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Abstract. We introduce a class of operators associated with the signature of a smooth
path X with values in a C⋆ algebra A. These operators serve as the basis of Taylor expan-
sions of solutions to controlled differential equations of interest in noncommutative proba-
bility. They are defined by fully contracting iterated integrals of X, seen as tensors, with the
product of A. Were it considered that partial contractions should be included, we explain
how these operators yield a trajectory on a group of representations of a combinatorial Hopf
monoid. To clarify the role of partial contractions, we build an alternative group-valued
trajectory whose increments embody full-contractions operators alone. We obtain therefore
a notion of signature, which seems more appropriate for noncommutative probability.
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1 Introduction

This work intends to explore a direction suggested in [8] and aims to use paths principles for
studying the following class of differential equations

dYt = a(Yt) · dXt · b(Yt), Y0 ∈ A. (1.1)

In the above equation, the driving path X : [0, 1] → A takes values in an unital C⋆-algebra
(A, ·, ⋆, ∥ · ∥) with unity 1A and a, b : A → A are two polynomial functions or Fourier transforms
of regular measures with exponential moments, see [3, 8].

This paper is the first of two whose objectives are to introduce a new notion of geometric
rough paths, tailored to the class of equations (1.1). In this work, we focus on the algebra
underlying Taylor expansions of solutions to equations (1.1), discarding other crucial aspects
(such as measurability).

1.1 The rough paths approach

In the nineties [15], T.J. Lyons proposed the appropriate mathematical framework to study
controlled differential equations

dYt = σ(Yt)dXt, Y0 = y0 ∈ Rd. (1.2)

In (1.2), the solution Y is a continuous path in Rd, σ : Rd → End
(
Rn,Rd

)
is a smooth vector

field and the driving path X is Hölder continuous. If X is smooth, standard differential calculus
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provides a rigorous interpretation to (1.2). For paths with lower regularity, Young’s theory of
integration [23] gives sense to equation (1.2) driven by an Hölder regular path X with exponent
greater than 1

2 . Interesting stochastic driving paths are too irregular for Young integration.
For instance, Brownian trajectories are only 1

2 − ε, ε > 0, Hölder continuous. Classical Itô
integration supplements limitations of Young’s theory and defines integrals driven by continuous
semi-martingales as limits in probability of Riemann sums.

Rough path theory extends the standard rules of differential and integral calculus to Hölder
pathsX and provides a pathwise interpretation to (1.2). Let us add more details. Given a smooth
field σ and Y0 ∈ Rn the solution map Φ: X 7→ Y to equation (1.2) is continuous with respect
to the Lipschitz norm on the space of smooth driving paths X. A fundamental observation is
the following one: by applying Picard’s iterations to (1.2), one quickly reckons that the solution
map Φ is a linear function of the entire signature of X, that is the infinite collection of tensors,

Xs,t =

(
1, Xt −Xs,

∫

∆2
s,t

dXt1 ⊗ dXt2 , . . . ,

∫

∆n
s,t

dXt1 ⊗ · · · ⊗ dXtn , · · ·
)
, (1.3)

where ∆n
s,t := {s < t1 < · · · < tn < t} is the n-dimensional simplex. Signatures of smooth

paths support a one-parameter family of topologies with respect to which Φ is continuous.
Complete spaces for these topologies contain Hölder paths together with the additional data of
an abstract signature. These abstract signatures are called rough paths and can alternatively
be characterized by a set of algebraic and analytical properties. Indeed, a rough path is a two
parameters function (s, t)→ Xs,t with values in a group (G, ◦), included in the completed tensor
space of Rn, with the property that for each triple of times s, u, t ∈ [0, 1]3

Xs,t = Xs,u ⋆ Xu,t. (1.4)

The relations (1.4) are usually called Chen’s relation after Kuo-Tsai Chen [7] and its secular
work on the homology of loop spaces. We refer the reader to the monograph [10] for a detailed
exposition of rough paths theory.

1.2 Motivation and previous works

We choose to have an intrinsic – coordinate-free – approach to (1.1) and to work consistently with
the specific class of fields we consider, that is with the algebra product. Rough paths theory
on infinite-dimensional spaces is more intricate because of several notions of tensor products
between two Banach algebras, see [12]. Considering the class of equations (1.1) the projective
tensor product is the only reasonable one since the algebra product is always continuous with
respect to this topology. This is not true for the spatial (or injective) topology. This limitation
strikes with the results obtained in [6, 22]. In these works, the authors define a rough path
(in fact, a Lévy area) over the free Brownian motion in the spacial tensor product by using
free Itô calculus. Whereas it is possible [16] to show the existence of a free Lévy area (up to an
infinitesimal loss in regularity) in the projective tensor product, an explicit procedure is missing.

To circumvent this issue, A. Deya and R. Schott introduced in [8] a weaker notion of Lévy
area tailored to the class of equations (1.1) when the Hölder scale lies in

(
1
3 ,

1
2

]
: the product

Lévy area. This object embodies the data on the small-scale behaviour of the driving path X
only in the directions required to give sense to (1.1). The starting point to define it is a fine
analysis of (1.2) with X smooth and the expansion of the solution Y obtained by applying
Picard iterations. Pick A,B ∈ A and consider the following example (recall that · denotes the
product of A)

dYt = (A · Yt) · dXt · (Yt ·B), Y0 = 1A.
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Writing the first two steps of the Picard Iteration, we obtain

Yt = 1A +

∫

∆1
s,t

A · dXt1 ·B +

∫

∆2
s,t

A2 · dXt1 ·B · dXt2 ·B

+

∫

∆2
s,t

A · dXt2 ·A · dXt1 ·B2 +Rs,t, (1.5)

where Rs,t is a remainder term satisfying |Rs,t| ≲ |t−s|3. The above equation hints at a control,
at any order, of the small variations of Y by the following expressions

Xσ
s,t =

∫

∆n
s,t

A0 · dXtσ−1(1)
·A1 · · ·An−1 · dXtσ−1(n)

·An, A0, . . . , An ∈ A. (1.6)

where σ is a permutation of {1, 2, . . . , n}. The expressions in (1.6) are values of a multilinear
operator Xσ

s,t, that we call full contraction operator, depending on a choice of a permutation σ.
The solution of the equation (1.1) expands over the contracted iterated integrals (1.6) in the
way alluded to above under the constraints that the Fourier transforms of a and b are bounded
measures on the real line. A product Lévy area is an abstraction of the order two full contraction
operators, the ones indexed by permutations of {1, 2}.

We elaborate on the observation of A. Deya and R. Schott and extract important algebraic
and analytical properties of the multilinear operators (1.6) with the objective of developing
a rough theory for the class of equations (1.2) with driving noise X of arbitrary low Hölder
regularity. To put it shortly, the main outcome of this work is a positive answer for that and we
explain it by associating to the operators (1.6) a smooth trajectory over a group of triangular
morphisms on an algebra of operators.

The main difficulties lie in writing a Chen relation for the operators (1.6) understood as
a certain “algebraic rule” for computing (1.6) over an interval knowing the values of (1.6) over
a subdivision of this interval. Consider for instance the full contraction operator

X3
s,t(A0, A1, A2, A3) :=

∫

∆3
s,t

A0 · dXt1 ·A1 · dXt3 ·A2 · dXt2 ·A3.

Then the Chasles identity implies the following deconcatenation formula:

X3
s,t(A0, A1, A2, A3) = X3

s,u(A0, A1, A2, A3) + X3
u,t(A0, A1, A2, A3)

+

∫

t3∈∆1
u,t

∫

(t1,t2)∈∆2
s,u

A0 · dXt1 ·A1 · dXt3 ·A2 · dXt2 ·A3

+

∫

(t2,t3)∈∆2
u,t

∫

t1∈∆1
s,u

A0 · dXt1 ·A1 · dXt3 ·A2 · dXt2 ·A3.

The term on the second line above can not be expressed by composing order two full con-
traction operators. Instead, we can obtain it by composing the operator,

(A0, . . . , A4) 7→
∫

∆2
s,u

A0 · dXt1 ·A1 ⊗A2 · dXt2 ·A3 ∈ A⊗A

with the following full contraction one

(A0, A1) 7→
∫

∆1
u,t

A0 · dXt1 ·A1.

Thus a naive approach leads in fact to relations involving not only full contraction operators
but also partial contractions. A remark on the terminology: we employ the term “contraction”
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to indicate that the operators reduce the degree of an input tensor, and “full” to indicate that
it does so maximally.

The main results of the paper are contained in the last section, Definition 4.17 and Theo-
rem 4.18. In this definition, we introduce the noncommutative signature of a smooth path and
in our main Theorem 4.18, we prove that, as for the classical theory, it yields a trajectory in
a certain group.

Theorem 1.1. There exists a group (G, ◦) such that for each algebra-valued smooth trajectory
X : [0, 1] → A there exists a map X : ∆(2) → G from the two-dimensional simplex ∆2 with the
following properties:

• For any triple s < u < t ∈ [0, 1]3 one has

Xs,t = Xu,t ◦ Xs,u. (1.7)

• For any pair 0 < s < t < 1, Xs,t has a set of coordinates {Xs,t(f), f ∈ F} where the set F
contains all permutations σ and Xs,t(f) is a certain bounded operator acting on folded
projective tensor products of A which coincides with (1.6) when f = σ.

• Given two elements X ,Y ∈ G,

X = Y ⇔ X (σ) = Y(σ) for all permutations σ.

We call the element Xs,t the noncommutative signature of the path X and the relations (1.7)
noncommutative Chen’s relations.

Remark 1.2. We will define G as a set of representations of a certain algebra supported by trees
with decorated leaves. The result that we want to prove in this work is purely algebraic and
does not state any analytical property of X, which could be expected from the knowledgeable
reader. We will in a separate work address integration theory against an irregular path drawn
in A, and will gather at this time the relevant analytical context.

1.3 Outline

Besides the introduction, this article is divided in two additional sections. In Section 2, we
introduce a Hopf monoid of levelled forests, reminiscent of the Malvenuto–Reutenauer Hopf
algebra of permutations.

In Section 3.1, we define the partial and full contraction operators we alluded to, see Defi-
nitions 3.1 and 3.6. In Section 3.2, we prove a Chen relation for these operators, see Proposi-
tion 3.8. Next, we explain how this yields a path on a group of triangular algebra morphisms on
an algebra spanned by couples of a tree and a word. In Section 3.3, we associate to the full and
partial contractions operators a path of representations on the Hopf monoid of levelled forests
we introduced in Section 2, see Theorem 3.21.

In Section 4.1, we adopt a slightly different point of view and let the iterated integrals of
a path acting on a set of operators we call face-contractions, see Definition 4.1. This yields
a certain triangular algebra morphism, see Definition 4.17 that we relate to the one introduced
in Section 3.2. In Proposition 4.3, we relate partial- to full contraction operators.

In a forthcoming article, we continue to develop the theory. In particular, we introduce
geometric noncommutative rough paths, geometric noncommutative controlled rough paths,
and the operations of integration and composition.
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1.4 Notations

In the following we denote by A a generic complex C⋆ algebra with product µ, unity 1, norm
∥ · ∥ and involution ⋆. By definition, (A, ∥ · ∥) is a Banach algebra, the multiplication µ and the
involution ⋆ are continuous with respect to ∥ · ∥, and

∥aa⋆∥ = ∥a∥2, a ∈ A.

In order to deal with a topology on the algebraic tensor product ⊗ which behaves correctly
with µ, we will use the projective tensor product (see, e.g., [19]). Given two Banach spaces
(E, ∥ · ∥E) and (F, ∥ · ∥F ), the projective norm of an element x ∈ E ⊗ F is defined by

∥x∥∨ = inf
{∑

i

∥ai∥E∥bi∥F : x =
∑

i

ai ⊗ bi

}
.

We denote by E⊗̌F the completion of E⊗F for the projective norm. One can check the following
properties

∥a⊗ b∥∨ = ∥a∥E∥b∥F , ∥aσ(1) ⊗ · · · ⊗ aσ(n)∥∨ = ∥a1 ⊗ · · · ⊗ an∥∨,

for any permutation σ on the set {1, 2, . . . , n} and a1, . . . , an ∈ E. The definition of projective
norm yields immediately that the multiplication µ extends to a continuous map A⊗̌A → A
and, more generally, for any given pair of C⋆ algebras A, B, A⊗̌B is again a C⋆ algebra. From
a broader perspective, the projective tensor product makes the category of complex C⋆ algebras
a symmetric monoidal category (see Appendix A). In order to lighten the notation, we will
adopt the symbol ⊗ to denote both the projective tensor product between C⋆ algebras and the
algebraic tensor product for pure tensors. Similarly, we will replace the product µ with a dot ·.

For n ≥ 1 an integer, we denote by Sn the set of permutations of [n] := {1, . . . , n}. We use
one-line notation for permutations, writing σ = (σ1, σ2, . . . , σn), where σi := σ(i). The neutral
element of Sn is also denoted by idn. Sometimes we may omit the commas and just write
σ = σ1σ2 · · ·σn. By abuse of notation, the only permutation of [0] := ∅ is denoted by ∅, from
which we defines S0 := {∅}. Given two integers a, b, we denote by Sh(a, b) the set of all shuffles
of the two intervals J1, aK and Ja+1, a+ bK, that is σ ∈ Sh(a, b) if and only if σ is non-decreasing
on J1, aK and on Ja+ 1, a+ bK.

2 Algebraic structure on levelled forests

The objective of the present section is to introduce the main combinatorial tool that will be used
in this work: the levelled trees and forests. We will review their main properties and introduce
new algebraic structures to them.

2.1 Levelled trees and forests

In the literature, one broadly finds several equivalent representations of a permutation, such
as a bijection of a finite set or a finite word without repetitions on positive integers. We will
mainly use the last one and a third – tree-like – graphical representation, presented in different
variants in the literature such as [20, pp. 23–24], [4, Definition 9.9] or [2, p. 478]. We will follow
the versions used by Loday and Ronco in [13, Section 2.4] and Forcey, Lauve and Sottile in [9,
Section 2.2.1].

First, recall that a planar rooted tree is a planar graph with no cycles and one distinguished
vertex which we call the root. We oriented every tree from bottom to top: the target of an
edge is the vertex further to the root. In this orientation, each vertex of a tree has at most one
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incoming edge (the root is the only vertex with no incoming edge) and at most two outcoming
edges.

A leaf of a tree is a vertex with no outcoming edges. The degree of a tree is the number of
its leaves, we denote it by |τ | if τ is a planar tree. An internal vertex of a tree is a vertex that is
not a leaf. The set of internal vertices of a tree τ is denoted by V(τ) and we set ∥τ∥ := |V(τ)|.
The set V(τ) of internal vertices of a planar tree τ is equipped with a partial order ≤τ : if u, v
are two vertices of τ , we write u ≤τ v if there is an oriented path of edges of t, moving away
from the root, from u to v. The poset (V(τ),≤τ ) has one minimum (the root of τ) and several
maxima (the leaves of τ).

A planar binary tree is a planar rooted tree for which every internal node has two children.
A levelled binary tree (or simply levelled tree) is a binary tree τ together with a linear extension
of the poset (V(τ),≤τ ). Levelled trees are also called ordered binary trees (see [2]). By definition,
a levelled tree with degree one is the root tree (see Figure 1). Also, notice that the root tree has
no internal vertices and corresponds to levelled tree ( ,∅) where ∅ denotes the unique function
from the empty set to the empty set.

We denote by LT(n) the set of levelled trees with n leaves, and LT := ∪n≥1 LT(n). The
complex span of LT is a graded vector space, and its homogeneous component of degree n ≥ 1
is the linear span of LT(n).

We justify now the terminology for levelled trees. Following [18, p. 7], a level function on
a tree t is a surjective increasing map

λ : (V(τ),≤τ )→ A,

where A is a totally ordered set. If τ is a planar binary tree and A = [∥τ∥], then the pair
(τ, λ) corresponds precisely to a levelled tree. If v is an internal vertex of t, we say that v has
level λ(v).

The following result seems to be folklore. For proof of this result, see [13, Proposition 2.3].

Proposition 2.1 ([13]). For every integer n ≥ 0, the set of levelled trees with n+1 leaves is in
bijection with the set of permutations Sn.

The bijection associates to any levelled tree (τ, λ) with n + 1 leaves a permutation σ =
σ(τ, λ) ∈ Sn as follows. Label the leaves of τ with 0, 1, 2, . . . , n (in this order), from left to
right. For each 1 ≤ i ≤ n, let vi be the vertex which lies in between the leaves i− 1 and i. Then
σ := σ1σ2 · · ·σn, with σi := λ(vi), see Figure 1.
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where A is a totally ordered set. If τ is a planar binary tree and A = [‖τ‖], then the pair (τ, λ) corresponds
precisely to a levelled tree. If v is an internal vertex of t, we say that v has level λ(v).

The following result seems to be folklore. For proof of this result, see [LR98] (Proposition 2.3).

Proposition 1 ([LR98]). For every integer n ≥ 0, the set of levelled trees with n + 1 leaves is in bijection
with the set of permutations Sn.

The bijection associates to any levelled tree (τ, λ) with n + 1 leaves a permutation σ = σ(τ, λ) ∈ Sn as
follows. Label the leaves of τ with 0, 1, 2, . . . , n (in this order), from left to right. For each 1 ≤ i ≤ n, let vi
be the vertex which lies in between the leaves i− 1 and i. Then σ := σ1σ2 · · ·σn, with σi := λ(vi), see Figure
below.

Figure 1: Examples of levelled trees (τ, λ) in LT and their associated permutations in S1, S2 and S3.

When illustrating a levelled tree (τ, λ), it will be convenient to emphasize the levelling (the map λ) of the
tree without the use of labels on the vertices. To do so, we position each vertex v of the tree τ at the level
λ(v); it is represented by a dot with y-coordinate λ(v). We add straight edges to τ (see figure 2) so that the
level λ(v) is populated with |λ(v)| vertices (in particular, on the first level, we find the root of the tree). In
the resulting tree, all vertices placed on the same level n have an equal distance to the root.

Notice that the resulting unlabeled tree is such that every vertex has either one or two children, and there
is a unique vertex with two children.

We call such a tree a sparse quasi-binary tree. All operations introduced in this section have a convenient
pictorial description using sparse quasi-binary trees.

Figure 2: Example of a levelled tree and its associated sparse quasi-binary tree, before adding straight edges in the
centre and after, on the right.

In summary, we have three equivalent ways to identify the same object:

Permutations
σ : [n]→ [n]

←→ Levelled trees
with n+ 1 leaves ←→ Sparse quasi-binary trees

with n+ 1 generations

We use the symbol t (with super and subscript) for a levelled tree presented either as a permutation σ or
as a pair (τ, λ). The representation of t as a sparse quasi-binary tree will only be used in drawings.

Figure 1. Examples of levelled trees (τ, λ) in LT and their associated permutations in S1, S2 and S3.

When illustrating a levelled tree (τ, λ), it will be convenient to emphasize the levelling (the
map λ) of a tree without the use of labels on the vertices. To do so, we position each vertex v of
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the tree τ at the level λ(v); it is represented by a dot with y-coordinate λ(v). We add straight
edges to τ (see Figure 2) so that the level λ(v) is populated with |λ(v)| vertices (in particular,
on the first level, we find the root of the tree). In the resulting tree, all vertices placed on the
same level n have an equal distance to the root.

Notice that the resulting unlabeled tree is such that every vertex has either one or two
children, and there is a unique vertex with two children.

We call such a tree a sparse quasi-binary tree. All operations introduced in this section have
a convenient pictorial description using sparse quasi-binary trees.
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with n+ 1 leaves ←→ Sparse quasi-binary trees
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We use the symbol t (with super and subscript) for a levelled tree presented either as a permutation σ or
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Figure 2. Example of a levelled tree and its associated sparse quasi-binary tree, before adding straight

edges in the centre and after, on the right.

