Symmetry, Integrability and Geometry: Methods and Applications SIGMA 19 (2023), 043, 15 pages

The Asymptotic Structure of the Centred Hyperbolic
2-Monopole Moduli Space

Guido FRANCHETTI ® and Calum ROSS ®

a) Department of Mathematical Sciences, University of Bath,
Claverton Down, Bath BA2 7AY, England, UK

E-mail: gf/24@bath.ac.uk

) Department of Mathematics, University College London,

London, WC1E 6BT, England, UK

E-mail: calum.ross@ucl.ac.uk

Received February 28, 2023, in final form June 21, 2023; Published online July 04, 2023
https://doi.org,/10.3842/SIGMA.2023.043

Abstract. We construct an asymptotic metric on the moduli space of two centred hyperbolic
monopoles by working in the point particle approximation, that is treating well-separated
monopoles as point particles with an electric, magnetic and scalar charge and re-interpreting
the dynamics of the 2-particle system as geodesic motion with respect to some metric.
The corresponding analysis in the Euclidean case famously yields the negative mass Taub-
NUT metric, which asymptotically approximates the L? metric on the moduli space of
two Euclidean monopoles, the Atiyah—Hitchin metric. An important difference with the
Euclidean case is that, due to the absence of Galilean symmetry, in the hyperbolic case
it is not possible to factor out the centre of mass motion. Nevertheless we show that we
can consistently restrict to a 3-dimensional configuration space by considering antipodal
configurations. In complete parallel with the Euclidean case, the metric that we obtain is
then the hyperbolic analogue of negative mass Taub-NUT. We also show how the metric
obtained is related to the asymptotic form of a hyperbolic analogue of the Atiyah—Hitchin
metric constructed by Hitchin.
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1 Introduction

Magnetic monopoles [28] are an interesting class of topological solitons defined on a Rieman-
nian 3-manifold M. The monopole data consists of a pair (A, ®), where A is a connection on
a principal SU(2)-bundle over M and ® is a section of the associated adjoint bundle. The pair
(A, ) satisfies a system of first order PDEs known as the Bogomolny equations supplemented
by suitable boundary conditions. In order for the Bogomolny equations to admit non-singular
solutions M must be non-compact; the cases of Euclidean 3-space E3 and hyperbolic 3-space H?
have received the most attention.

Hyperbolic and Euclidean monopoles share many similarities. For example, in both cases the
space of solutions of the Bogomolny equations is a smooth manifold of dimension 4|k|, where k is
a topological integer which counts the total magnetic charge of the monopole solution. At least
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for well-separated configurations, |k| can be interpreted as the number of monopoles described
by the solution.

There are however a number of important differences between the two cases as we now
discuss. First, for the class of boundary conditions usually considered, the Higgs field norm ||®||
of both Euclidean and hyperbolic monopoles has a finite non-zero limit, known as the monopole
mass p, as we move to infinity which is independent of the direction. More precisely, both E?
and H?3 admit a cohomogeneity one action of SO(3) with S? as the typical orbit. Let r be
a coordinate transverse to the SO(3) orbits such that the sphere volume increases with . Then
p = Rlim,_, ||®||. In the Euclidean case p can always be fixed to any non-zero positive value,
traditionally one, by rescaling. However, due to the length scale R associated to the non-zero
curvature —R 2 of hyperbolic space, the mass of a hyperbolic monopoles cannot be fixed and p
is an effective parameter.

It is worth noting that monopoles such that 2p € Z are equivalent to circle-invariant instan-
tons on E* [1]. The monopole number k and the instanton number I are related by I = 2kp.
While Euclidean monopoles could be similarly related to translation invariant instantons on £,
translation invariance would cause the instanton to have infinite action and the correspondence
becomes much less useful.

Second, in both cases the monopole abelianises at infinity, i.e., for  the transverse coordinate
introduced above, ®|g2 and A|g2 become parallel elements of su(2) as r — oo. However in
the Euclidean case the data induced on S2 only determines the monopole charge k, while
a hyperbolic monopole is fully determined by its asymptotic data [7].

