V∗
t(e) ⊠ Vh(e)
1

]
, (5.4)

where ‘⊠’ is external tensor product, and the morphism λ depends on the point in Rd in Md =
[Rd/GLd].

We then make Ĥ∗(M) into a graded vertex algebra, and Ȟ∗
(
Mpl

)
into a graded Lie algebra,

as in Sections 2.3–2.4 with the data in Assumption 2.4 chosen as in Section 4.3.1, so in particular
we take

K(mod-CQ) = ZQ0 , χ(α, β) = χQ(α, β) + χQ(β, α),

ϵα,β = (−1)χQ(α,β), Θ• = (Ext•)∨ ⊕ σ∗M(Ext•). (5.5)

5.2 (Weak) stability conditions on quiver categories

Slope stability conditions on quiver categories are an important class.

Definition 5.4. Let Q be a quiver, and in the situation of Section 3.3 with A = mod-CQ, take
K(A) = ZQ0 , so that C(A) = NQ0 \ {0}. Fix µv ∈ R for all v ∈ Q0. Define µ : C(A) → R by

µ(d) =

∑
v∈Q0

µvd(v)∑
v∈Q0

d(v)
.

Then (µ,R,⩽) is a stability condition on mod-CQ in the sense of Definition 3.5, called slope
stability, which we often write as µ. We call µ a slope function.

For an object E of mod-CQ to be µ-stable, or µ-semistable, is an open condition on the
point [E] in M or Mpl. Write Mst

d (µ) ⊆ Mss
d (µ) ⊆ Mpl

d for the open C-substacks of µ-
(semi)stable objects. They are quotient stacks

Mst
d (µ) = [Rst

d (µ)/PGLd], Mss
d (µ) = [Rss

d (µ)/PGLd],

for PGLd-invariant open subschemes Rst
d (µ) ⊆ Rss

d (µ) ⊆ Rd.

Here is a class of slope functions for which the moduli spaces Mst
d (µ), Mss

d (µ) are easy to
understand.

Definition 5.5. Let Q be a quiver, and µ a slope function on mod-CQ defined using µv ∈ R
for v ∈ Q0. We call µ increasing if for all edges

v• e−→w• in Q we have µv < µw. Such µ exist if
and only if Q has no oriented cycles.
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Proposition 5.6. Let Q be a quiver with no oriented cycles, and µ be an increasing slope
function on Q. Then for each d ∈ NQ0 \ {0}, either:

(a) d = δv for some v ∈ Q0, that is, d(v) = 1 and d(w) = 0 for w ̸= v. Then Mst
d (µ) = Mss

d (µ)
is a single point ∗.

(b) d ̸= δv for any v ∈ Q0, and for some t ∈ R we have d(v) = 0 for all v ∈ Q0 with µv ̸= t.
Then Mst

d (µ) = ∅ and Mss
d (µ)

∼= [∗/PGLd]. Also 2− χ(d,d) < 0 in this case.

(c) Neither (a) nor (b) hold. Then Mst
d (µ) = Mss

d (µ) = ∅.

Proof. For (a), if d = δv then as Q has no oriented cycles there are no edges
v• e−→ v• in Q, and

in (5.2) we have Rd = 0 and PGLd = {1}, so Mpl
d = ∗. But Mst

d (µ) = Mss
d (µ) = Mpl

d as any
(V ,ρ) in class d in mod-CQ has no non-trivial subobjects, and so is automatically µ-stable.

For (b), suppose d ̸= δv for any v, and for t ∈ R we have d(v) = 0 for all v ∈ Q0 with µv ̸= t.

Then if v1, v2 ∈ Q0 with d(v1),d(v2) > 0 we have µv1 = µv2 = t, so there are no edges
v1• e−→ v2•

in Q as µ is increasing. Thus in (5.2) we have Rd = 0, so Mpl
d
∼= [∗/PGLd].

Let (V ,ρ) lie in class d in mod-CQ. Then ρ = 0 as Rd = 0. If 0 ̸= (W ,0) ⊆ (V ,0) is
any subobject then µ(JW ,0K) = µ(JV ,0K) = t as d(v) = 0 unless µv = t. Hence (V ,ρ) is

µ-semistable and Mss
d (µ) = Mpl

d
∼= [∗/PGLd]. Also as d ̸= δv we have

∑
v∈Q0

d(v) > 1. So
there exists a proper subobject 0 ̸= (W ,0) ⊊ (V ,0), and µ(JW ,0K) = µ(JV ,0K) shows that
(V ,ρ) is not µ-stable, giving Mst

d (µ) = ∅. As above, if v1, v2 ∈ Q0 with d(v1),d(v2) > 0 there

are no edges
v1• e−→ v2• in Q. Thus from (5.3) and (5.5) we see that χ(d,d) = 2

∑
v∈Q0

d(v)2, so
χ(d,d) ⩾ 4 as d ̸= δv, and 2− χ(d,d) < 0.

For (c), as neither (a), (b) hold there exist v1, v2 ∈ Q0 with d(v1),d(v2) > 0 and µv1 ̸= µv2 .
Set t = 1

2(µv1 + µv2). Define a subobject (W ,σ) ⊂ (V ,ρ) in mod-CQ by Wv = Vv if µv ⩾ t

and Wv = 0 ⊆ Vv if µv < t, and σ = ρ|W . If
v• e−→w• is an edge in Q then µ increasing

implies that either (i) Wv = Vv, Ww = Vw, or (ii) Wv = Ww = 0, or (iii) Wv = 0, Ww = Vw,
and in each case ρe : Vv → Vw maps Wv → Ww, so (W ,σ) is well defined. Both (W ,σ) and
(V ,ρ)/(W ,σ) are nonzero, as one contains Vv1 ̸= 0 and the other Vv2 ̸= 0. Also µ

(
[(W ,σ)]

)
⩾ t

and µ
(
[(V ,ρ)/(W ,σ)]

)
< t, so µ

(
[(W ,σ)]

)
> µ

(
[(V ,ρ)/(W ,σ)]

)
. Hence (V ,ρ) is µ-unstable

by Definition 3.5, for all (V ,ρ) with dim(V ,ρ) = d. Thus Mst
d (µ) = Mss

d (µ) = ∅. ■

Proposition 5.7. Let Q be a quiver with no oriented cycles, and µ a slope function on mod-CQ,
and d ∈ NQ0 \ {0} with Mst

d (µ) = Mss
d (µ). Then Mss

d (µ) is a smooth projective C-scheme.

Proof. Suppose first that µv ∈ Z for all v ∈ Q0. Then using geometric invariant theory (GIT)
from Mumford–Fogarty–Kirwan [81], King [64, Theorem 4.1] shows that Rst

d (µ), R
ss
d (µ) are

the open subschemes of GIT (semi)stable points for a certain linearization θ of the action of
PGLd on Rd determined by the µv. Thus Mst

d (µ) = [Rst
d (µ)/PGLd] is not merely an Artin

C-stack, but a smooth quasi-projective C-scheme. Also there exists a GIT quotient M̃ss
d (µ) =

Rss
d (µ)//θ PGLd, which is a coarse moduli scheme for Mss

d (µ). As Q has no oriented cycles, there
is a Gm-subgroup of PGLd acting on the vector space Rd with only positive weights, so M̃ss

d (µ)
is a projective C-scheme. If Mst

d (µ) = Mss
d (µ) then Mst

d (µ) = M̃ss
d (µ), so Mss

d (µ) is a smooth
projective C-scheme.

The condition that µv ∈ Z is unnecessary. As the notions of µ-(semi)stability are unchanged
by multiplying all µv by a positive number, the result holds for µv ∈ Q. To allow µv ∈ R,
note that the space RQ0 of values (µv)v∈Q0 is divided into chambers by finitely many real
hyperplanes of the form µ(e) = µ(d− e) for 0 < e < d, such that Mst

d (µ), Mss
d (µ) depend only

on the codimension k stratum S in the induced stratification of RQ0 containing (µv)v∈Q0 . As
the hyperplanes µ(e) = µ(d − e) are rational, S contains a rational point (µ̃v)v∈Q0 , and then
Mst

d (µ) = Mst
d (µ̃) and Mss

d (µ) = Mss
d (µ̃). The proposition follows. ■
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5.3 Defining invariants

The next theorem, Conjecture 4.2(i), (ii) for mod-CQ, is proved in Section 6.

Theorem 5.8. Let Q be a quiver with no oriented cycles, and use the notation of Section 5.1,
so in particular we have a Lie algebra over the Q-algebra R

Ȟ0

(
Mpl

)
=

⊕
d∈NQ0

Ȟ0

(
Mpl

d

)
=

⊕
d∈NQ0

H2−2χQ(d,d)

(
Mpl

d

)
,

for χQ as in (5.3). Then for all weak stability conditions (τ, T,⩽) on mod-CQ in the sense of

Section 3.3, and for all d ∈ NQ0 \ {0}, there exist unique classes [Mss
d (τ)]inv ∈ Ȟ0

(
Mpl

d

)
with

the properties:

(i) Suppose µ is a slope function on mod-CQ, and d ∈ NQ0 \ {0} with Mst
d (µ) = Mss

d (µ), so
that Mss

d (µ) is a smooth projective C-scheme by Proposition 5.7. Then dimCMss
d (µ) =

1 − χQ(d,d), so it has a fundamental class
[
Mss

d (µ)
]
fund

in H2−2χQ(d,d)

(
Mss

d (µ)
)
, and[

Mss
d (µ)

]
inv

is the pushforward ι∗
(
[Mss

d (µ)]fund
)
under the inclusion ι : Mss

d (µ) ↪→ Mpl
d .

This includes the case when Mss
d (µ) = ∅, with [Mss

d (µ)]inv = 0.

(ii) Let (τ, T,⩽) and
(
τ̃ , T̃ ,⩽

)
be two weak stability conditions on mod-CQ. Then as for

(4.1)–(4.2), for all d ∈ NQ0 \ {0} we have

[Mss
d (τ̃)]inv =

∑
n⩾1,d1,...,dn∈NQ0\{0} :

d1+···+dn=d

Ũ(d1, . . . ,dn; τ, τ̃) ·
[[
· · ·

[[
Mss

d1
(τ)

]
inv
,[

Mss
d2
(τ)

]
inv

]
, . . .

]
,
[
Mss

dn
(τ)

]
inv

]
,

(5.6)

[Mss
d (τ̃)]inv =

∑
n⩾1,d1,...,dn∈NQ0\{0} :

d1+···+dn=d

U(d1, . . . ,dn; τ, τ̃) ·
[
Mss

d1
(τ)

]
inv

∗[
Mss

d2
(τ)

]
inv

∗ · · · ∗
[
Mss

dn
(τ)

]
inv
,

(5.7)

which are equivalent equations, (5.6) in the Lie algebra Ȟ0

(
Mpl

)
and (5.7) in its universal

enveloping algebra U
(
Ȟ0

(
Mpl

))
.

