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Abstract. We generalize Franz’ independence in tensor categories with inclusions from
two morphisms (which represent generalized random variables) to arbitrary ordered fam-
ilies of morphisms. We will see that this only works consistently if the unit object is an
initial object, in which case the inclusions can be defined starting from the tensor cate-
gory alone. The obtained independence for morphisms is called categorial independence.
We define categorial Lévy processes on every tensor category with initial unit object and
present a construction generalizing the reconstruction of a Lévy process from its convolution
semigroup via the Daniell–Kolmogorov theorem. Finally, we discuss examples showing that
many known independences from algebra as well as from (noncommutative) probability are
special cases of categorial independence.
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1 Introduction

Suppose (µt)t∈R+ is a convolution semigroup of probability measures on the real line. Let us
sketch, how to construct a Lévy process Xt : Ω → R with marginal distributions PXt = µt.
First, for all finite subsets J = {t1 < t2 < · · · < tn} ⊂ R+ define probability measures µJ :=
µt1 ⊗ µt2−t1 ⊗ · · · ⊗ µtn−tn−1 on RJ . Then show that these are coherent in the sense that

µI = µJ ◦
(
pJI

)−1

for all I ⊂ J and pJI : RJ → RI the canonical projection. In this situation the probability
spaces

(
RJ ,B

(
RJ

)
, µJ

)
with the projections

(
pJI

)
form a projective system. Now, the Daniell–

Kolmogorov theorem guarantees the existence of a projective limit, which is a probability
space (Ω,F ,P) with projections pJ : Ω → RJ such that µJ = P ◦ (pJ)

−1. The random vari-
able Xt := p{t} has distribution µt and the Xt have independent and stationary increments
Xs −Xt ∼ µs−t.

A similar construction allows one to associate quantum Lévy processes with convolution
semigroups of states on ∗-bialgebras. The formulation of quantum probability is dual to that
of classical probability, so inductive limits appear instead of projective limits. Due to the
fact that there are different independences in quantum probability on the one hand and the
interactions between quantum probability and operator algebras on the other hand, there are
many different theorems of the same kind (construction of Lévy processes for other notions of
independence, see [5, 40]) or similar kind (the construction of product systems and dilations
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from subproduct systems, cf. [6, 7]). Also, following Voiculescu’s invention of bifreeness [44],
many examples of multivariate independences have been exhibited [13, 16, 21, 22, 23, 29, 30] and
some general theory has been developed [14, 32], and all those independences have associated
classes of Lévy processes that are very interesting to study. The main aim of these notes is to
give a unified approach to these different situations. To this end, we work with the language of
tensor categories and introduce comonoidal systems, which serve as a suitable generalization of
convolution semigroups.

With a similar goal in mind, Uwe Franz defined independence on tensor categories with
inclusions [9].1 Whereas his definition works nicely for all questions concerning independence
of two random variables, the approach runs into trouble when there are more random variables
involved, which inevitably happens for example when one wants to study general properties of
Lévy processes with respect to different notions of independence. We solve this problem by
considering tensor categories with initial unit object instead of tensor categories with inclusions.
We show that inclusions in the sense of Franz can always be defined in such a category and
determine the necessary and sufficient conditions for given inclusions to be of the desired form.2

In this stronger setting, Franz’ notion of independence can be generalized to arbitrary ordered
families of random variables and will be called categorial independence. Based on categorial
independence, we will define categorial Lévy processes and present a general construction of
Lévy processes from comonoidal systems reminescent of the reconstruction of a Lévy process
from its convolution semigroup via the Daniell–Kolmogorov theorem.

We will see that categorial independence is a very general concept of independence which
encompasses most independences encountered in different areas of mathematics, such as linear
independence, algebraic independence, orthogonality or stochastic independence.

A widely known approach to general independences is via matroids. This is very different
from the approach treated in this article and, indeed, it is quite obvious that the systems of
orthogonal sets in a Hilbert space, or of independent sets of random variables in a probability
space do not form a matroid, while they turn out to be special cases of categorial independence.

Another very general concept of independence, somehow closer to categorial independence, is
due to Marczewski [33] and is explored to some detail in Grätzer’s book on universal algebra [20].
This is a concept of independence meant to generalize and unify independences mainly arising
in algebra, in particular, Marczewski clarifies that stochastic independence cannot be obtained
this way [33, Section 9]. Therefore, categorial independence is not a special case of Marczewski’s
independence. Conversely, our list of examples includes Marczewski’s examples from algebra.
However, we leave as an open problem the question whether Marczewski’s independence and
other related notions from universal algebra can be covered by categorial independence in full
generality. In particular, we would be very interested to know whether logical independence is
a special case of categorial independence.

Independently of this work, Simpson [42] recently developed a categorical approach to inde-
pendence that seems closely related to ours; in many cases the tensor product in our approach
is the same as the independent product in his.

The paper is organized as follows. In Section 2 we recall basic facts concerning inductive limits
and tensor categories. In Section 3 we recall Franz’ original definition of categorial independence
in tensor categories with inclusions and generalize it to more than two morphisms in case the

1Following Franz, we use the terms tensor category, tensor functor, and cotensor functor synonymously with
monoidal category, lax monoidal functor, and colax monoidal functor, respectively, see Section 3; while the latter
are more common in abstract category theory, the former are frequently used in applications such as noncommu-
tative probability or quantum group theory.

2Of course, tensor categories with terminal unit object and the corresponding projections can be also be
considered and all results apply dually (i.e., with arrows reversed); those are also known to category theorists
under the name semicartesian categories and play an important role in the synthetic approach to probability
using Markov categories, see [11] and references therein.
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inclusions are compatible; also, we prove that inclusions are compatible if and only if they
are the canonical inclusions in a tensor category with initial unit object. In Section 4 we
introduce a categorial counterpart of convolution semigroups, which we call comonoidal systems
and prove that under mild assumptions comonoidal systems give rise to categorial Lévy processes
by inductive limit constructions. Finally, in Section 5 we discuss examples from algebra and
(noncommutative) probability.

2 Basic notions of category theory

The main point of this section is to fix notations and recall basic facts about inductive limits
and tensor categories. We also give a list of those categories which appear as examples for the
following sections.

We will freely use the language of categories, functors, and natural transformations, see for
example the book of Adámek, Herrlich and Strecker [1] for an exquisite treatment of the matter.
For a category C, we write obj C for the class of objects of C. Given two objects A,B ∈ obj C, we
denote by mor(A,B) the set of all morphisms f : A→ B.

Equalities between morphisms will frequently be expressed in terms of commutative diagrams.
A diagram is a directed graph with object-labeled vertices and morphism-labeled edges. We say
that a diagram commutes if the composition of morphisms along any two directed paths with
the same source and the same target vertex yield the same result. We will usually not explicitly
write the inverse of an isomorphism with an extra edge, but it shall be included when we say
that the diagram commutes. If the morphism labelling an edge is a component αA of a natural
transformation α, and it is clear from the context (i.e., the source and the target object) which
component we mean, we will drop the index to increase readibility.

2.1 Inductive limits

In category theory there are the general concepts of limits and colimits. Since in our applications
only inductive limits play a role, we restrict to this special case. The general case can for example
be found in [1].

A preordered set I is called directed if any two elements of I possess a common upper bound,
that is if for all α, β ∈ I there exists γ ∈ I with γ ≥ α, β.

Definition 2.1. Let C be a category. An inductive system consists of

� a family of objects (Aα)α∈I indexed by a directed set I,

� a family of morphisms (fαβ : Aα → Aβ)α≤β,

such that

1) fαα = idAα for all α ∈ I,

2) fβγ ◦ fαβ = fαγ for all α ≤ β ≤ γ.

An object A together with morphisms fα : Aα → A for α ∈ I is called inductive limit of the
inductive system ((Aα)α∈I , (f

α
β )α≤β) if

1) fα = fβ ◦ fαβ for all α ≤ β,

2) whenever gα = gβ ◦ fαβ holds for a family of morphisms gα : Aα → B to some common
object B, there exists a unique morphism g : A → B such that g ◦ fα = gα for all α ∈ I.
This is referred to as the universal property of the inductive limit.
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If an inductive limit exists, it is essentially unique. More precisely, if (A , (fα)α∈I) and
(B, (gα)α∈I) are two inductive limits of the same inductive system (Aα)α∈I , then the uniquely
determined morphisms f : A → B with f ◦ fα = gα and g : B → A with g ◦ gα = fα are
mutually inverse isomorphisms.

In general, inductive limits may or may not exist. We call a category in which all inductive
systems have inductive limits inductively complete. See [1, Chapter 12] for general arguments
showing that many categories we consider even fulfill the stronger property of cocompleteness.

A subset J of a directed set I is called cofinal if for every α ∈ I there exists a β ∈ J with
β ≥ α.

Example 2.2. For any fixed α0 ∈ I the set {β | β ≥ α0} is cofinal. Indeed, since I is directed,
there is a β ≥ α, α0 for all α ∈ I.

Clearly, if
(
(Aα)α∈I , (f

α
β )α≤β,α,β∈I

)
is an inductive system and J ⊂ I cofinal, then also(

(Aα)α∈J , (f
α
β )α≤β,α,β∈J

)
is an inductive system. It is known that the inductive limits are

canonically isomorphic if they exist. We will need the following generalization of this (from
which the mentioned fact follows as a special case as documented in Corollary 2.4 below). Let
(Aα)α∈I be an inductive system with inductive limit (A , (fα)α∈I), K a directed set and Jk ⊂ I
for each k ∈ K such that

� Jk is directed for all k ∈ K,

� Jk ⊂ Jk′ for all k ≤ k′,

� J =
⋃

k∈K Jk cofinal in I.