In summary, we have three equivalent ways to identify the same object:

Permutations
σ : [n]→ [n]

←→ Levelled trees
with n+ 1 leaves

←→ Sparse quasi-binary trees
with n+ 1 generations.

We use the symbol t (with super and subscript) for a levelled tree presented either as a per-
mutation σ or as a pair (τ, λ). The representation of t as a sparse quasi-binary tree will only be
used in drawings.

Levelled trees are not sufficient for our purposes. We will extend now the notion of levelled
trees to forests. A planar forest is a word (a noncommutative monomial) on planar trees.

In the following, we denote by nt(φ) the number of trees in the forest φ, |φ| the total number
of leaves in the forest and we set ∥φ∥ equal to the number of internal vertices of the forests. If
all trees of φ are binary trees, then ∥φ∥ = |φ| − nt(φ). The poset (V(φ),≤φ) of ordered vertices
of f is the union of the posets of vertices of the trees in f .

In the following, we will just consider planar forests of binary trees. The notion of level
function for a tree is naturally extended to any forest. This allows considering the following
analogue of levelled binary trees to binary forests.

Definition 2.2 (levelled planar binary forests LF). A levelled planar binary forest f (or simply
a levelled forest) is a pair (φ, λ) formed by a binary forest φ and an increasing bijection

λ : (V(φ),≤φ)→ [||φ||].

We denote the set of planar binary forests by LF.
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Levelled trees are not sufficient for our purposes. We will extend now the notion of levelled trees to forests.
A planar forest is a word (a non-commutative monomial) on planar trees.

In the following, we denote by nt(ϕ) the number of trees in the forest ϕ, |ϕ| the total number of leaves in
the forest and we set ‖ϕ‖ equal to the number of internal vertices of the forests. If all trees of ϕ are binary
trees, then ‖ϕ‖ = |ϕ| − nt(ϕ). The poset (V(ϕ),≤ϕ) of ordered vertices of f is the union of the posets of
vertices of the trees in f .

In the following, we will just consider planar forests of binary trees. The notion of level function for a tree
is naturally extended to any forest. This allows considering the following analogue of levelled binary trees to
binary forests.

Definition 1 (Levelled planar binary forests LF). A levelled planar binary forest f (or simply a levelled
forest) is a pair (ϕ, λ) formed by a binary forest ϕ and an increasing bijection

λ : (V(ϕ),≤ϕ)→ [||ϕ||].

We denote the set of planar binary forests by LF.

Figure 3: A sparse quasi-binary forest with four trees.

The degree of a levelled planar forest (ϕ, λ) ∈ LF is the number of leaves of ϕ and is denoted by |ϕ|. If
n ≥ 1 and m ≥ 1, we denote by LF(m,n) the set of levelled forests with n leaves and m trees. This allows
defining a bigraduation on the set LF.

A generation of a levelled tree is a set of internal vertices on the same level, that is at the same distance
from the root in the sparse quasi-binary tree representation (we thus take into account the labelling of the
vertices). This notion extends to any forest. A levelled forest (ϕ, λ) can be pictured as a forest of quasi-
binary trees, each with equal number of generations, in the same way as explained before for levelled trees,
where the internal vertices are ordered vertically by adding straight edges according to λ, see Fig. 3. In this
representation, there is a unique internal vertex with two children among all vertices of the forest of the same
generation. We call such a forest a sparse quasi-binary forest.

We now introduce several (classical) operations on levelled trees and levelled forests.
If n ∈ N, weak composition of n is a sequence c = (c1, c2, . . . , ck) of non-negative integers with n =

c1 + · · ·+ ck. If we restrict each ci to be non-zero, then c is called a composition of n. To a weak composition
c, we associate the multiset I(c) := {c1, c1 + c2, . . . , c1 + c2 + · · · + ck−1}. This gives a bijection between
weak compositions of n and multisubsets of {0} ∪ [n]. If c is a composition, I(c) is a set and we obtain a
bijection between compositions of n and subsets of [n− 1]. Weak compositions of n are partially ordered by
refinement. The cover relations are of the form

(c1, . . . , ci + ci+1, . . . , ck) l (c1, . . . , ci, ci+1, . . . , ck).

We write c � n if c is a composition of n, and c �0 n if c is a weak composition of n. The length k of a
(weak) composition (c1, · · · , ck) is the number of parts of the composition.

The bijection between levelled trees and permutations used in the proposition (1) extends to words w =
w1w2 · · ·wr ∈ N∗ without repetition of letters; the associated levelled tree t has now a level function λ :
(V(τ),≤t)→ {w1, w2, . . . , wr}.

Figure 3. A sparse quasi-binary forest with four trees.
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The degree of a levelled planar forest (φ, λ) ∈ LF is the number of leaves of φ and is denoted
by |φ|. If n ≥ 1 and m ≥ 1, we denote by LF(m,n) the set of levelled forests with n leaves and
m trees. This allows defining a bigraduation on the set LF.

A generation of a levelled tree is a set of internal vertices on the same level, that is at the
same distance from the root in the sparse quasi-binary tree representation (we thus take into
account the labelling of the vertices). This notion extends to any forest. A levelled forest (φ, λ)
can be pictured as a forest of quasi-binary trees, each with equal number of generations, in the
same way as explained before for levelled trees, where the internal vertices are ordered vertically
by adding straight edges according to λ, see Figure 3. In this representation, there is a unique
internal vertex with two children among all vertices of the forest of the same generation. We
call such a forest a sparse quasi-binary forest.

We now introduce several (classical) operations on levelled trees and levelled forests.

If n ∈ N, weak composition of n is a sequence c = (c1, c2, . . . , ck) of non-negative integers
with n = c1 + · · ·+ ck. If we restrict each ci to be non-zero, then c is called a composition of n.
To a weak composition c, we associate the multiset I(c) := {c1, c1+ c2, . . . , c1+ c2+ · · ·+ ck−1}.
This gives a bijection between weak compositions of n and multisubsets of {0} ∪ [n]. If c is
a composition, I(c) is a set and we obtain a bijection between compositions of n and subsets
of [n− 1]. Weak compositions of n are partially ordered by refinement. The cover relations are
of the form

(c1, . . . , ci + ci+1, . . . , ck)⋖ (c1, . . . , ci, ci+1, . . . , ck).

We write c ⊨ n if c is a composition of n, and c ⊨0 n if c is a weak composition of n. The
length k of a (weak) composition (c1, . . . , ck) is the number of parts of the composition.

The bijection between levelled trees and permutations used in the proposition (2.1) extends
to words w = w1w2 · · ·wr ∈ N∗ without repetition of letters; the associated levelled tree t has
now a level function λ : (V(τ),≤t)→ {w1, w2, . . . , wr}.

Every levelled forest (f, λ) ∈ LF(n+ k, k) gives rise to a pair (σ, c), where σ ∈ Sn is obtained
by concatenating the non-empty words corresponding to each tree in f (from left to right)
under the above-described bijection, and c ⊨0 n is the weak composition of length k obtained
by tracking the number of internal vertices of each tree in the forest f . Reciprocally any pair
(σ, c) yields a levelled planar binary forest, using the bijection between non-repeating words and
levelled planar trees. We call split permutation a pair (σ, c) with σ ∈ Sn and c ⊨0 n:

Split permutations
σ : [n]→ [n]

c ⊨0 n
←→ Levelled forests

with n+ 1 leaves
←→ Sparse quasi-binary forests

with n+ 1 generations.

As for levelled trees, we use the symbol f to denote a levelled forest presented either as a pair
(φ, λ) or as a split permutation (σ, c). The presentation of f as a sparse quasi-binary forest will
be used in the drawings only.
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Every levelled forest (f, λ) ∈ LF(n + k, k) gives rise to a pair (σ, c), where σ ∈ Sn is obtained by
concatenating the non-empty words corresponding to each tree in f (from left to right) under the above-
described bijection, and c �0 n is the weak composition of length k obtained by tracking the number of
internal vertices of each tree in the forest f . Reciprocally any pair (σ, c) yields a levelled planar binary forest,
using the bijection between non-repeating words and levelled planar trees. We call split permutation a pair
(σ, c) with σ ∈ Sn and c �0 n.

Split permutations
σ : [n]→ [n]

c �0 n
←→ Levelled forests

with n+ 1 leaves ←→ Sparse quasi-binary forests
with n+ 1 generations

As for levelled trees, we use the symbol f to denote a levelled forest presented either as a pair (ϕ, λ) or as
a split permutation (σ, c). The presentation of f as a sparse quasi-binary forest will be used in the drawings
only.

Figure 4: A split permutation ((4132, (0, 1, 2, 1)) drawn as a levelled forest and as a sparse quasi-binary forest.

The next definition introduces the notion of vertical splitting for levelled forests. Informally, a vertical
splitting of a levelled forest f consists in breaking f into two forests, each bordered by a chosen path of edges
in f , starting at a leaf of f and ending at a root of a tee in f . The first forest (resp. the second) is on the
right (resp. one the left) of this path.

Definition 2 (Vertical splitting of levelled forests). Pick a levelled forest f presented as a split permutation
(σ, c) ∈ Sn, c �0 n and d �0 n such that cl d, we define the vertical splitting gd((σ, c)) of (σ, c) following d
by (σ, d).

We introduce inverse operations to splitting. The first one takes every tree in the representation of
a levelled forest as a sparse quasi-binary forest and glues all together the trees of that forest along their
external paths of edges. In terms of split permutation, this operation corresponds to the projection,

τ [ := σ, f = (σ, c) ∈ LF (2.1)

We will also need a local operation glueing two consecutive trees in the representation of a levelled tree
as a sparse quasi-binary tree, once again those operations are most effectively written in terms of split
permutation. We set for any f = (σ, c) ∈ LF and 1 ≤ i ≤ nt(f)− 1

||
i
f = ||

i
(σ, c) := (σ, (c1, · · · , ci + ci+1, · · · , cnt(f))) . (2.2)

Figure 5: The forests g(0,1,1,1,1)((4132), (0, 1, 2, 1))) and ||
3
((4132), (0, 1, 2, 1))

We consider horizontal analogues to the above operations of vertical splitting and glueing. For any word
w = w1w2 · · ·wr where each letter takes value in N∗ and A ⊆ alph(w), the alphabet generated by the different

Figure 4. A split permutation ((4132), (0, 1, 2, 1)) drawn as a levelled forest and as a sparse quasi-binary

forest.
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The next definition introduces the notion of vertical splitting for levelled forests. Informally,
a vertical splitting of a levelled forest f consists in breaking f into two forests, each bordered
by a chosen path of edges in f , starting at a leaf of f and ending at a root of a tee in f . The
first forest (resp. the second) is on the right (resp. one the left) of this path.

Definition 2.3 (vertical splitting of levelled forests). Pick a levelled forest f presented as a split
permutation (σ, c) ∈ Sn, c ⊨0 n and d ⊨0 n such that c ⋖ d, we define the vertical splitting
⋎d((σ, c)) of (σ, c) following d by (σ, d).

We introduce inverse operations to splitting. The first one takes every tree in the repre-
sentation of a levelled forest as a sparse quasi-binary forest and glues all together the trees of
that forest along their external paths of edges. In terms of split permutation, this operation
corresponds to the projection,

τ ♭ := σ, f = (σ, c) ∈ LF.

We will also need a local operation gluing two consecutive trees in the representation of
a levelled tree as a sparse quasi-binary tree, once again those operations are most effectively
written in terms of split permutation. We set for any f = (σ, c) ∈ LF and 1 ≤ i ≤ nt(f)− 1

||
i
f = ||

i
(σ, c) := (σ, (c1, . . . , ci + ci+1, . . . , cnt(f))).
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Every levelled forest (f, λ) ∈ LF(n + k, k) gives rise to a pair (σ, c), where σ ∈ Sn is obtained by
concatenating the non-empty words corresponding to each tree in f (from left to right) under the above-
described bijection, and c �0 n is the weak composition of length k obtained by tracking the number of
internal vertices of each tree in the forest f . Reciprocally any pair (σ, c) yields a levelled planar binary forest,
using the bijection between non-repeating words and levelled planar trees. We call split permutation a pair
(σ, c) with σ ∈ Sn and c �0 n.

Split permutations
σ : [n]→ [n]

c �0 n
←→ Levelled forests

with n+ 1 leaves ←→ Sparse quasi-binary forests
with n+ 1 generations

As for levelled trees, we use the symbol f to denote a levelled forest presented either as a pair (ϕ, λ) or as
a split permutation (σ, c). The presentation of f as a sparse quasi-binary forest will be used in the drawings
only.

Figure 4: A split permutation ((4132, (0, 1, 2, 1)) drawn as a levelled forest and as a sparse quasi-binary forest.

The next definition introduces the notion of vertical splitting for levelled forests. Informally, a vertical
splitting of a levelled forest f consists in breaking f into two forests, each bordered by a chosen path of edges
in f , starting at a leaf of f and ending at a root of a tee in f . The first forest (resp. the second) is on the
right (resp. one the left) of this path.

Definition 2 (Vertical splitting of levelled forests). Pick a levelled forest f presented as a split permutation
(σ, c) ∈ Sn, c �0 n and d �0 n such that cl d, we define the vertical splitting gd((σ, c)) of (σ, c) following d
by (σ, d).

We introduce inverse operations to splitting. The first one takes every tree in the representation of
a levelled forest as a sparse quasi-binary forest and glues all together the trees of that forest along their
external paths of edges. In terms of split permutation, this operation corresponds to the projection,

τ [ := σ, f = (σ, c) ∈ LF (2.1)

We will also need a local operation glueing two consecutive trees in the representation of a levelled tree
as a sparse quasi-binary tree, once again those operations are most effectively written in terms of split
permutation. We set for any f = (σ, c) ∈ LF and 1 ≤ i ≤ nt(f)− 1

||
i
f = ||

i
(σ, c) := (σ, (c1, · · · , ci + ci+1, · · · , cnt(f))) . (2.2)

Figure 5: The forests g(0,1,1,1,1)((4132), (0, 1, 2, 1))) and ||
3
((4132), (0, 1, 2, 1))

We consider horizontal analogues to the above operations of vertical splitting and glueing. For any word
w = w1w2 · · ·wr where each letter takes value in N∗ and A ⊆ alph(w), the alphabet generated by the different

Figure 5. The forests ⋎(0,1,1,1,1)((4132), (0, 1, 2, 1))) and ||3((4132), (0, 1, 2, 1)).

We consider horizontal analogues to the above operations of vertical splitting and gluing. For
any word w = w1w2 · · ·wr where each letter takes value in N∗ and A ⊆ alph(w), the alphabet
generated by the different letters contained in w, we define w ∩A as the word obtained from w
by erasing the letters which are not in A. We write w′ ⊆ w if there exists A ⊆ alph(w) such
that w′ = w ∩ A. In this case, we say that w′ is a subword of w. We use now the definition
of subword to define the notion of subtree and subforest. Let t ∈ LT(n) a levelled binary tree,
represented as a permutation σ. A levelled subtree (or just subtree) of t is a levelled binary tree t′

with associated permutation σ′ of the form σ′ = σ ∩ [p], for 0 ≤ p ≤ n.

In this case, we write τ ′ ⊆ τ . In terms of sparse quasi-binary trees, τ ′ is a subtree of τ if there
exists 0 ≤ p ≤ ∥τ∥ such that τ ′, seen as a quasi-binary tree, coincides with the quasi-binary tree
associated with τ by erasing all vertices on generations strictly bigger than p.

This notion extends to levelled forests. Pick a levelled forest f = (σ, (c1, . . . , ck)) ∈ LF and
denote by (σ1, . . . , σk) the restrictions of σ to the parts of c:

σi = σ]c1+···+ci−1,c1+···+ci], 1 ≤ i ≤ k,

with the convention that σ∅ = ∅. A levelled forest f ′ = (σ′, (c′1, . . . , c
′
k)) with same number of

trees as f (the composition c′ has the same number of parts as c) is a subforest of f is there
exists p ≤ ∥f∥ such that

σ′
i = σi ∩ [p].
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letters contained in w, we define w ∩ A as the word obtained from w by erasing the letters which are not
in A. We write w′ ⊆ w if there exists A ⊆ alph(w) such that w′ = w ∩ A. In this case, we say that w′ is
a subword of w. We use now the definition of subword to define the notion of subtree and subforest. Let
t ∈ LT(n) a levelled binary tree, represented as a permutation σ. A levelled subtree (or just subtree) of t is a
levelled binary tree t′ with associated permutation σ′ of the form σ′ = σ ∩ [p], for 0 ≤ p ≤ n.

In this case, we write τ ′ ⊆ τ . In terms of sparse quasi-binary trees, τ ′ is a subtree of τ if there exists
0 ≤ p ≤ ‖τ‖ such that τ ′, seen as a quasi-binary tree, coincides with the quasi-binary tree associated with τ
by erasing all vertices on generations strictly bigger than p.

Figure 6: On the first line: levelled forest f = (213, (2, 1)), drawn as a quasi-binary forest. On the second line: all
levelled subforests included in f .

This notion extends to levelled forests. Pick a levelled forest f = (σ, (c1, · · · , ck)) ∈ LF and denote by
(σ1, · · · , σk) the restrictions of σ to the parts of c:

σi = σ]c1+···+ci−1,c1+···+ci] , 1 ≤ i ≤ k

with the convention that σ∅ = ∅. A levelled forest f ′ = (σ′, (c′1, · · · , c′k)) with same number of trees as f (the
composition c′ has the same number of parts as c) is a subforest of f is there exists p ≤ ‖f‖ such that

σ′i = σi ∩ [p] .

We write in this case f ′ ⊂ f . In terms of levelled forest, writing (f, λ) and (f ′, λ′), then we have (f ′, λ′) ⊆
(f, λ) if fα, fβ have the same number of trees and the labelling λα restricts to λβ on the internal vertices of
fβ . Equivalently, considering α and β as quasi-binary forests, β ⊆ α if and only if β comprise all nodes of α
up to a certain generation of the quasi-binary forest α.

Consider a word w = w1w2 · · ·wr where each letter takes value in N∗ and A ⊆ alph(w). Let w(A) =
{iwA(1) < · · · < iwA(q)} be the increasing sequence of indices of the letters of w in A and define the composition
wc(w,A) �0 r

wc(w,A) := (|]1, iwA(1)]|, . . . , |]iwA(i), iwA(i+ 1)]|, |]iwA(q), r]|) .

For example, if r = 10 and w = 1293548851, let A = {2, 3, 4, 7, 9}. Then [9] \ A = {1, 5, 6, 8}, w(A) =
{2 < 3 < 4 < 6}. Therefore, wc(w,A) = (1, 1, 1, 2, 4). Thanks to this notion, we introduce the horizontal
splitting of a levelled tree.

Definition 3 (Horizontal splitting of trees). Pick τ a levelled tree seen as a permutation σ and an integer
0 ≤ p ∈ ‖σ‖. The horizontal splitting of σ at p is the couple

�p (t) := (σ ∩ [p], (σ ∩ {p+ 1, . . . , n},wc(σ, [p]))) ,

formed by the subword of σ containing the letters in [p], and the pair (σ∩{p+1, . . . , n},wc(σ, [p])) representing
the sequence of subwords of σ obtained from σ after erasing the letters in [p]. We call the first component of
�p the lower component of the cut and the second component the upper component.

Figure 6. On the first line: levelled forest f = ((213), (2, 1)), drawn as a quasi-binary forest. On the

second line: all levelled subforests included in f .

We write in this case f ′ ⊂ f . In terms of levelled forest, writing (f, λ) and (f ′, λ′), then we have
(f ′, λ′) ⊆ (f, λ) if fα, fβ have the same number of trees and the labelling λα restricts to λβ on
the internal vertices of fβ. Equivalently, considering α and β as quasi-binary forests, β ⊆ α if
and only if β comprise all nodes of α up to a certain generation of the quasi-binary forest α.