(iii) Let µ be an increasing slope function on mod-CQ. Then

[Mss
d (µ)]inv =

{
1 ∈ H0

(
Mpl

d

) ∼= R, d = δv, v ∈ Q0,

0, otherwise.
(5.8)

This follows from (i) and Proposition 5.6, noting that in Proposition 5.6(b), [Mss
d (µ)]inv

lies in H<0

(
Mpl

d

)
= 0 as 2− χ(d,d) < 0.

The sequel [59, Section 6] gives an alternative proof of Theorem 5.8.

5.4 Morphisms of quivers

Here is a new notion of morphisms of quivers, which is designed to be compatible with the
morphisms of vertex and Lie algebras in Section 2.5.

Definition 5.9. Let Q = (Q0, Q1, h, t) and Q
′ = (Q′

0, Q
′
1, h

′, t′) be quivers. A morphism λ : Q→
Q′ is a pair λ = (λ0, λ1), where λ0 : Q0 → Q′

0 is a map, and λ1 ⊆ Q1 ×Q′
1 a subset satisfying:

(i) If (e, e′) ∈ λ1 then λ0 ◦ h(e) = h′(e′) and λ0 ◦ t(e) = t′(e′).

(ii) If v, w ∈ Q0 and e′ ∈ Q′
1 with λ0(v) = h′(e′) and λ0(w) = t′(e′), there exists unique e ∈ Q1

such that (e, e′) ∈ λ1 and h(e) = v, t(e) = w.
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(iii) The projection πQ1 : λ1 → Q1 mapping (e, e′) 7→ e is injective.

If Q′′ = (Q′′
0, Q

′′
1, h

′′, t′′) is another quiver and µ : Q′ → Q′′ is a morphism, the composition
µ ◦ λ = ((µ ◦ λ)0, (µ ◦ λ)1) is given by (µ ◦ λ)0 = µ0 ◦ λ0 and

(µ ◦ λ)1 =
{
(e, e′′) ∈ Q1 ×Q′′

1 : ∃e′ ∈ Q′
1 with (e, e′) ∈ λ1 and (e′, e′′) ∈ µ1

}
.

It is easy to show this is a morphism, and makes quivers into a category.
For λ as above, define a C-linear exact functor Σλ : mod-CQ→ mod-CQ′ by

Σλ : ((Vv)v∈Q0 , (ρe)e∈Q1) 7→ ((V ′
v′)v′∈Q′

0
, (ρ′e′)e′∈Q′

1
) on objects,

where V ′
v′ =

⊕
v∈Q0 : λ0(v)=v′

Vv and ρ′e′ =
∑

e∈Q1 : (e,e′)∈λ1

ρe and

Σλ : (ϕv)v∈Q0 7→ (ϕ′v′)v′∈Q′
0
on morphisms, where ϕ′v′ =

∑
v∈Q0 : λ0(v)=v′

ϕv.

If µ : Q′ → Q′′ is another morphism then Σµ◦λ = Σµ ◦ Σλ.
The induced action (Σλ)∗ : K0(mod-CQ) → K0(mod-CQ′) descends to

λ∗ : ZQ0 → ZQ
′
0 , λ∗ : d 7→ d′, where d′(v′) =

∑
v∈Q0 : λ0(v)=v′

d(v).

Then λ∗ maps NQ0 → NQ′
0 and NQ0 \ {0} → NQ′

0 \ {0}.
If (τ ′, T ′,⩽) is a (weak) stability condition on mod-CQ′, as in Section 3.3, it is easy to check

that (τ ′ ◦ λ∗, T ′,⩽) is a (weak) stability condition on mod-CQ. If µ′ is a slope function on
mod-CQ′ defined using constants µ′v′ for v

′ ∈ Q′
0 then µ = µ′ ◦ λ∗ is the slope function defined

using µv = µ′λ0(v) for v ∈ Q0.

Definition 5.10. Let λ : Q→ Q′ be a morphism of quivers, as in Definition 5.9. Write M, M′

for the moduli stacks of objects in mod-CQ, mod-CQ′, and Mpl, M′pl for the projective linear
moduli stacks, so that Section 5.1 and Sections 2.3–2.4 define graded vertex algebras Ĥ∗(M),
Ĥ∗(M′) and graded Lie algebras Ȟ∗

(
Mpl

)
, Ȟ∗

(
M′pl). We will use the constructions of Sec-

tion 2.5 to define morphisms Ω : Ĥ∗(M) → Ĥ∗(M′) and Ωpl : Ȟ∗
(
Mpl

)
→ Ȟ∗

(
M′pl).

In Definition 2.11(a)–(c), let T : A → A′ be Σλ : mod-CQ → mod-CQ′, and write σλ : M →
M′ and σplλ : Mpl → M′pl for the induced stack morphisms. Define ξ : ZQ0 × ZQ0 → Z and
vector bundles F → M×M, G→ M by

ξ(d, e) =
∑

v ̸=w∈Q0 : λ0(v)=λ0(w)

d(v)d(w) +
∑

e∈Q1 : ̸∃(e,e′)∈λ1

d(t(e))e(h(e)), (5.9)

F =
⊕

v ̸=w∈Q0 : λ0(v)=λ0(w)

Vv ⊠ V∗
w ⊕

⊕
e∈Q1 : ̸∃(e,e′)∈λ1

Vt(e) ⊠ V∗
h(e), (5.10)

G =
⊕

v ̸=w∈Q0 : λ0(v)=λ0(w)

V∗
v ⊗ Vw ⊕

⊕
e∈Q1 : ̸∃(e,e′)∈λ1

V∗
t(e) ⊗ Vh(e). (5.11)

We now claim that the conditions Definition 2.11(i)–(v) hold. From (5.3) and Definition 5.9
(especially (i)–(iii)) we can show that

χQ′(λ∗(d), λ∗(e)) = χQ(d, e) + ξ(d, e),

and then Definition 2.11(i), (ii) follow from the second and third equations of (5.5). For (iii),
equations (2.17)–(2.20) follow from obvious compatibilities between Vv and Φ, Ψ. For (iv), in
K0(Perf(M×M)) we have

(σλ × σλ)
∗([(Ext′•)∨]) = ∑

v′∈Q′
0

(σλ × σλ)
∗([Vv′ ⊠ V∗

v′ ])−
∑
e′∈Q′

1

(σλ × σλ)
∗([Vt′(e′) ⊠ V∗

h′(e′)])
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=
∑
v′∈Q′

0

∑
v,w∈Q0 :

λ0(v)=λ0(w)=v′

[Vv ⊠ V∗
w]−

∑
e′∈Q′

1

∑
v,w∈Q0 :

λ0(v)=t′(e′), λ0(w)=h′(e′)

[Vv ⊠ V∗
w]

=

( ∑
v∈Q0

[Vv ⊠ V∗
v ] +

∑
v ̸=w∈Q0 : λ0(v)=λ0(w)

[Vv ⊠ V∗
w]

)

−
( ∑
e∈Q1

[Vt(e) ⊠ V∗
h(e)]−

∑
e∈Q1 : ̸∃(e,e′)∈λ1

[Vt(e) ⊠ V∗
h(e)]

)
=

[
(Ext•)∨

]
+ [F ],

using (5.4) in the first step, and Definition 5.9 in the second, and Definition 5.9(i)–(iii) to rewrite
the sum

∑
e′∈Q′

1

∑
v,w in the third, and (5.4) and (5.10) in the fourth. Definition 2.11(iv) then

follows from the fourth equation of (5.5). Part (v) follows as the vector bundles V∗
v ⊗ Vw → M

descend to Mpl, as they have weight 0 for the [∗/Gm]-action Ψ on M.

The additional condition in Definition 2.14 that if E ̸= 0 then Σλ(E) ̸= 0 in mod-CQ′ also
holds. Thus Section 2.5 defines morphisms Ω, Ωpl in (2.21)–(2.22).

The next theorem relates enumerative invariants of quivers Q, Q′ linked by a morphism
λ : Q→ Q′. It will be proved in Section 6.2.

Theorem 5.11. In the situation of Definitions 5.9 and 5.10, let (τ ′, T ′,⩽) be a weak stability
condition on mod-CQ′, so that (τ, T,⩽) := (τ ′ ◦ λ∗, T ′,⩽) is a weak stability condition on
mod-CQ. Suppose that Q,Q′ have no oriented cycles. Then for all d ∈ NQ0 \ {0} with λ∗(d) =
d′ ∈ NQ′

0 \ {0}, the invariants of Theorem 5.8 for mod-CQ,mod-CQ′ satisfy∏
v∈Q0

d(v)! · Ωpl
(
[Mss

d (τ)]inv
)
=

∏
v′∈Q′

0

d′(v′)! · [M′ss
d′ (τ ′)]inv. (5.12)

If λ0 : Q0→Q′
0 is injective this simplifies to Ωpl([Mss

d (τ)]inv)=[M′ss
d′ (τ ′)]inv.

We will use Theorem 5.11 in Sections 6.4–6.5 to prove Theorem 5.8(i).

5.5 Pair invariants for quivers

Conjecture 4.2(iii) and Definition 4.3 described the method of pair invariants. We explain how
to use this for quivers, proving a version of Conjecture 4.2(iii).

Definition 5.12. Let Q = (Q0, Q1, h, t) be a quiver with no oriented cycles. Choose nv ∈ N
for v ∈ Q0. Define a new quiver Q̃ =

(
Q̃0, Q̃1, h̃, t̃

)
to be Q together with one extra vertex ∞,

so that Q̃0 = Q0 ⨿ {∞}, and with nv extra edges
∞• −→ v• for each v ∈ Q0, so that Q̃1 =

Q1⨿
∐
v∈Q0

{v}×{1, . . . , nv}. Then Q̃ also has no oriented cycles. There is an obvious inclusion

i : mod-CQ ↪→ mod-CQ̃ identifying mod-CQ with the full subcategory of ((Vv)v∈Q̃0
, (ρe)e∈Q̃1

)

in mod-CQ̃ with V∞ = 0. In fact i = Σλ in Definition 5.9 for λ : Q → Q̃ given by λ0 : v 7→ v
and λ1 = {(e, e) : e ∈ Q1}.