The third difference, which constitutes the motivation for this work, has to do with the pos-
sibility of equipping the moduli space My, of charge k monopoles with a “natural” Riemannian
metric of physical significance. The (framed) moduli space My, is the space of solutions of the
Bogomolny equations with the appropriate boundary conditions modulo bundle automorphisms
which become the identity at some fixed point of S2. For both Euclidean and hyperbolic
monopoles it is known to be a smooth manifold of dimension 4k [1, 10]. In the Euclidean case,
the flat L2 metric on the space of field configurations (A4, ®) descends to a curved metric on the
space of field configurations modulo bundle automorphisms. Restricting to ME“CI yields the L?
moduli space metric.

This metric has an important physical interpretation thanks to the adiabatic dynamics ap-
proximation: Yang-Mills—Higgs dynamics in 3 + 1 dimensions with initial conditions close to
a solution of the Bogomolny equations is well approximated by geodesic motion on ME“CI with
respect to the L? metric [25]. In the case of Euclidean monopoles the L? metric is hyperkihler [2].
The moduli space M%UC] has a Riemannian product decomposition ME“CI = E3x (S Ly M k) /Ly,
where Mj, is irreducible simply connected of dimension 4(k —1). The factor E® x S! carries
the flat product metric. A point in E3 x S specifies the monopole centre of mass in E? and
a phase angle whose time dependence determines the total electric charge. The moduli space
metric on My /Zs is the celebrated Atiyah-Hitchin metric [2].

In the hyperbolic case, the L? metric on Ml,;yp is divergent. Of course, other metrics can be de-
fined and various alternative approaches have been proposed in the literature: the boundary met-
ric originally proposed by Braam—Austin [7], see also [6, 34, 35] for further work, the instanton
metric restricted to circle-invariant configurations [14], the twistorial approach of [4, 5, 30] and,
for a charge 2 monopole, the family of Einstein metrics constructed in [22]. The relations between
these metrics and their relevance, if any, to the dynamics of magnetic monopoles is still unclear.

Another difference between the Euclidean and hyperbolic case is that, since there is no
analogue of the Galilei group for R x H3, we do not expect the moduli corresponding to the
centre of mass position in H? to factorise as they do in the Euclidean case. However, it is
still possible to identify an S! factor corresponding to the total electric charge. In other words
/Vl],zyp = (S! x M ,lgyp) /Zy, where M ,?yp is a simply connected manifold of dimension 4k — 1.
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In this paper we approach the problem starting from point particle dynamics. As shown
in [26, 27] for two monopoles and in [19] for the general case, the asymptotic region of the moduli
space of k Euclidean monopoles can be probed by making use of the point particle approximation.
That is, well-separated monopoles are approximated by point particles having equal masses
and magnetic charges but different electric charges. The resulting k-particle dynamics can
be re-interpreted as geodesic motion on a T*-bundle over the configuration space of k particles
equipped with a Riemannian metric which can be determined from the Lagrangian of the particle
system.

The metric obtained following this procedure is generally incomplete as it develops singular-
ities at finite distances. Since it is only an approximate metric valid in the region of the moduli
space corresponding to well-separated monopoles, these singularities are not worrisome and from
the physical point of view they just signal the fact that the point particle approximation breaks
down as the monopoles come close to each other. For the case of two monopoles, the metric
found in [26, 27], see also [11, 18], after fixing the centre of mass of the 2-particle system is the
famous Taub-NUT metric [21]. The Taub-NUT metric depends on one effective parameter M
called mass. It is complete for non-negative values of M but becomes singular in the interior
if M < 0. The metric found in [26, 27] is the negative mass version of Taub-NUT, which is
indeed the asymptotic form of the L? metric on Mo /Z2, the complete Atiyah—Hitchin metric.

Here we carry out the analysis for two particles in H3. As mentioned, the hyperbolic case
is complicated by the fact that H? x R has no analogue of the Galilei group so in general
it is not possible to factor out the centre of mass motion. In fact, in general it is not even
clear what the centre of mass should be: even for two particles there are competing definitions
which are inequivalent if the particles have different masses [15, 16, 17], and no point satisfies
the property of being either fixed or moving along a geodesic for general configurations with
pairwise attractive interactions [9, 17].