Consider a word w = w1w2 · · ·wr where each letter takes value in N∗ and A ⊆ alph(w). Let
w(A) = {iwA(1) < · · · < iwA(q)} be the increasing sequence of indices of the letters of w in A and
define the composition wc(w,A) ⊨0 r

wc(w,A) :=
(
|]1, iwA(1)]|, . . . , |]iwA(i), iwA(i+ 1)]|, |]iwA(q), r]|

)
.

For example, if r = 10 and w = 1293548851, let A = {2, 3, 4, 7, 9}. Then [9] \A = {1, 5, 6, 8},
w(A) = {2 < 3 < 4 < 6}. Therefore, wc(w,A) = (1, 1, 1, 2, 4). Thanks to this notion, we
introduce the horizontal splitting of a levelled tree.

Definition 2.4 (horizontal splitting of trees). Pick τ a levelled tree seen as a permutation σ
and an integer 0 ≤ p ∈ ∥σ∥. The horizontal splitting of σ at p is the couple

≻p (t) :=
(
σ ∩ [p], (σ ∩ {p+ 1, . . . , n},wc(σ, [p]))

)
,

formed by the subword of σ containing the letters in [p], and the pair (σ∩{p+1, . . . , n},wc(σ, [p]))
representing the sequence of subwords of σ obtained from σ after erasing the letters in [p]. We
call the first component of ≻p the lower component of the cut and the second component the
upper component.

For instance, ≻2 (25143) = (21; (543), (0, 1, 0, 2)). Horizontal splitting acts on the sparse
quasi-binary tree representation by detaching the first lower p generations (we include all edges
connected to the vertices of the pth generation. The resulting levelled tree forms the lower
component of the cut and the generations above it yield the upper component of the cut.10 N. Gilliers and C. Bellingeri

Figure 7: Example of a horizontal splitting of a sparse quasi-binary tree

For instance, �2 (25143) = (21; (543), (0, 1, 0, 2)). Horizontal splitting acts on the sparse quasi-binary
tree representation by detaching the first lower p generations (we include all edges connected to the vertices
of the pth generation. The resulting levelled tree forms the lower component of the cut and the generations
above it yield the upper component of the cut.

This operation extends to levelled forests in a straightforward manner.

Definition 4 (Horizontal splitting of levelled forests). Let f = (σ, c) be a forest in LF(k, n), with σ ∈ Sn−1

and (c1, · · · , ck) �0 n − 1 a weak composition of length k. Once again, denote by σi, 1 ≤ i ≤ ‖k‖ the
restriction of σ to the parts of c. The horizontal splitting of the levelled forest f at the level p is the forest

�p(f) = (�p(f)−,�p(f)+) := (�p(σ1)− · · · �p(σk)−,�p(σ1)+ · · · �p(σk)+)

For convenience, we use the shorter notations

fp− :=�p (f)−, fp+ :=�p (f)+

Consider for example the forest g(1,1,3,0,1)(542631) = (5, 4, 263, 1). Since �3 (5) = (∅; (5)), �3 (4) = (∅; (4)),
�3 (263) = (23; (∅, 6, ∅)), �3 (∅) = (∅; (∅)) and �3 (1) = (1; (∅)), we obtain

�3(5, 4, 263, 1) = ((∅, ∅, 23, ∅, 1); (5, 4, ∅, 6, ∅, ∅, ∅)) .

A horizontal cut of a levelled forest f outputs a pair of forests, the lower component being a subforest of
f . And reciprocally, one can check that a subforest f ′ ⊂ f yields a unique horizontal cut of f , the cutting
level k being the number of internal nodes of f ′ (equivalently the number of generations). We choose then
to index horizontal cuts of a levelled forest by its set of subforests augmented with the root tree.

Definition 5. For any given levelled forest f and subforest f ′ ⊂ f we denote by f\f ′ the upper component
of the horizontal cut induced by f ′. We say that the levelled forest f is compatible with the levelled forest
f ′ if the number of trees of f matches the number of leaves of f ′ in the representation of f and f ′ as sparse
quasi-binary trees or as levelled trees.

By definition of horizontal splitting one has immediately the identity �||f ′|| f = (f ′, f\f ′) . More-
over, if both levelled forests are given as split permutations, f = (σ, (c1, · · · , ck)), σ ∈ S(n) and f ′ =
(σ′, (c′1, · · · , c′q)), σ′ ∈ S(n′) compatibility means that the number k of parts of c1 is equal to n′ + q =
nt(f ′) + ‖f ′‖.

Given two permutations σ = σ1 · · ·σn ∈ Sn and σ′ = σ′1 · · ·σ′n′ ∈ Sn′ we denote by σ ⊗ σ′ the shifted
concatenation of σ and σ′,

σ ⊗ σ′ = σ1 · · ·σn(σ(1) + n) · · · (σ(n) + n′)

The following operation, inverse to horizontal splitting, is better understood in terms of levelled forests.

Definition 6 (Horizontal glueing). Pick two compatible levelled forests f = (τ, λ) ∈ LF and f ′ = (τ ′, λ′) ∈
LF, we define the horizontal glueing the levelled forests f#f ′ = (φ#φ′, λ′′) where

1. φ#φ′ is the planar forest obtained by successively superimposing a root of a tree in φ′ to a leaf of φ.

Figure 7. Example of a horizontal splitting of a sparse quasi-binary tree.

This operation extends to levelled forests in a straightforward manner.
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Definition 2.5 (horizontal splitting of levelled forests). Let f = (σ, c) be a forest in LF(k, n),
with σ ∈ Sn−1 and (c1, . . . , ck) ⊨0 n − 1 a weak composition of length k. Once again, denote
by σi, 1 ≤ i ≤ ∥k∥ the restriction of σ to the parts of c. The horizontal splitting of the levelled
forest f at the level p is the forest

≻p(f) = (≻p(f)−,≻p(f)+) := (≻p(σ1)− · · · ≻p(σk)−,≻p(σ1)+ · · · ≻p(σk)+).

For convenience, we use the shorter notations

fp
− :=≻p (f)

−, fp
+ :=≻p (f)

+.

Consider for example the forest ⋎(1,1,3,0,1)(542631) = (5, 4, 263, 1). Since ≻3 (5) = (∅; (5)),
≻3 (4) = (∅; (4)), ≻3 (263) = (23; (∅, 6,∅)), ≻3 (∅) = (∅; (∅)) and ≻3 (1) = (1; (∅)), we obtain

≻3(5, 4, 263, 1) = ((∅,∅, 23,∅, 1); (5, 4,∅, 6,∅,∅,∅)).

A horizontal cut of a levelled forest f outputs a pair of forests, the lower component being
a subforest of f . And reciprocally, one can check that a subforest f ′ ⊂ f yields a unique
horizontal cut of f , the cutting level k being the number of internal nodes of f ′ (equivalently
the number of generations). We choose then to index horizontal cuts of a levelled forest by its
set of subforests augmented with the root tree.

Definition 2.6. For any given levelled forest f and subforest f ′ ⊂ f we denote by f\f ′ the
upper component of the horizontal cut induced by f ′. We say that the levelled forest f is
compatible with the levelled forest f ′ if the number of trees of f matches the number of leaves
of f ′ in the representation of f and f ′ as sparse quasi-binary trees or as levelled trees.

By definition of horizontal splitting one has immediately the identity ≻||f ′|| f = (f ′, f\f ′).
Moreover, if both levelled forests are given as split permutations, f = (σ, (c1, . . . , ck)), σ ∈ S(n)
and f ′ = (σ′, (c′1, . . . , c

′
q)), σ

′ ∈ S(n′) compatibility means that the number k of parts of c1 is
equal to n′ + q = nt(f ′) + ∥f ′∥.

Given two permutations σ = σ1 · · ·σn ∈ Sn and σ′ = σ′
1 · · ·σ′

n′ ∈ Sn′ we denote by σ ⊗ σ′

the shifted concatenation of σ and σ′,

σ ⊗ σ′ = σ1 · · ·σn(σ(1) + n) · · · (σ(n) + n′)

The following operation, inverse to horizontal splitting, is better understood in terms of levelled
forests.

Definition 2.7 (horizontal gluing). Pick two compatible levelled forests f = (τ, λ) ∈ LF and
f ′ = (τ ′, λ′) ∈ LF, we define the horizontal gluing the levelled forests f#f ′ = (ϕ#ϕ′, λ′′) where

1. ϕ#ϕ′ is the planar forest obtained by successively superimposing a root of a tree in ϕ′ to
a leaf of ϕ.

2. The labelling λ′′ restricts to λ on the internal vertices of ϕ in ϕ#ϕ′ and to the labelling λ′

translated by ∥f∥ on the internal vertices of ϕ′ in ϕ#ϕ′.

In terms of sparse quasi-binary trees and forests, horizontal gluing corresponds to stacking the
sparse quasi-binary trees representing f ′ above the one representing f . Writing this operation
in the representation of levelled forests as split permutations is cumbersome and is left to the
reader, see also the figure below.



12 N. Gilliers and C. Bellingeri

The non-commutative signature 11

2. The labelling λ′′ restricts to λ on the internal vertices of φ in φ#φ′ and to the labelling λ′ translated
by ‖f‖ on the internal vertices of φ′ in φ#φ′.

In terms of sparse quasi-binary trees and forests, horizontal glueing corresponds to stacking the sparse
quasi-binary trees representing f ′ above the one representing f . Writing this operation in the representation
of levelled forests as split permutations is cumbersome and is left to the reader, see also the figure below.

Figure 8: Horizontal glueing of a tree and a forest.

2.2 A first algebraic structure on levelled forests

We briefly recall important Hopf algebraic structures on permutations. The vector space
⊕

n≥ 0 CSn has
a graded Hopf algebra structure, called FQSym, introduced in [MR95], and also considered in [GKL+95],
where it is called the algebra of free quasi-symmetric functions. This Hopf algebra is non-commutative, non-
cocommutative, graded and self-dual. In the following, we introduce the product � dual to the aforemen-
tioned coproduct of the Hopf algebra of non-commutative symmetric functions. First, for two permutations
α ∈ Sn and β ∈ Sp, we introduce

Sh(α, β) := {σ ∈ Sn+p : std(σ ∩ {1, . . . , n}) = α, std(σ ∩ {n+ 1, . . . , n+ p}) = β}.
the set of shuffles of α and β. In the above equation std denotes the standardization map: std(σ ∩ {a1 <
· · · ak}) is the image of σ ∩ {a1 < · · · ak} by the map ak 7→ k.

In particular, if idn and idp are the identity permutations of the symmetric groupsSn andSp, respectively,
we let

Sh(n, p) := Sh(idn, idp).

Given a permutation τ ∈ S(n) and integer p ≥ 1 we denote by τ + p the bijection of {p + 1, · · · , p + n}
defined by

(σ + p)(p+ k) = σ(k) + p

With σ ∈ S(p), σ ⊗ (τ + p) ∈ S(n + p) is the permutation equal to σ on {1, · · · , p} and (τ + p) on
{p+ 1, · · · , p+ n}.

∆(G312) = 1∗ ⊗G312 +G1 ⊗G21 +G12 ⊗G1 +G312 ⊗ 1∗.

The shuffle product of two permutations σ ∈ Sp and τ ∈ Sn is defined by

σ� τ :=
∑

α∈Sh(p,n)

α ◦ [σ ⊗ (τ + p)] ,

where we have used the explicit notation ◦ for the composition of permutations. We extend the shuffle
product from levelled trees (permutations) to levelled forests. If the permutations σ and τ are presented as
sparse quasi-binary trees, computing their shuffle product is done by adding straight edges at the bottom of
τ , then glueing this tree to the right of σ (we identify the outer paths of edges) and finally shuffling vertically
the generations.

Figure 8. Horizontal gluing of a tree and a forest.

2.2 A first algebraic structure on levelled forests

We briefly recall important Hopf algebraic structures on permutations. The vector space⊕
n≥0CSn has a graded Hopf algebra structure, called FQSym, introduced in [17], and also

considered in [11], where it is called the algebra of free quasi-symmetric functions. This Hopf
algebra is noncommutative, non-cocommutative, graded and self-dual. In the following, we
introduce the product � dual to the aforementioned coproduct of the Hopf algebra of noncom-
mutative symmetric functions. First, for two permutations α ∈ Sn and β ∈ Sp, we introduce

Sh(α, β) := {σ ∈ Sn+p : std(σ ∩ {1, . . . , n}) = α, std(σ ∩ {n+ 1, . . . , n+ p}) = β},

the set of shuffles of α and β. In the above equation std denotes the standardization map:
std(σ ∩ {a1 < · · · < ak}) is the image of σ ∩ {a1 < · · · < ak} by the map ak 7→ k.

In particular, if idn and idp are the identity permutations of the symmetric groupsSn andSp,
respectively, we let

Sh(n, p) := Sh(idn, idp).

Given a permutation τ ∈ S(n) and integer p ≥ 1 we denote by τ + p the bijection of {p + 1,
. . . , p+ n} defined by

(σ + p)(p+ k) = σ(k) + p.

With σ ∈ S(p), σ ⊗ (τ + p) ∈ S(n+ p) is the permutation equal to σ on {1, . . . , p} and (τ + p)
on {p+ 1, . . . , p+ n},

∆(G312) = 1∗ ⊗G312 +G1 ⊗G21 +G12 ⊗G1 +G312 ⊗ 1∗.

The shuffle product of two permutations σ ∈ Sp and τ ∈ Sn is defined by

σ� τ :=
∑

α∈Sh(p,n)
α ◦ [σ ⊗ (τ + p)],

where we have used the explicit notation ◦ for the composition of permutations. We extend
the shuffle product from levelled trees (permutations) to levelled forests. If the permutations σ
and τ are presented as sparse quasi-binary trees, computing their shuffle product is done by
adding straight edges at the bottom of τ , then gluing this tree to the right of σ (we identify the
outer paths of edges) and finally shuffling vertically the generations.

Definition 2.8 (shuffle product of levelled planar forests). Let f = (σ, (c1, . . . , ck)) and g =
(τ, (c′1, . . . , c

′
q)) be two levelled forests, we define the shuffle product of f and g by

f � g = (σ� τ, (c1, . . . , ck + c′1, . . . , c
′
q)).
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Definition 7 (Shuffle product of levelled planar forests). Let f = (σ, (c1, · · · , ck) and g = (τ, (c′1, · · · , c′q))
be two levelled forests, we define the shuffle product of f and g by

f � g = (σ� τ, (c1, · · · , ck + c′1, · · · , c′q)).

Example 1. We present in detail the product 12� (12, (1, 1)), presented as sparse quasi-binary forests in
Figure 9. We decorate the branching nodes with two different colors to track the two original permutations

Figure 9: Shuffle product of levelled forests

in the product. The result of the product is given by the following sum of sparse quasi-binary forests (see
Fig. 10).

Figure 10: The product in Fig. 9 expanded over sparse quasi-binary forests.

We notice that by the construction of � all terms contained in the sum the blue and red dots preserve
the same ordering of generations in the initial factors.

A permutation σ ∈ Sn acts on the left of a levelled forest f = (σ, c) ∈ LF with n generations as follows

σ · (τ, c) := (σ ◦ τ, c).

We denote by cn the permutation (n, 1)(n−1, 2) · · · (n−bn2 c, bn2 c). We use the right action of cn to define
a involution on LF(n− 1), which is the horizontal mirror symmetric of a forest

θ : CLF → CLF
f = (σ, c) 7→ (σc−1

‖f‖, cn, · · · , c1)
(2.3)

Proposition 2. (CLF,�, θ) is an involutive algebra.

Proof. The result follows as a direct a consequence of the following two facts: the left and right actions
of Sn on LF(n − 1) commute and cn+m = τn,m ◦ (cn ⊗ (cm + n)) (we add n to all letters of cm and
concatenate the resulting word to the one representing cn) where τn,m is the shuffle in Sh(n,m) determined
by τn,m(1) = m+ 1, τn,m(n) = m+ n. �

We will sometimes refer to θ as the horizontal involution, for obvious reasons, to distinguish it from a second
involution permuting vertically the generations of a levelled forest that we define below.

Figure 9. Shuffle product of levelled forests.

Example 2.9. We present in detail the product 12 � (12, (1, 1)), presented as sparse quasi-
binary forests in Figure 9. We decorate the branching nodes with two different colors to track
the two original permutations in the product. The result of the product is given by the following
sum of sparse quasi-binary forests (see Figure 10).
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Definition 7 (Shuffle product of levelled planar forests). Let f = (σ, (c1, · · · , ck) and g = (τ, (c′1, · · · , c′q))
be two levelled forests, we define the shuffle product of f and g by

f � g = (σ� τ, (c1, · · · , ck + c′1, · · · , c′q)).

Example 1. We present in detail the product 12� (12, (1, 1)), presented as sparse quasi-binary forests in
Figure 9. We decorate the branching nodes with two different colors to track the two original permutations

Figure 9: Shuffle product of levelled forests

in the product. The result of the product is given by the following sum of sparse quasi-binary forests (see
Fig. 10).

Figure 10: The product in Fig. 9 expanded over sparse quasi-binary forests.

We notice that by the construction of � all terms contained in the sum the blue and red dots preserve
the same ordering of generations in the initial factors.

A permutation σ ∈ Sn acts on the left of a levelled forest f = (σ, c) ∈ LF with n generations as follows

σ · (τ, c) := (σ ◦ τ, c).

We denote by cn the permutation (n, 1)(n−1, 2) · · · (n−bn2 c, bn2 c). We use the right action of cn to define
a involution on LF(n− 1), which is the horizontal mirror symmetric of a forest

θ : CLF → CLF
f = (σ, c) 7→ (σc−1

‖f‖, cn, · · · , c1)
(2.3)

Proposition 2. (CLF,�, θ) is an involutive algebra.

Proof. The result follows as a direct a consequence of the following two facts: the left and right actions
of Sn on LF(n − 1) commute and cn+m = τn,m ◦ (cn ⊗ (cm + n)) (we add n to all letters of cm and
concatenate the resulting word to the one representing cn) where τn,m is the shuffle in Sh(n,m) determined
by τn,m(1) = m+ 1, τn,m(n) = m+ n. �

We will sometimes refer to θ as the horizontal involution, for obvious reasons, to distinguish it from a second
involution permuting vertically the generations of a levelled forest that we define below.

Figure 10. The product in Figure 9 expanded over sparse quasi-binary forests.

We notice that by the construction of � all terms contained in the sum the blue and red dots
preserve the same ordering of generations in the initial factors.

A permutation σ ∈ Sn acts on the left of a levelled forest f = (σ, c) ∈ LF with n generations
as follows

σ · (τ, c) := (σ ◦ τ, c).
We denote by cn the permutation (n, 1)(n− 1, 2) · · ·

(
n− ⌊n2 ⌋, ⌊n2 ⌋

)
. We use the right action

of cn to define a involution on LF(n− 1), which is the horizontal mirror symmetric of a forest

θ : CLF→ CLF,
f = (σ, c) 7→

(
σc−1

∥f∥, cn, . . . , c1
)
.

Proposition 2.10. (CLF,�, θ) is an involutive algebra.

Proof. The result follows as a direct a consequence of the following two facts: the left and right
actions of Sn on LF(n− 1) commute and cn+m = τn,m ◦ (cn ⊗ (cm + n)) (we add n to all letters
of cm and concatenate the resulting word to the one representing cn) where τn,m is the shuffle
in Sh(n,m) determined by τn,m(1) = m+ 1, τn,m(n) = m+ n. ■

We will sometimes refer to θ as the horizontal involution, for obvious reasons, to distinguish it
from a second involution permuting vertically the generations of a levelled forest that we define
below.