We can now apply Definition 4.3 with A = mod-CQ and B = mod-CQ̃. For Definition 4.3(i)–
(vi), in (i) we take i : mod-CQ ↪→ mod-CQ̃ as above, and in (ii) we define an object I =(
(Wv)v∈Q̃0

, (σe)e∈Q̃1

)
in mod-CQ̃ to have W∞ = C, and Wv = 0 for all v ∈ Q0, and σe = 0

for all e ∈ Q̃1. For (iii) we use ZQ̃0 = ZQ0⨿{∞} = ZQ0 ⊕ Z{∞} = ZQ0 ⊕ Z. Parts (iv)–(vi) are
obvious. The rest of Definition 4.3 then works in a straightforward way. Consider the map[

−, 1
H0(M̃pl

(0,1)
)

]
: H∗

(
M̃pl

(α,0)

)
−→ H∗

(
M̃pl

(α,1)

)
. (5.13)
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Using the explicit formula for [ , ] in [58] we can prove that (5.13) is injective for all α ∈ NQ0\0
if and only if nv > 0 for all v ∈ Q0. One way to do this is to consider the line bundle

V
−

∑
v∈Q0

α(v)
∞ ⊗

⊗
v∈Q0

detVv −→ M̃(α,1).

This has weight 0 for the [∗/Gm]-action on M̃(α,1), and so is the pullback of a line bundle

L → M̃pl
(α,1). The map (5.13) increases homological degree by 2d = 2

(∑
v∈Q0

nvα(v) − 1
)
,

where d ⩾ 0 as α ̸= 0 and nv > 0 for all v ∈ Q0. We can show that if λ ∈ H∗
(
M̃pl

(α,0)

)
then Π∗

([
λ, 1

H0(M̃pl
(0,1)

)

]
∩ c1(L)d

)
is a nonzero multiple of λ, where Π: M̃pl

(α,1) → M̃pl
(α,0) is the

forgetful morphism omitting V∞ and its edge maps, so
[
λ, 1

H0(M̃pl
(0,1)

)

]
̸= 0 if λ ̸= 0.

However, there is a problem: Theorem 5.8(i) only gives an explicit geometric definition of
[Mss

d (τ)]inv when Mst
d (τ) = Mss

d (τ) and τ is a slope function. As the weak stability conditions
(τ±, T±,⩽) on B = mod-CQ̃ in Definition 4.3 are clearly not slope functions, Definition 4.3 as
written does not give an inductive definition of [Mss

d (τ)]inv in terms of geometrically defined
classes.

We now explain a way to get round this, by a variation of Definition 4.3 which uses only
slope functions. Instead of a general weak stability condition (τ, T,⩽) on A = mod-CQ, we
choose a slope function µ on mod-CQ, defined by constants (µv)v∈Q0 . The analogue of the
weak stability conditions (τ±, T±,⩽) on B = mod-CQ̃ in Definition 4.3 are slope functions µ̃d±
on mod-CQ̃ which depend on a choice of d ∈ NQ0 \ {0}, defined by constants µ̃d±,v = µv for

v ∈ Q0 ⊂ Q̃0, and µ̃
d
±,∞ = µ(d)± ϵ for ∞ ∈ Q̃0, where ϵ > 0 is small.

The important properties of µ̃d± we need are:

(a) If e ∈ NQ0 \ {0} then µ̃d±(e, 0) = µ(e).

(b) If e,f ∈ NQ0 \ {0} with d = e+ f and µ(e) < µ(f) then µ̃d+(e, 0) < µ̃d+(f , 1), µ̃
d
+(e, 1) <

µ̃d+(f , 0), µ̃
d
−(e, 0) < µ̃d−(f , 1), µ̃

d
−(e, 1) < µ̃d−(f , 0).

(c) If e,f ∈ NQ0 \ {0} with d = e + f and µ(e) = µ(f) then µ̃d+(e, 0) < µ̃d+(f , 1) and
µ̃d−(e, 1) < µ̃d−(f , 0).

(d) µ̃d+(0, 1) > µ(d) and µ̃d−(0, 1) < µ(d).

Here ϵ > 0 needs to be small to ensure µ̃d+(e, 1) < µ̃d+(f , 0) and µ̃d−(e, 0) < µ̃d−(f , 1) in (b).
Then µ, µd+, µ

d
− satisfy all the same inequalities for τ , τ+, τ− used to prove (4.4) with α = d.

So combining (4.4) with Theorem 5.8(i) and Definition 4.3(a), (b) proves that

ι̃∗
([
M̃ss

(d,1)

(
µ̃d+

)]
fund

)
= (5.14)∑

n⩾1,d1,...,dn∈NQ0\{0} :
d1+···+dn=d,

µ(di)=µ(d), i=1,...,n

(−1)n

n!
·
[[
· · ·

[
[1
H0(M̃pl

(0,1)
)
, ipl∗

([
Mss

d1
(µ)

]
inv

)]
, . . .

]
, ipl∗

([
Mss

dn
(µ)

]
inv

)]
.

Here
[
M̃ss

(d,1)

(
µ̃d+

)]
fund

is the fundamental class of the smooth projective C-scheme M̃st
(d,1)

(
µ̃d+

)
= M̃ss

(d,1)

(
µ̃d+

)
, and is geometrically defined. As for (4.5), we can rewrite (5.14) as

ι̃∗
([
M̃ss

(d,1)

(
µ̃d+

)]
fund

)
=

[
ipl∗

([
Mss

d (µ)
]
inv

)
, 1
H0(M̃pl

(0,1)
)

]
+ lower order terms, (5.15)

where the operation
[
−, 1

H0(M̃pl
(0,1)

)

]
is injective if nv > 0 for all v inQ0, and i

pl
∗ is an isomorphism.

Then we can use (5.15) to determine
[
Mss

d (µ)
]
inv

uniquely in terms of
[
M̃ss

(d,1)

(
µ̃d+

)]
fund

and

[Mss
e (µ)]inv for |e| < |d|, by induction on increasing |d|.
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6 Proofs of Theorems 5.8 and 5.11

We now prove Theorems 5.8 and 5.11. Firstly, in Section 6.1, we prove that there are unique
classes [Mss

d (τ)]inv satisfying Theorem 5.8(ii), (iii), but without yet showing that they satisfy
Theorem 5.8(i). Then Section 6.2 shows that Theorem 5.11 holds for these classes

[
Mss

d (τ)
]
inv

.
Sections 6.3–6.6 prove that Theorem 5.8(i) also holds, using Theorem 5.11 as a tool.

6.1 Proof of Theorem 5.8(ii), (iii)

Proposition 6.1. In the situation of Theorem 5.8, there exist unique classes
[
Mss

d (τ)
]
inv

in

Ȟ0

(
Mpl

d

)
satisfying Theorem 5.8(ii), (iii).

Proof. Fix an increasing slope function µ on mod-CQ, which is possible as in Definition 5.5
since Q has no oriented cycles. Then Theorem 5.8(iii) determines the classes

[
Mss

d (µ)
]
inv

. Let

(τ, T,⩽) be any weak stability condition on mod-CQ. Define classes
[
Mss

d (τ)
]
inv

∈ Ȟ0

(
Mpl

d

)
for all d ∈ NQ0 \ {0} by the equivalent equations (5.6)–(5.7) with µ, τ in place of τ , τ̃ . Note
that when τ = µ, equation (3.11) implies that this recovers the classes

[
Mss

d (µ)
]
inv

in (5.8), so
Theorem 5.8(iii) holds for this fixed increasing slope function µ.

We claim that these classes
[
Mss

d (τ)
]
inv

satisfy Theorem 5.8(ii). To see this, let (τ, T,⩽),(
τ̃ , T̃ ,⩽

)
be weak stability conditions on mod-CQ. Then[

Mss
d (τ)

]
inv

=
∑

n⩾1, e1,...,en∈NQ0\{0} :
e1+···+en=d

U(e1, . . . , en;µ, τ) · [Mss
e1(µ)]inv∗

[Mss
e2(µ)]inv ∗ · · · ∗ [M

ss
en(µ)]inv,

(6.1)

[
Mss

d (τ̃)
]
inv

=
∑

n⩾1, e1,...,en∈NQ0\{0}:
e1+···+en=d

U(e1, . . . , en;µ, τ̃) · [Mss
e1(µ)]inv∗

[Mss
e2(µ)]inv ∗ · · · ∗ [M

ss
en(µ)]inv.

(6.2)

To verify (5.7) for (τ, T,⩽),
(
τ̃ , T̃ ,⩽

)
, substitute (6.2) into the left-hand side of (5.7), and substi-

tute (6.1) with di in place of d into each term
[
Mss

di
(τ)

]
inv

on the right-hand side. Multiplying
out, we see that the coefficients of [Mss

e1(µ)]inv ∗ · · · ∗ [Mss
en(µ)]inv on each side are equal by

equation (3.12) of Theorem 3.13 with µ, τ , τ̃ , ei in place of τ , τ̂ , τ̃ , αi. Thus (5.7) holds, so (5.6)
also holds as it is equivalent by Theorem 3.15. This proves Theorem 5.8(ii).

Next, suppose for a contradiction that µ̃ is another increasing slope function, and (5.8) fails
for µ̃ and d̃ ∈ NQ0 \{0}. Let µ, µ̃ be defined using constants (µv)v∈Q0 , (µ̃v)v∈Q0 in RQ0 . Observe
that the condition on (µv)v∈Q0 for µ to be increasing in Definition 5.5 defines an open convex

subset RQ0
> of RQ0 . Choose a generic smooth path

(
µtv

)
v∈Q0

for t ∈ [0, 1] in RQ0
> with µ0v = µv

and µ1v = µ̃v for v ∈ Q0. This defines a generic smooth path µt of increasing slope functions on
mod-CQ with µ0 = µ and µ1 = µ̃. Define

t0 = inf
{
t ∈ [0, 1] : (5.8) fails for

[
Mss

d

(
µt
)]

inv
for some d with 0 < d ⩽ d̃

}
.

Divide into cases:

(a) (5.8) holds for
[
Mss

d

(
µt0

)]
inv

whenever 0 < d ⩽ d̃. Then let ϵ > 0 be small and 0 < d ⩽ d̃

such that (5.8) fails for
[
Mss

d

(
µt0+ϵ

)]
inv

, and set µ′ = µt0 and µ′′ = µt0+ϵ.

(b) (5.8) does not hold for
[
Mss

d

(
µt0

)]
inv

, some 0 < d ⩽ d̃. Then let ϵ > 0 be small and set
µ′ = µt0−ϵ and µ′′ = µt0 .