A general analysis would thus have to consider the full 6-dimensional configuration space of
two particles in H3. However, it is possible to simplify the problem if we restrict our attention to
specific configurations. The isometry group of H? is the (orthochronous subgroup of the) Lorentz
group, and acts by symmetries on the particle Lagrangian. The conserved quantities associated
to boosts and rotations can be naturally identified with the total linear and angular momenta
of the particle system. By the conservation of linear momentum, if the initial conditions are
taken so that the two particles are at antipodal positions and have opposite velocities, then the
particles will remain antipodal throughout their motion. For such configurations we thus reduce
to a 3-dimensional configuration space.

Following the analysis of [26, 27], we reinterpret particle dynamics restricted to antipodal
configurations as geodesic motion on an S' bundle over this 3-dimensional configuration space.
By doing so we obtain a Riemannian metric, which we like to call hyperbolic Taub-NUT [12] due
to its manifest similarities with the Taub-NUT metric, first constructed in [24]. The hyperbolic
Taub-NUT metric, just like the Taub-NUT one, depends on one effective parameter M called
mass, is complete for M > 0 and becomes singular in the interior if M < 0. In complete analogy
with the results of [26], the metric that we obtain is hyperbolic Taub-NUT with negative mass.

It is interesting to note that the metric we obtain corresponds, for k£ = 2, to the one found
in [20] by considering the motion in H® of a monopole in the background of k — 1 fixed ones.
As already noted in [20], while fixing the positions of all but one monopole bypasses the need
to deal with a higher dimensional configuration space, it is unphysical from the perspective
of SU(2) monopoles dynamics since for well separated configurations the mass of each monopole
is determined by the other charges and not a free parameter. Therefore, the analysis in [20] does
not allow one to interpret hyperbolic Taub-NUT as a geodesic submanifold of the full moduli-
space. Our results instead show that negative mass hyperbolic Taub-NUT does indeed capture
the asymptotics of some metric on the moduli space of two centred hyperbolic monopoles.
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It is then natural to ask what is the metric which negative mass hyperbolic Taub-NUT
is approximating, i.e., what is our hyperbolic analogue of the Atiyah—Hitchin manifold. As
we discuss in Section 3, a metric in the conformal class of the Einstein metric constructed
in [22] asymptotically reduces to hyperbolic Taub-NUT with negative mass, again in complete
parallelism with the Euclidean case.

The plan of the paper is as follows: In Section 2, we discuss our conventions and some
useful properties of H3, summarise the basics of the point particle approximation, and finally
derive a metric on the asymptotic moduli space of two centred monopoles in H3. In Section 3,
we relate this metric to the hyperbolic analogue of the Atiyah—Hitchin metric constructed by
Hitchin in [22] and discuss some open questions.

2 Point particle dynamics in H3

2.1 Some facts about H?3

Perhaps the most straightforward model of hyperbolic space H? is the “pseudosphere” L in
Minkowski space E'3, that is the (upper) hyperboloid

L={(W,X,Y,Z) e EV: X?+Y?+ 72> - W?=—-R*>, W > 0}

with the Riemannian metric induced as a submanifold of E'3. The parameter R is related to
the curvature x of H? via kK = —R™2. Since the constraints defining L are invariant under the
subgroup O™ (1, 3) of the Lorentz group consisting of orthochronous Lorentz transformations, it
is clear that L has isometry group O*(1,3). In these coordinates the Killing vector fields (X;,Y;)
generating rotations and boosts have very simple expressions,

X, =Y0, — Zoy, Xo = Z0x — X0z, X3 = X0y — Y0y, (2.1)
Yi=X0w +Wox, Yo=YOw+Wdy, Ys3=Z0w+Way.