2.3 Hopf monoid of levelled forests

In this section, we introduce a Hopf algebraic structure on the bicollection of spanned by levelled
forests and denoted LF ,

LF(n,m) = CLF(m,n), n,m ≥ 1. (2.1)
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In addition, we set LF(0, 0) = C, LF(0, n) = LF(m, 0) = 0, n,m ≥ 1 and we denote by LT
the collection spanned by levelled binary trees

LT (n) = CLT(n), n ≥ 1. (2.2)

This Hopf algebra is an object in the category of bicollections endowed with the vertical tensor
product �. In general, as is briefly explained in the Appendix A, the two-folded vertical tensor
product A � A of a monoid A in the monoidal category (Coll2, �) is not a monoid in the same
category. Owing to the fact that the monoid generated by LF in (Coll2,�) is symmetric, in
particular, LF�LF is a monoid in a natural way, it makes sense to require compatibility between
a product and a coproduct on LF . We write the unit C� for the vertical tensor product as

C� =
⊕

n≥0

C1n.

Recall that we denote by |f | the number of leaves of a levelled forest f and nt(f) the number
of trees in f .

We begin with the definition of the coproduct acting on the bicollection LF of levelled forests.
Let f be a levelled forest. Let f ′ be a levelled subforest of f (recall that f ′ contains the roots
of all trees in f). By definition of the forest f\f ′, the number of outputs of the forest f\f ′ is
equal to the number of inputs of the forest f ′ (the number of trees of f\f ′ matches the number
of leaves of f ′), the following makes senses

∆(f) =
∑

f ′⊂f

f ′ � f\f ′, f ∈ LF . (2.3)

This operation is a genuine coproduct with respect to the vertical tensor product.

Proposition 2.11. The morphism ∆: LF → LF � LF is coassociative

(∆ � idLF ) ◦∆ = (idLF � ∆) ◦∆
and the morphism ε : LF → C� given by

ε(f) =




1n if f = • · · · •︸ ︷︷ ︸

n times

,

0 otherwise

is the counity for ∆, i.e.,

(ε � idLF ) ◦∆ = (idLF � ε) ◦∆ = id. (2.4)

Proof. Let f be a levelled forest, to show coassociativity we notice that

((∆ � idLF ) ◦∆)(g) =
∑

f ′′,f ′,f
f ′′#f ′#f=g

f ′′ � f ′ � f = ((idLF � ∆) ◦∆)(g).

Equation (2.4) is trivial. ■

We proceed now with the definition of a vertical product on levelled forests.

Definition 2.12 (monoidal product on levelled forests). Given two forests f and f ′ with
nt(f ′) = |f |, we define ∇(f � f ′) as the sum of forests obtained by first stacking f ′ up to f
and then shuffling the generations of f ′ with the generations of f (see Section 2.1 for the defi-
nition of the action of a permutation on the generations of a forest),

∇(f � f ′) =
∑

s∈Sh(∥f∥,∥f ′∥)
s · (f # f ′). (2.5)
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The associativity of the product ∇ is easily checked. The unit η : C� → LF is defined by
η(1m) = m. Let n ≥ 1, recall that we denote by cn the maximal element for the Bruhat order
in Sn:

cn = n(n− 1) · · · 321.
For example, c1 = 1, c2 = 21, c3 = 321, c4 = 4321. Given these notions, we state the main
theorem of the section

Theorem 2.13. (LF ,∇, η,∆, ε) is a conilpotent Hopf algebra in the category (Coll2, �,C�).

To achieve this result we introduce an explicit antipode map.

Definition 2.14. Pick n,m ≥ 1 two integers. Let f ∈ LF(n,m) be a levelled forest and define
its vertical mirror symmetric f⋆ ∈ LF(n,m) by

f⋆ = c∥f∥ · f.
We extend ⋆ as a conjugate-linear morphism on the bicollection LF .
Proposition 2.15. Let f be a levelled forest. The map S : LF → LF defined by

S(f) = (−1)∥f∥f⋆

is an antipode: ∇ ◦ (S � idLF ) ◦∆ = ∇ ◦ (idLF � S) ◦∆ = ε ◦ η.
Proof. Let a, b be two integers greater than one. Set n = a+ b. The set of shuffles Sh(a, b) is
divided into two mutually disjoint subsets, the set of shuffles sending a (the subset Sh(a, b)+) to
n and the set of shuffles that do not (resp. Sh(a, b)−).

Recall that if f is a forest then fk
− denotes the forest obtained by extracting the k first lowest

generations of f and fk
+ denotes the forest obtained by extracting the k highest generations of f .

By definition, one has

∇(f ′ � f\f ′) =
∑

s∈Sh(∥f ′∥,∥f\f ′∥)
s · (f ′#(f\f ′)⋆), f⋆ = c∥f∥ · f.

The following relation is easily checked and turns to be the cornerstone of the proof:

s̃ ◦ (cn ⊗ idm) = s ◦ (cn+1 ⊗ idm−1), s ∈ Sh(m− 1, n+ 1)−, (2.6)

with s̃ the unique shuffle in Sh(m,n)+ such that s̃(m) = n+m, s̃(i) = s(i). Set S̄(f) = (−1)∥f∥f⋆.
We prove by induction that S = S̄. Assume that S(f) = S̄(f) for any forest f with at most
N ≥ 1 generations and pick a forest f with N + 1 generations. Then, from the induction
hypothesis we get

S(f) + f +
(
id � S̄

)
◦ ∆̄(f) = 0,

∇ ◦
(
id � S̄

)
◦ ∆̄(f) =

∑

f ′⊂f

(−1)∥f\f ′∥ ∑

s∈Sh(∥f ′∥,∥f\f ′∥)
s ·
[
f ′#(f\f ′)⋆

]

=

∥f∥−1∑

k=1

(−1)k
∑

s∈Sh(∥f∥−k,k)

s ·
[
f
∥f∥−k
− #

(
fk
+

)⋆]
.

We divide the sum over the set Sh(∥f∥ − k, k) into two sums. The first sums ranges over the
subset Sh(∥f∥ − k, k)+ and the second one ranges overs Sh(∥f∥ − k, k)−. Then, we gather the
sums over Sh(∥f∥ − k, k)+ and Sh(∥f∥ − k + 1, k − 1)−:

∇ ◦
(
id � S̄

)
◦ ∆̄ =

∥f∥−2∑

k=2

(−1)k
∑

s∈Sh(∥f∥−k,k)+

s ·
[
f
∥f∥−k
− #(fk

+)
⋆
]
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− (−1)k
∑

s∈Sh(∥f∥−k+1,k−1)−

s ·
[
f
∥f∥−k+1
− #

(
fk−1
+

)⋆]

+ (−1)
∑

s∈Sh(1,∥f∥−1)−

s ·
[
f
∥f∥−1
− #

(
f1
+

)⋆]

+ (−1)∥f∥−1
∑

s∈Sh(∥f∥−1,1)+

s ·
[
f1
−#
(
f
∥f∥−1
+

)⋆]
.

Using equation (2.6), the right-hand side of the last equation is equal to

∇ ◦
(
S̄ � id

)
◦ ∆̄ = 0−

∑

s∈Sh(1,∥f∥−1)−

s ·
[
f1
−#

(
f
∥f∥−1
+

)⋆]

+ (−1)∥f∥−1
∑

s∈Sh(1,∥f∥−1)+

s ·
[
f
∥f∥−1
− #

(
f1
+

)⋆]

= −f + (−1)∥f∥−1f⋆. ■

We defined the three structural morphisms ∇, ∆, S. To turn LF into a Hopf monoid, we have
to check compatibility between the coproduct ∆ and the product ∇; the coproduct ∆ should
be a morphism of the monoid (LF ,∇). This only makes sense provided that we can define
a product on the tensor product LF � LF .

Recall that if f is a levelled forest and 0 ≤ k ≤ ∥f∥, one denotes by fk
− the levelled subforest

of f corresponding to the k generations at the bottom of f ′: tfk
−

is the planar subforest of tf
with a set of internal vertices the set of internal vertices of f labelled by an integer less than k
and for leaves the vertices (including the leaves) of tf connected to one of the latter internal
vertices. The levelled forest fk

+ is obtained similarly by extracting the k top generations of f ′.
With p, q ≥ 1 two integers, we denote by τp,q the shuffle in Sh(p, q) satisfying τp,q(1) = q + 1

and τp,q(p) = p+ q.

Definition 2.16. Define the braiding map

K : LF � LF → LF � LF

by, for g and f levelled forests such that f � g ∈ LF � LF ,

K(f � g) =
(
τ∥f∥,∥g∥ · (f#g)

)∥g∥
− �

(
τ∥f∥,∥g∥ · (f#g)

)∥f∥
+

.

We pictured in Figure 11 examples of the action of the braiding map on pairs of levelled
forests.

The non-commutative signature 15

We divide the sum over the set Sh(‖f‖−k, k) into two sums. The first sums ranges over the subset Sh(‖f‖−
k, k)+ and the second one ranges overs Sh(‖f‖− k, k)−. Then, we gather the sums over Sh(‖f‖− k, k)+ and
Sh(‖f‖ − k + 1, k − 1)−:

∇ ◦ (id� S̄) ◦ ∆̄ =

‖f‖−2∑

k=2

(−1)k
∑

s∈Sh(‖f‖−k,k)+

s ·
[
f
‖f‖−k
− # (fk+)?

]

− (−1)k
∑

s∈Sh(‖f‖−k+1,k−1)−

s ·
[
f
‖f‖−k+1
− # (fk−1

+ )?)
]

+ (−1)
∑

s∈Sh(1,‖f‖−1)−

s ·
[
f
‖f‖−1
− # (f1

+)?
]

+ (−1)‖f‖−1
∑

s∈Sh(‖f‖−1,1)+

s ·
[
f1
−#(f

‖f‖−1
+ )?

]

Using equation (2.12), the right hand side of the last equation is equal to

∇ ◦ (S̄ � id) ◦ ∆̄ =

= 0−
∑

s∈Sh(1,‖f‖−1)−

s ·
[
f1
−# (f

‖f‖−1
+ )?

]
+ (−1)‖f‖−1

∑

s∈Sh(1,‖f‖−1)+

s ·
[
f
‖f‖−1
− # (f1

+)?
]

= −f + (−1)‖f‖−1f? .

�

We defined the three structural morphisms ∇,∆, S. To turn LF into a Hopf monoid, we have to check
compatibility between the coproduct ∆ and the product ∇; the coproduct ∆ should be a morphism of
the monoid (LF,∇). This only makes sense provided that we can define a product on the tensor product
LF � LF.

Recall that if f is a levelled forest and 0 ≤ k ≤ ‖f‖, one denotes by fk− the levelled subforest of f
corresponding to the k generations at the bottom of f ′: tfk− is the planar subforest of tf with a set of internal
vertices the set of internal vertices of f labelled by an integer less than k and for leaves the vertices (including
the leaves) of tf connected to one of the latter internal vertices. The levelled forest fk+ is obtained similarly
by extracting the k top generations of f ′.

With p, q ≥ 1 two integers, we denote by τp,q the shuffle in Sh(p, q) satisfying τp,q(1) = q + 1 and
τp,q(p) = p+ q.

Definition 10. Define the braiding map

K : LF � LF → LF � LF

by, for g and f levelled forests such that f � g ∈ LF � LF,

K(f � g) =
(
τ‖f‖,‖g‖ · (f#g)

)‖g‖
− �

(
τ‖f‖,‖g‖ · (f#g)

)‖f‖
+

.

We pictured in Fig. 11 examples of the action of the braiding map on pairs of levelled forests.

Figure 11: Actions of the braiding map.
Figure 11. Actions of the braiding map.

We defined the braiding map K as acting on LF � LF . We extend K as a 2-functor on the
product of the monoid generated by LF in (Coll2,�). This means in particular that for integers
p, q ≥ 1, we define a bicollection morphism

Kp,q : LF�p � LF�q → LF�q � LF�p.
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Pick f1 � · · ·� fp ∈ LF�p and g1 � · · ·� gq ∈ LF�q. We define the levelled forest ≻c h with
c ⊨0 n to be the element in LF�p obtained by the following iterative application of horizontal
splittings:

≻−
c = ≻−

c1 (· · · (≻−
c1+···+cn−1

(h)) · · · ),
Kp,q(f1 � · · ·� fp � g1 � · · ·� gq)

= ≻−
∥g1∥,...,∥gp∥,∥f1∥,...,∥fq∥

(
τ∥f1∥+···+∥fp∥,∥g1∥+···+∥gq∥ · f1# · · ·#gq

)
.

The collection of morphisms Kp,q yields a 2-functor on the category with objects LF⊗p but
with restricted classes of morphisms. First, it is not difficult to see that K = K1,1 is an involution
and therefore that Kp,q is an involution too, for any p, q ≥ 1. It follows from the fact that given f
and g two levelled forests,

[
τ||f ||,||g|| · (f#g)

]∥g∥
− #

[
τ∥f∥,∥g∥ · (f#g)

]∥f∥
+

= τ∥f∥,∥g∥ · (f#g),

which yields

K2(f � g) =
[
τ∥g∥,∥f∥ · τ∥f∥,∥g∥(f#g)

]∥f∥
− �

[
τ∥g∥,∥f∥ · τ∥f∥,∥g∥(f#g)

]∥g∥
+

= f � g,

since τ∥g∥,∥f∥ · τ∥f∥,∥g∥ = id∥f∥+∥g∥.

Definition 2.17. Let p, q ≥ 0 be integers and φ : LF⊗p → LF⊗q, we say that φ is gluing
equivariant if φ commutes with the operations ||

i
,namely, with f1 � · · ·� fm ∈ LF�m,

φ(||
i
[f1 � · · ·� fp]) = ||

i
[φ(f1 � · · ·� fp)], 1 ≤ i ≤ k,

where

||i [f1 � · · ·� fp] :=≻−
∥f1},...,∥fp∥ ||i [f1♯ · · · ♯fp].

We denote by Homeq(p, q) the class of all gluing equivariant morphisms between LF�p

and LF�q. Note that the identity morphisms are gluing equivariant and that the composi-
tion of two gluing equivariant morphisms is gluing equivariant. Also, for each p, q ≥ 0, Kp,q is
gluing equivariant.

Proposition 2.18. The monoid generated by the bicollection LF in (Coll2,�) with morphisms
restricted to the gluing equivariant morphisms is a symmetric monoidal category with symmetry
constraints (Kp,q)p,q≥0,

Kp,q ◦ Kq,p = id and (idLF�q � Kp,r) ◦ (Kp,q � idLF�r) = Kp,q+r.

Proof. Both assertions are trivial and rely on the following relations between the permuta-
tions τp,q, p, q ≥ 0:

τp,q ◦ τq,p = id, (idq ⊗ τp,r) ◦ (τp,q ⊗ idr) = τp,q+r, p, q, r ≥ 0. ■

Using the above-defined symmetry constraint K, we can endow the two-fold tensor product
LF � LT with an algebra product:

(∇�∇) ◦ (id � K � id) : LF�4 → LF�2.

Proposition 2.19. The two bicollection morphisms ∆: LF → LF�LF and ∇ : LF�LF → LF
are vertical algebra morphisms. With ∇(2) = ∇ ◦ (∇� id) = ∇ ◦ (id �∇), this means that

∇(2) = ∇(2) ◦ (id � K � id), (∇�∇) ◦ (id � K � id) ◦ (∆ � ∆) = ∆ ◦ ∇.
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Remark 2.20. We can rephrase the fact that ∇ is an algebra morphism by saying that (LF ,∇)
is, in fact, a commutative algebra.

Proof. We begin with the first assertion. Pick f1, f2, f3, f4 compatible levelled forests (the
number of inputs of fi matches the number of outputs of fi+1, 1 ≤ i ≤ 3),

(
∇(2) ◦ K

)
(f1 � f2 � f3 � f4)

=
∑

s∈Sh(∥f1∥,∥f3∥,∥f2∥,∥f4∥)
s ·
[
f1#

(
τ∥f2∥,∥f3∥ · (f2#f3)

)∥f3∥
− #

(
τ∥f2∥,∥f3∥ · (f2#f3)

)∥f2∥
+

#f4
]

=
∑

s∈Sh(∥f1∥,∥f3∥,∥f2∥,∥f4∥)

(
s(id⊗ τ∥f2∥,∥f3∥)

)
·
(
f1#f2#f3#f4

)

=
∑

s∈Sh(∥f1∥,∥f2∥,∥f3∥,∥f4∥)
s ·
(
f1#f2#f3#f4

)
= ∇(2)(f1 � f2 � f3 � f4).

For the second assertion, we write first

(∆ ◦ ∇)(f � g) =
∑

1≤k≤∥f∥+∥g∥

∑

s∈Sh(k,∥f∥+∥g∥−k)

(s · (f#g))k− � (s · (f#g))
∥f∥+∥g∥−k
+ .

For each integer 1 ≤ k ≤ ∥f∥, we split the set of shuffles Sh(∥f∥, ∥g∥) according to the cardinal q
of the set s−1(J1, kK) ∩ J∥f∥+ 1, ∥f∥+ ∥g∥K. Then a shuffle s ∈ Sh(∥f∥, ∥g∥) s = (s1 ⊗ s2) ◦ τ̃k,q
with τ̃k,q the unique shuffle that sends the interval J∥f∥+1, ∥f∥+qK to the interval Jk−q+1, kK
and fixes the interval J∥f∥+ q + 1, ∥f∥+ ∥g∥K,

∑

1≤k≤∥f∥,1≤q≤∥g∥,
1≤q≤k

∑

s1∈Sh(k−q,q),
s2∈Sh(∥f∥−(k−q)∥g∥−q)

((s1 ⊗ s2) ◦ τ̃k,q) · (f#g))k−

� ((s1 ⊗ s2) ◦ τ̃k,q · (f#g))
∥f∥+∥g∥−k
+ .

Notice that τ̃k,q = τk−q,q and

τ̃k,q · (f # g) = fk−q
− #

(
τ∥f∥−(k−q),q ·

(
f
∥f∥−(k−q)
+ # gq−

))
#g

∥g∥−q
+ .

It follows that

(s1 ⊗ s2) ◦ τ̃k,q · (f#g))k− =
(
(s1 ⊗ id) · fk−q

− #
(
τ∥f∥−(k−q),q ·

(
f
∥f∥−(k−q)
+ # gq−

))
#g

∥g∥−q
+

)k
−

= s1 · fk−q
− #

(
τ∥f∥−(k−q),q · f∥f∥−(k−q)

+ #gq−
)q
−.

Similar computations show that

((s1 ⊗ s2) ◦ τ̃k,q · (f#g))
∥f∥+∥g∥−k
+

= s2 ·
((
τ∥f∥−(k−q),q ·

(
f
∥f∥−(k−q)
+ # gq−

))∥f∥−(k−q)

+
#g

∥g∥−q
+

)
.

The case ∥f∥+ 1 ≤ k ≤ ∥f∥+ ∥g∥ is similar, we split the set of shuffles Sh(∥f∥, ∥g∥) according
to the cardinal of the set s−1(Jk+1, ∥f∥+ ∥g∥K)∩ J1, ∥f∥K) and omitted for brevity. Finally, we
obtain for ∆ ◦ ∇(f � g) the expression:

∑

1≤k≤∥f∥,
1≤q≤∥g∥

∑

s1∈Sh(k,q)
s2∈Sh(∥f∥−k,∥g∥−q)

s1 ·
(
fk
−#
(
τ∥f∥−k,q ·

(
f
∥f∥−k
+ # gq−

))q
−
)

� s2 ·
((
τk,q ·

(
f
∥f∥−k
+ # gq−

))∥f∥−k

+
#g

∥g∥−q
+

)
,

which is easily seen to be equal to (∇�∇) ◦ (id � K � id) ◦ (∆ � ∆)(f � g). ■
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By collecting altogether the statements of Proposition 2.19 (proving compatibility between
the product ∇ and the coproduct ∆) and Proposition 2.15 proves Theorem 2.13. Notice that
compatibility between the coproduct and coproduct makes sense because the monoid generated
by LF is symmetric (for the symmetry constraint K) as stated in Proposition 2.18.