In both cases, µ′, µ′′ are increasing such that (5.8) holds for µ′ and all d′ ⩽ d̃, but fails for µ′′, d.
Furthermore, as ϵ is small, in case (a) µ′ dominates µ′′ in the sense of Definition 3.5, and in
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case (b) µ′′ dominates µ′. This holds because any slope function µ1 on mod-CQ dominates all
slope functions µ2 in a sufficiently small neighbourhood of µ1 in the space of slope functions RQ0 .

Consider (5.7) with µ′, µ′′ in place of τ , τ̃ . To get a nonzero term on the right-hand
side, we must have di = δvi for vi ∈ Q0 and i = 1, . . . , n, as (5.8) holds for µ′. Also, if
U(d1, . . . ,dn;µ

′, µ′′) ̸= 0 then (3.13) gives µ′(δv1) = · · · = µ′(δvn) in case (a), as µ′ domi-
nates µ′′, and µ′′(δv1) = · · · = µ′′(δvn) in case (b). As µ′, µ′′ are increasing, Definition 5.5
implies that there are no edges in Q joining vi, vj for any i, j = 1, . . . , n. The definition of the
Lie bracket on Ȟ0

(
Mpl

)
and (5.8) for µ′ then implies that[[

Mss
δvi

(µ′)
]
inv
,
[
Mss

δvj
(µ′)

]
inv

]
= 0.

Thus rewriting (5.7) in the form (5.6), we see that every term on the right-hand side is zero,
so

[
Mss

d (µ
′′)
]
inv

= 0, a contradiction, as (5.8) fails for µ′′, d. Therefore Theorem 5.8(iii) holds.
This completes the proof. ■

6.2 Proof of Theorem 5.11

Given Sections 6.3–6.6, the next proposition is equivalent to Theorem 5.11.

Proposition 6.2. In the situation of Theorem 5.11, the classes
[
Mss

d (τ)
]
inv

in Ȟ0

(
Mpl

d

)
defined

in Proposition 6.1 satisfy (5.12).

Proof. We divide into three cases, depending on the morphism λ : Q→ Q′:

(a) We have Q0 = Q′
0 and λ0 = idQ0 .

(b) The projection πQ1 : λ1 → Q1 in Definition 5.9(iii) is a bijection.

(c) The general case.

Now any λ = (λ0, λ1) : Q→ Q′ may be written λ = λ′′ ◦λ′, for λ′ : Q→ Q̃ as in (a) and λ′′ : Q̃→
Q′ as in (b), where Q̃ is Q with edges e in Q1 \ ImπQ1 deleted, and λ′ = (idQ0 , {(e, e) : e ∈ Q̃1}),
λ′′ = (λ0, λ1). Clearly (5.12) for λ′, λ′′ imply (5.12) for λ = λ′′ ◦ λ′. Thus (a), (b) imply (c).

For both (a), (b), we will give different constructions of slope functions µ′ and µ = µ′ ◦ λ∗
on mod-CQ′, mod-CQ with both µ, µ′ increasing, and prove (5.12) holds for µ, µ′. Then we
complete the proofs of (a), (b) together.

For (a), note that the map µ′ 7→ µ = µ′ ◦ λ∗ is a bijection from slope functions on mod-CQ
to slope functions on mod-CQ′. Choose µ′ such that µ = µ′ ◦ λ∗ is an increasing slope function
on mod-CQ. Then µ′ is also increasing, since edges of Q′ are also edges of Q. Hence (5.8)
holds for µ on mod-CQ and for µ′ on mod-CQ′. To verify (5.12) with µ, µ′ in place of τ , τ ′,

note that if d = d′ = δv then
[
Mss

d (τ)
]
inv

=
[
M′ss

d′ (τ ′)
]
inv

= 1 and Ωpl = id on H∗
(
Mpl

d

)
as

rankGpl
d = ξ(δv, δv) = 0, and if d ̸= δv then both sides of (5.12) are zero by (5.8). So (5.12)

holds for µ, µ′.

For (b), let µ′ be an increasing slope function on mod-CQ′ with constants (µ′v′)v′∈Q′
0
, and set

µ = µ′ ◦ λ∗. Then µ is a slope function on mod-CQ, with constants (µv)v∈Q0 for µv = µ′λ0(v). If

v• e−→w• is an edge in Q there exists unique e′ ∈ Q′
1 with (e, e′) ∈ λ1, and then

λ0(v)• e′−→
λ0(w)• is an

edge in Q′. Hence as µ′ is increasing we have µv = µ′λ0(v) < µ′λ0(w) = µw, so µ is also increasing.

If d = δv for some v ∈ Q0, so that d′ = δλ0(v), then
[
Mss

d (τ)
]
inv

=
[
M′ss

d′ (τ ′)
]
inv

= 1 by (5.8)
and we can show (5.12) holds in a similar way to (a). If d ̸= δv for any v ∈ Q0 then d′ ̸= δv′

for any v′ ∈ Q′
0, so

[
Mss

d (τ)
]
inv

=
[
M′ss

d′ (τ ′)
]
inv

= 0 by (5.8) as µ, µ′ are increasing, and (5.12)
holds trivially.



48 J. Gross, D. Joyce and Y. Tanaka

Note that in both cases (a), (b), in (5.12) for µ, µ′ either both sides are zero, or d, d′

are binary in the sense of Definition 6.3 below, so the mysterious factors
∏
v d(v)!,

∏
v′ d

′(v′)!
in (5.12) are 1.

Now in both cases (a), (b), let (τ ′, T ′,⩽) be any weak stability condition on mod-CQ, set
(τ, T,⩽) = (τ ′ ◦ λ∗, T ′,⩽), and let d ∈ NQ0 \ {0} with λ∗(d) = d′ ∈ NQ′

0 \ {0}. Then

Ωpl
(
[Mss

d (τ)]inv
)
=

∑
n⩾1,d1,...,dn∈NQ0\{0} :

d1+···+dn=d,
set d′

i = λ∗(di)

U(d1, . . . ,dn;µ, τ) ·
∏
i=1,...,n, v′∈Q′

0
d′
i(v

′)!∏
i=1,...,n, v∈Q0

di(v)!

[M′ss
d′
1
(µ′)]inv ∗ · · · ∗ [M′ss

d′
n
(µ′)]inv

=
∑

n⩾1,d′
1,...,d

′
n∈NQ′

0\{0} :
d′
1+···+d′

n=d′

U(d′
1, . . . ,d

′
n;µ

′, τ ′) · [M′ss
d′
1
(µ′)]inv ∗ · · · ∗ [M′ss

d′
n
(µ′)]inv

·
[ ∑

d1,...,dn∈NQ0 :
d1+···+dn=d, λ∗(di)=d′

i

∏
i=1,...,n, v′∈Q′

0
d′
i(v

′)!∏
i=1,...,n, v∈Q0

di(v)!

]

=
∑

n⩾1,d′
1,...,d

′
n∈NQ′

0\{0} :
d′
1+···+d′

n=d′

U(d′
1, . . . ,d

′
n;µ

′, τ ′) · [M′ss
d′
1
(µ′)]inv ∗ · · · ∗ [M′ss

d′
n
(µ′)]inv

·

[∏
v′∈Q′

0
d′(v′)!∏

v∈Q0
d(v)!

]
.

(6.3)

Here the first step holds by applying the Lie algebra morphism Ωpl to (5.7) for mod-CQ
with µ, τ in place of τ , τ̃ and using (5.12) for µ, µ′. In the second we rewrite the sums
and use U(d′

1, . . . ,d
′
n;µ

′, τ ′) = U(d1, . . . ,dn;µ, τ) as µ = µ′ ◦ λ∗, τ = τ ′ ◦ λ∗ and d′
i = λ∗(di).

The third step holds by a combinatorial identity showing the brackets [· · · ] are equal. It may
be written as the product over v′ ∈ Q′

0 of the simpler identity

∑
dv′
1 ,...,d

v′
n ∈Nλ−1

0 (v′) :

dv′
1 +···+dv′

n =dv′ ,
∑

v∈λ−1
0 (v′) d

v′
i (v)=d′

i(v
′)

∏
i=1,...,n d

′
i(v

′)!∏
i=1,...,n, v∈λ−1

0 (v′) d
v′
i (v)!

=
d′(v′)!∏

v∈λ−1
0 (v′) d

v′(v)!
,

writing dv
′
, dv

′
i for the restrictions of d, di to λ

−1
0 (v′) ⊆ Q0. Equivalently,

∑
dv′
1 ,...,d

v′
n ∈Nλ−1

0 (v′) :

dv′
1 +···+dv′

n =dv′ ,
∑

v∈λ−1
0 (v′) d

v′
i (v)=d′

i(v
′)

∏
v∈λ−1

0 (v′) d
v′(v)!∏

i=1,...,n, v∈λ−1
0 (v′) d

v′
i (v)!

=
d′(v′)!∏

i=1,...,n d
′
i(v

′)!
,

which follows from considering the number of ways of dividing a set of size
∑

v∈λ−1
0 (v′) d

v′(v) =

d′(v′) into n subsets of size d′
i(v

′) for i = 1, . . . , n. Equation (6.3) implies (5.12) for τ , τ ′. This
proves (a), (b), and (c) follows as above. ■

6.3 Proof of Theorem 5.8(i) for d binary, Q a tree

We will break the proof of Theorem 5.8(i) into four cases in Sections 6.3–6.6, depending on the
following definition.

Definition 6.3. Work in the situation of Theorem 5.8. We call a dimension vector d ∈ NQ0 \{0}
binary if d(v) ∈ {0, 1} for all v ∈ Q0. The support suppd of d is the subquiver Q′ ⊆ Q containing
all vertices v ∈ Q0 with d(v) > 0, and all edges linking two such vertices. We say that suppd is
a tree if Q′ is connected and simply-connected.
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Let µ be a slope function on mod-CQ, and d ∈ NQ0 \ {0}. We call the pair µ, d generic if
whenever d = e + f for e,f ∈ NQ0 \ {0} we have µ(e) ̸= µ(f). This implies that there are no
strictly µ-semistable objects in class d, so Mst

d (µ) = Mss
d (µ). Note that µ, d cannot be generic

if d = ne for n > 1.

The proof of the next proposition uses the Donaldson–Thomas theory of quivers in Joyce–
Song [60, Section 7], which satisfy a wall-crossing formula like (5.6).

Proposition 6.4. The classes
[
Mss

d (µ)
]
inv

in Ȟ0

(
Mpl

d

)
defined in Proposition 6.1 satisfy Theo-

rem 5.8(i) when d is binary and suppd is a tree.