Suppose the inductive systems (Aα)α∈Jk have inductive limits
(
Ak, (f

α
(k))α∈Jk

)
. It holds that

fα = fβ ◦ fαβ for all α ≤ β ∈ Jk, since Jk ⊂ I. Similarly, for k ≤ k′ it holds that fα(k′) = fβ(k′) ◦ f
α
β

for all α ≤ β ∈ Jk, since Jk ⊂ Jk′ . By the universal property of the inductive limit Ak there are
unique morphisms fkk′ : Ak → Ak′ for k ≤ k′ and fk : Ak → A such that the diagrams

Aα A , Aα Ak′

Ak Ak

fα

fα
(k)

fα
(k′)

fα
(k)

fk fk
k′

commute for all α ∈ Jk.

Proposition 2.3. In the described situation
(
(Ak)k∈K , (f

k
k′)k≤k′

)
is an inductive system with

inductive limit
(
A , (fk)k∈K

)
.

Proof. The diagrams

Aα A Aα Ak′′

Ak Ak′ , Ak Ak′

fα

fα
(k)

fα
(k′)

fα
(k′′)

fα
(k)

fα
(k′)

fk
k′

fk′

fk
k′

fk′
k′′

commute, which implies fk = fk
′ ◦ fkk′ and fkk′′ = fk

′
k′′ ◦ fkk′ for all k ≤ k′ ≤ k′′. Now suppose

there are gk : Ak → B with gk = gk
′ ◦ fkk′ for all k ≤ k′. We put gα := gk ◦ fβ(k) ◦ f

α
β for β ∈ Jk,

α ≤ β. Since J =
⋃

k∈K Jk is cofinal in I, we can find such k and β for every α. One can check
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that the gα do not depend on the choice and fulfill gα = gα
′ ◦ fαα′ for all α ≤ α′. This yields

a morphism g : A → B which makes

Ak B

Aβ A

Aα

gk

fk

fβ

fβ
(k)

g

fα
β fα

commute. On the other hand, any morphism which makes the upper right triangle commute,
automatically makes the whole diagram commute and will therefore equal g. ■

Corollary 2.4. Let (Aα)α∈I be an inductive system with inductive limit
(
A , (fα)α∈I

)
, J ⊂ I

cofinal. Then (Aα)α∈J is an inductive system with inductive limit
(
A , (fα)α∈J

)
.

Proof. This is a special case of Proposition 2.3 with |K| = 1, since the inductive system over
the one point set K does not add anything. ■

2.2 Tensor categories

A tensor category is a category C together with a bifunctor ⊠ : C × C → C which

� is associative under a natural isomorphism with components

αA,B,C : A⊠ (B ⊠ C)
∼=−→ (A⊠B)⊠ C

called associativity constraint,

� has a unit object E ∈ obj(C) acting as left and right identity under natural isomorphisms
with components

lA : E ⊠A
∼=−→ A, rA : A⊠ E

∼=−→ A

called left unit constraint and right unit constraint respectively

such that the pentagon and triangle identities hold [31]. If the natural transformations α, l
and r are all identities, we say the tensor category is strict.

It can be shown that the pentagon and triangle identities imply commutativity of all diagrams
which only contain α, l and r [31, Section VII.2]. This is called Mac Lane’s coherence theorem.
Even for non-strict tensor categories, we will frequently suppress the associativity and unit
constraints in the notation and write (C,⊠, E), or even (C,⊠) or C. In the examples we treat,
α, l and r are always canonical.

Given tensor categories (C,⊠) and (C′,⊠′) with unit objects, associativity and unit constraints
E, α, l, r and E′, α′, l′, r′ respectively, a cotensor functor is a triple (F , δ,∆) consisting of

� a functor F : C → C′,

� a morphism δ : F(E) → E′,

� a natural transformation ∆: F(· ⊠ ·) ⇒ F(·)⊠′ F(·)
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such that the diagrams

F
(
A⊠ (B ⊠ C)

)
F
(
(A⊠B)⊠ C

)
F(A)⊠′ F(B ⊠ C) F(A⊠B)⊠′ F(C)

F(A)⊠′ (F(B)⊠′ F(C)
) (

F(A)⊠′ F(B)
)
⊠′ F(C),

F(αA,B,C)

∆A,B⊠C ∆A⊠B,C

idF(A)⊠
′∆B,C ∆A,B⊠′idF(C)

α′
F(A),F(B),F(C)

(2.1)

F(B ⊠ E) F(B)⊠′ F(E) F(E ⊠B) F(E)⊠′ F(B)

F(B) F(B)⊠′ E′, F(B) E′ ⊠′ F(B)

∆B,E

F(rB) idF(B)⊠
′δ

∆E,B

F(lB) δ⊠′idF(B)

r′F(B)
l′F(B)

(2.2)

commute for all A,B,C ∈ obj(C). A cotensor functor is called strong if ∆ is a natural isomor-
phism and δ is an isomorphism.

Theorem 2.5. Let F : C → C′ and F ′ : C′ → C′′ be cotensor functors with coproduct morphisms
∆A,B, ∆′

A′,B′ and counit morphisms δ, δ′. Then F ′ ◦ F is a cotensor functor with coproduct
morphisms ∆′

F(A),F(B) ◦ F
′(∆A,B) and counit morphism δ′ ◦ F ′(δ).

This is well known and can be shown by writing down the involved diagrams and check that
they commute; see [28] for an explicit proof.

Similarly, a tensor functor is a functor F : C → C′ together with a natural transformation
µ : F(·)⊠′ F(·) ⇒ F(·⊠ ·) and a morphism 1 : E′ → F(E) such that the diagrams one obtains
from (2.1) and (2.2) by reversing the arrows and replacing ∆ and δ with µ and 1 commute.

3 Independence in tensor categories

In this section we quickly recall Franz’ original definition of independence in tensor categories
with inclusions (Section 3.1), prove equivalence of different compatibility conditions between the
inclusions and initiality of the unit object (Section 3.2), and explore what compatibility means
for the obvious extension of Franz’ independence to more than two morphisms (Section 3.3).

3.1 Categorial independence with respect to inclusions

In order to unify the different notions of independence in quantum probability, Franz came up
with a definition of independence in a tensor-categorial framework [9, Section 3]. Let Pi : C × C
→ C for i ∈ {1, 2} denote the projection functor onto the first or second component respectively.

Definition 3.1. Let (C,⊠) be a tensor category. A natural transformation ι1 : P1 ⇒ ⊠ is called
left inclusion and a natural transformations ι2 : P2 ⇒ ⊠ is called right inclusion. A tensor
category together with a right and a left inclusion is referred to as tensor category with inclusions.

In more detail, inclusions for a tensor category are two collections of morphisms ιiB1,B2
: Bi →

B1 ⊠B2 for B1, B2 ∈ C, i ∈ {1, 2} such that

A1 A1 ⊠A2 A2

B1 B1 ⊠B2 B2

f1

ι1

f1⊠f2 f2

ι2

ι1 ι2

commutes for all fi : Ai → Bi, i ∈ {1, 2}.
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Definition 3.2. Let
(
C,⊠, ι1, ι2

)
be a tensor category with inclusions. Two morphisms j1, j2:

Bi → A are independent if there exists a morphism h : B1 ⊠B2 → A such that the diagram

A

B1 B1 ⊠B2 B2

j1

ι1

h
j2

ι2

commutes. Such a morphism h is called independence morphism for j1 and j2.

Let us first consider the case where the tensor product B1 ⊠B2 coincides with the coproduct
B1 ⊔ B2 in the category; see [9] or [34]. By definition of a coproduct, any pair of morphisms
ji : Bi → A to a common target A will be independent with the unique independence morphism
h = j1 ⊔ j2. Coproducts exist in many categories, for example the direct sum in the category
of vector spaces with linear maps, or the free product in the category of algebras with algebra
homomorphisms. In order to have a nontrivial notion of independence, one should either use
a different tensor product, or restrict the class of morphisms. In Section 5 we will see that many
notions of independence used in mathematics are indeed special cases of categorial independence,
in particular this holds for linear independence, orthogonality, stochastic independence, Bose
or tensor independence, Fermi independence, and all notions of noncommutative stochastic
independence which are induced by universal products, like freeness, Boolean independence and
monotone independence.

In most examples the independence morphism h will be uniquely determined if it exists.
The next example shows that this is not the case in general, which is why we will not assume
uniqueness in the development of the general theory.

Example 3.3. Consider the category vec with tensor product

V1 ⊙ V2 := V1 ⊕ V2 ⊕ V1 ⊗ V2

and the canonical inclusions Vi ↪→ V1⊙V2 which identify Vi with the summand Vi in V1⊕V2. Any
two linear maps fi : Vi → W are independent, but the independence morphism is not uniquely
determined. Indeed, for an arbitrary linear map f : V1⊗V2 →W , the linear map h = f1+f2+f
is an independence morphism for f1 and f2.

3.2 Compatible inclusions

We already defined what it means for two morphisms j1, j2 in a tensor category with inclusions
to be independent. But if we want to consider notions of independence for more than two
morphisms, we need to require certain compatibility conditions between the inclusions and the
structure of the tensor category. In particular, for dealing with categorial Lévy processes (as
we will do in Section 4.6) it seems to be necessary. This has first been observed in [12] and the
conditions do not appear in [9].

Definition 3.4. Inclusions ι1, ι2 are called compatible with the unit constraints if the diagram

E ⊠A A A⊠ E

A
lA

ι2 ι1

idA
rA

(3.1)

commutes for all objects A ∈ C.

Theorem 3.5. Let C be a tensor category.
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(a) If ι1, ι2 are inclusions which are compatible with the unit constraints, then the unit object E
is initial, i.e., there is a unique morphism 1A : E → A for every object A ∈ C. Furthermore,

ι1A,B = (id⊠ 1B) ◦ r−1
A , ι2A,B = (1A ⊠ id) ◦ l−1

B (3.2)

holds for all objects A,B ∈ C.
(b) Suppose that the unit object E is an initial object. Then (3.2) read as a definition yields

inclusions ι1, ι2 which are compatible with the unit constraints.