3 Iterated integrals of a path as operators

Let us fix a smooth path, X : [0, 1] → A. In this section, we use the algebraic tools developed
previously and introduce partial- and full contraction operators. These operators are indexed
by levelled forests and provide a different perspective on the iterated integrals of X, as a repre-
sentation of the monoid of levelled forest introduced in the previous section (see Theorem 2.13),
rather than as a sequence of tensors.

3.1 Full and partial contraction operators

In what follows, we will intensively use the identifications in the previous sections between
levelled trees, and levelled forests and their corresponding permutation and split permutations.
In what follows, for any couple of Bananch spaces A, B we use the notation Hom(A,B) to
denote the set of linear continuous maps between A and B.

Definition 3.1. For any integer n ≥ 1 and levelled tree σ in LT(n), we define the full contraction
of X along σ as the map Xσ : [0, 1]2 → Hom

(
A⊗n,A

)
given for any A1, . . . , An ∈ A by

Xσ
s,t(A1 ⊗ · · · ⊗An) =

∫

∆n−1
s,t

A1 · dXtσ(1)
·A2 · · · dXtσ(n−1)

·An, (3.1)

where σ is identified with a permutation in Sn−1 when n ≥ 2 and X•
s,t = idA.

Remark 3.2. The above definition may be misleading since the identity (3.1) defines a linear
map on the algebraic tensor product, whereas we used ⊗ to denote the projective tensor product.
However, the algebraic tensor product is a dense subspace of A⊗n and we interpret Xσ

s,t as
the unique continuous operator extending the values in (3.1). Similar considerations apply
throughout the paper.

If linearly extended to the vector space spanned by all levelled trees (or equally permutations),
the map σ 7→ Xσ

s,t yields naturally a morphism between the collection LT in (2.2) and the
endomorphism collection EndA given by

EndA(n) = Hom
(
A⊗n,A

)
, n ≥ 1,

see Appendix A. The partial contraction operators, that we now introduce, extend σ 7→ Xσ
s,t

to a morphism between LF to many-to-many operators, i.e., elements of HomVectC

(
A⊗n,A⊗m

)
,

m < n.
To properly define them, we denote by End2A the bicollection of noncommutative polynomials

on multilinear maps on A with values in A. That is using the notation in the Appendix A

End2A(m,n) := T (EndA)(m,n) =
⊕

k1+···+km=n

EndA(k1)⊗ · · · ⊗ EndA(km),

when n ≥ 1 and m ≥ 1 and the condition k1 + · · · + km = n is satisfied for some integer
k1, . . . , km ≥ 1. Moreover, we set End2A(0, 0) = C and End2A(m,n) = 0 otherwise. The bicollec-
tion End2A is endowed with a monoidal product ∇End2A

associated to the vertical tensor prod-
uct �. This operation extends the usual canonical operadic structure ◦ on EndA as a monoidal
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morphism, see Appendix A. For example, given two non-trivial elements v ∈ End2A(k, n),
v = v1 ⊗ · · · ⊗ vk with and u ∈ End2A(m, k), u = u1 ⊗ · · · ⊗ um one has

∇End2A
(u � v) = (u1 ◦ v1 ⊗ · · · ⊗ vk1)⊗ · · · ⊗ (um ◦ (vk−km+1 ⊗ · · · ⊗ vk).

We introduce also the double tensor algebra of A. We start from the unital tensor algebra

T̄ (A) = C∅⊕
⊕

n≥1

A⊗n.

Elements of T̄ (A) are linear combinations of words w = a1 · · · ak := a1 ⊗ · · · ⊗ ak and ∅ is the
unity for concatenation of words. The double tensor algebra is given by

T̄ 2(A) := T̄ (T̄ (A)) = C1⊕
⊕

n≥1

T̄ (A)⊗n.

Elements of T̄ 2(A) are represented as words of words. To distinguish the internal concatenation
of T̄ (A) and the second order concatenation, we use the symbol | for the concatenation product
on T̄

(
T̄ (A)

)
and the symbol 1 stands now for the unit of |. In the following, for any integers

m ≥ 1 and n ≥ 1 we use the notation

T̄ 2(A)(m,n) :=
⊕

n1+···+nm=n
ni≥1

A⊗(n1−1) ⊗ · · · ⊗ A⊗(nm−1)

with the convention that A0 = C∅. For both words on words in A and words on endomorphisms
in A, we freely identify the sequence of vector spaces End2A(m,n) (resp. T̄ 2(A)(m,n)) with their
direct sum. We will however make clear this distinction for other collections and bicollections.
We relate T̄ 2(A) and End2A via an explicit representation.

Definition 3.3 (representation of the algebra T̄ 2(A)). We define a representation Op: T̄ 2(A)→
End2A of the algebra

(
T̄ 2(A), |

)
extending the following values, for A1⊗· · ·⊗An ∈ T (A), Xi ∈ A,

Op(A1 ⊗ · · · ⊗An)(X0 ⊗ · · · ⊗Xn) = X0 ·A1 · · ·An ·Xn,

Op(∅)(X1) = idA.

The representation Op has one crucial property. By definition, Op is compatible with the
concatenation product | on T̄ 2(A). As explained, End2A is endowed with a vertical monoidal
structure ∇End2A

. The same kind of structure exists on T̄ 2(A). Indeed, T̄ (A) can be endowed

with an operadic structure ◦, that we call words insertions. Given a word a1 ⊗ · · · ⊗ an ∈ T̄ (A)
and w0, . . . , wn ∈ T̄ (A), one defines

a1 · · · an ◦ (w0 ⊗ · · · ⊗ wn) := w0 ⊗ a1 ⊗ w1 · · ·wn−1 ⊗ an ⊗ wn.

One can check that ◦ satisfies the associativity and unitality constraints of an operadic composi-
tion. We then extend this operadic composition as a horizontal monoidal morphism and define
this way an associative product

∇T̄ 2(A) : T̄ 2(A) � T̄ 2(A)→ T̄ 2(A).

Then Op is compatible with respect to the products ∇End2A
and ∇T̄ 2(A). That is

(
∇End2A

�∇End2A

)
◦ (Op � Op) = Op ◦ ∇T̄ 2(A). (3.2)
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Example 3.4. Pick a1, a2 ∈ A and b1, b2, b3 ∈ A and consider

w1 = a1|a2, w2 = b1b2|∅|b3|∅.

The two words w1 and w2 are compatible, since w1 has four inputs and w2 has four outputs, we
compose them together

∇T̄ 2(A)(w1 � w2) = b1b2a1|b3a2,

and apply Op to the result,

Op(b1b2a1|b3a2)(X0, . . . , X6) = X0 · b1 ·X1 · b2 ·X2 · a1 ·X3 ⊗X4 · b3 ·X5 · a2 ·X6. (3.3)

We can apply first Op to w1 and w2 and compose together the resulting operators,

Op(w1)(Y0, Y1, Y2, Y3) = Y0 · a1 · Y1 ⊗ Y2 · a2 · Y3,
Op(w2)(X0, . . . , X6) = X0 · b1 ·X1 · b2 ·X2 ⊗X3 ⊗X4 · b3 ·X5 ⊗X6.

Substituting to Y0 ⊗ Y1 ⊗ Y2 ⊗ Y3 the right-hand side of the last equation, we recover (3.3),

∇•End2A(v � u) = (v1 ◦ (u1 ⊗ · · · ⊗ un1)) · · · (vp ◦ (un1+···+ni−1 ⊗ · · · ⊗ un1+···+ni)).

The vector space T̄ (A) is the natural space wherein the signature of a smooth path X
takes values, see (1.3). To define partial contractions we need to implement the freedom of
permutations and the double tensor algebra inside the usual signature. Let w be a word in T (A)
with length n ≥ 1. Let c = (c1, . . . , ck) be a composition of n. The composition (c1, . . . , ck)
yields a splitting of w: we define the element [w](c1,...,ck) ∈ T̄ 2(A) by

[w](c1,...,ck) = w1 · · ·wc1 |wc1+1 · · ·wc1+c2 | · · · |wc1+···+ck−1+1 · · ·wc1+···+ck ,

with the convention wc1+···+ci−1+1 · · ·wc1+···+ci−1+ci = ∅ if ci = 0.

Definition 3.5. For any integer n ≥ 1 and levelled tree σ in LT(n), we denote by Xσ the map
Xσ : [0, 1]2 → T̄ (A) given by

Xσ
s,t =

∫

∆n−1
s,t

dXtσ(1)
⊗ · · · ⊗ dXtσ(n−1)

,

where σ is identified with a permutation in Sn−1 when n ≥ 2 and X•
s,t = ∅. For any levelled

forest f = (σ, c) ∈ LF(m,n) we denote by Xf the application Xf
s,t =

[
Xσ

s,t

]
c
.

Definition 3.6. For any integers n ≥ 1, n ≥ m ≥ 1 and any levelled forest f = (σ, c) ∈ LF(m,n),
we define the partial-contraction of X along the forest f as a map Xf : [0, 1]2 → Hom

(
A⊗n,A⊗m

)

given by

Xf
s,t = Op

(
Xf

s,t

)
.

Example 3.7. Let us calculate the partial contraction associated with the levelled forest f in
Figure 3. In this case, n = 5 and the word on words representing f is

f = (13245, (2, 0, 2, 1, 0)).

We associate it with the formal expression

dXt1dXt3 ⊗∅⊗ dXt2dXt4 ⊗ dXt5 ⊗∅.
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The first term on the left of the above expression corresponds to the first tree in f , with two
vertices labelled 1 and 3. It is followed on its right by a straight tree, yielding the first ∅. We
then interleave a 10-tuple (A0, . . . , A9) of elements in A between each dXti , replacing the empty
letter ∅ by one of the A’s,

A0 · dXt1 ·A1 · dXt3 ·A2 ⊗A3 ⊗A4 · dXt2 ·A5 · dXt4 ·A6 ⊗A7 · dXt5 ·A8 ⊗A9.

Finally, we integrate over ∆n
s,t and obtain the following formula for Xf

s,t(A0, . . . , A9),

∫

∆5
s,t

(A0 · dXt1 ·A1 · dXt3 ·A2)⊗A3 ⊗ (A4 · dXt2 ·A5 · dXt4 ·A6)⊗ (A7 · dXt5 ·A8)⊗A9.

3.2 Chen relation

In this section, we use from time to time the symbol ◦ in place of ∇T̄ 2(A) or ∇End2A
to improve

readability. We describe how the concatenation of paths lifts to the full and partial contractions
operators, that is we write an extension of Chen identity over iterated integral, see [7] for these
operators.

Proposition 3.8 (Chen relation). For any forest f ∈ LF and any three times (s, u, t) ∈ [0, 1]3

one has

Xf
s,t =

∑

f ′⊂f

∇End2A

[
Xf ′
u,t � Xf\f ′

s,u

]
. (3.4)

Written in term of the notations introduced in (2.3) and the map Xs,t : LF → End2A defined by

Xs,t(f) = Xf
s,t, the equation (3.4) becomes

Xs,t = ∇End2(A) ◦ (Xu,t � Xs,u) ◦∆.

Example 3.9. Before writing the proof, we check equation (3.4) on an explicit example given
by the levelled forest f = (213, (2, 1)) in Figure 6, to see how the operations combine themselves.

In that case, the operator Xf
s,t is given by

Xf
s,t(A0, . . . , A5) =

∫

∆3
s,t

(A0 · dXt2 ·A1 · dXt1 ·A2)⊗ (A3 · dXt3 ·A4).

Using the standard properties of Lebesgue integration, we can easily write

Xf
s,t = Xf

s,u + Xf
u,t +

∫

t1∈∆1
u,t

∫

(t2,t3)∈∆2
s,u

(A0 · dXt2 ·A1 · dXt1 ·A2)⊗ (A3 · dXt3 ·A4)

+

∫

(t1,t2)∈∆2
u,t

∫

t3∈∆1
s,u

(A0 · dXt2 ·A1 · dXt1 ·A2)⊗ (A3 · dXt3 ·A4). (3.5)

At the same time, we list all subforests in f ′ ⊂ f in Figure 6 together with f \ f ′.
Proposition 3.8 implies the equality

Xf
s,t = Xf

s,u + Xf
u,t + X(1,(1,0))

u,t ◦ X(23,(1,1))
s,u + X(21,(2,0))

u,t ◦ X(3,(0,1))
s,u ,

which is exactly (3.5).



On the Signature of a Path in an Operator Algebra 23

f f \ f ′

(∅, (0, 0)) (213, (2, 1))
(1, (1, 0)) (23, (1, 1))
(21, (2, 0)) (3, (0, 1))
(213, (2, 1)) (∅, (0, 0))

Figure 12. The subforests in Figure 6 presented as words on words in the first column. In the second

column, the cut of f by each of these forests.

Proof. It is sufficient to show the identity when s < u < t. The statement of the proposi-
tion is implied by the same statement but for the iterated integrals Xf

s,t, f ∈ LF since Op is
a representation of the word-insertions operad (see equatio (3.2)). We prove the identity

Xf
s,t =

∑

f ′⊂f

Xf ′
u,t ◦Xf\f ′

s,u

by induction on the generation of f and with ◦ the operation ∇T̄2(A). The initialization is done
for forests with 0 generations. Assume that the results as been proved for forests having at
most N generations and let f be a forest with N + 1 generations. Splitting the simplex ∆n+1

s,t

according to s < u < t one has

Xf
s,t =

∫ t

s
dXt1 ◦X

f\f1
s,t1

+

∫ t

u
dXt1 ◦X

f\f1
s,t1

= Xf
s,u +

∫ t

u
dXt1 ◦X

f\f1
s,t1

, (3.6)

where f1 = ≻1(f)
− and ◦ is the word insertion of the element

dXt1 = ∅⊗i−1 ⊗ dXt1 ⊗∅|f |−i,

where i is the order of the ith tree in the forest f whose root is decorated by 1. By construction
of f\f1, this forest has only N generations and the recursive hypothesis to the forest f\f1 implies

X
f\f1
s,t1

=
∑

f ′′⊂f\f1
Xf ′′

u,t1
◦X(f\f1)\f ′′

s,u .

We insert this last relation into equation (3.6) to get the identity

∫ t

u
dXt1 ◦Xf ′

u,t1
=

∑

f ′′⊂f\f1

∫ t

u
dXt1 ◦Xf ′′

u,t1
◦
[
X(f\f1)\f ′′

s,u

]
=

∑

f ′⊂f f ′ ̸=∅

Xf ′
u,t ◦X(f\f ′)

s,u . ■

Remark 3.10. We apply the above formula to the levelled tree f which is a right comb tree
obtained by grafting corollas with two leaves with each other, always on their rightmost node.
By cutting such a tree at a certain level, we obtain on one hand a smaller comb tree and on
the other hand, we obtain a levelled forest with only straight trees, except for the last one, the
rightmost, which is also a comb tree. By denoting combn the comb tree with n internal nodes,
we thus get for a tuple A0, . . . , An ∈ A,

Xcn
s,t(A0, . . . , An) =

n∑

k=0

Xck
u,t

(
A0, . . . , Ak−1,X

cn−k
s,u (Ak, . . . , An)

)
,

more explicitly

∫

∆n
s,t

A0 · dXt1 · · ·Xtn ·An =

n∑

k=0

∫

∆k
u,t

A1 · dXt1 ·A2 · · · dXtk−1
·Ak · · ·



24 N. Gilliers and C. Bellingeri

×
∫

∆n−k
s,u

Ak · dXu1 · · · dXun−k
·An.

The above relation is implied by contracting the famous Chen relation satisfied by the tensor
iterated integrals, with elements A0, . . . , An. This is the only one, among (3.6) when f ranges
levelled forests, implied by a linear transformation of the Chen relation for tensor iterated
integral (contraction). When f is not a comb tree, Xf

s,t will expand following (3.6) over iterated
integrals contracted with elements of A′s but with permuted noises dXt.

To the family of operators
{
Xf
s,t, f ∈ LT

}
, we now associate a family of endomorphisms on

LT(A) :=
⊕

n≥0

A⊗n ⊗
⊕

τ∈LT
|τ |=n

C[τ ].

For the remaining part of the article, we use the lighter notations

a⊗ τ = aτ ∈ A⊗|τ | ⊗ Cτ, LT(A)(τ) := A⊗|τ |τ ⊂ LT(A), X· = id⊗ X· ◦∆.

Although it is not yet clear if it is possible to associate to the full and partial contractions
operators a path on a certain convolution group of representations, our statement of the Chen
relation makes clear that any prospective deconcatenation product ∆ should act on a tree by
cutting it in all possible ways, generations after generations. In Section 2.3 we prove this cutting
operation yields a comonoid structure on (LF ,�).

From Proposition 3.8 we immediately deduce the following properties.

Proposition 3.11. The family of maps X̄s,t defined by

X̄s,t : LT(A)→ LT(A),
aτ 7→

∑

τ ′⊂τ

X̄τ\τ ′
s,t (a)τ ′ (3.7)

have the following properties:

(1) for every levelled tree τ ∈ LT

(X̄s,t − id)(LT(A)(τ)) ⊂
⊕

τ ′⊊τ

LT(A)(τ ′),

(2) for any (s, u, t) ∈ [0, 1]3 the so-called noncommutative Chen’s relations hold

X̄s,t = X̄u,t ◦ X̄s,u.

Proof. It is sufficient to show only point (2) for any s < u < t, since point (1) is trivial. For
any given and Aτ ∈ LT(A), to the Chen’s relation in Proposition 3.8 implies

X̄s,t(Aτ) =
∑

τ ′⊂τ

X̄τ\τ ′
s,t (A) · τ ′ =

∑

τ ′⊂τ

∑

τ ′′⊂τ\τ ′
X̄τ ′′
u,t

(
X̄(τ\τ ′)\τ ′′
s,u (A1 ⊗ · · · ⊗A|τ |)

)
τ ′

=
∑

τ ′⊂τ

∑

τ ′′⊂τ\τ ′
X̄τ ′′
u,t

(
X̄τ\(τ ′′♯τ ′)
s,u (A1 ⊗ · · · ⊗A|τ |)

)
τ ′.

By performing the change of variable g = f ′′♯f ′, g′ = f ′, we obtain

X̄s,t(A1 ⊗ · · · ⊗A|f | f) =
∑

g⊂f

∑

g′⊂g

X̄g\g′
u,t

(
X̄f\g
s,u (A1 ⊗ · · · ⊗A|f |)

)
g′

=
(
X̄u,t ◦ X̄s,t

)
(A1 ⊗ · · · ⊗A|f |f). ■
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3.3 Integration by part properties

Another important property of iterated integral are integration by part formulae, e.g., the iden-
tity

∫

∆2
s,t

dXt1 ⊗ dXt2 +

∫

∆2
s,t

dXt2 ⊗ dXt1 = (Xt −Xs)⊗ (Xt −Xs).

We investigate the consequences of such identities at the level of full-partial contractions and
their related associated endomorphisms X̄s,t. These relations imply a specific “compatibility
condition” with respect to a certain product on LT(A) defined from the shuffle operations on
trees in Definition 2.8. We start with the consequences of partial contractions.

Proposition 3.12. For any given couple of forests f and g with nt(g) = |f | and any (s, t) ∈
[0, 1]2 one has

∇End2A

(
Xf
s,t � Xg

s,t

)
=

∑

s∈Sh(∥f∥,∥g∥)
Xs·(f�g)
s,t . (3.8)

Written in term of the notations introduced in (2.5) and the map Xs,t : LF → End2A defined by

Xs,t(f) = Xf
s,t, the equation (3.8) becomes

∇End2(A)(Xs,t � Xs,t) = Xs,t∇.