Proof. Suppose d is binary, suppd is a tree, and µ is a slope function on mod-CQ with
Mst

d (µ) = Mss
d (µ). Now Mpl

d is a smooth Artin C-stack with dimCMpl
d = 1− χQ(d,d), for χQ

as in (5.3). As d is binary and suppd is a tree, we see that χQ(d,d) = 1, giving dimCMpl
d = 0,

so as Mst
d (µ) is open in Mpl

d , it is smooth of dimension 0. Also Mst
d (µ) = [Rst

d (µ)/PGLd] with
Rst

d (µ) ⊆ Rd
∼= An open, so Rst

d (µ) and hence Mst
d (µ) are connected. This implies that

Mst
d (µ) = Mss

d (µ) is either a point ∗ or empty. (6.4)

Now let µ̃ be an increasing slope function on mod-CQ. Equations (3.18) and (5.6) with µ̃, µ
in place of τ , τ̃ and (5.8) for µ̃ yield

ϵ̄d(µ) =
∑

d1,...,dn∈NQ0\{0} : n=|d|,
d1+···+dn=d,di=δvi , vi∈Q0

Ũ(d1, . . . ,dn; µ̃, µ) ·
[[
· · ·

[
ϵ̄d1(µ̃),

ϵ̄d2(µ̃)
]
, . . .

]
, ϵ̄dn(µ̃)

]
,

(6.5)

[Mss
d (µ)]inv =

∑
d1,...,dn∈NQ0\{0} : n=|d|,

d1+···+dn=d, di=δvi , vi∈Q0

Ũ(d1, . . . ,dn; µ̃, µ) ·
[[
· · ·

[
1
H0(Mpl

d1
)
,

1
H0(Mpl

d2
)

]
, . . .

]
, 1
H0(Mpl

dn
)

]
.

(6.6)

Here we use Proposition 5.6 and (5.8) to deduce that the only nonzero terms on the right-hand
sides of (3.18) and (5.6) are when di = δvi for i = 1, . . . , n, and then n = |d| :=

∑
v∈Q0

d(v).

Equations (6.5) and (6.6) are in the Lie algebras SFind
al (M) and Ȟ0

(
Mpl

)
.

Now Joyce and Song [60, Section 7] define invariants D̄T e
Q(µ) for quivers Q (this is the

special case when the superpotential is W = 0). In [60, Section 7.3] they define an explicit Lie
algebra L(Q) over R (they take R = Q and write L̃(Q)), with basis given by symbols λe for
e ∈ NQ0 , and Lie bracket[

λe, λf
]
= (−1)χ̄(e,f)χ̄(e,f)λe+f ,

where χ̄ is the anti-symmetric Euler form χ̄(e,f) := χQ(e,f) − χQ(f , e). They define a Lie
algebra morphism Ψ: SFind

al (M) → L(Q) (this is difficult), for SFind
al (M) as in Section 3.2, and

they define D̄T e
Q(µ) ∈ Q ⊆ R by Ψ(ϵ̄e(µ)) = −D̄T e

Q(µ)λ
e, for ϵ̄e(µ) as in Section 3.4.

Define Lie algebra ideals

L(Q)non-bin =
⊕

e non-binary

R · λe ⊆ L(Q),

Ȟ0(Mpl)non-bin =
⊕

e non-binary

Ȟ0

(
Mpl

e

)
⊆ Ȟ0

(
Mpl

Q

)
,

noting that if e or f is non-binary then so is e+ f . Define Lie subalgebras

L(Q)dconn =
⊕

e connected support,
supp(e)⊆supp(d)

R · λe ⊆ L(Q),
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Ȟ0(Mpl)dconn =
⊕

e connected support,
supp(e)⊆supp(d)

Ȟ0

(
Mpl

e

)
⊆ Ȟ0

(
Mpl

)
.

These are Lie subalgebras as if supp(e), supp(f) are disjoint and not connected by any edges

then the Lie brackets between λe, λf and Ȟ0

(
Mpl

e

)
, Ȟ0

(
Mpl

f

)
are zero. The quotients

L(Q)dbin = L(Q)dconn/(L(Q)dconn ∩ L(Q)non-bin),

Ȟ0

(
Mpl

)d
bin

= Ȟ0

(
Mpl

)d
conn

/
(
Ȟ0

(
Mpl

)d
conn

∩ Ȟ0

(
Mpl

)
non-bin

)
are Lie algebras.

Define an R-linear map Υ: L(Q)dbin → Ȟ0

(
Mpl

)d
bin

by λe 7→ −1
H0(Mpl

e )
. We will show Υ is

a Lie algebra morphism, as Υ
([
λe, λf

])
=

[
Υ(λe),Υ

(
λf

)]
, that is[

1
H0(Mpl

e )
, 1
H0(Mpl

f )

]
= −(−1)χ̄(e,f)χ̄(e,f) · 1

H0(Mpl
e+f )

mod Ȟ0

(
Mpl

)d
conn

∩ Ȟ0

(
Mpl

)
non-bin

,
(6.7)

for e,f ∈ NQ0 \ {0} binary with supp(e), supp(f) connected and in supp(d).
Using the definition of the Lie bracket on Ȟ0

(
Mpl

)
via Proposition 2.3 and Ȟ∗

(
Mpl

)
=

Ĥ∗+2(M)/D
(
Ĥ∗(M)

)
, and the definition (2.11) of the vertex algebra structure on Ĥ∗(M), we

find that[
1
H0(Mpl

e )
, 1
H0(Mpl

f )

]
=

∑
i⩾0:

i⩾χ(e,f)+1

(−1)χQ(e,f)

(i− χ(e,f)− 1)!
H∗(Φ) ◦

(
Di−χ(e,f)−1 ⊗ id

)
(
(1H0(Me) ⊠ 1H0(Mf )) ∩ ci(Θ

•)
)

+D
(
Ĥ0(M)

)
, mod Ȟ0

(
Mpl

)
conn

∩ Ȟ0

(
Mpl

)
non-bin

.

(6.8)

Equation (6.8) implies that[
1
H0(Mpl

e )
, 1
H0(Mpl

f )

]

=


0, supp(e) ∩ supp(f) ̸= ∅,
0, supp(e) ∩ supp(f) = ∅, χQ(e,f) = χQ(f , e) = 0,

1
H0(Mpl

e+f )
, supp(e) ∩ supp(f) = ∅, χQ(e,f) = 0, χQ(f , e) = −1,

−1
H0(Mpl

e+f )
, supp(e) ∩ supp(f) = ∅, χQ(e,f) = −1, χQ(f , e) = 0,

mod Ȟ0

(
Mpl

)d
conn

∩ Ȟ0

(
Mpl

)
non-bin

, (6.9)

where the four cases realize all possibilities. To see this, note that if supp(e) ∩ supp(f) ̸= ∅
then e + f is non-binary, so

[
1
H0(Mpl

e )
, 1
H0(Mpl

f )

]
∈ Ȟ0

(
Mpl

)
non-bin

, giving the first case. If

supp(e)∩ supp(f) = ∅ then as supp(e), supp(f) lie in supp(d), which is a tree, there is at most
one edge joining supp(e), supp(f), so the possibilities are χQ(e,f) = χQ(f , e) = 0 (if no edges),
or χQ(e,f) = 0, χQ(f , e) = −1 (if one edge supp(f) → supp(e), by (5.3)), or χQ(e,f) = −1,
χQ(f , e) = 0 (if one edge supp(e) → supp(f)).

To prove (6.9), the first case is immediate. In (6.8), we have
(
1H0(Me)⊠1H0(Mf )

)
∩ci(Θ•) = 0

unless i = 0, for dimension reasons. As χ(e,f) = χQ(e,f) + χQ(f , e), the condition i ⩾
χ(e,f) + 1 in (6.8) means there are no nonzero terms in (6.8) in the second case of (6.9).
For the third and fourth cases, there is one nonzero term in (6.8), with i = 0, χ(e,f) = −1,
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and (−1)χQ(e,f) is 1 in the third case and −1 in the fourth. Equation (6.9) follows, and as
χ̄(e,f) = χQ(e,f)−χQ(f , e) this implies (6.7). Hence Υ is a Lie algebra morphism, as claimed.

Applying the Lie algebra morphism Ψ: SFind
al (M) → L(Q) to (6.5) gives an equation in

L(Q)dconn ⊆ L(Q). Composing with the Lie algebra projection L(Q)dconn → L(Q)dbin, and then

applying the Lie algebra morphism Υ: L(Q)dbin → Ȟ0

(
Mpl

)d
bin

, gives an identity in Ȟ0

(
Mpl

)d
bin

:

Υ ◦Ψ(ϵ̄d(µ)) =
∑

d1,...,dn∈NQ0\{0} : n=|d|,
d1+···+dn=d,di=δvi , vi∈Q0

Ũ(d1, . . . ,dn; µ̃, µ) ·
[[
· · ·

[
Υ◦Ψ(ϵ̄d1(µ̃)),

Υ ◦Ψ(ϵ̄d2(µ̃))
]
, . . .

]
,Υ◦Ψ(ϵ̄dn(µ̃))

]
.

(6.10)

Now (6.6) is an identity in Ȟ0

(
Mpl

)d
conn

, so we can apply the Lie algebra morphism Ȟ0

(
Mpl

)d
conn

→ Ȟ0

(
Mpl

)d
bin

, and compare it with (6.10). Using di = δvi , Proposition 5.6, and the definitions
of Ψ, Υ, we find that

Υ ◦Ψ
(
ϵ̄di(µ̃)

)
= Υ

(
−λdi

)
= 1

H0(Mpl
di

)
. (6.11)

Note that this uses the complicated definition of Ψ in [60, Section 7.3], which we have not
explained. But in this case, ϵ̄di(µ̃) is the stack function Mdi

↪→ M, where Mdi
∼= [∗/Gm]

as di = δvi , and showing Ψ
(
ϵ̄di(µ̃)

)
= −λdi is straightforward. Therefore the right-hand sides

of (6.10) and the projection of (6.6) agree, so

Υ ◦Ψ
(
ϵ̄d(µ)

)
= [Mss

d (µ)]inv mod Ȟ0

(
Mpl

)d
conn

∩ Ȟ0

(
Mpl

)
non-bin

. (6.12)

But (6.4) and the proof of (6.11) imply that

Υ ◦Ψ
(
ϵ̄d(µ)

)
=

1
H0(Mpl

di
)
, Mst

d (µ) = Mss
d (µ)

∼= ∗,

0, Mst
d (µ) = Mss

d (µ) = ∅.
(6.13)

Combining (6.12)–(6.13) proves Theorem 5.8(i) for µ, d. ■

6.4 Proof of Theorem 5.8(i) for d binary

Consider the following situation:

Definition 6.5. Let Q = (Q0, Q1, h, t), Q
′ = (Q′

0, Q
′
1, h

′, t′) be quivers with Q′
0 = Q0, Q

′
1 ⊆ Q1,

h′ = h|Q′
1
, t′ = t|Q′

1
, that is, Q′ is a subquiver of Q obtained by deleting the edges Q1 \Q′

1. Then
λ = (λ0, λ1) : Q→ Q′ given by λ0 = idQ0 , λ1 = {(e′, e′) : e′ ∈ Q′

1} is a morphism in the sense of
Section 5.4, so Definition 5.10 gives a Lie algebra morphism Ωpl : Ȟ0

(
Mpl

)
→ Ȟ0

(
M′pl), where

Mpl, M′pl are the ‘projective linear’ moduli stacks for mod-CQ, mod-CQ′.
Let µ′ be a slope function on mod-CQ′, and µ = µ′ ◦ λ∗ the associated slope function on

mod-CQ. Let d ∈ NQ0 \ {0}, and d′ = λ∗(d) ∈ NQ′
0 \ {0} (in fact d = d′). As the factors∏

v d(v)!,
∏
v′ d

′(v′)! in (5.12) are equal, Proposition 6.2 implies that the classes
[
Mss

d (µ)
]
inv

defined in Proposition 6.1 satisfy

Ωpl
([
Mss

d (µ)
]
inv

)
=

[
M′ss

d′ (µ′)
]
inv
. (6.14)

Proposition 6.6. In Definition 6.5, suppose also that Mst
d (µ) = Mss

d (µ). Then M′st
d′ (µ′) =

M′ss
d′ (µ′), so Mss

d (µ), M′ss
d′ (µ′) are smooth projective C-schemes by Proposition 5.7, and

Ωpl
(
ι∗
([
Mss

d (µ)
]
fund

))
= ι′∗

([
M′ss

d′ (µ′)
]
fund

)
, (6.15)

where ι : Mss
d (µ) ↪→ Mpl

d , ι
′ : M′ss

d′ (µ′) ↪→ M′pl
d′ are the inclusions.
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Proof. We have Mpl
d = [Rd/PGLd], M′pl

d′ = [R′
d′/PGLd′ ], where PGLd = PGLd′ , and Rd =

R′
d′ ⊕ R′′

d, where R
′
d′ is the C-vector space of edge maps ρe coming from e ∈ Q′

1 ⊂ Q1, and R
′′
d

the C-vector space of edge maps ρe coming from e ∈ Q1 \ Q′
1. By (5.11), the vector bundle

Gpl
d → Mpl

d in Definitions 2.11 and 5.10 is that associated to R′′
d with its PGLd′-action. Also

σpl : Mpl
d → M′pl

d′ is induced by the projection Rd → R′
d′ and the identity PGLd → PGLd′ .

There is a natural morphism ιpl : M′pl
d′ ↪→ Mpl

d induced by the inclusion R′
d′ ↪→ Rd and the

identity PGLd′ → PGLd, which embeds M′pl
d′ as a closed substack of Mpl

d . It has σ
pl ◦ ιpl = id.

There is a natural transverse section s of the vector bundle Gpl → Mpl
d mapping an ob-

ject ((Vv)v∈Q0 , (ρe)e∈Q1) to (ρe)e∈Q1\Q′
1
in Gpl. The zero locus s−1(0) in Mpl

d is the sub-

stack ιpl
(
M′pl

d′
)
.

Now Mst
d (µ)∩s−1(0) = ιpl

(
M′st

d′ (µ′)
)
and Mss

d (µ)∩s−1(0) = ιpl
(
M′ss

d′ (µ′)
)
. Hence Mst

d (µ) =
Mss

d (µ) implies that ιpl
(
M′st

d′ (µ′)
)
= ιpl

(
M′ss

d′ (µ′)
)
, and thus that M′st

d′ (µ′) = M′ss
d′ (µ′), as ιpl is

an embedding.

By Definition 2.14, Ωpl on H∗
(
Mpl

d

)
is the composition

H∗
(
Mpl

d

) ∩ctop(Gpl) // H∗
(
Mpl

d

) σpl
∗ // H∗

(
M′pl

d′
)
. (6.16)

This acts on ι∗
([
Mss

d (µ)
]
fund

)
by

ι∗
([
Mss

d (µ)
]
fund

) �
∩ctop(Gpl)

//
ι∗([Mss

d (µ)∩s−1(0)]fund)

=ι∗([ιpl(M′ss
d′ (µ

′))]fund)

=ιpl∗ (ι′∗([M′ss
d′ (µ

′)]fund))

� σpl
∗ // ι′∗

([
M′ss

d′ (µ′)
]
fund

)
.

Here the first step holds as ∩s−1(0) and ∩ctop
(
Gpl

)
have the same effect in homology, since s

is transverse, and Mss
d (µ) ∩ s−1(0) = ιpl

(
M′ss

d′ (µ′)
)
, and the second step holds as σpl ◦ ιpl = id.

Equation (6.15) follows. ■

Corollary 6.7. In Proposition 6.6, suppose also that d is binary. Then if either supp(d′) is
a tree in Q′, or supp(d′) is disconnected, then

Ωpl
([
Mss

d (µ)
]
inv

)
= Ωpl

(
ι∗
([
Mss

d (µ)
]
fund

))
. (6.17)

Proof. If supp(d′) is a tree then

Ωpl
([
Mss

d (µ)
]
inv

)
=

[
M′ss

d′ (µ′)
]
inv

= ι′∗
([
M′ss

d′ (µ′)
]
fund

)
= Ωpl

(
ι∗
([
Mss

d (µ)
]
fund

))
,

using (6.14) in the first step, Proposition 6.4 in the second, and (6.15) in the third, proving (6.17).

If supp(d′) is disconnected then M′st
d′ (µ′) = ∅, as every object in class d′ in mod-CQ′ is the

direct sum of nonzero objects from each component of supp(d′), and so cannot be µ′-stable.
Thus M′ss

d′ (µ′) = ∅ as M′st
d′ (µ′) = M′ss

d′ (µ′) by Proposition 6.6, so [M′ss
d′ (µ′)]fund = 0. Let µ̃′ be

an increasing slope function on mod-CQ′. Then
[
M′ss

d′ (µ′)
]
inv

is given by (6.6) with µ̃′, µ′, d′

in place of µ̃, µ, d. For each term on the right-hand side of (6.6) from d′
1 = δv′1 , . . . ,d

′
n = δv′n ,

there exists unique 1 ⩽ k < n such that v1, . . . , vk lie in one component of suppd′, and vk+1 in
a different component. Then the nested Lie bracket in this term[[

· · ·
[
1
H0(Mpl

d1
)
, 1
H0(Mpl

d2
)

]
, . . . 1

H0(Mpl
dk

)

]
, 1
H0(Mpl

dk+1
)

]
= 0,

as the outer Lie bracket is of the form [A,B], where A, B are supported on different connected
components of d, and their Lie bracket is zero. Hence

[
M′ss

d′ (µ′)
]
inv

=
[
M′ss

d′ (µ′)
]
fund

= 0,
so (6.17) follows from (6.14)–(6.15). ■
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Proposition 6.8. Let Q = (Q0, Q1, h, t) be a quiver. For each e ∈ Q1, let Q
′
e be Q with edge e

deleted, and λe : Q→ Q′
e, Ω

pl
e : Ȟ0

(
Mpl

d

)
→ Ȟ0

(
M′pl

d,e

)
be the morphisms in Definition 6.5, where

M′pl
d,e is the moduli stack of (V ,ρ) in mod-CQ′

e with dim(V ,ρ) = d. Suppose d ∈ NQ0 \ {0}
is a binary dimension vector with connected support and χQ(d,d) ⩽ 0. Then the following is
injective: ⊕

e edge in supp(d)

Ωpl
e : Ȟ0

(
Mpl

d

)
−→

⊕
e edge in supp(d)

Ȟ0

(
M′pl

d,e

)
. (6.18)

Proof. As d is binary, we have

GLd =
∏

v∈Q0 : d(v)=1

Gm
∼= G|d|

m and PGLd
∼= G|d|−1

m .

Since H∗([∗/Gm]) ∼= R[c] for c a formal variable of degree 2, we see that

H∗(Md) = H∗([Rd/GLd]) ∼= H∗([∗/GLd]) ∼= R[cv : v ∈ Q0, d(v) = 1].

The projection Πpl : Md → Mpl
d has pullback

(
Πpl

)∗
: H∗(Mpl

d

)
→ H∗(Md), which is injective.

This realizes H∗(Mpl
d

)
as the subalgebra

H∗(Mpl
d

) ∼= ⟨cw − cv : v ̸= w, v, w ∈ Q0, d(v) = d(w) = 1⟩ ⊂ R[cv : v ∈ Q0, d(v) = 1]

generated by differences cw− cv. Since d has connected support, any such cw− cv is a finite sum

of ±(cw′ − cv′), for
v′• e−→w′

• an edge in supp(d). Hence

H∗(Mpl
d

) ∼= 〈
cw − cv :

v• e−→w• an edge in supp(d)
〉
⊂ R[cv : v ∈ Q0, d(v) = 1]. (6.19)

Suppose η∈Ȟ0

(
Mpl

d

)
= H2−2χQ(d,d)

(
Mpl

d

)
lies in the kernel of (6.18). Let ζ∈H2−2χQ(d,d)

(
Mpl

d

)
.

By (6.19), as χQ(d,d) ⩽ 0 we may write

ζ =
∑

v• e−→w• edge in supp(d)

ζe ∪ (cw − cv), (6.20)

with ζe ∈ H−2χQ(d,d)
(
Mpl

d

)
. Then

ζ · η =
∑

v• e−→w• edge in supp(d)

(
ζe ∪ (cw − cv)

)
· η

=
∑

v• e−→w• edge in supp(d)

((
σple

)∗)−1
(ζe) · Ωpl

e (η) = 0,

using (6.20) in the first step, and the definition of Ωpl
e in Definition 2.14 with ctop

(
Gpl
e

)
= cw−cv in

the second, and η in the kernel of (6.18) in the third. Hence ζ ·η = 0 for all ζ ∈ H2−2χQ(d,d)
(
Mpl

d

)
,

so η = 0, and (6.18) is injective. ■

Proposition 6.9. The classes
[
Mss

d (µ)
]
inv

in Ȟ0

(
Mpl

d

)
defined in Proposition 6.1 satisfy Theo-

rem 5.8(i) when d is binary.