The vector fields (2.1) and (2.2) satisfy the so(1,3) Lie algebra relations,
[Xi, X;5] = —€ik X, [Xi, Yj] = —€ijx Yk, Y3, Y] = +e€ijiu X

Geodesics in this model are given by the intersection of H? with 2-planes through the origin.
The hyperbolic distance between two points X1, Xy € L, having coordinates (W;, X;,Y;, Z;), is
given by

X1, X
Dp(X4,X3) = RarcCosh <_9E13(1’2)) 7

R2

where gp1.3 is the inner product on Minkowski space E13.

The Klein—Beltrami model K is obtained by gnomonic projection of L: a point p on the
hyperboloid is mapped to the intersection point between the straight line (in the Euclidean
sense) from p to (0,0,0,0) € E% and the hyperplane W = R tangent to the hyperboloid
at (R,0,0,0). Denoting by (x,y, z) coordinates on K, we thus have the relation

(r,9,2) = (X, 2), (2.3)

and we see that

K ={(z,y,2) € EB*: 2* + y* + 2° < R?}, (2.4)
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the open ball of radius R. For reference (2.3) has inverse

(X,Y, Z, W) = (z,y,2,R), (2.5)

R

where |x|? = 22 + y? + 22. We will often denote by x a point in H3 having coordinates (z,y, 2)
in the Klein model K. In K the hyperbolic distance between two points x1, x2 is

R? — gp, (x1,%2)
Dk (x1,x2) = RarcCosh 3 , 2.6
K (%1,%2) <\/R2 PR VE - ol (2.6)

where ggs is the Euclidean metric on E3. The metric on K is obtained by pulling back that
on L via (2.5), getting

(R? — [x[*)dx - dx + (x - dx)?
" R2< (R = ) ) =0

Due to the off-diagonal terms in g, the Klein—Beltrami model may seem unappealing when
compared to other models such as the half-space model or the Poincaré one. However it shines
in at least two respects. First, all the geodesics in K are straight line segments. Second, the
Killing vector fields take a convenient form,

X1 = y0, — 20y, Xo = 20, — 20, X3 = 20y — YOy, (2.8)
Y1 = R%*0, — 2V, Ya=R?9,—yV, Y3=R?0,-:V,

where
V =20, +y0y + 20.,

making the interpretation of conserved quantities transparent, cf. equations (2.20) and (2.21)
below. A nice review of the properties of the most common models of hyperbolic space is
contained in [8].

It can be useful to introduce other coordinate systems on K. Defining polar coordinates
(p,0,6) asin B3, with 0 < p < R, § € [0,7], ¢ € [0, 27),

x = psinf cos ¢, y = psin 6 sin ¢, z = pcosb,
(2.7) becomes

o = R? R?dp? + (R2 - p2)p2d92
(R? ~ p?)°

for dQ? = d6? + sin? § d¢? the round metric on S2. If we now redefine the radial variable by

sinh (%) = \/R2p7—p2 < p= Rtanh (%)
we get
g = dr? + R? sinh? (%) 40?2, (2.9)

showing that r € [0, 00) is a geodesic coordinate.
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Spatial inversion A belongs to the isometry group of H3, so given any point p € H3 we define
its antipodal point to be A(p). In the Klein model (2.4) we simply have A(z,y,z) = —(x,y, 2).

We will need to make use of parallel transport with respect to the Levi-Civita connection V
of H? in order to identify tangent spaces at different points xi, xo. Parallel transport along
a curve v: [0,1] — H3 from x; to X is an isometry Py : Ty, H® — Ty, H? obtained as follows.
Let vy € Ty, H?, then the parallel transport along v of v; is the vector Pyjv; € Ty, H? obtained
evaluating at ¢ = 1 the vector field along v which solves the parallel transport ODE with initial
condition V' (0) = v;. With respect to a coordinate frame {0;} the ODE reads

d . ..
&w+m¢mﬂza (2.10)

where I’} ;. are the Christoffel symbols associated to V and U J the components of the vector field

tangent to 7. The inverse of Py is P’ where (—7)(t) = v(1 — t) is the same curve with the
opposite orientation.