Proof. Let us fix s < t. Writing the forests f and g as the split permutations f = (σ1, c1)
and g = (σ2, c2), it follows from the shuffle identity for iterated integrals of X that one has the
identity

Xσ1
s,t ⊗Xσ2

s,t =
∑

s∈Sh(|f |−1,|g|−1)

∫

∆
|f |+|g|−2
s,t

dXt(s◦σ)(1)
⊗ · · · ⊗ dXt(s◦σ)(|f |+|g|−2)

,

where σ = σ1 ⊗ σ2. By applying the split permutation of f#g to both sides we deduce the
identity

Xf�g
s,t =

∑

s∈Sh(|f |−1,|g|−1)

∫

∆
|f |+|g|−2
s,t

X
s·(f�g)
s,t .

Composing with Op we conclude. ■

We restate this identity at the level of X̄s,t. This task can be done by introducing an operadic
composition L on a collection of words with entries in A different from before. Together with the
shuffle product on levelled trees, this operadic composition yields a structural map L on LT♯(A).
Further properties of L will turn central in better understanding the composition of the Taylor
series for the fields a, b in equation (1.2).

Definition 3.13 (faces substitution). We define the collection of vector spaces FS by

FS(n) = A⊗n, n ≥ 1.

Next, define L : FS ◦ FS → FS as follows. Pick a word U ∈ A⊗p+1 and words Ai ∈ A⊗mi ,
1 ≤ i ≤ p+ 1, Ai =

(
Ai

(1) ⊗ · · · ⊗Ai
(mi)

)
and set

L
(
U ⊗A1 ⊗ · · · ⊗Ap

)
:=
(
U(1) ·A1

(1)

)
⊗A1

(2) ⊗ · · ·
⊗
(
A1

(m1)
· U(2) ·A2

(1)

)
⊗ · · · ⊗

(
Ap

(mp)
· Up

)
.

The word 1⊗ 1 acts as the unit for L.
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We denote by FS the graded vector space equal to the direct sum of all vector spaces in
the collection FS. Notice that elements of A are 0-ary operators in the collection FS and, for
example, the above formula for L gives L(U1⊗U(2)◦A) = U1 ·A ·U2 ∈ A, with U(1)⊗U(2) ∈ A⊗2.

Proposition 3.14. FS = (FS, L,1⊗ 1) is an operad.

Proof. The following proposition holds and rests on the associativity of the product on A. ■

In the collection FS, a word with length n is an operator with n− 1 entries, the inner gaps
between the letters. So far, a levelled tree was considered as an operator with as many inputs
as it has of leaves. However, there is an alternative way to see such a tree as an operator: by
considering the faces of the tree as inputs. A face is a region enclosed between two consecutive
leaves and delimited by two paths of edges meeting at the least common ancestor, see Figure 13.
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We restate this identity at the level of X̄s,t. This task can be done by introducing an operadic composition
L on a collection of words with entries in A different from before. Together with the shuffle product on
levelled trees, this operadic composition yields a structural map L on LT](A). Further properties of L will
turn central in better understanding the composition of the Taylor series for the fields a, b in equation (1.2).

Definition 16 (Faces substitution). We define the collection of vector spaces FS by

FS(n) = A⊗n, n ≥ 1 .

Next, define L : FS ◦ FS → FS as follows. Pick a word U ∈ A⊗p+1 and words Ai ∈ A⊗mi , 1 ≤ i ≤ p + 1,
Ai = (Ai(1) ⊗ · · ·Ai(mi)) and set

L(U ⊗A1 ⊗ · · · ⊗Ap)
:=
(
U(1) ·A1

(1)

)
⊗A1

(2) ⊗ · · · ⊗
(
A1

(m1) · U(2) ·A2
(1)

)
⊗ · · · ⊗

(
Ap(mp) · Up

)
.

The word 1⊗ 1 acts as the unit for L.

We denote by FS the graded vector space equal to the direct sum of all vector spaces in the collection FS.
Notice that elements of A are 0-ary operators in the collection FS and, for example, the above formula for L
gives L(U1 ⊗ U(2) ◦A) = U1 ·A · U2 ∈ A, with U(1) ⊗ U(2) ∈ A⊗2.

Proposition 10. FS = (FS, L,1⊗ 1) is an operad.

Proof. The following proposition holds and rests on the associativity of the product on A. �

In the collection FS, a word with length n is an operator with n − 1 entries, the inner gaps between the
letters. So far, a levelled tree was considered as an operator with as many inputs as it has of leaves. However,
there is an alternative way to see such a tree as an operator: by considering the faces of the tree as inputs.
A face is a region enclosed between two consecutive leaves and delimited by two paths of edges meeting at
the least common ancestor, see Fig. 13.

Figure 13: The faces of a levelled tree are indicated with arrows.

We denote by LT# the set of levelled trees graded by the numbers of faces, LT#(n) the set of levelled trees
with n faces, and LT](A) the space LT(A) seen as a graded vector space with LT#(A)(n) = CLT#(n)⊗FS(n).
Notice that the endomorphism X̄s,t we defined in the previous section satisfies:

(X̄s,t − id)(LT#(A)(n)) ⊂
⊕

k<n

LT#(A)(k) .

We also set for any levelled tree τ ∈ LT,

LT#(A)(τ) = Cτ ⊗ FS(‖τ‖) .

The space LT#(A) is equipped with an involution ?LT#(A), defined by

?LT#(A)(A1 ⊗ · · · ⊗Ap τ) = A?p ⊗ · · · ⊗A?1 θ(τ) (3.18)

Figure 13. The faces of a levelled tree are indicated with arrows.

We denote by LT# the set of levelled trees graded by the numbers of faces, LT#(n) the set
of levelled trees with n faces, and LT♯(A) the space LT(A) seen as a graded vector space with
LT#(A)(n) = CLT#(n)⊗FS(n). Notice that the endomorphism X̄s,t we defined in the previous
section satisfies:

(
X̄s,t − id

)(
LT#(A)(n)

)
⊂
⊕

k<n

LT#(A)(k).

We also set for any levelled tree τ ∈ LT,

LT#(A)(τ) = Cτ ⊗FS(∥τ∥).

The space LT#(A) is equipped with an involution ⋆LT#(A), defined by

⋆LT#(A)(A1 ⊗ · · · ⊗Apτ) = A⋆
p ⊗ · · · ⊗A⋆

1θ(τ). (3.9)

The graded vector space LT#(A) yields a collection LT #(A) by setting the space n-ary operators
LT #(A) equal to LT#(A)(n). We set abusively

LT#(A) ◦ LT#(A) :=
⊕

n≥0

(
LT ♯(A) ◦ LT ♯(A)

)
(n).

For any U,A ∈ LT#(A), we introduce the notation

U ◦A :=
∑

τ,τ1,...,τ∥τ∥

U τ τ ⊗Aτ1 τ1 ⊗ · · · ⊗Aτ∥f∥ τ∥τ∥ ∈ LT#(A) ◦ LT#(A).

Observe that U ◦A is only linear on U , not on A.
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Definition 3.15. Define the morphism of graded vector spaces

L : LT#(A) ◦ LT#(A)→ LT#(A),
L
(
U ⊗

(
A1 ⊗ · · · ⊗A∥α∥

))
=

∑

α
τ1,...,τ∥α∥

L
(
Uα ⊗Aτ1

1 ⊗ · · · ⊗A
τ∥α∥
∥α∥
)
· τ1 � · · ·� τ∥α∥, (3.10)

where

U =
∑

α∈LT#

Uαα, Ai =
∑

τi∈LT#

Aτi
i τi ∈ LT#(A).

Lemma 3.16. Let α and β be two levelled trees in LT. For any A ∈ A⊗|α|+|β|−1 one has

X̄s,t(Aα� β) =
∑

τα⊂α,τβ⊂β

X̄(α\τα)�(β\τβ)
s,t (A)τα � τβ. (3.11)

Proof. The proof consists essentially of a re-summation. It stems from the definition of the
map X̄s,t that

X̄s,t(A · α� β) =
∑

τ∈α�β
τ ′⊂τ

X̄τ\τ ′
s,t (A)τ ′. (3.12)

Let τ ∈ α� β a tree obtained by shuffling vertically the generations of α and β and pick τ ′ ⊂ τ
a subtree. Let s be the shuffle in Sh(♯α, ♯β) such that τ−1 = (α ⊗ β) ◦ s−1. We associate to
the pair (τ, τ ′) a triple which consists in the tree τ , and two others trees τ ′α ⊂ α and τ ′β ⊂ β
satisfying

τ ′ = (τ ′α ⊗ τ ′β) ◦ s̃−1,

where s̃ is a shuffle in Sh
(
∥τ ′α∥, ∥τ ′β∥

)
. Such a permutation s̃ is unique, in fact it is obtained

from s1 by extracting the first ∥τ ′∥ letters of the word representing s−1, followed by standard-
ization and finally inversion. Recall that standardization means that we translate the first ∥τ ′∥
letters representing s−1, while maintaining their relative order to obtain a word on integers in
the interval J1, ♯τ ′K. It is clear that the map ϕ : (τ, τ ′) 7→ (τ, τ ′α, τ

′
β) is injective. Now, given

τα ⊂ α, τβ ⊂ β, and two shuffles s− ∈ Sh(∥τ ′α∥, ∥τ ′β∥), s+ ∈ Sh(∥α\τ ′α∥, ∥β\τ ′β∥), we define
a third shuffle s−+ in Sh(∥α∥, ∥β∥) by requiring

s−+(i) = s−(i), 1 ≤ i ≤ ∥τ ′α∥,
s−+(∥τ ′α∥+ i) = s+(i) + s−(∥τ ′α∥), 1 ≤ i ≤ ∥τα\τ ′α∥.

The map δ : (τ ′α, τ
′
β, s+, s−) 7→ (τ, τ ′α, τ

′
β) with τ−1 = α⊗β ◦s−1

−+ is a bijection between the image
of ϕ and

S = {(τα, τβ, s+, s−), τα ⊂ α, τβ ⊂ β, s− ∈ Sh(∥τα∥, ∥τβ∥), s+ ∈ Sh(∥α\τα∥, ∥β\τβ∥)}.

We can thus rewrite the sum on the right-hand side of (3.12) as follows:

∑

τ∈α�β
τ ′⊂τ

X̄τ\τ ′
s,t (A)τ ′ =

∑

τα,τβ ,s+,s−∈S
X̄
(α⊗β)◦s−+\(τ ′α⊗τ ′β)◦s

−1
−

s,t (τ ′α ⊗ τ ′β) ◦ s−1
− .

Now, we observe that the forest (α⊗β)◦s−+\(τ ′α⊗τ ′β)◦s−1
− does only depend on the trees τα, τβ

and the shuffle s+. Summing over all shuffles s+, we get α\τα � β\τβ. The statement of the
lemma follows by computing the sum over s−. ■
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Definition 3.17 (product on the face-substitution collection). For any A ∈ FS(n) and B ∈
FS(m), we define their product A ·B by

A ·B = A(1) ⊗ · · · ⊗ (A(n+1) ·B(1))⊗ · · · ⊗B(m+1).

The product · is a product on the collection FS with unit 1 ∈ FS(0), A ·B ∈ FS(n+m). Note
that we use the same symbol · for the above-defined product and the product on the algebra A
for the reason that the former restricts to the latter on FS(0).

Remark 3.18. The product · has a very special form, namely,

A ·B = (1⊗ 1⊗ 1) ◦ (A⊗B) = L((1⊗ 1⊗ 1)⊗ (A⊗B)),

and the relation L(m⊗ (idFS⊗m)) = L(m⊗ (m⊗ idFS) with m = 1⊗1⊗1 entails associativity
of the product ·. We say that m ∈ FS(2) is a multiplication in the operad (FS, L). In addition,
associativity of the operadic composition L results in the following distributivity law

(A ·B) ◦ C = (A ◦B) · (B ◦ C), A,B,C ∈ FS.

Conjointly with the shuffle product on levelled trees, the product · brings in a graded algebra
product � : LT#(A)⊗ LT#(A)→ LT#(A), namely

(Aα)� (Bβ) = (A ·B)α� β, (3.13)

with unit 1 · . The above relation on full contraction operators yields compatibility of the
endomorphism X̄s,t with the product � defined in (3.13).

Proposition 3.19. Let α and β be two levelled trees and pick A ∈ A|α|, B ∈ A⊗|β|,

X̄s,t((Aα)� (Bβ)) = X̄s,t(Aα)� X̄s,t(Bβ).

Proof. The result is a simple consequence of the previous Proposition 3.16 and the shuffle
relation for the partial contraction operators (3.11). In fact, one has the trivial identities

X̄s,t((A ·B) · α� β) =
∑

τα⊂α,τβ⊂β

X̄α\τα�β\τβ
s,t (A ·B) τα � τβ

=
∑

τα⊂α,τβ⊂β

X̄α\τα(A) · X̄β\τβ
s,t (B) τα � τβ = X̄s,t(A) · X̄s,t(B).

Thereby obtaining the desired identity. ■

Corollary 3.20. For all times 0 < s < t < 1, it holds that

L ◦
(
id ◦ X̄s,t

)
= X̄s,t ◦ L.

Proof. According to Proposition 3.19, one has the identity

L
(
Uα ⊗ X̄s,t

(
Aβ1β1

)
⊗ · · · ⊗ X̄s,t

(
Aβ♯αβ♯α

))

= X̄s,t

(
Uα
(1)

)
� X̄s,t

(
Aβ1β1

)
� X̄s,t

(
Uα
(2)

)
· · · X̄s,t

(
Aβ♯α · β♯α

)
� X̄s,t

(
Uα
(|α|)

)

= X̄s,t

((
Uα
(1)

)
�

(
Aβ1 β1

)
�

(
Uα
(2)

)
· · ·
(
Aβ♯α · β♯α

)
�

(
Uα
(|α|)

))

= X̄s,t

(
L
(
Uαα⊗Aβ1β1 ⊗ · · · ⊗Aβ♯αβ♯α

))
.

From which we deduce the announced equality. ■
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Summing up the result in this section and the previous one, we can actually state the prop-
erties of X̄s,t by introducing a suitable group of endomorphisms.

Theorem 3.21. Denoting by G(A) the group

G(A) =
{
X̄ ∈ HomAlg

(
LT#(A), LT#(A)

)
:

(
X̄− id

)(
LT#(A)(τ)

)
⊂
⊕

τ ′⊂τ

LT#(A)(τ ′)
}
, (3.14)

the endomorphisms X̄s,t satisfy the following properties

(1) X̄s,t ∈ G(A),
(2) for every time (s, u, t) ∈ [0, 1]3, X̄s,t = X̄u,t ◦ X̄s,u.

4 Group of signatures

Looking again at the formal Peano–Picard expansion sketched in (1.5), we see a sum of full
contraction operators {Xτ

s,t}τ∈LT applied to generic elements of the algebra A, those operators
appear thus as the fundamental objects to generalise in a rough path setting. As explained
in the previous section, we were forced to consider partial contraction operators indexed by
levelled binary forests to write the Chen relation for these operators. These operators appear as
coefficients of an endomorphism X acting on LT(A). These “coefficients” associated with forests
can not be related to the “coefficients” associated with trees if A is truly infinite-dimensional.
A bit more formally, the application corestricting an endomorphism Xs,t, for any pair of times
s < t to C[ ]

X̄(·) 7→
∑

τ∈LT
X̄τ
s,t(·)

is not injective, we are lacking relations between partial and full contraction operators. Worth is
the fact, that data of X is in fact equivalent to the data of all iterated integrals of X, so that the
previous section is in fact a mere, though much more intricated reformulation of the classical
theory. Yet, we explain in this section how to get rid of these partial contraction operators while
maintaining a Chen relation for an object comprising only full contraction operators. These
partial contraction operators are turned into “technical proxies”, that can be constructed from
the operators associated with levelled trees and bear no additional information on the small-scale
behaviour of the paths but allows for an efficient formulation of the Chen relation.

4.1 Algebra of face-contractions

To define a proper group where full contraction take value, we introduce a new collection of
operators, that we call face-contractions. These operators will replace words with entries in A
of the previous section.

Definition 4.1 (face-contractions). For any τ ∈ LT, τ ̸= and A1 ⊗ · · · ⊗ A(|τ |) ∈ A|τ | we
associate the global face-contraction map

♯((A1 ⊗ · · · ⊗A|τ |)τ) : A⊗∥τ∥ → A,

which evaluates on a tuple X1, . . . , X∥τ∥ ∈ A as

♯(A1 ⊗ · · · ⊗A|τ |τ)(X1, . . . , X∥τ∥) = A1 ·Xτ−1(1) ·A2 · · · ·Xτ−1(∥τ∥) ·A|τ |.
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We denote by FC(τ) the closure with respect to the operator norm the span of the global face-
contraction maps; i.e., for any fixed τ ∈ LT, τ ̸= we set

FC(τ) := Cl
({

♯((A1 ⊗ · · · ⊗A|τ |) τ) : A1 ⊗ · · · ⊗A|τ | ∈ A⊗|τ |}),

and we call the elements of FC(τ) the τ -face-contractions. Moreover, we define

LT#(FC) :=
⊕

n≥0

⊕

τ∈LT
∥τ∥=n

FC(τ),

and set FC( ) = A.
We introduce for any face-contractions operators m =

∑
τ∈LT mτ the face-contraction norm

|||m||| :=
∑

τ∈LT

1

∥τ∥!∥m
τ∥,

where ∥ · ∥ is the usual operator norm induced by A. From the notation ♯((A1 ⊗ · · · ⊗A|τ |) · τ)
we also denote by ♯ the morphism of graded vector spaces

♯ : LT#(A)→ LT#(FC),

A1 ⊗ · · · ⊗A(|τ |)τ 7→ ♯(A1 ⊗ · · · ⊗A(|τ |)τ).

Notice that the operator ♯((A1 ⊗ · · · ⊗ A|τ |) · τ) has ∥τ∥ = |τ | − 1 inputs. Its output can be
computed by drawing a sparse quasi-binary tree τ and placing A1, . . . , Aτ up to the leaves of τ
and the dXti on the unique vertex with two children on the ith generation of τ . Whereas in the
previous section the arguments of the multilinear operators we considered were located on the
leaves, in this section they are located on the faces. Some operations we defined on trees can be
push-forward via ♯ to define a proper unital Banach algebra with involution. We denote these
operations with similar notation as the operations defined over LT#(A).
Definition 4.2 (shuffle product on face-contractions operators). For any m ∈ FC(τ) and m′ ∈
FC(τ ′) we define m�m′ ∈ LT#(FC) and ⋆LT#(FC)(m) on every tuple X1, . . . , X∥τ∥+∥τ ′∥ ∈ A by

(m�m′)
(
X1 ⊗ · · · ⊗X∥τ∥+∥τ ′∥

)

:=
∑

s∈Sh(∥τ∥,∥τ ′∥)
m
(
Xs(1) ⊗ · · · ⊗Xs(∥τ∥)

)
·m′(Xs(∥τ∥+1) ⊗ · · · ⊗Xs(∥τ∥+∥τ ′∥)

)
,

⋆LT#(FC)(m)
(
X1 ⊗ · · · ⊗X∥τ∥

)
:= ⋆

(
m
(
⋆ (X∥τ∥)⊗ · · · ⊗ ⋆(X1)

))
.

We call � and ⋆LT#(FC)(m) the shuffle product on face-contractions and the involution on face-
contractions.

Proposition 4.3. The triple
(
LT#(FC),�, ⋆, ||| · |||

)
is a unital Banach algebra with involution,

i.e., for any pairs of levelled trees τ and τ ′ and operators m ∈ FC(τ), m′ ∈ FC(τ ′) one has the
properties

⋆LT#(FC)(m�m′) = ⋆LT#(FC)(m
′)� ⋆LT#(FC)(m), |||m�m′||| ≤ |||m||||||m′|||.