Proof. Let d be a binary dimension vector, and µ a slope function on mod-CQ such that
Mst

d (µ) = Mss
d (µ). We must prove that

ι∗
([
Mss

d (µ)
]
fund

)
=

[
Mss

d (µ)
]
inv

in H2−2χQ(d,d)

(
Mpl

d

)
. (6.21)
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If χQ(d,d) > 1 this is automatic, as both sides lie in H<0

(
Mpl

d

)
= 0. If χQ(d,d) = 1, then

supp(d) is a quiver with n vertices and n−1 edges by (5.3), so either supp(d) is a tree, when (6.21)
holds by Proposition 6.4, or supp(d) is disconnected, when both sides of (6.21) are zero by the
proof of Corollary 6.7.

Suppose by induction on k = 0, 1, . . . that (6.21) holds when χQ(d,d) ⩾ 1 − k. The first
step k = 0 holds from above. For the inductive step, suppose the inductive hypothesis holds for
some k ⩾ 0, and that d has χQ(d,d) = 1− (k + 1) ⩽ 0. Using the notation of Proposition 6.8,
we have ⊕

e edge in supp(d)

Ωpl
e

(
ι∗([Mss

d (µ)]fund)
)
=

⊕
e edge in supp(d)

ι∗e
(
[Mss

d′
e
(µ′e)]fund

)
=

⊕
e edge in supp(d)

[Mss
d′
e
(µ′e)]inv =

⊕
e edge in supp(d)

Ωpl
e

(
[Mss

d (µ)]inv
)
,

where the first step uses Proposition 6.6, the second the inductive hypothesis for Q′
e, noting

that χQ′
e
(d,d) = 1 − k as Q′

e has one fewer edge in supp(d), and the third Proposition 6.2 for
λe : Q → Q′

e. As (6.18) is injective by Proposition 6.8, this implies (6.21), and the proposition
follows by induction. ■

6.5 Proof of Theorem 5.8(i) when µ, d are generic

Consider the following situation:

Definition 6.10. Let Q = (Q0, Q1, h, t) be a quiver, and d ∈ NQ0 \ {0}. Define a quiver
Q̃ =

(
Q̃0, Q̃1, h̃, t̃

)
as follows: for each vertex v ∈ Q0 there are d(v) vertices labelled by pairs

(v, i) where v ∈ Q0 and i = 1, . . . ,d(v). For each edge
v• e−→w• in Q there is an edge from (v, i)

to (w, j) in Q̃ for all i = 1, . . . ,d(v) and j = 1, . . . ,d(w). Explicitly we set

Q̃0 =
{
(v, i) : v ∈ Q0, i = 1, . . . ,d(v)

}
, h̃ : (e, i, j) 7→ (h(e), i),

Q̃1 =
{
(e, i, j) ∈ Q1 × N2 : 1 ⩽ i ⩽ d(h(e)), 1⩽ j ⩽ d(t(e))

}
, t̃ : (e, i, j) 7→ (t(e), j).

This is illustrated in the next diagram, with d = (2, 3):

Q

Q̃

•
v

2
•
w

3
•
(w, 2)

•

(w, 1)
•

•
(v, 2)

(v, 1)

•

(w, 3)
•

• •//
•

•22
•

•,,
•

•''
•

•77

•
•22

•
•,,

Define d̃ ∈ NQ̃0 \ {0} by d̃(v, i) = 1 for all (v, i) ∈ Q̃0.
Define a morphism λ : Q̃ → Q in the sense of Section 5.4 by λ0 : (v, i) 7→ v and λ1 ={

((e, i, j), e) : (e, i, j) ∈ Q̃1

}
. Then Definition 5.9(i)–(iii) hold, so we have a C-linear exact

functor Σλ : mod-CQ̃ → mod-CQ inducing morphisms of moduli stacks σλ : M̃ → M and
σplλ : M̃pl → Mpl for mod-CQ̃, mod-CQ. We have λ∗

(
d̃
)
= d, so σλ, σ

pl
λ map M̃d̃ → Md

and M̃pl

d̃
→ Mpl

d .
Explicitly, as in Definition 5.2 we have

Md = [Rd/GLd], where Rd =
∏
e∈Q1

Hom
(
Cd(t(e)),Cd(h(e))

)
,

GLd =
∏
v∈Q0

GL(d(v),C), Mpl
d = [Rd/PGLd], PGLd = GLd /Gm,
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M̃d̃ =
[
R̃d̃/GLd̃

]
, where R̃d̃ =

∏
e∈Q1, i=1,...,d(t(e)), j=1,...,d(h(e))

Hom(C,C),

GLd̃ =
∏

v∈Q0, i=1,...,d(v)

Gm, M̃pl
d̃ =

[
R̃d̃/PGLd̃

]
, PGLd̃ = GLd̃ /Gm.

The morphisms σλ : M̃d̃ → Md and σplλ : M̃pl

d̃
→ Mpl

d are induced by the obvious map λ∗ : R̃d̃ →
Rd, which is an isomorphism in this case, and by morphisms λ∗ : GLd̃ → GLd and λpl∗ : PGLd̃ →
PGLd, which are inclusions of maximal tori in this case. That is, we have Md = [V/G] and
M̃d̃ = [V/H] where H ⊆ G is the maximal torus.

Next let µ be a slope function on mod-CQ such that µ, d are generic in the sense of Defini-
tion 6.3, and let µ̃ = µ ◦ λ∗ be the associated slope function on mod-CQ̃. Then µ̃, d̃ are also
generic for mod-CQ̃, so Mst

d (µ) = Mss
d (µ) and M̃st

d̃
(µ̃) = M̃ss

d̃
(µ̃). Proposition 6.2 gives

Ωpl
([
M̃ss

d̃
(µ̃)

]
inv

)
=

∏
v∈Q0

d(v)! ·
[
Mss

d (µ)
]
inv
, (6.22)

and as d̃ is binary with M̃st
d̃
(µ̃) = M̃ss

d̃
(µ̃), Proposition 6.9 gives[

M̃ss
d̃
(µ̃)

]
inv

= ι̃∗
([
M̃ss

d̃
(µ̃)

]
fund

)
. (6.23)

The reason we suppose µ, d generic in this section is that otherwise Mst
d (µ) = Mss

d (µ) does
not imply that M̃st

d̃
(µ̃) = M̃ss

d̃
(µ̃), and if M̃st

d̃
(µ̃) ̸= M̃ss

d̃
(µ̃) then

[
M̃ss

d̃
(µ̃)

]
fund

in (6.23) is
not defined.

We will use the following result of Martin [75, Theorem B]. It can also be written in algebraic
geometry in terms of smooth GIT quotients.

Theorem 6.11. Let (X,ω) be a symplectic 2n-manifold, with a Hamiltonian action of a compact
Lie group G with moment map µG : X → g∗, where g is the Lie algebra of G. Let T ⊂ G be
a maximal torus with Lie algebra t ⊆ g, so µG induces a moment map µT : X → t∗. Suppose
µ−1
G (0) and µ−1

T (0) are compact, with free G- and T -actions, so the quotients X//G = µ−1
G (0)/G

and X//T = µ−1
T (0)/T are compact symplectic manifolds. Also Y = µ−1

G (0)/T is a compact
manifold, with projections π : Y → X//G, i : Y → X//T .

Write g = t⊕m for the T -invariant splitting, and E → X//T for the complex vector bundle
E =

(
µ−1
T (0)×m⊗R C

)
/T associated to the complex representation of T on m⊗R C. Then for

all classes η ∈ H2n−2 dimG(X//G), ζ ∈ H2n−2 dimG(X//T ) with π∗(η) = i∗(ζ) in H2n−2 dimG(Y ),
we have∫

X//G
η =

1

|W |

∫
X//T

ζ ∪ ctop(E),

where W is the Weyl group of G.

Proposition 6.12. The classes
[
Mss

d (µ)
]
inv

in Ȟ0

(
Mpl

d

)
defined in Proposition 6.1 satisfy Theo-

rem 5.8(i) if µ,d are generic.

Proof. Use the notation of Definition 6.10. We apply Theorem 6.11 with X = Rd, and G =(∏
v∈Q0

U(d(v))
)
/U(1), which is the maximal compact subgroup of PGLd, and acts on Rd via

the PGLd-action preserving a Euclidean Kähler form ω on Rd. By the relationship between GIT
quotients and symplectic quotients in Kirwan [65], there is a moment map µG : X → g∗ such
that µ−1

G (0)/G is the GIT quotient Rd//PGLd = Mss
d (µ), so as Mss

d (µ) is a smooth projective
C-scheme we see that µ−1

G (0) is compact with a free G-action.
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We take the maximal torus T ⊂ G to be T =
(∏

v∈Q0
U(1)d(v)

)
/U(1) ∼= U(1)|d|−1. This is

the maximal compact subgroup of PGLd̃
∼= G|d|−1

m under the inclusion λpl∗ : PGLd̃ → PGLd as
an algebraic maximal torus. Then the isomorphism λ∗ : R̃d̃ → Rd and the fact that µ̃ = µ ◦ λ∗
implies that µ−1

T (0)/T is the GIT quotient R̃d̃//PGLd̃ = M̃ss
d̃
(µ̃), so as M̃ss

d̃
(µ̃) is a smooth

projective C-scheme we see that µ−1
T (0) is compact with a free T -action.

Let θ ∈ H2n−2 dimG
(
Mpl

d

)
, and set η = ι∗(θ) in H2n−2 dimG

(
Mss

d (µ)
)
and ζ = ι̃∗ ◦

(
σplλ

)∗
(θ) in

H2n−2 dimG
(
M̃ss

d̃
(µ̃)

)
. Since η, ζ are pullbacks of the same class θ ∈ H∗([X/GC]), we see that

π∗(η) = i∗(ζ) in H2n−2 dimG(Y ). Hence as the Weyl group of G is
∏
v∈Q0

Sd(v), Theorem 6.11
gives ∫

Mss
d (µ)

ι∗(θ) =
1∏

v∈Q0
d(v)!

∫
M̃ss

d̃
(µ̃)
ι̃∗ ◦

(
σplλ

)∗
(θ) ∪ ctop(E).

We may rewrite this as

θ ·
( ∏
v∈Q0

d(v)! · ι∗
([
Mss

d (µ)
]
fund

))
= θ ·

((
σplλ

)
∗
(
ι̃∗
([
M̃ss

d̃
(µ̃)

]
fund

)
∩ ctop(E)

))
.