Remark 3.6. After writing this article, we learned from Tobias Fritz and an anonymous referee
that the discussed relationship between inclusions and an initial unit object (or, dually, projec-
tions and a terminal unit object) have been known to many category theorists, but we do not
know of any reference where it is spelled out (cf. Tobias Fritz’ post [38] on golem and the nLab
page [37] on semicartesian categories). We therefore think of it as a valuable contribution to fill
this gap.

Proof. (a) The inclusions can easily be used to define the morphism 1A := lA ◦ ι1E,A from E
to an arbitrary object A. To prove that E is initial, it remains to show that any morphism
f : E → A coincides with 1A. Naturality of l yields f ◦ lE = lA ◦ (id⊠ f). The unit constraints
rE , lE : E⊗E → E coincide in any tensor category by coherence. From the compatibility with the
unit constraints, (3.1) for A = E, we conclude that ι1E,E = ι2E : E → E⊠E and rE = lE : E⊠E →
E are mutually inverse isomorphisms. Thus, solving for f yields f = lA◦(id⊠f)◦ι1E,E . Naturality

of ι1 implies that (id ⊠ f) ◦ ι1E,E = ι1E,A. Therefore f = lA ◦ ι1E,A = 1A, which shows that E is
initial. In the diagram

A A⊠B

A⊠ (B ⊠ E)

A⊠ E

ι1

ι1

r−1=ι1

id⊠r

id⊠ι2

id⊠1B

the upper triangle and the lower left triangle commute due to the naturality of ι1. Because E
is initial, it holds that 1B = rA ◦ ι2A,E , so the lower right triangle also commutes. So the whole
diagram commutes and the outside triangle represents the first equation of (3.2). The second
one follows analogously.

(b) It follows from uniqueness of morphisms from E to B that 1B = 1A ◦f for all f : A→ B,
or put as a diagram,

E A

E B

idE

1A

f

1B

commutes. Thus, we can interpret the collection of all 1A, A ∈ C as a natural transformation
1 : E ⇒ idC ; here E stands for the constant functor E : C → C with E(A) = E for all objects A
and E(f) = idE for all morphisms f . With this, naturality of ι1, ι2 is easy to check. We also
have that 1E = idE . Hence, rA ◦ ιA,E = rA ◦ (idA ⊠ 1E) ◦ r−1

A = rAr
−1
A = idA for all objects A.

Analogously, lA ◦ ι2E,A = idA. ■
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Observation 3.7. Mac Lanes’s coherence theorem extends to diagrams built up from the natural
transformations α, l, r and 1. For a formal statement, there are some subtleties to consider,
mainly caused by the problem that in a concrete tensor category it can happen that tensor products
of different factors can yield the same object. Also, one has to be very careful what is meant by
“built up from natural transformations”; e.g., ι1A,A, ι

2
A,A : A→ A⊠A will typically not be equal.

Concretely, we will need commutativity of the diagrams

A⊠ C (A⊠B)⊠ C,

A⊠ (B ⊠ C)

idA⊠ι2

ι1⊠idC

αA,B,C
(3.3)

A⊠B B B ⊠ C C B ⊠ C

(A⊠B)⊠ C A⊠ (B ⊠ C), (A⊠B)⊠ C A⊠ (B ⊠ C),

ι1

ι1ι2

ι2

ι2

ι2 ι2

α α

more generally, for {i1 < · · · < ik} ⊂ {1, . . . , n} (suppressing associativity constraints) there is
a unique natural transformation ιi1,...,ik;n, called inclusion (and geralizing ι1 = ι1;2, ι2 = ι2;2),

ιi1,...,ik;nA1,...,An
: Ai1 ⊠ · · ·⊠Aik → A1 ⊠ · · ·⊠An, A1, . . . , An ∈ C,

which can be written as (vertical3) composition of tensor products with id of

� l, r, 1 (and α if we remembered the parentheses),

� the “degenerate” natural transformations obtained by replacing an argument by the unit
object E, e.g., α·,E,· = (αA,E,C)A,C∈C or rE,

� the inverses of all those natural transformations except 1 (which is the only one that is
not a natural isomorphism).

The basic idea to prove our claim is the following. Suppose that f1 and f2 are parallel natural
transformations of the described form. We can commute instances of 1 with instances of l, r
(and α) using naturality, for example r ◦ (1⊠ idE) = 1 ◦ rE or α ◦ ((id⊠ 1)⊠ id) = (id⊠ (1⊠
id)) ◦ α·,E,·. This allows us to subsequently move all instances of 1 to the left of all instances
of α, l and r. Thus, we can factorize fi as hi ◦ gi with gi built up from α, l and r whereas hi is
built up from 1 alone. Necessarily, with the notation

Ãj :=

{
Aj , j ∈ {i1, . . . , ik},
E, j /∈ {i1, . . . , ik},

ĩdj =

{
id, j ∈ {i1, . . . , ik},
1, j /∈ {i1, . . . , ik}

we have

h1 = h2 = ĩd1 ⊠ · · ·⊠ ĩdn, (hi)A1,...,An : Ã1 ⊠ · · ·⊠ Ãn → A1 ⊠ · · ·⊠An.

It follows that g1 and g2 are parallel,

(gi)A1,...,An : Ai1 ⊠ · · ·⊠Aik → Ã1 ⊠ · · ·⊠ Ãn,

so they are equal by Mac Lane’s coherence theorem. Therefore f1 = hi ◦ gi = f2.

3The vertical composition is just the componentwise composition, i.e., if α : F1 ⇒ F2 and β : F2 ⇒ F3, then
β ◦ α : F1 ⇒ F3 has components βA ◦ αA : F1(A) → F3(A)
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3.3 General categorial independence

Let C be a tensor category such that the unit object E is an initial object. By Observation 3.7
there are unique natural inclusions ιi1,...,ik;nA1,...,An

: Ai1 ⊠ · · ·⊠Aik → A1 ⊠ · · ·⊠An built up from l, r
and 1.

Definition 3.8. Let B1, . . . , Bn, A be objects of C and fi : Bi → A morphisms. Then f1, . . . , fn
are called independent if there exists a morphism h : B1 ⊠ · · ·⊠Bn → A such that the diagrams

A

Bi B1 ⊠ · · ·⊠Bn
ιi;n

fi
h

commute for all i ∈ {1, . . . , n}; h is then called an independence morphism for f1, . . . , fn.

We conclude with the analogues of two basic results about stochastic independence: Subfam-
ilies of independent families of random variables are independent and functions of independent
random variables are independent.

Theorem 3.9. Let C be a tensor category with initial unit object. Furthermore let f1, . . . , fn,
fi : Bi → A, be independent with independence morphism h : B1 ⊠ · · · ⊠ Bn → A. Then the
following holds.

(a) For all 1 ≤ i1 < · · · < ik ≤ n the morphisms fi1 , . . . , fin are independent with independence
morphism h ◦ ιi1,...,ik;n.

(b) Let j1, . . . , j1, ji : Ci → Bi, be morphisms and put gi := fi ◦ ji : Ci → A. Then g1, . . . , gn
are independent with independence morphism h ◦ (j1 ⊠ · · ·⊠ jn).

Proof. (a) In the diagram

A

Bij B1 ⊠ · · ·⊠Bn

Bi1 ⊠ · · ·⊠Bik

fij

ιij ;n

ιj;k

h

ιi1,...,ik;n

the upper half commutes by independence of f1, . . . , fn and the lower half by coherence (see
Observation 3.7). Commutativity for every j = 1, . . . , k proves the assertion.

(b) In the diagram

Ci Bi

C1 ⊠ · · ·⊠ Cn B1 ⊠ · · ·⊠Bn A

ji

ιi;n ιi;n
fi

j1⊠···⊠jn h

the left hand side square commutes because ιi;n is a natural transformation and the right hand
side triangle commutes by independence of f1, · · · , fn. So we get gi = fi ◦ ji = h ◦ (j1 ⊠ · · · ⊠
jn) ◦ ιi;nC1,...,Cn

for all i, which was the assertion. ■
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Remark 3.10. We formulated (a) and (b) the way we will use them later. However, note that
under the canonical identification of tensor products with the initial unit object, (a) can also be

seen as a special case of (b) with ji =

{
idBik

, i = ik for some k ∈ {1, . . . , n},
1A, otherwise.

Although we will not make use of it in the sequel, it is also noteworthy that (b) can be gener-
alized as follows, thus relating it to the main condition in Simpson’s definition of independence
structure [42, Definition 2.1]:

(c) Suppose that

� fk : Bk → A, k ∈ {1, . . . , n} are independent with independence morphism h,

� fk,ℓ : Ck,ℓ → Bk, ℓ ∈ {1, . . . ,mk} are independent with independence morphism
jk : Ck := Ck,1 ⊠ · · ·⊠ Ck,mk

→ Bk for each k ∈ {1, . . . , n}.

Then gk,ℓ := fk ◦ fk,ℓ : Ck,ℓ → A are independent with independence morphism

h ◦ (j1 ⊠ · · ·⊠ jn).

Indeed, in the diagram

Ck,ℓ Bk A

Ck B1 ⊠ · · ·⊠Bn

C1 ⊠ · · ·⊠ Cn

fk,ℓ

ιℓ;mk ιk;n

fk

jk

ιk;n

h

j1⊠···⊠jn

the upper left triangle commutes by definition of independence morphisms and the rest of the
diagram commutes as noted in the proof of (b).