As is well known, parallel transport in a curved space depends on the choice of v. An
important property of hyperbolic space is that given any two points x1,xs € H? there is a unique
length-minimising geodesic connecting them. From now on whenever we need to compare vectors
at different points we will parallel transport one of them along this geodesic and suppress v from
the notation. With respect to the coordinates (x,y, 2) on K, the non-zero Christoffel symbols

read, having set ! = z, 22 =y, 2° = 2,

27 e,
7R2—|x|2 if j #£1,

ij Ji T 21

We use rotational symmetry to align the geodesic with the = axis. Then solving (2.10) one finds
that the vector at Tk, K obtained by parallel transport of v along v has components (U, Uy, 0-)
with respect to (0, 0y, 0:)|x, given by

Ve = —
v R2 — |X’1|2 X1 - (Xg — Xl) R2 — ‘X1‘2

N (x2 xxl).((xQ—xl) xv)] ’

R P [M(w?—wl)(xl-v)( R~ |xa? 1>

1 - (x5 — x1) (2.11)

. | R? — x| (2 —y)(x1-v) [ [R*—[xof
= -1
'Uy R2 — |X1|2 ’Uy + X1 - (X2 — Xl) R2 — ‘Xl‘z ’
~ R2 — |X2|2 (2’2 — Z1)(X1 . V) R2 — ‘XQ‘Q
z = o .. 19 z -1 )
ETVRE e | e ox) (VRS xP

where -, X are the dot and cross product of Euclidean 3-space.

Note that if xo = —x3 then parallel transport reduces to the identity so that v; = v;. Thus, we
can compare vectors tangent to antipodal points of K by simply comparing their coordinates just
as if we were in flat space. Moreover it can be checked that, denoting by (P»1)%, the components
of the parallel transport operator with respect to the coordinate frame, so that v = (Pgl)“bvb,

I(P21)%, _ O(Pn),

i i ;
oz} oz, o= —x1

i=1,2,3. (2.12)

Xo=—X]
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2.2 The point particle approximation

A hyperbolic monopole (®, A) on H? is a solution of the Bogomolny equations
da® = «F, (2.13)

where * is the Hodge operator with respect to the H? metric. The Bogomolny equations are
supplemented by the Prasad—Sommerfeld boundary conditions:

p= lim R|®|, (2.14)
7—00
, R
k= lim — [ Tv(®F) € Z. (2.15)
r—oo 4dmp Jq2

Here S? is a 2-sphere of geodesic radius 7 centred at some fixed point of H3, which may conve-
niently be taken as the origin r = 0 of the coordinates used in (2.9). The value of p is known as
the monopole mass, and the integer k is the monopole (magnetic) charge. The framed moduli
space szp of magnetic monopoles of charge k is the space of solutions of (2.13) satisfying (2.14)
and (2.15) quotiented by the group of framed bundle automorphisms. At least for 2p € Z, the
moduli space ngp is known to be a smooth manifold of dimension 4k [1].

As discussed in Section 1, the L? metric on ./\/ll,;yp = (S L ./\;l},;yp) /Zy is not well-defined. We
now proceed to investigate the dynamics of a point particle approximation to two well-separated
monopoles with the aim to understand if this dynamics can be interpreted as geodesic motion
with respect to some metric on /\;lgyp. As we shall see, we are able to do so by restricting to
a 4-dimensional submanifold of /\;lgy P corresponding to antipodal configurations.

Two well-separated monopoles can be approximated by two point dyons having electric,
magnetic and scalar charges. This is a familiar approximation in the case of Fuclidean mono-
poles [19, 26] and has been applied to the study of hyperbolic monopoles in the case where
one monopole is moving in the background of several fixed ones [20]. Here we consider two
well-separated monopoles that are both free to move and view them as point particles of equal
mass m, with electric and magnetic charges ¢;, ¢;, i = 1,2, located at the points x1,x9 € H3. As
in the Euclidean case, the scalar charge of the i-th monopole is y/¢? + g?. We will assume that
the dyons have the same magnetic charge g1 = go = g and denote by ¢ the difference between
the electric charges, ¢ = g2 — q1.