As this holds for all θ ∈ H2n−2 dimG
(
Mpl

d

)
, where 2n− 2 dimG = 2− χQ(d,d) is the dimension

of
[
Mss

d (µ)
]
fund

, we see that in H2−χQ(d,d)

(
Mpl

d

)
we have∏

v∈Q0

d(v)! · ι∗
([
Mss

d (µ)
]
fund

)
=

(
σplλ

)
∗ ◦ ι̃∗

([
M̃ss

d̃
(µ̃)

]
fund

∩ ctop(E)
)
. (6.24)

Now one can show from the definitions that the vector bundle E over X//T = M̃ss
d̃
(µ̃) in

Theorem 6.11 is isomorphic to ι̃∗
(
Gpl

)
, where Gpl → Mpl

d is defined as in Definition 2.11(c), (v)
from the vector bundle F → Md×Md in (5.10). Thus as in (6.16), the right-hand side of (6.24)
is Ωpl

([
M̃ss

d̃
(µ̃)

]
fund

)
, giving∏

v∈Q0

d(v)! · ι∗
([
Mss

d (µ)
]
fund

)
= Ωpl

([
M̃ss

d̃
(µ̃)

]
fund

)
. (6.25)

Comparing (6.22), (6.23) and (6.25) gives
[
Mss

d (µ)
]
inv

= ι∗
([
Mss

d (µ)
]
fund

)
, as we want. ■

6.6 Proof of Theorem 5.8(i) in the general case

The next proposition completes the proof of Theorem 5.8.

Proposition 6.13. The classes
[
Mss

d (µ)
]
inv

in Ȟ0

(
Mpl

d

)
defined in Proposition 6.1 satisfy Theo-

rem 5.8(i) for all d.

Proof. The proof is by induction on k = 0, 1 . . . , with inductive hypothesis that the
[
Mss

d (µ)
]
inv

in Proposition 6.1 satisfy Theorem 5.8(i) for all d ∈ NQ0 \ {0} with |d| =
∑

v∈Q0
d(v) ⩽ k. The

first step k = 0 is vacuous. For the inductive step, suppose the inductive hypothesis holds for
some k ⩾ 0, and let d ∈ NQ0 \ {0} with |d| = k + 1.

Consider the pair invariant set-up of Definition 5.12. Suppose d1, . . . ,dn lie in NQ0 \ {0}
for n ⩾ 2 with d1 + · · · + dn = d and µ(di) = µ(d). If Mss

di
(µ) ̸= ∅ for all i = 1, . . . , n then

choosing a C-point [Ei] in Mss
di
(µ), we see that E1 ⊕ · · · ⊕En is strictly µ-semistable in class d,

contradicting Mst
d (µ) = Mss

d (µ). Hence Mss
di
(µ) = ∅ for some i = 1, . . . , n, so [Mss

di
(µ)]inv = 0

by the inductive hypothesis, since |di| ⩽ k as d1 + · · · + dn = d with |d| = k + 1, n ⩾ 2 and
|dj | > 0. Hence in (5.14) all terms with n ⩾ 2 are zero, so (5.14) reduces to

ι̃∗
([
M̃ss

(d,1)(µ̃
d
+)

]
fund

)
=

[
ipl∗

([
Mss

d (µ)
]
inv

)
, 1
H0(M̃pl

(0,1)
)

]
, (6.26)
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that is, the ‘lower order terms’ in (5.15) vanish. Here we have used the fact that as µ̃d+, (d, 1)

are generic for mod-CQ̃, Proposition 6.12 implies that[
M̃ss

(d,1)(µ̃
d
+)

]
inv

= ι̃∗
([
M̃ss

(d,1)(µ̃
d
+)

]
fund

)
,

which was used to rewrite the left-hand side of (4.4) to get (5.14).
There is a natural projection π : M̃ss

(d,1)(µ̃
d
+) → Mss

d (µ) which acts by

((Vv)v∈Q̃0
, (ρe)e∈Q̃1

) 7−→ ((Vv)v∈Q0 , (ρe)e∈Q1)

on C-points, noting that Q0 ⊂ Q̃0 and Q̃1 ⊂ Q1. That is, π forgets the vector space V∞ ∼= C
and the edge maps ρ(v,i) : V∞ → Vv for edges

∞• (v,i)−→ v• in Q̃, where v ∈ Q0 and i = 1, . . . , nv. In
terms of the exact sequence (4.3) in Definition 4.3, π maps [B] 7→ [A] on C-points. The fibre of π
over a C-point [(Vv)v∈Q0 , (ρe)e∈Q1 ] is the projective space P

(⊕
v∈Q0

V ⊕nv

v

)
parametrizing the

forgotten edge maps ρ(v,i) up to scale, where the rescalings come from changing the isomorphism

V∞ ∼= C, and the condition of µ̃d+-semistability is that the image under π should be µ-semistable,
and the ρ(v,i) should not all be zero. Thus we may identify M̃ss

(d,1)

(
µ̃d+

)
with the projective

space bundle

M̃ss
(d,1)

(
µ̃d+

) ∼= P
( ⊕
v∈Q0

V⊕nv

v,d

)
→ Mss

d (µ), (6.27)

where the vector bundles Vv,d → Md are as in Definition 5.2. In fact Vv,d does not descend

through Md → Mpl
d to Mpl

d ⊇ Mss
d (µ), but the projective bundle P

(⊕
v∈Q0

V⊕nv

v,d

)
→ Md does

descend to Mpl
d , which is what we mean in (6.27).

Now the second author [58] gives an alternative, geometric definition of the Lie bracket [ , ]
on Ȟ∗

(
Mpl

)
in Section 2.4 in terms of the ‘projective Euler class’ PE(Θ•) of the perfect complex

Θ• → M×M in Assumption 2.4(g). For the Lie bracket in (6.26), the complex Θ• for mod-CQ̃
is given in (5.4)–(5.5), and its restriction to M̃(d,0) × M̃(0,1) reduces to

Θ•|M̃(d,0)×M̃(0,1)
∼=

( ⊕
v∈Q0

V⊕nv

v,d ⊠ V∗
∞,1

)
[−1], (6.28)

where V∗
∞,1 → M̃(0,1) is a line bundle. When Θ• = F [−1] is a vector bundle F in degree 1, the

definition of PE(Θ•) in [58] involves the projective bundle P(F ). Using this, one can show from
(6.27)–(6.28) and [58] that

ι̃∗
([
M̃ss

(d,1)(µ̃
d
+)

]
fund

)
=

[
ipl∗

(
ι∗([Mss

d (µ)]fund)
)
, 1
H0(M̃pl

(0,1)
)

]
. (6.29)

Comparing (6.26) and (6.29), and using the fact that
[
−, 1

H0(M̃pl
(0,1)

)

]
is injective if nv > 0

for all v ∈ Q0 (see the argument after (5.13) above), and ipl∗ is an isomorphism, we see that[
Mss

d (µ)
]
inv

= ι∗
([
Mss

d (µ)
]
fund

)
. This proves the inductive step, and the proposition follows by

induction. ■
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[3] Álvarez-Cónsul L., Garćıa-Prada O., Hitchin–Kobayashi correspondence, quivers, and vortices, Comm.
Math. Phys. 238 (2003), 1–33, arXiv:math.DG/0112161.

[4] Arbesfeld N., K-theoretic Donaldson–Thomas theory and the Hilbert scheme of points on a surface, Algebr.
Geom. 8 (2021), 587–625, arXiv:1905.04567.

[5] Atiyah M.F., Bott R., The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London
Ser. A 308 (1983), 523–615.

[6] Behrend K., Fantechi B., The intrinsic normal cone, Invent. Math. 128 (1997), 45–88, arXiv:alg-
geom/9601010.

[7] Benson D.J., Representations and cohomology. II. Cohomology of groups and modules, Cambridge Studies
in Advanced Mathematics, Vol. 31, Cambridge University Press, Cambridge, 1991.

[8] Blanc A., Topological K-theory of complex noncommutative spaces, Compos. Math. 152 (2016), 489–555,
arXiv:1211.7360.

[9] Boden H.U., Herald C.M., The SU(3) Casson invariant for integral homology 3-spheres, J. Differential
Geom. 50 (1998), 147–206, arXiv:math.DG/9809124.

[10] Borcherds R.E., Vertex algebras, Kac–Moody algebras, and the Monster, Proc. Nat. Acad. Sci. USA 83
(1986), 3068–3071.

[11] Borisov D., Joyce D., Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds,
Geom. Topol. 21 (2017), 3231–3311, arXiv:1504.00690.

[12] Bradlow S.B., Vortices in holomorphic line bundles over closed Kähler manifolds, Comm. Math. Phys. 135
(1990), 1–17.

[13] Bradlow S.B., Special metrics and stability for holomorphic bundles with global sections, J. Differential
Geom. 33 (1991), 169–213.

[14] Bradlow S.B., Daskalopoulos G.D., Moduli of stable pairs for holomorphic bundles over Riemann surfaces,
Internat. J. Math. 2 (1991), 477–513.

[15] Bridgeland T., Stability conditions on triangulated categories, Ann. of Math. 166 (2007), 317–345,
arXiv:math.AG/0703310.

[16] Bridgeland T., Geometry from Donaldson–Thomas invariants, in Integrability, Quantization, and Geome-
try II. Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math., Vol. 103, Amer. Math. Soc.,
Providence, RI, 2021, 1–66, arXiv:1912.06504.

[17] Cao Y., Gross J., Joyce D., Otability of moduli spaces of Spin(7)-instantons and coherent sheaves on Calabi–
Yau 4-folds, Adv. Math. 368 (2020), 107134, 60 pages, arXiv:1811.09658.

[18] Cao Y., Kool M., Monavari S., K-theoretic DT/PT correspondence for toric Calabi–Yau 4-folds, Commun.
Math. Phys., to appear, arXiv:1906.07856.

[19] Cao Y., Leung N.C., Donaldson–Thomas theory for Calabi–Yau 4-folds, arXiv:1407.7659.

[20] Donaldson S., Segal E., Gauge theory in higher dimensions, II, in Geometry of Special Holonomy and Related
Topics, Surv. Differ. Geom., Vol. 16, Int. Press, Somerville, MA, 2011, 1–41, arXiv:0902.3239.

[21] Donaldson S.K., An application of gauge theory to four-dimensional topology, J. Differential Geom. 18
(1983), 279–315.

[22] Donaldson S.K., Polynomial invariants for smooth four-manifolds, Topology 29 (1990), 257–315.

[23] Donaldson S.K., Kronheimer P.B., The geometry of four-manifolds, Oxford Mathematical Monographs, Vol.
1990, The Clarendon Press, Oxford University Press, New York, 1990.

[24] Donaldson S.K., Thomas R.P., Gauge theory in higher dimensions, in The Geometric Universe (Oxford,
1996), Oxford University Press, Oxford, 1998, 31–47.
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