We briefly discuss independence for infinite families. Let (fi : Bi → A)i∈I be a family of
morphisms indexed by a totally ordered index set (I,≤). The set Pfin(I) =

{
{i1 < · · · < in} |

n ∈ N, i1, . . . , in ∈ I
}
of all finite subsets of I is a directed set with respect to inclusion. For

i = {i1 < · · · < in} ∈ Pfin(I) Bi := Bi1⊠···⊠in and fi := fi1 ⊠ · · · ⊠ fin : Bi → A. Given two

finite subsets i, j ∈ Pfin(I) with i ⊂ j, we put ιji : Bi → Bj as the unique morphism described in

Observation 3.7. By the same observation we know that ιkj ι
j
i = ιki for all i ⊂ j ⊂ k. In other

words,
(
(Bi)i∈Pfin(I), (f

j
i )i⊂j

)
is an inductive system. We say that the (fi)i∈I are independent

if there is an inductive limit
(
BI , (ιi : Bi→BI

)i∈Pfin(I)

)
of

(
(Bi)i∈Pfin(I), (ι

j
i )i⊂j

)
and a morphism

h : BI → A such that h ◦ ι{i} = fi for all i ∈ I.4

4 Lévy processes in tensor categories

In this section we define comonoidal systems and categorial Lévy processes. We present two
important inductive limit constructions which have been considered for many different examples
and to which we give a unifying framework. In the end, these allow us to reconstruct under
suitable conditions a categorial Lévy process from its comonoidal system, which we like to think
of as an analogue of the family of marignal distributions of a classical Lévy process. In the

4Note that this inductive limit coincides with the infinite tensor product in Cop as defined in [39] in case the
tensor category C has the additional structure of a symmetric monoidal category.
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context of Hilbert modules these constructions have first been described in full detail by Bhat
and Skeide [7], who also refer to them as first and second inductive limit.

We need a number of results on monoids, which we prove in Sections 4.3 and 4.5. We do
not claim originality of these results, however, we were also not able to find a suitable reference
containing all the statements we need. Shalit and Skeide [41, second half of Section 4, in
particular Theorem 4.13] present a similar discussion, but it seems that the forward direction of
our Theorem 4.16 was not known to them (see Remark 4.17).

We will conclude the section with a summary of the assumptions we make on the involved
category and monoid in order to perform the different discussed constructions, see Section 4.7.

4.1 Comonoidal systems

A monoid is a semigroup with a unit element. We identify a monoid S with the strict tensor
category whose objects are the elements of S with only the identity morphisms and the tensor
product given by the multiplication of S.

Definition 4.1. Let S be a monoid and (C,⊠) a tensor category. A monoidal system over S
in C is a tensor functor from S to C. A comonoidal system over S in C is a cotensor functor
from S to C. A comonoidal system is called full if the cotensor functor is strong. A monoidal
system (respectively comonoidal system) over the trivial monoid {e} is simply called a monoid
in C (respectively comonoid in C).

Since there are only identity morphisms in S, any functor defined on S acts trivially on
morphisms, so it is determined by the object assignment and can be identified with the family
(As)s∈S where As denotes the value of the functor at s ∈ S. Thus, a monoidal system over S in C
is the same as a family of objects (As)s∈S together with product morphisms µs,t : As⊠At → Ast

and a unit morphism u : E → Ae such that the natural associativity and unit properties

Ar ⊠As ⊠At Ars ⊠At E ⊠As As As ⊠ E

Ar ⊠Ast Arst, Ae ⊠As As As ⊠Ae

µr,s⊠idt

idr⊠µs,t µrs,t u⊠id

l−1
As

r−1
As

id id⊠u

µr,st µe,s µs,e

are fulfilled. Similarly, a comonoidal system over S in C is a family of objects (As)s∈S together
with coproduct morphisms ∆s,t : Ast → As ⊠ At and a counit morphism δ : Ae → E such that
coassociativity and the counit properties

Arst Ars ⊠At Ae ⊠As As As ⊠Ae

Ar ⊠Ast Ar ⊠As ⊠At, E ⊠As As As ⊠ E

∆rs,t

∆r,st ∆r,s⊠idt δ⊠id

∆e,s ∆s,e

id id⊠δ

idr⊠∆s,t lAs rAs

hold. The composition of two cotensor functors is again a cotensor functor in the sense of
Theorem 2.5. This immediately implies that a cotensor functor (F ,D, d) maps a comonoidal
system (As)s∈S with coproduct morphisms ∆s,t and counit morphism δ to a comonoidal systems
(F(As))s∈S with coproduct morphisms DAs,At ◦ F(∆s,t) and counit morphism d ◦ F(δ). The
analogous statements hold for monoidal systems.

In the following we will only work with comonoidal systems, but since a comonoidal system
in C is just a monoidal system in Cop, the results have obvious translations for monoidal systems.

Theorem 4.2. Let U ⊂ S be a submonoid. If (As)s∈S is a comonoidal system with coprod-
uct morphisms (∆s,t)s,t∈S and counit morphism δ, then (As)s∈U is a comonoidal system with
coproduct morphisms (∆s,t)s,t∈U and counit morphism δ.
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Proof. The inclusion U ↪→ S is a monoid homomorphism, hence it is a cotensor functor with
respect to the identity natural transformation and identity morphism. The theorem now follows
from Theorem 2.5. ■

4.2 Categorial Lévy processes

Definition 4.3. Let S be a monoid. For s, t ∈ S we write s ≤ t if s is a left divisor of t, that is
if there exists a r ∈ S such that sr = t.

On every monoid the defined binary relation ≤ is a preorder, that is it is reflexive and
transitive.

Recall that a monoid S is called cancellative if ab = ac implies b = c and ba = ca implies
b = c for all a ∈ S. In particular, if s ≤ t holds in a cancellative monoid S, then the element r
with sr = t is uniquely determined.

Definition 4.4. Let S be a cancellative monoid. For s, t ∈ S with s ≤ t, we write (s → t)
for the (necessarily unique) element with t = s(s → t); later we will simply write, in additive
notation, t− s instead of (s→ t).

Note that left invertibility, right invertibility and invertibility are all equivalent for elements
of a cancellative monoid S. Indeed, suppose ab = e with e ∈ S the unit element. This implies
baba = bea = bae. Since S is cancellative it follows that ba = e and hence a = b−1.

The following definition shall grasp the essence of stationary independent increment processes,
cf. the remark below.

Definition 4.5. Let (At)t∈S be a comonoidal system in C over a cancellative monoid S. A cat-
egorial Lévy process on (At)t∈S is a collection of morphisms js,t : A(s→t) → B for s ≤ t to some
common object B ∈ C such that

1) jt,t = 1B ◦ δ,
2) js1,t1 , . . . , jsn,tn are independent if s1 ≤ t1 ≤ s2 ≤ · · · ≤ sn ≤ tn,

3) jr,s,t ◦∆(r→s),(s→t) = jr,t for some independence morphism jr,s,t of jr,s and js,t.

Remark 4.6. We think of the js,t as increment of a stationary process over the time interval
from s to t and of Ar as the common distribution of all js,t with (s → t) = r. The required
conditions can than be paraphrased as follows. Increments over trivial intervals should vanish;
increments over consecutive intervals shall be independent; combining increments over adjacent
intervals should yield the increment corresponding to the union of the intervals. In Section 5.3 we
will discuss how convolution semigroups of probability measures indeed give rise to (co)monoidal
systems in the (opposite) category of probability spaces.

In the remainder of this section, we exhibit general conditions on the structure of the index
set S and the category C which ensure that comonoidal systems embed into full comonoidal
systems (Section 4.4) and that every comonoidal system allows for the construction of a canonical
categorial Lévy process on it (Section 4.6).

4.3 Unique factorization monoids

For an arbitrary set X, we denote by X∗ the set of all tuples (x1, . . . , xn) over X of arbitrary
length n ∈ N0. The concatenation of tuples is written in this section as

(x1, . . . , xn)⌣ (y1, . . . , ym) := (x1, . . . , xn, y1, . . . , ym)
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to clearly distinguish it from other multiplications (later X will typically be a semigroup itself).
X∗ is a monoid, the free monoid over X, its neutral element is the empty tuple ().

Now suppose that S is a monoid with neutral element e. A tuple (s1, . . . , sn) ∈ (S \ {e})∗ is
called a factorization of t ∈ S if t = s1 · · · sn; by convention, for n = 0 we interpret the empty
product on the right hand side as e and, accordingly, the empty tuple is a factorization of e.
The set of all factorizations of t ∈ S is denoted by Ft. A factorization σ ∈ Ft is said to be a
refinement of a factorization (t1, . . . , tn) ∈ Ft if σ = τ1 ⌣ · · ·⌣ τn for some τk ∈ Ftk . We write
σ ≥ τ if σ is a refinement of τ . This defines a partial order on Ft.

5

We say that a monoid S is conical if the only invertible element of S is its unit element e.
If S is conical, the empty tuple () is the unique factorization of e.

Proposition 4.7. Let S be a cancellative, conical monoid. If τ1 ⌣ · · · ⌣ τn = τ ′1 ⌣ · · · ⌣ τ ′n
with τk, τ

′
k ∈ Ftk , then τk = τ ′k for all k.

Proof. For n = 0 or n = 1 there is nothing to prove. Suppose τ1 ⌣ · · · ⌣ τn = τ ′1 ⌣ · · · ⌣
τ ′n = (s1, . . . , sℓ) with τn = (sk, . . . , sℓ), τ

′
n = (sk′ , . . . , sℓ) ∈ Ftn . We have sk · · · sℓ = sk′ · · · sℓ.

Suppose k < k′. Since S is cancellative, this implies sk · · · sk′−1 = e and thus sk is invertible
which contradicts the fact that S is conical. So k ≥ k′. Analogously, we get k′ ≥ k which shows
k = k′ and thus τn = τ ′n. Now the proposition follows by induction. ■

Definition 4.8. A cancellative monoid S is called a unique factorization monoid or uf-monoid
for short if any two factorizations of the same element have a common refinement. A cuf-monoid
is a conical uf-monoid.