The 2-particle dynamics can be described in terms of the Lagrangian formalism. The Eu-
clidean case is discussed in [26], which we refer to for the details. The scalar charges modify
the rest masses of the particles and the electric charge (respectively magnetic charge) of each
particle couples to the Liénard—Wiechert 4-potential A* (respectively dual 4-potential fl“) pro-
duced by the other one. The dual potential A* is obtained from A* via the electromagnetic
duality transformation ¢; — ¢;, g; — —q;. Keeping terms up to quadratic order in the particle
velocities v; and the charge difference ¢, in the Euclidean case the resulting Lagrangian is

m V
Ly = —2m + 5(]1)1\2 + [va]?) + 87713((12 — ¢*ve — i) + %wE(m — 1), (2.16)

where Vg = |x2 — x1|7! and

o — < 29 — 21 ) <(y2 —y1)dz — (z2 —xl)dy> ‘

|x2 — x1] (2 —x1)? + (y2 — y1)?

If we regard Vg as a function of x5 = x only, then dwg = *gdVg, where xg is the Hodge star
with respect to the E3 metric.
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Proceeding in a similar way, we find that the Lagrangian for a 2-particle system in H? is
m Vv
Lop = E(HMHZ +[lv2)1?) + 87((12 — §*[lv2 = Poon %)

+ g—i(w(vg — Pglvl) — w(m — P12’U2)). (2.17)

Some of the differences between (2.17) and (2.16) simply amount to the replacement of the
Euclidean metric with the hyperbolic one: The Euclidean norm |- | is replaced by the hyperbolic

one || - || and the Green’s function Vg of the Euclidean Laplacian is replaced by the hyperbolic
one V. With respect to the coordinates (2.3) of K, V is given by
D
RV = coth (K(’;X?)> —1, (2.18)

where Dy is hyperbolic distance in the Klein model, see (2.6), and the one-form w by

o ( -2 ) ((yg—yl)dx—m—xl)dy) 2.19)

|x2 — X1 (2 —21)% + (y2 — y1)?

If we consider V as a function of xo = x only, we again have dw = xdV, where x is now calculated
with respect to the hyperbolic metric.

The appearance of the parallel propagator P is due to the non-zero curvature of H3. As
previously discussed, it denotes parallel transport along the unique length-minimising geodesic
from particle 1 to particle 2 and its expression with respect to the coordinates (2.3) is given
by (2.11). Since parallel transport is an isometry, |[ve — Pojv1||? is already invariant under the
interchange of particle 1 and 2. However (gq/4m)w(v1 — P21v1) is not invariant and needs to be
symmetrised under 1 <+ 2 as we have done in (2.17) — recall that ¢ = g2 — ¢1 so ¢ — —q under
1 <+ 2. In the Euclidean case symmetrisation is not needed since parallel transport is trivial.

We now turn to the special case of antipodal configurations, xo = —x;. Antipodal configu-
rations of two point dyons correspond to centred SU(2) monopoles. In fact, following [29] we
take a hyperbolic monopole to be centred if it lies in the zero set of the moment map of the
SO(3) € SOg(1,3) action. More intuitively, if we embed the ball model of H? in R* then a con-
figuration is centred in the hyperbolic sense if it is centred in the “Euclidean” sense. For two
monopoles, the latter condition is equivalent to the two monopoles having antipodal centres.

Restricting to antipodal configuration is justified since, as we will now show, dyons starting
off at antipodal positions with opposite velocities remain antipodal. In other words, antipodal
configurations are preserved by time evolution.

Let U be a vector field generating a symmetry of the Lagrangian L, and Sy’ be the in-
finitesimal change in the Klein—Beltrami coordinates (2.3) ¢, of particle a along U. By Nother’s
theorem, the conserved quantity associated to U is

2 3
=3y
a=1 i=1

For an interaction potential independent of the particle velocities, Nother’s theorem applied to
the symmetries (2.8) gives the conserved quantities

2 J,k k,J

Tyl — xtus
Cx. = —a at 2.20
X Z(RZ—\X(LP)’ (2.20)

a=1

2 i
’UCL
CYz = E <2 — |Xa|2> R (221)

a=1

i
douzy,.