Moreover, ♯ is a morphism of unital Banach algebra, i.e., one has the identities

♯
(
A1 ⊗ · · · ⊗A|τ |τ �B1 ⊗ · · · ⊗B|τ ′|τ

′) = ♯
(
A1 ⊗ · · · ⊗A|τ |τ

)
� ♯
(
B1 ⊗ · · · ⊗B|τ ′|τ

′),
♯
(
⋆LT#(A) (A1 ⊗ · · · ⊗A|τ |τ)

)
= ⋆LT#(FC)♯

(
A1 ⊗ · · · ⊗A|τ |τ

)

for any A1, . . . , A|τ | and B1, . . . , B|τ ′| of elements in A and τ, τ ′ in LT.
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Proof. We first prove the morphism property for ♯. We fix τ , τ ′ in LT and adopt the notations
A = A1 ⊗ · · · ⊗A|τ | and B = B1 ⊗ · · · ⊗B|τ ′|. Using the identity (3.13) and the explicit form of
τ � τ ′ one has

Aτ �Bτ ′ = (A ·B)τ � τ ′ =
∑

std(σ1···σ|τ |)=τ

std(σ|τ |+1···σ|τ |+|τ ′|)=τ ′

(A ·B) · σ.

By evaluating the right-hand side on a generic tuple X = (X1, . . . , X∥τ∥+∥τ ′∥), we have

∑

std(σ1···σ|τ |)=τ

std(σ|τ |+1···σ|τ |+|τ ′|)=τ ′

(A ·B) · σ(X)

=
∑

std(σ1···σ|τ |)=τ

std(σ|τ |+1···σ|τ |+|τ ′|)=τ ′

A1 ·Xσ(1) · · ·Xσ(∥τ∥) ·A|τ | ·B1 ·Xσ(∥τ∥+1) · · ·Xσ(∥τ∥+∥τ ′∥) ·B|τ ′|

=
∑

s∈Sh(∥τ∥, ∥τ ′∥)

♯(Aτ)(Xs(1), . . . , Xs(∥τ∥)) · ♯(Bτ ′)
(
Xs(∥τ∥+1), . . . , Xs(∥τ∥+∥τ ′∥)

)

=
(
♯(Aτ)� ♯(Bτ ′)

)
(X).

Thereby obtaining the algebra morphism property for ♯. Moreover, from the previous identity,
we deduce also the following estimate in terms of the operator norm

∥♯(Aτ �Bτ ′)∥ ≤ |Sh(∥τ∥, ∥τ ′∥)|∥♯(Aτ)∥∥♯(Bτ ′)∥ = (∥τ∥+ ∥τ ′∥)!
∥τ∥!∥τ ′∥! ∥♯(Aτ)∥∥♯(Bτ ′)∥.

From this, we deduce by density the Banach algebra property with respect to the norm ||| · |||.
Compatibility of ♯ with respect to the involution ⋆LT#(A) and ⋆LT#(FC) follows from the definition

of ⋆LT#(A) in equation (3.9) and ⋆LT#(FC) right above.

In addition, for any m ∈ FC(τ), m′ ∈ FC(τ ′) one has

⋆LT#(FC)(m�m′)
(
X1 ⊗ · · · ⊗X∥τ∥+∥τ ′∥

)

=
∑

s

⋆Am′( ⋆A
(
Xs(∥τ∥+∥τ ′∥)

)
⊗ · · · ⊗ ⋆A

(
Xs(∥τ∥+1)

))

× ⋆Am
(
⋆A (Xs(∥τ∥))⊗ · · · ⊗ ⋆A(X1)

)

=
∑

s

⋆LT#(FC)(m
′)
(
Xs(∥τ∥+1), . . . , Xs(∥τ∥+∥τ ′∥)

)
· ⋆LT#(FC)(m)

(
Xs(1), . . . , X∥τ∥

)

= ⋆LT#(FC)(m
′)� ⋆LT#(FC)(m),

where the sums above are taken over s in Sh(∥τ∥, ∥τ ′∥). ■

Remark 4.4. The global face-contraction map ♯ yields a morphism of operads. In the same
way as formula (3.10) introduces an operadic composition on FS. It is also possible to define an
operadic composition, that we denote by the symbol L̃, on the collection FC of face-contractions
operators,

FC(n) :=
⊕

n≥0

⊕

τ∈LT
∥τ∥=n

FC(τ)

induced by the canonical operadic structure on EndA, that is

L̃(V ◦ (W1 ⊗ · · · ⊗Wp)) = V ◦ (W1 ⊗ · · · ⊗Wp),
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where V ∈ FC(p), Wi ∈ FC(ni), 1 ≤ i ≤ p and the symbol ◦ in the right-hand side of the above
equation stands for functional composition in EndA,

L̃ : LT#(FC) ◦ LT#(FC)→ LT#(FC).

We set FC=
(
FC, L̃, idA

)
. Notice that with this definition, the map ♯ is a morphism between

the operads FS and FC, namely, for A1, . . . , Ap+1 ∈ A and W1, . . . ,Wp ∈ FS

L̃(♯(A1 ⊗ · · · ⊗Ap+1) ◦ ♯W1 ⊗ · · · ⊗ ♯Wp) = ♯L(A1 ⊗ · · · ⊗Ap ◦ (W1 ⊗ · · · ⊗Wp)).

4.2 Group acting on faces-contractions

From the algebra structure defined on LT#(FC) and the properties the morphism ♯ : LT#(A)→
LT#(FC), we will also introduce a group which plays the same role of G(A) in (3.14) (the group
where the maps X̄s,t takes value) at the level of face-contractions.

To achieve this, we first rewrite the vector space LT#(FC) in an equivalent way so that we
can speak of components. Using the identification between permutations and levelled trees
from Proposition 2.1 and the intrinsic product of Sn, for any levelled tree τ with ∥τ∥ = n and
σ ∈ S∥τ∥ the map which sends ♯(A1⊗ · · · ⊗Anτ) to ♯(A1⊗ · · · ⊗Anστ) extends continuously to
a linear map

ϕσ : FC(τ)→ FC(στ),

which evaluates on m ∈ FC as

ϕσ(m)(Y1 ⊗ · · · ⊗ Yn) = m(Yσ−1(1) ⊗ · · · ⊗ Yσ−1(n)) = m(σ · (Y1 ⊗ · · · ⊗ Yn)).

Each map ϕσ is continuous and has inverse given by ϕσ−1 . Combining the action of the maps
{ϕσ : σ ∈ S∥τ∥}, we introduce the map

ϕ :
⊕

τ∈LT
∥τ∥=n

FC(τ)→ FC(n)⊗ C(LTn), ϕ :=
∑

τ∈LT
∥τ∥=n

ϕτ−1 ⊗ τ,

and by extension of ϕ to LT#(FC) we obtain a continuous isomorphism

ϕ : LT#(FC)→
⊕

n≥0

FC(cn)⊗ CLTn,

where for each n ≥ 0, cn is the levelled tree represented by the permutation idn. For brevity,
we use the notation LT#(FC)(n) := LT#(FC)(cn). Also, a generic element of the tensor product
FC(n)⊗ CLTn will be denoted mτ (we omit the symbol ⊗) where m ∈ FC(n) and τ ∈ LTn.

Definition 4.5. Let X : LT#(FC) → LT#(FC) be an endomorphism of LT#(FC) and τ, τ ′ ∈
LT#(FC) a couple of levelled trees. We define the components of X as the set of continuous
linear maps

{
X (τ ′, τ), τ, τ ′ ∈ LT#(FC)

}
, X (τ ′, τ) : FC(∥τ∥)→ FC(∥τ ′∥),

defined by the relation

X (m) =
∑

τ ′, τ

ϕ−1
(
X (τ ′, τ)

(
ϕ(m)

)
τ ′
)
, m ∈ FC(τ). (4.1)
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We remark that for any given family {X (τ ′, τ), τ, τ ′ ∈ LT#(FC)} like above formula (4.1)
defines actually a graded endomorphism of LT#(FC). Moreover, for any given graded endomor-
phism X : LT#(FC)→ LT#(FC) the component X (τ ′, τ) can be computed on anym ∈ FC(∥τ∥) as

X (τ ′, τ)(m) = (ϕ(X (ϕτ (m)))τ ′ ,

where (·)τ ′ is the natural projection on the component associated with τ ′ as the right factor.

With the notations introduced so far, and omitting conjugation by ϕ, fora an operator X ∈
End

(
LT#(FC)

)
, one writes

X (mτ) =
∑

τ ′∈LT
X (τ ′, τ)τ ′.

Remark 4.6. The involution ⋆LT#(FC) defined in the previous section induced through ϕ an

involution on
⊕

n≥0 FC(cn)⊗ CLTn, denoted by the same symbol, one has

⋆LT#(FC)(mτ) = ⋆LT#(FC)(m)θ(τ).

In the next definition, we introduce a specific class of operators.

Definition 4.7. For any integer k ≥ 1 and Y1, . . . , Yk ∈ A we introduce the operator

CY1,...,Yk
: LT#(FC)→ LT#(FC)

defined by the components

CY1,...,Yk
(τ ′, τ)(m) =

{
m(X1, . . . , X∥τ ′∥, Y1, . . . , Yk), if ∥τ∥ = ∥τ ′∥+ k, τ ′ ⊂ τ,

0 otherwise,

where m ∈ FC(τ) and X1, . . . , X∥τ∥ are elements of A.

Example 4.8. For example, by taking m = ♯(A1 ⊗ A2 ⊗ A3 ⊗ A4 ⊗ A5 2413) ∈ FC(2413) and
Y1, Y2, Y3 ∈ A, from formula (4.1) we deduce

CY1(m) = ♯(A1 ⊗A2 · Y1 ·A3 ⊗A4 ⊗A5 213),

CY1,Y2(m) = ♯(A1 ⊗A2 · Y1 ·A3 ⊗A4 · Y2 ·A5 21),

CY1,Y2,Y3(m) = ♯(A1 · Y1 ·A2 · Y2 ·A3 ⊗A4 · Y2 ·A5 1).

The coefficient CY1,...,Yk
(τ ′, τ) depends only the forest τ\τ ′, for any Y1, . . . , Yk in A and any

integer k ≥ 1, one has

CY1,...,Yk
(α′, α) = CY1,...,Yk

(β′, β), if α\α′ = β\β′, α′ ⊂ α, β′ ⊂ β. (4.2)

Definition 4.9. We denote by U(FC) the group of triangular algebra morphisms of LT#(FC)
with the identity on the diagonal, i.e.,

U(FC) =

{
X ∈ EndAlg

(
LT#(FC)

)
: (X − id)(FC(τ)) ⊂

⊕

τ ′⊊τ

FC(τ ′), τ ∈ LT
}
.

We denote by C the closure of the linear span of CY1,...,Yk
, Y1, . . . , Yk ∈ A augmented with

idLT#(FC) and we set UC(FC) := U(FC) ∩ C.
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Remark 4.10. By construction of U(FC) an endomorphism of LT#(FC) belongs to U(FC) if
and only if

X (τ ′, τ) = 0 if τ ′ is not a subtree of τ, X (τ, τ) = idFC(∥τ∥),

X (m�m′) = X (m) ◦ X (m′), ⋆X (m) = X (⋆m),

for any m,m′ ∈ LT#(FC).

The triangular property in the definition of U(FC) implies also that U(FC) is a group. Besides,
we note that C is a subalgebra of End

(
LT#(FC)

)
, because of the identity

CA1,...,Ak
◦ CB1,...,Bq = CB1,...,Bq ,A1,...,Ak

.

Therefore we obtain immediately that UC(FC) is a group,

X (f) := X (τ ′, τ) : FC(|f | − 1)→ FC(nt(f)− 1),

where τ ′ ⊂ τ ∈ LT is any pair of levelled trees such that f = τ\τ ′.
A diagonal of an operator X ∈ U(FC) is the set of entries X (τ ′, τ) where τ ′ ⊂ τ are pairs

of levelled trees with fixed forest τ\τ ′. Therefore, a forest corresponds to a unique diagonal
of X . From (4.2), an operator X ∈ UC(FC) may be viewed as a matrix with operators for
coefficients and constant diagonals. We denote by X (f) the common value of the entries of X
on the diagonal corresponding to the forest f ,

X (f) := X (τ ′, τ) : FC(|f | − 1)→ FC(nt(f)− 1),

where τ ′ ⊂ τ ∈ LT is any pair of levelled trees such that f = τ\τ ′. By writing the components
in terms of forests, we can exchange relations between operators in the group UC(FC).

Proposition 4.11. For any couple X , Y in UC(FC) and any pair of compatible levelled forests
f, f ′ ∈ LF, f � f ′ ∈ LF � LF, with the notation ⟨X � Y, f � f ′⟩ := X (f) ◦ Y(f ′), one has

⟨X � Y, f � f ′⟩ = ⟨Y � X ,K(f � f ′)⟩, f � f ′ ∈ LF � LF.

Proof. LetA1, . . ., A|f ′|∈A and call σ (resp. σ′) the permutation associated with f ♭ (resp. (f ′)♭).
We use the notation cbn for the right-comb tree associated with the identity permutation idn.
Next, define s the permutation in S∥f∥+∥f ′∥ by

• sf�f ′(k) = i, if the kth face of cbnt(f))#f#f ′ (reading the faces from left to right) is the ith

face of f ,

• sf�f ′(k) = ∥f∥+ i if the kth face of f#f ′ is the ith face of f ′,

• sf�f ′(k) = ∥f∥+ ∥f ′∥+ i if the kth face is the ith face of cbnt(f).

With K(f � f ′) = f ′
(1) � f(1), with ∥f ′

1∥ = ∥f ′} and ∥f∥ = ∥f(1)∥ notice that

f ′
(1)

♭ = f ′♭, f(1)
♭ = f ♭, sK(f�f ′) = sf�f ′ .

Note that ((X �Y), f � f ′) is non-zero only of pair of forests f � f ′ with ∥f∥ = p and ∥f ′∥ = q.
Pick two such forests f , f ′. Pick U1, . . . , Unt(f)−1 ∈ A. Pick X = VX1,...,Xp and Y = VY1,...,Yq two
operators in C and put Z = (U1, . . . , Unt(f), X1, . . . , Xp, Y1, . . . , Yq). Therefore one has

⟨X ⊗ Y, f � f ′⟩(♯(A1 ⊗ · · · ⊗A|f ′|))(U1, . . . , Unt(f)−1)

= A1 · Zs−1
f�f ′ (1)

⊗ · · · ⊗ Zs−1
f�f ′ (∥f∥+∥f ′∥) ·A|f ′|

= ⟨Ys,t ⊗Xs,t,K(f � f ′)⟩(♯(A1 ⊗ · · · ⊗A|f ′|))(U1, . . . , Unt(f)−1). ■
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Proposition 4.12. The involution Θ: End
(
LT#(FC)

)
→ End

(
LT#(FC)

)
defined on any X ∈

End(LT#(FC)) by

Θ(X ) := ⋆LT#(FC) ◦ X ◦ ⋆LT#(FC), X ∈ End
(
LT#(FC)

)
,

restricts to an algebra morphism on UC(FC).

Proof. Pick X ,Y ∈ UC(FC), we have to show that

Θ(X ) ◦Θ(Y) = Θ(X ◦ Y).

Let τ ∈ LT#(FC) and m ∈ FC(||τ ||), one has first

(X ◦ Y)(⋆LT#(FC)(m)θ(τ)) =
∑

τ ′⊂θ(τ)
(X ◦ Y)(θ(τ)\τ ′)(⋆(m))τ ′

=
∑

τ ′⊂τ

(X ◦ Y, θ(τ\τ ′))(⋆LT#(FC)(m))θ(τ ′)

=
∑

τ ′⊂τ
f ′⊂θ(τ\τ ′)

⟨X � Y, f ′ � θ(τ\τ ′)\f ′⟩(⋆LT#(FC)(m))θ(τ ′)

=
∑

τ ′⊂τ
f ′⊂τ\τ ′

⟨X � Y, θ(f ′) � θ(τ\τ ′\f ′)⟩(⋆LT#(FC)(m))θ(τ ′),

where the last equality follows from the simple observation that θ(f\f ′) = θ(f)\θ(f ′) for any
pair of forests f ′ ⊂ f . We deduce that

Θ(X ◦ Y)(mτ) =
∑

τ ′⊂τ
f ′⊂τ\τ ′

⋆LT#(FC)

(
⟨X � Y, θ(f ′) � θ(τ\τ ′\f ′)⟩(⋆(m))

)
(τ ′).

For any pair of forests f ′ ⊂ f ,

⋆LT#(FC)(⟨X � Y, θ(f ′) � θ(f\f ′))(⋆(m))⟩ = ⋆LT#(FC)

((
X (θ(f)) ◦ Y(θ(f\f ′))

)
(⋆(m))

)

= ⟨Θ(X ) � Θ(Y), f � f ′)(m)⟩.

Hence,

Θ(X ◦ Y)(mτ) =
∑

τ ′⊂τ
f ′⊂τ\τ ′

⟨Θ(X ) � Θ(Y), f � f ′⟩(m)τ ′ = Θ(X ) ◦Θ(Y)(mτ). ■

We now further restrict the group that will support signatures of smooth valued paths. It is
defined by a set of equations on components of an operator in UC indexed by levelled forests.
To specify these equations, we resort to operations on levelled forests defined in Section 2.1.

Pick a integer n ≥ 1. Let f = (σ, c), σ ∈ Sn, c ⊨0 n be a levelled forest with n generations
and nt(f) trees. For any subset I ⊂ [nt(f) − 1] of integers we denote by f I the levelled forest
obtained by gluing the trees fi in f at positions i ∈ I along their external edges,

f I = (σ, (c1, . . . , ci1 + ci1+1, . . . , cik + cik+1
, . . . , cnt(f)+1)).

We set also

ℓfj =

j∑

i=1

(ci + 1), 1 ≤ j ≤ nt(f)− 1.
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The integers ℓfj , 1 ≤ j ≤ nt(f)−1 index spaces between consecutive sparse quasi-binary trees in
the levelled forest f , which can also be considered as faces of f (in addition to the ones delimited
by two consecutive leaves of a tree in f).

Recall also that elements of A are considered as face-contractions operators with 0 input. Pick
mFC(p) a face-contractions operator with arity p, m1, . . . ,mq, 1 ≤ g ≤ p other face-contractions
operators and a sequence of integers 1 ≤ i1 < · · · < iq ≤ p. In the definition below, we denote
by

m ◦i1,...,iq m1 ⊗ · · · ⊗mq

the operator obtained by composing mj with the ithj input of m, the remaining inputs are filled
with the identity.

Definition 4.13. We define G(FC) ⊂ UC(FC) as the subset comprising all operators X ∈ UC(FC)
satisfying for any quadruple

• f a levelled forest,

• an integer 1 ≤ q ≤ nt(f)− 1,

• a face-contractions operator m ∈ LT#(FC) with |f | − 1 inputs,

• a sequence of integers 1 ≤ i1 < · · · < iq < nt(f),

the relation

X (f)(m) ◦i1,...,iq (X1, . . . , Xq) = X
(
f I
)
(m ◦

ℓfi1
,...,ℓfiq

X1, . . . , Xq), (4.3)

where X1, . . . , Xq ∈ A. In addition, we denote by G⋆(FC) the subset of self-adjoint operators in
G(FC) for the involution Θ defined in Proposition 4.12,

G⋆(FC) := {X ∈ G(FC) : Θ(X ) = X}.

Example 4.14. We give a simple example of the condition (4.3). Consider f the forest repre-
sented by (132, (2, 1)), a faces contraction operator m with four inputs. Choose i1 = 1 (this is
the only possibility). Equation (4.3) is equivalent to

X (f)(m) ◦1 (X1) = X (132)(m ◦3 X1).