Equivalently, a uf-monoid is a cancellative monoid such that Ft is a directed set with respect
to refinement for every t ∈ S. The term unique factorization monoid or uf-monoid has been
coined by Johnson [26] who establishes some general theory of uf-monoids, gives different char-
acterizations of the uf-property and presents constructions to find uf-monoids; be aware that
the term can be slightly misleading, because typically there are no (finite) unique factorizations
of elements in a uf-monoid. We only deal with cuf-monoids, because we will need Proposi-
tion 4.7. The examples we will use later on are only N0, Q+ and R+ (with addition), but it
seems that cuf-monoids provide the most general setting in which we can study the inductive
limit constructions of the following sections.

4.4 First inductive limit: the generated full comonoidal system

Let ((As)s∈S, (∆s,t)s,t∈S, δ) be a comonoidal system over a cancellative and conical monoid S
in a tensor category (C,⊠) with unit object E. For a tuple σ = (s1, . . . , sn) ∈ Ft put Aσ :=
As1 ⊠ · · ·⊠Asn for n ≥ 1 and A() := E. Define ∆σ : At → Aσ recursively by

∆() := δ,

∆(t) := idt,

∆(s1,...,sn+1) := (∆(s1,...,sn) ⊠ idsn+1) ◦∆s1···sn,sn+1 for n ≥ 1;

note that, for n = 1, ∆(s1,s2) = (ids1 ⊠ ids2) ◦ ∆s1,s2 = ∆s1,s2 gives back the original binary
coproduct morphisms and that the third equation actually also holds for n = 0 by the counit
property, (δ ⊠ ids) ◦∆e,s = ids (suppressing the unit constraint). Let τ = (t1, . . . , tn) ∈ Ft and

5Shalit and Skeide have considerations very similar to ours for the sets Jt := {(s1, . . . , sn) ∈ S∗ | t = s1 . . . sn}
whenever S is a semigroup (note that they do not exclude e from the possible factors when S is a monoid as we do
in the definition of Ft). Because the length of refinements is increasing, it is easy to see that refinement is indeed
a partial order, see the proof of [41, Proposition 4.12] for a detailed argument (which applies analogously to Ft).
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σ ≥ τ . Since S is cancellative and conical, we can use Proposition 4.7 to write σ = τ1 ⌣ · · ·⌣ τn
for uniquely determined τk ∈ Ftk . With this notation we put

∆τ
σ := ∆τ1 ⊠ · · ·⊠∆τn : Aτ → Aσ

for all τ ≤ σ ∈ Ft.

Lemma 4.9. It holds that ∆σ
ρ ◦ ∆τ

σ = ∆τ
ρ for all τ ≤ σ ≤ ρ ∈ Ft for every cancellative and

conical monoid.

Proof. The proof of Bhat and Mukherjee for the case S = R+ [6, Lemma 4] works without
a change for general cancellative and conical monoids. ■

Corollary 4.10. Let S be a cuf-monoid and
(
(As)s∈S, (∆s,t)s,t∈S, δ

)
a comonoidal system in

a tensor category C. Then for every t ∈ S,
(
(Aτ )τ∈Ft , (∆

τ
σ)σ≥τ∈Ft

)
is an inductive system.

Proof. By Definition 4.8 of a uf-monoid, Ft is directed. The first condition of an inductive
system, ∆τ

τ = idτ , is obvious. The second condition, ∆σ
ρ ◦∆τ

σ = ∆τ
ρ for all τ ≤ σ ≤ ρ ∈ Ft, is

the statement of Lemma 4.9. ■

Suppose that the inductive systems (Aτ )τ∈Ft have inductive limits At with morphismsDτ : Aτ

→ At. For τ ∈ Ft denote by Fτ the set of all refinements of τ . Then Fτ is a cofinal subset of Ft,
see Example 2.2. Denote by Aτ the inductive limit. Then there is a canonical isomorphism
At

∼= Aτ because of Corollary 2.4.

Lemma 4.11. The diagram

Aσ ⊠Aτ As ⊠ At

Aσ′ ⊠Aτ ′

Dσ⊠Dτ

∆σ
σ′⊠∆τ

τ ′
Dσ′

⊠Dτ ′

commutes for all σ′ ≥ σ ∈ Fs, τ
′ ≥ τ ∈ Ft.

Proof. By functoriality of ⊠, we have(
Dσ′

⊠Dτ ′
)
◦
(
∆σ

σ′ ⊠∆τ
τ ′
)
=

(
Dσ′ ◦∆σ

σ′
)
⊠
(
Dτ ′ ◦∆τ

τ ′
)
= Dσ ⊠Dτ . ■

So, by the universal property of the inductive limit, there are unique morphisms ∆̃s,t : Ast →
As ⊠ At such that

Aσ ⊠Aτ As ⊠ At

Ast
∼= A(s,t)

Dσ⊠Dτ

Dσ⌣τ

∆̃s,t

commutes for every σ ∈ Fs, τ ∈ Ft.

Theorem 4.12. The At form a comonoidal system with respect to the coproduct morphisms ∆̃s,t

and the counit morphism idE.
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Proof. Note that we identify the (trivial) inductive limit Ae with E, which is feasible because
Fe = {()} and A() = E. The counit property is then trivially fulfilled. In the diagram

Arst

Ar ⊠ Ast Aρ ⊠Aσ ⊠Aτ Ars ⊠ At

Ar ⊠ As ⊠ At

∆̃ ∆̃

id⊠∆̃

Dρ⌣σ⌣τ

Dρ⌣σ⊠DτDρ⊠Dσ⌣τ

Dρ⊠Dσ⊠Dτ

∆̃⊠id

the four corners commute by the definition of ∆̃. From (r, s, t) ∈ Frst we get a canonical
isomorphism Arst

∼= A(r,s,t) which we use to identify the two. Coassociativity now follows from
the universal property of the inductive limit. ■

Define Dt : At → At by Dt := D(t) for t ̸= e and De := δ.

Theorem 4.13. The morphisms (Dt)t∈S form a morphism of comonoidal systems, that is ∆̃s,t◦
Dst = (Ds ⊠Dt) ◦∆s,t and idE ◦De = δ.

Proof. The counit is respected by definition of De. In the diagram

Ast As ⊠At

Ast
∼= A(s,t) As ⊠ At

∆s,t

D(st)

D(s,t)
D(s)⊠D(t)

∆̃s,t

the lower right commutes by definition of ∆̃ and the upper left because Ast is the inductive
limit. So the outside square commutes, which finishes the proof. ■

Let F : C → D be a functor. Then any inductive system
(
(Aα)α, (f

α
β )α≤β

)
in C is mapped

to an inductive system
(
(F(Aα))α, (F(fαβ ))α≤β

)
in D. We say that F preserves inductive limits

if for every inductive limit
(
A , (fα)α

)
of an inductive system

(
(Aα)α, (f

α
β )α≤β

)
it holds that(

F(A ), (F(fα))α
)
is an inductive limit of the inductive system

(
(F(Aα))α, (F(fαβ ))α≤β

)
.

Theorem 4.14. If the tensor product preserves inductive limits, the morphisms ∆̃s,t are all
isomorphisms. In other words (At)t∈S is a full comonoidal system.

Proof. The tensor product is a bifunctor ⊠ : C × C → C. Inductive systems in C × C are in
bijection with pairs of inductive systems in C and an inductive limit in C×C is a pair of inductive
limits for the inductive systems in C. If ⊠ preserves inductive limits, As ⊠ At is an inductive
limit of the inductive system formed by (Aσ ⊠Aτ )σ∈Fs,τ∈Ft with respect to the maps Dσ ⊠Dτ .

Since ∆̃s,t makes the diagram

Aσ ⊠Aτ As ⊠ At

Ast
∼= A(s,t)

Dσ⊠Dτ

Dσ⌣τ

∆̃s,t

commute, it is the canonical isomorphism between the two inductive limits. ■

All tensor categories we are interested in have tensor products which do preserve inductive
limits.
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4.5 Ore monoids

Definition 4.15. A cancellative monoid S is called Ore monoid if for all s, t ∈ S there exists
an r ∈ S with s ≤ r and t ≤ r.

In other words: A cancellative monoid is an Ore monoid if and only if (S,≤) is directed.

Be aware of our choice to use left divisibility in the definition while some authors use the
same term for the symmetric notion based on right divisibility instead.

Product systems of C*-correspondences (Hilbert bimodules) over Ore monoids have been
studied independently by Albandik and Meyer [3] and Kwaśniewski and Szymański [27]. Al-
bandik and Meyer’s definitions are slightly more general, because they allow also noncancellative
monoids. This works as well, but one has to replace inductive limit by filtered colimits which
many readers are probably less farmiliar with. The recent work of Shalit and Skeide [41] on
subproduct systems also emphasizes the importance of the Ore condition in this context.

We could not find the following theorem in the literature, and it seems that it is at least not
well known in the product system community. The backward direction has recently been proved
independently by Shalit and Skeide as [41, Theorem 4.13] (actually they prove a slightly more
general statement because they do not restrict to conical monoids).

Theorem 4.16. Let S be a cancellative monoid. Then the following are equivalent:

� S is a cuf-monoid and an Ore monoid.

� S is totally ordered with respect to ≤.

Proof. Suppose that S is a cuf-monoid and an Ore monoid. Because S is an Ore monoid, (S,≤)
is a directed set. Let s, t ∈ S. By the Ore property there exist r, p, q ∈ S with r = sp = tq.
We want to show that s ∈ tS or t ∈ sS. If one of the four elements s, t, p, q is e this is
obvious. If none of them is invertible, then (s, p), (t, q) ∈ Fr, so they have a common refinement
(r1, . . . , rn) ∈ Fr because S is a uf-monoid. This means s = r1 · · · ri, q = ri+1 · · · rn and
t = r1 · · · rj , q = rj+1 · · · rn for some i, j ∈ {1, . . . , n}. Now i ≤ j implies t = sri+1 · · · rj ∈ sS
and j ≤ i implies s = trj+1 · · · ri ∈ tS, so we are done.