0
ot

a
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where v? is the i-th component of particle a velocity with respect to the coordinate frame 0;
and (ijk) is a symmetric permutation of (123). We can recognise (2.20) and (2.21) for the
angular and linear momentum, respectively, of the system along the direction 0;.

Because of the velocity-dependent interactions, the right-hand side of (2.20) and (2.21) has
additional terms. However if we differentiate (2.21) with the additional terms included, evaluate
at antipodal positions xo = —x; and make use of (2.12), we still find that the two particles
experience opposite accelerations. Thus two particles starting at antipodal positions with op-
posite velocities will maintain antipodal positions throughout. This choice of initial conditions
corresponds to taking the constants (Cy;) to be zero, i.e., to zero total linear momentum.

2.3 The asymptotic moduli space metric

On the basis of the results of Section 2.2, we would like to restrict Lop to antipodal configurations.
While spatial inversion A is an isometry of H? and a symmetry of Lop, the two particles have
different electric charges so A is not a symmetry of an antipodal configuration and we cannot
invoke the principle of symmetric criticality. However, if L is a 2-particle Lagrangian, and L, is
the Lagrangian obtained by setting xo = F'(z1) in L, it is easy to show that the Euler-Lagrange
equations associated to L, are equivalent to those associated to L and restricted to configurations
satisfying 2o = F(z1) if and only if F is an affine transformation, i.e., 9> F/ (&r’i)z = 0 for all
values of 7. In the present case FF = A = —1ds.

For ease of notation we give the argument for ¢ = 1, the general case is similar. Setting
L,= L(a;l, x9 = F(x1), 21, F’a':l) the Euler-Lagrange equations associated to L, are

d 0L, 0L, d oL 0L d oL 0L , OL _,.
= _ = (=== _=Z= — = 2\ F+=F =0. (2.22
dt 8.%"1 axl [(dt 8i’1 8:6‘1) + (dt 8$2 81‘2) + 89’52 i zo=F(z1) 0 ( )

If F” =0, then 2o = F(x1) = Ciz1 + Ca, 8/0x5 = 0%8/8:31 and (2.22) becomes

doL, 0L, _,[(doL oL L

de 8.%"1 axl - de 8.j31 81‘1 z2=F(z1) -
showing that the equations associated to L and restricted to x9 = F'(x1) are equivalent to those
associated to L.

Let us thus consider the Lagrangian Lop restricted in such a way. Setting 7% = —2! = 2,
Piy = Py; =1, and vl = —v! = v" in (2.17), we obtain
2y V.
La=(m =20 ol + ¢ + Shea(v), (2.23)
27 8 27
where V, and w, are the scalar potential and 1-form (2.18) and (2.19) with x = x3 = —x;. It is

now convenient to switch to the geodesic polar coordinates of (2.9) with r the geodesic distance
between x and —x. Then

RV, = coth (%) -1, wy = cos 0 do,
satisfying
dw, = *dV,. (2.24)

The Lagrangian (2.23) is essentially the & = 2 case of the Lagrangian obtained in [20] by
considering the motion of one monopole in the background of k—1 other fixed ones. The analysis
to show that the dynamics associated to (2.23) can be reinterpreted as geodesic motion now
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parallels that of [20] and results in the hyperbolic Taub-NUT (hTN) metric, but for completeness
we give the details here. First we add in the constant term —%qQ so that (2.23) becomes

Lo=m(1- L2 jupp - 2 (1= 22 4 ), (225)

2mm 27
Next we interpret the electric charge as the rate of change of a phase, ¢ = x, and rewrite (2.25)
in the form

Lyea = m[U(r)||v]|* + W(r)R*(x + wa)?] (2.26)
The dynamics associated to (2.26) is geodesic motion with respect to the metric

ds® = Ugx + WR?(dx + wa)?.
The phase x is a cyclic variable in (2.26) with conserved momentum

px = 2mB*W (X + wa(v)) = kq,

where k is a constant to be determined. Eliminating xy = kaﬁ — wa(v) from Lyeq using the