Remark 4.15. On can restricts m in equation (4.3) to be an operator of the form ♯(A0 ⊗
· · · ⊗ Apτ) for a certain word A0, . . . , Ap ∈ A and levelled tree τ . If there exists X̄ such that
♯ ◦ X̄ = X ◦ ♯ and

X̄(f)(A1 ⊗ · · · ⊗A|f |) = Op([Xσ
s,t]c)(A0, . . . , Af )

then (4.3) is automatically satisfied since by evaluation of both sides of (4.3) of Y1, . . . , Ynt(f)−1−q

one obtains

Op
(
Xσ

s,t

)
(Z1, . . . , Z∥f∥),

where

(1) Z
ℓfij

= A
ℓfij
·Xj ·Aℓfij

+1
,

(2) Z
ℓfij+s

= A
ℓfij+s

· Yij+s−j ·Aℓfij+s+1
, 1 < s < ij+1 − ij ,

(3) Z
ℓfj+t

= A
ℓfj+t−j

, 1 < t < ℓfj − ℓfj+1.



On the Signature of a Path in an Operator Algebra 37

Proposition 4.16. The sets G(FC) and G⋆(FC) are sub-groups of UC(FC).

Proof. Pick two endomorphisms X and Y in G(FC). Pick f a levelled forest and I = {i1 <
· · · < iq} ⊂ J1, nt(f)−1K. We prove that X ◦Y ∈ G(FC). We already know that X ◦Y ∈ UC(FC),
hence it will be sufficient to prove (4.3) for X ◦ Y. Pick m ∈ LT#(FC) as in Definition 4.13, one
has

((X ◦ Y)(f))(m) ◦i1,...,ip (AI) =
∑

f ′⊂f

X (f ′)
(
Y(f \ f ′)(m)

)
◦i1,...,ip (AI)

=
∑

f ′⊂f

X
(
f ′I)(Y(f \ f ′)(m) ◦

ℓf
′

i1
,...,ℓf

′
ip

AI

)

=
∑

f ′⊂f

X
(
f ′I)(Y

(
(f \ f ′)ℓ

f ′
i1
,...,ℓf

′
ip
))(

m ◦
ℓf

ℓ
f ′
i1

,...,ℓf

ℓ
f ′
ip

(AI)
)
.

Owing to associativity of ◦, we have ℓf
ℓf

′
i1

, . . . , ℓf
ℓf

′
ip

= ℓf
′�f

i1
, . . . , ℓf

′�f
ip

. The statement follows by

noticing that

{(
f ′I , (f \ f ′)ℓ

f ′
i1
,...,ℓf

′
ip
)
, f ′ ⊂ f

}
=
{
(f ′, f \ f ′), f ′ ⊂ f I

}
. ■

4.3 The noncommutative signature of a path

We are now ready to state the main Definition of the notion of the signature of a smooth path
that is adapted to the class of equations (1.1).

Definition 4.17. Pick X : [0, 1] → A a smooth path. Let 0 < s < t < 1 be two times. We
define a triangular endomorphism,

Xs,t : LT#(FC)→ LT#(FC)

defined, for m ∈ FC(τ), a pair of trees τ ′ ⊂ τ ∈ LT, Y1, . . . , Y∥f∥ ∈ A, by

Xs,t(f)(m)(Y1, . . . , Y∥f∥) =
∫

∆
∥f∥
s,t

m
(
σ−1 ·

(
Y1 ⊗ · · · ⊗ Y∥nt(f)−1∥ ⊗ dXt1 ⊗ · · · ⊗ dXt∥f∥

))

for a levelled forest f = (σ, c). See Figure 14 for a picture representing the action of Xs,t.
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Figure 14: face-contractions of a levelled forest

Recall that X̄s,t is defined in equation (3.13).

Theorem 4. For any smooth path X the operators Xs,t satisfy the following properties:

1. Xs,t ∈ G(FC),

2. Xs,t = Xu,t ◦ Xs,u,

3. ] ◦ X̄s,t = Xs,t ◦ ].

Besides, if X is a self-adjoint trajectory then Xs,t is a morphism of ? algebras.

Proof. Item 2 is implied by Item 3 and the Chen relation for X. By remark 9, 1 is implied by Item 3. Item
3 follows by direct computations. �

The above proposition implies that the endomorphism Xs,t is characterized by its values on the levelled trees.
Partial contractions appear thus as technical proxies required to write in a compact form the Chen relation
for the operators Xs,t. However, this gives no additional information on the small-scale behaviour of X. This
is compliant with the simple observation that expansion of a solution of an equation in the class (1.2) does
only involve full contraction.

Lk : A⊗k 3 (A1 ⊗ · · · ⊗Ak) 7→ LA1,··· ,Ak

is well-defined and continuous. We call C the closure for the operator norm of the direct sum of the ranges
of the operators Lk :

5 Appendix

We recall some definitions from the theory of operads and more generally, we underline here the categorical
notions we use in this work. The reader will find below, among other things, definitons of collections, operads,
bi-collections and PROs. All of concepts are standard in the algebraic literature, see e.g. the monographs
[LV12, AM10], but not very known among non-algebraists. Hence the need of this small appendix. For
further details we refer to [Val07, BG16].

At the base of these definitions above lies the concept of monoidal category. In loose words, it is a
category C = (Ob(C),Mor(C))) equipped with an operation and a unity element I ∈ Ob(C). The operation
associates to any couple of objects A,B ∈ Ob(C) an object A B ∈ Ob(C) and to any couple of morphisms

f : A → A′, g : B → B′ a morphism f g : A B → A′ B′ in a functorial way. In order that (C, , I) is
a monoidal category, the operation must satisfy two main properties, which emulate the tensor product
operation on finite dimensional vector spaces:

1. (Associativity constraints) for any triple of objects A,B,C ∈ Ob(C) one has that the object (A B) C
is isomorphic to A (B C) in a functorial way, that is there exists a natural isomorphism between the
two functors ◦ (id× ) and ◦ ( × id) ;

2. (Unitality constraints) for any object A ∈ Ob(C) the objects A I and I A are (naturaly) isomorphic
to A.

Figure 14. face-contractions of a levelled forest.

Recall that X̄s,t is defined in equation (3.7).

Theorem 4.18. For any smooth path X the operators Xs,t satisfy the following properties:

(1) Xs,t ∈ G(FC),

(2) Xs,t = Xu,t ◦ Xs,u,
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(3) ♯ ◦ X̄s,t = Xs,t ◦ ♯.

Besides, if X is a self-adjoint trajectory then Xs,t is a morphism of ⋆ algebras.

Proof. Item (2) is implied by item (3) and the Chen relation for X . By Remark 4.15, (1) is
implied by item (3). Item (3) follows by direct computations. ■

The above proposition implies that the endomorphism Xs,t is characterized by its values on
the levelled trees. Partial contractions appear thus as technical proxies required to write in
a compact form the Chen relation for the operators Xs,t. However, this gives no additional
information on the small-scale behaviour of X. This is compliant with the simple observation
that expansion of a solution of an equation in the class (1.2) does only involve full contraction,

Lk : A⊗k ∋ (A1 ⊗ · · · ⊗Ak) 7→ LA1,...,Ak

is well-defined and continuous. We call C the closure for the operator norm of the direct sum of
the ranges of the operators Lk.

A Appendix

We recall some definitions from the theory of operads and more generally, we underline here
the categorical notions we use in this work. The reader will find below, among other things,
definitons of collections, operads, bi-collections and PROs. All of concepts are standard in the
algebraic literature, see, e.g., the monographs [1, 14], but not very known among non-algebraists.
Hence the need of this small appendix. For further details we refer to [5, 21].

At the base of these definitions above lies the concept of monoidal category. In loose words, it
is a category C = (Ob(C),Mor(C))) equipped with an operation and a unity element I ∈ Ob(C).
The operation associates to any couple of objects A,B ∈ Ob(C) an object A B ∈ Ob(C) and
to any couple of morphisms f : A → A′, g : B → B′ a morphism f g : A B → A′ B′ in
a functorial way. In order that (C, , I) is a monoidal category, the operation must satisfy
two main properties, which emulate the tensor product operation on finite-dimensional vector
spaces:

1. (Associativity constraints) for any triple of objects A,B,C ∈ Ob(C) one has that the object
(A B) C is isomorphic to A (B C) in a functorial way, that is there exists a natural
isomorphism between the two functors ◦ (id× ) and ◦ ( × id).

2. (Unitality constraints) for any object A ∈ Ob(C) the objects A I and I A are (naturaly)
isomorphic to A.

The prototypical example is the category of finite-dimensional vector spaces with monoidal
product given by the tensor product of vector spaces ⊗. Another example is the category Set,
the category of all sets with functions between sets as morphisms, with monoidal product given
by the cartesian product of sets.1 Of interest in the present work is the 2-monoidal category of
collections and bicollections that we now define.

A monoid in a monoidal category is a categorical abstraction of a binary product on a set.

Definition A.1 (monoid). A monoid in a monoidal category (C, •, I) is a triple (C, ρ, η) with
C ∈ Ob(C), ρ : C • C → C, η : I → C meeting the constraints

(1) ρ ◦ (ρ • id) = ρ ◦ (id • ρ),
(2) ρ ◦ (η • id) = id.
1This monoidal category is particular in the sense that the monoidal product coincides with the categorical

product. Such categories are called cartesian monoidal.
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Definition A.2 (comonoid). A comonoid in a monoidal category (C, •, I) is a triple (C,∆, ε)
with C ∈ Ob(C), ∆: C → C • C, ε : C → I meeting the constraints:

(1) (∆ • id) ◦∆ = (id •∆) ◦∆,

(2) (ε • id) ◦∆ = (id • ε) ◦∆.

Definition A.3. We call a (reduced) collection P a sequence of complex vector spaces2

{P (n)}n≥1. A morphism between two collections P , Q is a sequence of linear maps {ϕ(n)}n≥1

with ϕ(n) : P (n)→ Q(n), n ≥ 0. For any couple of morphisms between collections we define the
composition of morphisms by composing each component. We denote the category of collections
by Coll.

The category Coll has a natural monoidal structure ⊙ over it: for any couple of collections P
and Q and morphisms f , g we define

(P ⊙Q)(n) :=
⊕

k≥1
n1+···+nk=n

P (k)⊗Q(n1)⊗ · · · ⊗Q(nk),

(f ⊙ g)(n) :=
⊕

k≥1
n1+···+nk=n

f(k)⊗ g(n1)⊗ · · · ⊗ g(nk).

Denoting by C⊙ the collection

C⊙ =

{
C if n = 1,

0 otherwise,

it is straightforward to check that the triple (Coll,⊙,C⊙) is a monoidal category. If the vectors
spaces of the collections P and Q above are Banach algebras, then we might use in place of
the algebraic tensor product ⊗ the projective one ⊗̂. An operad is a monoid in the monoidal
category (Coll,⊙,C⊙):

Definition A.4. A non-symmetric operad (or simply an operad) is a monoid in the monoidal
category (Coll,⊙,C⊙), i.e., a triple (P, ρ, ηP ) of the following objects

P ∈ Ob(Coll), ρ : P ⊙ P → P, ηP : C⊙ → P,

satisfying the properties (ρ⊙ idP ) ◦ ρ = (idP ⊙ ρ) ◦ ρ and (ηP ⊙ idP ) ◦ ρ = (idP ⊙ ηP ) ◦ ρ = idP .

We keep the notation ⊙ for the monoidal operation. It is common in the literature to denote
the morphism ρ by ◦, i.e., for every k ≥ 1, p ∈ P (k) and qi ∈ Q(ni) for i = 1, . . . , k,

p ◦ (q1 ⊗ · · · ⊗ qn) := ρ(n1 + · · ·+ nk)(p⊗ q1 · · · ⊗ qk).

Moreover, for any 1 ≤ i ≤ k and qi ∈ Q(ni) we use also the notation ◦i to denote partial
composition

p ◦i q := p ◦
(
ηP (1)(1)

⊗i−1 ⊗ q ⊗ ηP (1)(1)
⊗k−i

)
,

where ηP (1) : C → P (1). Since the maps ρ(n)n≥1 carry multiple inputs and give back one
output, it is common in the literature to call them many-to-one operators. A classical example

2The original definition involves vector spaces over a generic field but we consider only complex vector spaces,
in accordance with the structures presented so far.
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to understand this definition is given by the endomorphism operad EndV of a complex vector
space V with elements

EndV (n) = HomVectC

(
V ⊗n, V

)
, n ≥ 1, ηEndV (1)(1) = idV ,

and operadic composition

f ◦ (f1 ⊗ · · · ⊗ fk)(v1 ⊗ · · · ⊗ vn) := f
(
f1(v1 ⊗ · · · ⊗ vn1), . . . , fk(vn−nk+1 ⊗ · · · ⊗ vn)

)
,

where n = n1 + · · · + nk. In fact, it is possible to generalise the notion of an operad to model
composition between many-to-many operators, that is operators with multiple in- and outputs.
This leads us to define the category of bicollections.

Definition A.5. We call a bicollection a two parameters family of complex vector spaces

P = {P (n,m)}n,m≥0.

A morphism between two bicollections P , Q is a sequence of linear maps {ϕ(n,m)}n,m≥0 with
ϕ(n,m) : P (n,m)→ Q(n,m). For any couple of morphisms between bicollections we define the
composition of morphisms by composing each component. We denote the category of bicollec-
tions by Coll2.

The category of bicollections is endowed with two compatible monoidal structures.

Definition A.6. For any couple of bicollections P and Q and morphisms f , g we define the
horizontal tensor product ⊖ as follows:

(P ⊖Q)(n,m) :=
⊕

n1+n2=n
m1+m2=m

P (n1,m1)⊗Q(n2,m2),

(f ⊖ g)(n,m) :=
⊕

n1+n2=n
m1+m2=m

f(n1,m1)⊗ g(n2,m2)

together with the horizontal unity

CCC⊖ = CCC⊖(m,n) =

{
C if n = m = 0,

0 otherwise.

We define also the vertical tensor product �

(P � Q)(m,n) :=

+∞⊕

k=0

P (m, k)⊗Q(k, n),

(f � g)(n,m) :=
+∞⊕

k=0

f(m, k)⊗ g(k, n)

together with the vertical unity

CCC� = CCC�(m,n) =

{
C if n = m,

0 otherwise.

We refer to the triple (Coll2,⊖,CCC⊖) and (Coll2,�,CCC�) respectively as the category of horizontal
bicollections and the vertical bicollections.
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Lemma A.7. (Coll2,⊖,CCC⊖) and (Coll2,�,CCC�) are monoidal categories.

Proof. This is simple computations, based on the fact that (VectC,⊗,C) is monoidal. ■

Remark A.8. We point at some core differences and similarities between the tensor product
of vector spaces, and the two tensor products we defined on bicollections.

If V and W are two vector spaces, there exists an isomorphism of vector spaces SV,W : V ⊗
W →W⊗V . The set

{
S⊗
V,W , V,W ∈ VectC

}
defines a natural transformation, called a symmetry

constraint. for any V and W are bicollections The horizontal tensor product is symmetric with
symmetry constraint given by S⊗

V,W . Nevertheless, the vertical tensor product � does not have
such symmetry constraints, though we constructed such one but for the monoid generated by
the bicollection LF in (2.1). Another important property related to the vertical and horizontal
tensor product is the closedness. A category C is said closed if for all objects A,B ∈ Ob(C) the
set of morphisms HomC(A,B) is an object of C. A monoidal category (C, •, I) is said a closed
monoidal category if it is closed and the following compatibility holds: for all objects A, B, C
in Ob(C)

HomC(A,homC(B,C)) ∼= HomC(A •B,C),

with the isomorphism being natural in all three arguments. The category of finite-dimensional
vector spaces with the usual tensor product is closed monoidal, owing to the fact that the set
of linear maps between vector spaces is again a vector space and then using usual identifica-
tion of bilinear maps with linear maps on the tensor product. Now, neither (Coll2,⊖,CCC⊖) nor
(Coll2,�,CCC�) are closed monoidal. Indeed, they are not even closed, since there is no canonical
bigrading on the set of morphisms.

There exists a functor from the category of collections to the category of bicollections, that is
the free horizontal monoid functor T : Coll → Coll2, adjoint to the forgetful functor associating
to a monoid (P, γ, η) for the horizontal tensor product ⊖ the collection (P (1, n))n≥1.

Definition A.9. Let P = (Pn)n≥1 be a collection, we define the bicollection T (P ) by

T (P )(m,n) =
⊕

k1+···+km=n

Pk1 ⊗ · · · ⊗ Pkm ,

when n ≥ 1 and m ≥ 1 and the condition k1 + · · · + km = n is satisfied for some integer
k1, . . . , km ≥ 1. Moreover, we set T (P )(0, 0) = C and T (P )(m,n) = 0 otherwise.

Proposition A.10. Let Ci, 1 ≤ i ≤ 4 be four bicollections, then there exists an explicit mor-
phism

RC1,C2,C3,C4 : (C1 � C2)⊖ (C3 � C4)→ (C1 ⊖ C3) � (C2 ⊖ C4).

We call RC1,C2,C3,C4 the exchange law. Besides, if the bicollections C2 and C4 are equal and in
the image of F , one has

(C1 � T (C))⊖ (C2 � T (C)) ≃ (C1 ⊖ C2) � T (C).

The family of morphisms {RC1,C2,C3,C4 , Ci ∈ Coll2} defines a natural transformation (which
is, in general, not an isomorphism) between the functors ⊖◦�×� and �◦⊖×⊖. In particular,
for any quadruplet of morphisms fi : Ci → Di, 1 ≤ i ≤ 4, one has the commutative diagram (see
Figure 15). We denote by Alg⊖ (resp. CoAlg⊖) the category of all monoids (resp. comonoids) in
(Coll2,⊖,CCC⊖), Alg� (resp. CoAlg� the category of monoids (resp. comonoids) in (Coll2,⊖,CCC�).
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(C1 � C2)⊖ (C3 � C4) (D1 � D2)⊖ (D3 � D4)

(C1 ⊖ C3) � (C2 ⊖ C4) (D1 ⊖D3) � (D2 ⊖D4)

(f1�f2)⊖(f3�f4)

RC1,C2,C3,C4
RD1,D2,D3,D4

(f1⊖f3)�(f2⊖f4)

Figure 15. R is a natural transformation.

Proposition A.11 ([1, Proposition 6.35]). The category (Alg⊖,�,CCC�) is a monoidal category.
Indeed for any couple of horizontal algebra

(
A,mA

⊖, ηA
)
and

(
B,mB

⊖, ηB
)
, the product mA�B : A�

B → A � B is defined

mA�B
⊖ :=

(
mA

⊖ � mB
⊖
)
◦RA,B,A,B, ηA�B = ηA � ηB.

Moreover, the bicollection CCC� is a an horizontal monoid

m�
⊖ : CCC� ⊖CCC� → CCC�, η�

⊖ : CCC⊖ → CCC�,

which are respectively a horizontal algebra and a horizontal unity.
The category (CoAlg�,⊖,CCC⊖) is a monoidal category. Indeed for any couple of vertical

comonoid
(
A,mA

�, ηA
)
and

(
B,mB

�, ηB
)
, the product ∆A⊖B : A→ A⊖B is defined

∆A�B
⊖ := RA,B,A,B ◦∆A

� ⊖∆B
�, ηA�B = ηA � ηB.

Moreover, the bicollection CCC� is a an horizontal monoid

m�
⊖ : CCC� ⊖CCC� → CCC�, η�

⊖ : CCC⊖ → CCC�,

which are respectively a horizontal algebra and a horizontal unity.

Definition A.12. We call PROS a monoid in the monoidal category (Alg⊖,�,CCC�). That is an
horizontal monoid

(
C,mC

⊖, η
C
⊖
)
, endowed with a couple of bicollections morphisms

mC
� : C � C → C, ηC� : CCC� → C,

defining a vertical monoidal structure on C. In addition, these morphisms are horizontal mor-
phisms.

We recall that the same structure takes also the name of double monoid in the literature,
see, e.g., [1].
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