Now suppose that S is totally ordered. Clearly, S is an Ore monoid. Let ε ∈ U(S). Then
ε ≤ e and e ≤ ε imply ε = e, so there are no nontrivial invertible elements. We prove that for
all r ∈ S and all (t1, . . . , tn), (s1, . . . , sm) ∈ Fr there is a common refinement by induction on n.
For n = 0 and n = 1 this is obvious. Now suppose the statement holds for n − 1 ∈ N and let
(t1, . . . , tn), (s1, . . . , sm) ∈ Fr. Because t1 · · · tn = r we know that t1 · · · tn−1 < r. Because ≤ is
a total order, we are in one of the following situations:

Case 1: t1 · · · tn−1 = s1 · · · sk for some k ∈ {1, . . . ,m− 1}. By the induction hypthesis, there
is a common refinement (r1, . . . , rℓ) of (t1, . . . , tn−1) and (s1, . . . , sk). It is easy to check that
(r1, . . . , rℓ, sk+1, . . . , sm) is a common refinement of (t1, . . . , tn) and (s1, . . . , sm).

Case 2: s1 · · · sk < t1 · · · tn−1 < s1 · · · sk+1 for some k ∈ {1, . . . ,m − 1}. Then there are
p, q such that s1 · · · skp = t1 · · · tn−1 and t1 · · · tn−1q = s1 · · · sk+1. By the induction hypothesis,
there exists a comon refinement (r1, . . . , rℓ) of (s1, . . . , sk, p) and (t1, . . . , tn−1). Now it follows
that (r1, . . . , rℓ, q, sk+2, . . . , sm) is a common refinement of (t1, . . . , tn) and (s1, . . . , sm). ■

Remark 4.17. A natural question is whether a cuf monoid is automatically totally ordered,
cf. the question Shalit and Skeide ask in [41, last bullet at the end of Section 4].6 Johnson [26]

6Their question is almost that, but the setup is slightly different. They ask whether a not necessarily conical
monoid in which the sets Jt := {(s1, . . . , sn) ∈ S∗ | t = s1 . . . sn} (cf. footnote 5) are all directed is automatically
cancellative and totally directed, which is a generalization of totally ordered, not demanding divisibility to be
an antisymmetric relation. It is easy to see that directedness of Jt and Ft are equivalent for every monoid S.
Assuming also that S is conical, their question translates to the one we posed.
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proves that free products of uf-monoids are again uf. In particular, every free monoid on more
than one generator gives an example of a cuf monoid which is (quite obviously) not Ore and,
therefore, is not totally directed. This resolves the question in the negative.

4.6 Second inductive limit: Lévy processes

Let At be a full comonoidal system over an Ore monoid S with coproduct isomorphisms ∆̃s,t in
a tensor category with initial unit object. Without loss of generality assume that Ae = E and
that the counit morphism is δ = idE .

For s ≤ t, t = sp, define ist : As → At as the composition

As As ⊠ Ap At.
ι1 ∆̃−1

Theorem 4.18.
(
(At)t∈S, (i

s
t )s≤t

)
is an inductive system.

Proof. Let r ≤ s ≤ t, s = rp, t = sq. In the diagram

Ar Ar ⊠ Ap As

Ar Ar ⊠ Ap ⊠ Aq As ⊠ Aq

Ar Ar ⊠ Apq At

id

ι1

id⊠ι1 ι1

∆̃−1

ι1

id

ι1

id⊠∆̃−1

∆̃−1⊠id

∆̃−1

ι1 ∆̃−1

the lower right corner commutes by coassociativity of ∆̃ and the other three corners commute
by the naturality of ι1. We suppressed the associativity constraint and identified Ar⊠ (Ap⊠Aq)
with (Ar ⊠ Ap)⊠ Aq, which leads to the two interpretations idAr ⊠ ι1Ap,Aq

and ι1Ar⊠Ap,Aq
of the

arrow Ar ⊠Ap → Ar ⊠Ap⊠Aq. Of course, this would not work without coherence as discussed
in Observation 3.7. ■

For the rest of this section, we fix a totally ordered monoid S and an inductively complete
tensor category C with compatible inclusions ι1, ι2, whose tensor product ⊠ perserves inductive
limits.

Remark 4.19. As the typical examples of totally ordered monoids are submonoids of R+, we
will use additive notation in the following. For s ≤ t, we denote the unique element r with
s+ r = t by t− s.

Given only the comonoidal system
(
(At)t∈S, (∆s,t)s,t∈S

)
one can construct a canonical cate-

gorial Lévy process. Since S is a uf-monoid and ⊠ preserves inductive limits, (At)t∈S generates
a full comonoidal system

(
(At)t∈S, ∆̃

)
by Theorem 4.14. Denote by Dt : At → At the canonical

morphisms. Let
(
A , (it : At → A )t∈S

)
be the inductive limit of (At)t∈S. Define js,t : At−s → A

as the composition

At−s At−s As ⊠ At−s At A .Dt−s ι2 ∆̃−1 it

Theorem 4.20. The js,t form a categorial Lévy process.

Proof. We construct the independence morphism jr,s,t for jr,s and js,t and show that jr,s,t ◦
∆s−r,t−s = jr,t. Define jr,s,t as the composition

As−r ⊠At−s As−r ⊠ At−s Ar ⊠ As−r ⊠ At−s At A .Ds−r⊠Dt−s ι2 ∆̃−1 it
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Now, the diagram

At−s At−s As ⊠ At−s At

As−r ⊠At−s As−r ⊠ At−s Ar ⊠ As−r ⊠ At−s At A

As−r As−r Ar ⊠ As−r As

Dt−s

ι2

ι2

ι2

∆̃−1

∆̃
it

id

Ds−r⊠Dt−s ι2 ∆̃−1 it

Ds−r

ι1

ι2

ι1

∆̃−1

ι1 ist
is

commutes: The leftmost squares commute due to naturality of ι1 and ι2. The next squares
commute by Observation 3.7 and naturality of ι2. The upper right square commutes by coasso-
ciativity of ∆̃. The triangles commute by definition of the inductive limit. It remains to show
commutativity of the lower right square. In a bit more detail, this is

Ar ⊠ As−r ⊠ At−s As ⊠ At−s At,

Ar ⊠ As−r As

∆̃−1⊠id ∆̃

∆̃−1

ι1 ι1
ist

which commutes by naturality of ι1 and the definition of ist . This shows that jr,s,t is an inde-
pendence morphism. Next we consider

At−r At−r Ar ⊠ At−r Atid

As−r ⊠At−s As−r ⊠ At−s Ar ⊠ As−r ⊠ At−s At A

Dt−r

∆s−r,t−s

ι2

∆̃

∆̃−1

id⊠∆̃
it

Ds−r⊠Dt−s ι2 ∆̃−1 it

in which the first square commutes because the Dt form a morphism of comonoidal systems by
Theorem 4.13, the second square commutes due to naturality of ι2, and the last square and the
triangle commute trivially. So the outside commutes, thus establishing jr,s,t ◦∆s−r,t−s = jr,t.

The general construction of an independence morphism for jt1,t2 , . . . , jtn,tn+1 works similar to
that for jr,s and js,t. ■

There is also a direct way from the comonoidal system (At)t∈S to the Lévy process. Put
F := {σ = (s1, . . . , sn) | n ∈ N0, sk ∈ S \ {e}} =

⋃
s∈S Fs and define σ ≥ τ = (t1, . . . , tn) if there

exist τ1, . . . , τn, τn+1 with σ = τ1 ⌣ · · · ⌣ τn ⌣ τn+1, τk ∈ Ftk for k ∈ {1, . . . , n} and τn+1 ∈ F.
One shows that F is directed analogously to Ft. Then define an inductive system (Aσ)σ∈F with
respect to the morphisms iτσ : Aτ → Aσ defined as the composition

Aτ Aτ1 ⊠ · · ·⊠Aτn Aτ1 ⊠ · · ·⊠Aτn ⊠Aτn+1 = Aσ

∆τ
τ1⌣···⌣τn ι1

for σ = τ1 ⌣ · · ·⌣ τn ⌣ τn+1 ≥ τ .

Theorem 4.21. The inductive limits of (Aσ)σ∈F and (At)t∈S are canonically isomorphic.

Proof. This is exactly the situation of Proposition 2.3. ■

4.7 Summary of the necessary assumptions

We end this section with a short summary what conditions on S, (As)s∈S and C are needed for
each of the presented steps.



20 M. Gerhold, S. Lachs and M. Schürmann

1. For Definition 4.5 (categorial Lévy process), we assume S to be cancellative and C to have
an initial unit object.

2. For the first inductive limit as described in Section 4.4 (full comonoidal system from
comonoidal system), we assume that S is a cuf-monoid, that the inductive limits At exist
in C, and that ⊠ preserves inductive limits.

3. For the second inductive limit as described in Section 4.6 (categorial Lévy process from
full comonoidal system), we need S to be an Ore monoid and the inductive limit A to
exist in C.

4. For the combination of both inductive limits (categorial Lévy process from comonoidal
system), we need S to be both, Ore and cuf; this is equivalent to being totally ordered
with respect to the divisibility relation ≤. Of course, the relevant inductive limits have to
exist in C and ⊠ must preserve inductive limits.

5 Examples

We explore what categorial independence and comonoidal systems are in several concrete tensor
categories. First we shall see that categorial independence encompasses notions such as linear
independence and orthogonality. Then we shall see that the quantum probabilistic notions of in-
dependence induced by universal products (e.g., Voiculescu’s freeness) and newer generalizations
are covered and yield quantum Lévy processes.

A general pattern for finding interesting independences turns out to be the following. Start
with a category C with binary coproducts A ⊔ B and an initial object E. As discussed before,
independence is trivial in this case because j1 ⊔ · · · ⊔ jn : B1 ⊔ · · · ⊔ Bn → A is always an
independence morphism for jk : Bk → A, k = 1, . . . , n. However, if we move to a subcategory C ′

by restricting the class of morphisms (making sure that the coproduct of C restricts to a tensor
product on C ′ and that the initial object of C is still initial in C ′), independence of jk : Bk → A
in C ′ is equivalent to

⊔
k jk :

⊔
k Bk → A being a morphism in C ′.

5.1 Independence in nonprobabilistic categories

Pairwise disjointness. The category set has the empty set ∅ as initial object and disjoint
union ∪̇ as coproduct. By setinj , we denote the category of sets with injective maps, which
is a tensor category with respect to disjoint union with initial unit object ∅. Injective maps
jk : Bk → A are independent if and only if the canonical map B1∪̇ · · · ∪̇Bn → A is injective.
This is obviously equivalent to pairwise disjointness of the subsets jk(Bk) ⊂ A. In this sense,
pairwise disjointness of subsets is a special case of categorial independence.

Linear independence. Consider the category vecinj of vector spaces with injective linear
maps. The direct sum is the coproduct in vec (vector spaces with arbitrary linear maps), and it
turns vecinj into a tensor category with initial unit object {0}. Injective linear maps fi : Vi →W ,
i = 1, . . . , n are independent if and only if they have linearly independent ranges; indeed, the only
choice for the independence morphism is the linear map h := f1 + · · ·+ fn : V1 ⊕ · · · ⊕ Vn →W .
If h is injective, then f1(v1) + · · · + fn(vn) = 0 implies f1(v1) = · · · = fn(vn) = 0, so the
ranges are linearly independent. On the other hand, if the ranges are linearly independent and
h(v1 ⊕ · · · ⊕ vn) = 0, we can conclude that fi(vi) = 0 for i ∈ {1, . . . , n}. Since the fi are
injections, it follows that vi = 0 for all i, so h is injective.

Algebraic independence. Let L ⊃ K be a field extension. Elements a1, . . . , an ∈ L are
algebraically independent if the canonical map from the polynomial algebra K[x1, . . . , xn] to
K[a1, . . . , an] ⊂ L is an isomorphism. The category of commutative unital K-algebras with
unital algebra homomorphisms has the tensor product as coproduct and the one-dimensional
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algebra K as unit object. When we restrict, as in the previous examples, to injective ho-
momorphisms, we get another tensor category with initial unit object. The inclusion maps
K[ai] ↪→ L are categorially independent if and only if the canonical K-algebra homomor-
phism K[a1] ⊗ · · · ⊗ K[an] → L is injective. Injectivity however means that it is an isomor-
phism onto its image K[a1 . . . an] ⊂ L. Assume that a1, . . . , an are transcendent over K,
so that K[ai] ∼= K[xi]. Than categorial independence of the embeddings is equivalent to
K[x1, . . . , xn] ∼= K[x1] ⊗ . . .K[xn] ∼= K[a1] ⊗ · · · ⊗ K[an] ∼= K[a1, . . . , an], hence to algebraic
independence of the ai.

Orthogonality. Similar to the previous examples, the category (hilbisom,⊕) of Hilbert spaces
with isometries is a tensor category with initial unit object {0}. Isometries vi : Hi → G are inde-
pendent if and only if they have orthogonal ranges. Indeed, the only choice for the independence
morphism is the linear map h = v1 + · · · + vn. This is an isometry if and only it is a unitary
onto its range v1(H1) + · · ·+ vn(Hn), and this is equivalent to v1(H1), . . . vn(Hn) being pairwise
orthogonal.

5.2 (Co)monoidal systems in nonprobabilistic categories

Graded algebras. Monoids in (vec,⊗) are unital algebras, comonoids are coalgebras. Let
(At)t∈S be a monoidal system in (vec,⊗). Then A :=

⊕
t∈SAt is an S-graded algebra with

respect to the multiplication given by

ab := µs,t(a⊗ b)

for elements a ∈ As, b ∈ At (which has also been observed in [2, Example 3.18]). If we
consider (vecsurj,⊗), a monoidal system over N0 yields a standard graded algebra, i.e., an N0-
graded algebra A =

⊕
n∈N0

An with A0 = C1 and AmAn = Am+n. Indeed, the two conditions
are exactly the surjectivity of the unit morphism 1 : C → A0 and the product morphisms
µm,n : Am ⊗An → Am+n.

Subproduct systems. Comonoidal systems in (hilbisom,⊗) with He = C and δ = idC are
called subproduct systems. Full subproduct systems are called product systems. In this context,
the inductive limit construction of Section 4.4 becomes the construction of product systems from
subproduct systems as discussed in [6] and (implicitly) in [7] for Hilbert modules. A detailed
discussion of inductive limits in the context of subproduct systems with manifold applications
can be found in [41].

Note that defining subproduct systems as monoidal systems in (hilbcoisom,⊗) gives an equiv-
alent definition. More precisely,

(
(Hs)s∈S, (∆s,t)s,t∈S, δ

)
is a comonoidal system in (hilbisom,⊗)

if and only if
(
(Hs)s∈S, (∆

∗
s,t)s,t∈S, δ

∗) is a monoidal system in (hilbcoisom,⊗).

Remark 5.1. The forgetful functor F : (finhilbcoisom,⊗) → (finvecsurj) (the categories of finite-
dimensional Hilbert and vector spaces, respectively) is easily seen to be a tensor functor. Ten-
sor functors map monoidal systems to monoidal systems (just as cotensor functors do with
comonoidal systems). So it follows from the previous paragraph that (F(Hn))n∈N0 yields a stan-
dard graded algebra if (Hn)n∈N0 is a subproduct system. Similar considerations play an im-
portant role in [19] where dimension sequences of finite-dimensional subproduct systems are
investigated.

Additive deformations of bialgebras. An additive deformation of a bialgebra B is a fam-
ily of multiplication maps µt : B⊗B → B (t ∈ R+) such that µ0 is the original bialgebra multi-
plication, δ ◦ µt is pointwise continuous, Bt := (B,µt,1) is a unital algebra for every t ≥ 0 and
(µs ⊗ µt) ◦ (id⊗ τ ⊗ id) ◦ (∆⊗∆) = ∆ ◦ µs+t for all s, t ≥ 0, cf. [15] or [47]. Given an additive
deformation, the algebras Bt with comultiplications ∆s,t := ∆ for all s, t form a comonoidal
system in (alg1,⊗), the tensor category of unital algebras with unital algebra homomorphisms
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and the usual tensor product. Additive deformations of ∗-bialgebras [15, 47] and braided (∗)-
bialgebras [17] can also be defined and give rise comonoidal systems in corresponding tensor
categories.

5.3 Probability spaces

Denote by prob the category with probability spaces as objects and measurable maps f : Ω1 → Ω2

with P1 ◦ f−1 = P2 as morphisms from (Ω1,F1,P1) to (Ω2,F2,P2). This is a tensor category
with (Ω1,F1,P1)⊗(Ω2,F2,P2) := (Ω1×Ω2,F1⊗F2,P1⊗P2), where F1⊗F2 and P1⊗P2 are the
product σ-algebra and product measure respectively. The unit object is a one-point probability
space Λ. Now Λ is clearly terminal, not initial. To use our definitions of independence and
Lévy processes we could either restate everything for the situation of the unit object being
terminal, in which case we would have to reverse all arrows, or we can simply switch to the
opposite category probop. Both ways give basically the same definition of independence and, as
noted by Franz [9], this categorial independence coincides with the usual notion of stochastic
independence in the following way: Let X : Ω → E, Y : Ω → F be two random variables.
Pushing forward the probability measure on Ω to E and F with X−1 turns these into probability
spaces themselves and X and Y can be interpreted as morphisms in prob (or probop). Now X
and Y are stochastically independent as random variables if and only if they are categorially
independent as morphisms; indeed, there (X,Y ) : Ω → E × F is the unique map which makes
the independence diagram commute, and it is a morphism if and only if the joint distribution
P ◦ (X,Y )−1 coincides with the product distribution

(
P ◦X−1

)
⊗

(
P ◦ Y −1

)
, a characterisation

of stochastic independence.
Now let (µt)t≥0 be a convolution semigroup of probability measures on the real line. In probop

the addition is a morphism from R to R × R and the probability spaces At := (R,B, µt) form
a comonoidal system. Indeed, µs⋆µt = µs+t can be expressed by saying that addition transports
the product measure µs⊗µt on R×R to the measure µs+t on R, so addition can be interpreted
as a morphism from As+r to As ⊗At in probop. The inductive limits discussed in Theorem 4.21
are the same as the projective limit from the Daniell-Kolomogoroff theorem (taken in prob) and
therefore exist.

In general, existence of projective limits in prob is a delicate problem, see [35] and ref-
erences therein. However, it is a simple observation that the tensor product preserves pro-
jective limits. Indeed, let

(
(Ω,Σ,P); pα

)
and

(
(Ω′,Σ′,P′); p′β

)
be projective limits of projec-

tive systems
(
(Ωα,Σα,Pα); pα1,α2

)
and

(
(Ω′

β,Σ
′
β,P′

β); pβ1,β2

)
, respectively. For any compati-

ble family of morphisms (qα, q
′
β) : (X,F , µ) → (Ωα × Ω′

β,Σα ⊗ Σ′
β,Pα ⊗ P′

β), there are unique
f : (X,F , µ) → (Ω,Σ,P) and f ′ : (X,F , µ) → (Ω′,Σ′,P′) with pα ◦ fqα and p′β ◦ f ′ = q′β by the
defining property of a projective limit. The only map F that makes the diagram

(Ω× Ω′,Σ⊗ Σ′,P⊗ P′) (X,F , µ)

(Ωα × Ω′
β,Σα ⊗ Σ′

β,Pα ⊗ P′
β)

pα×p′β

F

(qα,q′β)

commute is F = (f, f ′), and it is readily verified that this is a morphism in prob: Σ ⊗ Σ′ is
generated by sets of the form p−1

α (A)× p′β
−1(B) with A ∈ Σα, B ∈ Σ′

β, and for such sets we find

µ ◦ (f, f ′)−1
(
p−1
α (A)× p′β

−1
(B)

)
= µ ◦ (qα, q′β)−1(A×B) = (Pα ⊗ P′

β)(A×B) = Pα(A)P′
β(B) = (P⊗ P′)(A×B).

This proves that
(
(Ω×Ω′,Σ⊗Σ′,P⊗ P′); pα × p′β

)
is a projective limit of the projective system(

(Ωα × Ω′
β,Σα ⊗ Σ′

β,Pα ⊗ P′
β); pα1,α2 × p′β1,β2

)
.
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5.4 Tensor product of algebraic quantum probability spaces

In the widest sense, an algebraic quantum probability space is a pair (A,φ) which consists of an
algebra A (generalizing the algebra of bounded measurable functions on a probability space) and
linear functional φ : A→ C (generalizing the expectation/integral with respect to a probability
measure). The category algQ is formed by all algebraic quantum probability spaces as objects
and algebra homomorphisms j : A1 → A2 with φ2 ◦ j = φ1 as morphism from (A1, φ1) to
(A2, φ2). By algQ1 we denote the subcategory whose objects consist of a unital algebra with
a unital linear functional and whose morphisms are only those morphisms of algQ which are
unital algebra homomorphisms.

Maybe the simplest tensor category in this context is (algQ1,⊗), with tensor product (A1, φ1)
⊗ (A2, φ2) := (A1⊗A2, φ1⊗φ2) and unit object (C, idC). The unit object is initial in algQ1, so
we have a derived notion of independence for morphisms. Two morphisms ji : (Ai, φi) → (A,Φ),
i ∈ {1, 2}, are independent if and only if the images of j1 and j2 commute with each other
and Φ ◦ µA ◦ (j1 ⊗ j2) = (Φ ◦ j1) ⊗ (Φ ◦ j2). Indeed, if there exists an independence morphism
h : (A1, φ1)⊗ (A2, φ2) → (A,Φ), then it must hold that

h(a⊗ b) = h(a⊗ 1)h(1⊗ b) = j1(a)j2(b) = µA ◦ (j1 ⊗ j2)(a⊗ b)

and

Φ ◦ µA ◦ (j1 ⊗ j2) = Φ ◦ h = φ1 ⊗ φ2 = (Φ ◦ j1)⊗ (Φ ◦ j2).

The fact that h is an algebra homomorphism implies

j1(a)j2(b) = µA ◦ (j1 ⊗ j2)(1⊗ b · a⊗ 1) = j2(b)j1(a)

so the images commute. On the other hand, if Φ ◦ µA ◦ (j1 ⊗ j2) = (Φ ◦ j1) ⊗ (Φ ◦ j2), then
h := µA ◦ (j1 ⊗ j2) respects the linear functionals, and if the images commute, it is an algebra
homomorphism, hence a (unique) independence morphism.

Now let B be a bialgebra with comultiplication ∆ and counit δ. Then linear functionals on B
can be convolved. Every convolution semigroup (φt)t≥0 now gives rise to a comonoidal system
At = (B,φt), because φs+t = φs ⋆ φt is equivalent to ∆ being a morphism in algQ1 from As+t

to As ⊗ At and φ0 = δ is equivalent to δ being a morphism from A0 to (C, idC). If one also
requires pointwise continuity, the resulting Lévy processes are the quantum Lévy processes on
bialgebras whose theory is developed in [40].

The setting of comonoidal system gives us more freedom. It is not necessary that the algebras
of the At are all the same. This situation comes up when one considers Lévy processes on
additive deformations of bialgebras as discussed above. Again, a convolution semigroup of linear
functionals φt on the algebras Bt := (B,µt) gives rise to a comonoidal system At = (Bt, φt) and
corresponding Lévy processes.

5.5 Universal products

Independence in quantum probability is usually implemented by a universal product, which is
a prescription � that assigns to two linear functionals on algebras A1, A2 a new linear functional
φ1 � φ2 on the free product A1 ⊔ A2 such that the bifunctor ((A1,Φ1), (A2,Φ2)) 7→ (A1 ⊔ A2,
Φ1 � Φ2) turns the category algQ of quantum probability spaces into a tensor category with
the canonical embeddings Ai ↪→ A1 ⊔ A2 as inclusions, see, e.g., [4]. Categorial independence
of ji : (Bi, ψi) → (A,Φ) in this situation means that the noncommutative joint distribution
Φ ◦ (j1 ⊔ · · · ⊔ jn) coincides with the universal product of marginal distributions ψ1 � · · ·�ψn =
(Φ ◦ j1) � · · · � (Φ ◦ jn).
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Note that this is somehow only a slight variation of the principle which led to independences
in the algebraic situations. We again have an underlying category with coproduct, the category
of algebras arbitrary algebra homomorphisms, the coproduct being the free product. Instead
of going directly to a subcategory, we enrich the objects by additional structure (the linear
functionals), and restrict to morphisms which respect the additional structure.

In quantum probability there are five well known notions of independence which come from
universal products, namely tensor independence, freeness, boolean independence, monotone, and
antimonotone independence [10, Section 1.8].

Remark 5.2. In order to motivate the definition of universal products a bit more, suppose that
there is any bifunctor ⊠ which turns (algQ,⊠) into a tensor category such that the unit object
is the initial object {0}. By Theorem 3.5(b), there are inclusions Qi → Q1 ⊠Q2. Denote by AQ

and φQ the algebra and the linear functional of Q, i.e., Q = (AQ, φQ). Then the inclusions are
algebra homomorphisms AQi → AQ1⊠Q2 . Denote by A1⊔A2 the free product of the algebras A1

and A2. The universal property of the free product establishes an algebra homomorphism
ι1 ⊔ ι2 : AQ1 ⊔ AQ2 → AQ1⊠Q2 . For linear functionals φi : Ai → C put Qi := (Ai, φi) and define
φ1 ⊙ φ2 : A1 ⊔ A2 as φ1 ⊙ φ2 := φQ1⊠Q2 ◦

(
ι1 ⊔ ι2

)
. Then ⊙ fulfills the axioms of a universal

product (cf. [18, Definition 3.1]).

A dual semigroup is by definition a comonoid in the category alg of algebras. With respect
to a fixed universal product �, a convolution product for linear functionals on a dual semigroup
can be defined via φ1 ⋆ φ2 := (φ1 �φ2) ◦∆, where ∆: D → D ⊔D is the comultiplication of the
dual semigroup D. As in the tensor product case, convolution semigroups can be studied and
lead to comonoidal systems At := (D,φt) and finally to Lévy processes whose increments are
independent in the sense given by the universal product (for example free, monotone or Boolean
independence).

Universal products in the category algQ have been almost completely classified (see [4, 18,
36, 43]). Correspondingly, the theory of Lévy processes can be (and has been) dealt with by
studying the special cases [5]. There are two important generalizations of universal products
for which a classification is out of reach. First, Bozeiko, Leinert and Speicher studied so-
called c-freeness, which is obtained by taking products of pairs of linear functionals on an
algebra [8]. Following this, Hasebe introduced the indented product, which is a product for
triples of linear functionals [24] and studied also a product for infinitely many functionals [25].
So instead of algQ, these products give bifunctors for a category algQn whose objects are tuples
(A,φ1, . . . , φn). In another direction, in a series of papers [44, 45, 46] Voiculescu presented
a fascinating new notion of independence which he calls bifreeness. To understand bifreeness as
categorial independence, algebras have to come with a free product decomposition A = Al ⊔Ar

into two faces, where Al contains the left variables and Ar the right variables.7 One comes to
study the category algQm whose objects are tuples (A,A1, . . . , Am, φ), φ : A = A1⊔· · ·⊔Am → C.
It is even possible to combine the two generalizations and work in a category algQm

n , defined
in the obvious way. For all of these categories one can define (multivariate) universal products,
and develop the theory of Lévy processes, as discussed in this paper, as well as other topics
related to independence, as has been successfully done with cumulants in [32]. In the last years,
such multivariate independences have received a lot of attention and many more examples have
been found and studied to some extent [13, 14, 16, 21, 22, 23, 29, 30]. The richness of examples
when compared to the univariate case underlines the value of general methods applying to all
multivariate universal independences at once.

7In practice, left and right variables are not always in free product position from the beginning. However, for
the purpose of describing the independence, one can always artificially form the free product of the algebras of
left and right variables.
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6 Outlook

In this article we defined independence and Lévy processes in a synthetic probability setting
and we could establish a general Daniell–Kolmogorov type reconstruction of categorial Lévy
processes from its comonoidal system of ‘marginal distributions’. We assume that the following
directions of research could be very fruitful continuations of this work.

� In classical and quantum probability, Lévy processes are often seen as the basic buiding
blocks from which more complicated (in particular nonstationary) processes are composed
by means of (quantum) stochastic calculus. Can categorial Lévy processes in the same
way be used to construct a larger, but still controllable class of processes in a synthetic
probability setting?

� In many cases where one deals with Lévy processes (classical stochastic processes on topo-
logical groups, quantum stochastic processes on bialgebras or dual groups) some weak
continuity is assumed, so that the marginal distributions forn a differentiable semigroup
which is determined by a generator. Is it possible to implement such ideas in the framework
of categorial Lévy processes?

� Are there general contexts in which it is possible to obtain a canonical decomposition of
categorial Lévy processes, like the Lévy Khintchine decomposition into a Gaussian and
a Poisson part, or even a classification comparable to the Lévy Khintchine formula or
Hunt’s formula?
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