Routhian procedure we obtain

L;ed = Lred - pxX =m

kq 2 kq
2 2 _ _
Ul + WR <2msz>] b gy —n(0))

+ kquwa,(v). (2.27)

k2q2

= Ul = e

The expression (2.27) matches the reduced 2-particle Lagrangian (2.25) if

2 2
g Va g 1 2mrmR
v < 27Tm>’ 27’ 7% < g° v

so we obtain the metric

2Va
ds? = <1 — gwm)gK +

Condition (2.24) implies dw, = — (27rm/ 92) xdU. Working in units where g? = 4mmN, setting

( g2 >2 <1 B gZVa)le(dX +wa)2. (2.28)

2rmR 2mm

M=—-N <0,
and introducing the left-invariant 1-form on SU(2)
= dx + wa = dx + cos 0 do,
where x has range x € [0,47) in order to avoid conical singularities, we can rewrite (2.28) as
gnrN = Ugk + 4M>U 103,
U:1+%<coth(%)—l>—1+%( )Y (2.29)

which is the hyperbolic Taub-NUT metric with negative mass M. The metric (2.29) with
positive M was first introduced in [24], see also [3, 12, 20] for a discussion of its properties.
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It is worth pausing to recall some facts about the Taub-NUT metric and its hyperbolic
cousin (2.29). Both metrics can be expressed in terms of the so-called Gibbons-Hawking ansatz

ds? = Ugs + AM?UH(dep 4 )2,

where M is a constant, g3 is either the Euclidean metric on E2, for Taub-NUT, or the metric
of hyperbolic 3-space H?3, for hyperbolic Taub-NUT, and the 1-form o satisfies the equation
da = xdU, with x the Hodge star with respect to g3. As a consequence, U is a Green function
of the g3 Laplacian. In the case of E% by taking

oM
U=1+"2,
.

with r the usual radial coordinate, one obtains the Taub-NUT (TN) metric. If the mass param-
eter M is non-negative TN is a smooth complete metric defined on a manifold diffeomorphic
to R%. In the case of H? by taking U to be the hyperbolic Green’s function

U= 1+%(ef —1)7

with r the geodesic coordinate of (2.9), one obtains the hyperbolic Taub-NUT (hTN) met-
ric (2.29). As its Euclidean relative, hTN is a smooth complete metric defined on a space
diffeomorphic to R* if M > 0 and singular otherwise. The geometry of hTN near the NUT is
equal to that of TN and as R — oo the hTN metric with mass M converges to the TN one with
the same mass. While in (2.29) we have kept the dependence on both the mass parameter M
and the radius of curvature R of H3, up to homothety the hTN metric only depends on the
ratio M /R as can be checked by substituting r — Mr.

Clearly there are many similarities between TN and hTN. Besides the fact that they both
arise from the Gibbons-Hawking ansatz and are defined on diffeomorphic spaces, they both have
bi-axial Bianchi IX form, thus admitting a cohomogeneity one action of SU(2) x U(1); they both
are circle fibrations over a 3-manifold of constant curvature, E3 for TN and H? for h'TN, except
at the NUT r = 0, a fixed point of the isometric U(1) action where the circle fibre collapses to
zero size; they both have an asymptotic circle fibration with fibres of finite length, an asymptotic
behaviour called ALF in the Euclidean case. Finally, both TN and hTN admit a multi-(h)TN
generalisation with & NUTs obtained by taking U to be the superposition with equal weights
of k poles. There is also a very important difference: while multi-TN is hyperkahler, hyperbolic
multi-TN is half-conformally flat but not even Einstein.

3 Further remarks and conclusions

The hTN metric may be relevant to the dynamics of hyperbolic monopoles. Besides the results
that we have presented here, [31] shows how hyperbolic multi-TN with & NUTs emerges as the
moduli space of one SU(2) monopole with k singularities, a result which also follows from the
analysis in [20] once we reinterpret the fixed monopoles as abelian singularities. The double role
of hyperbolic (multi-)TN with the appropriate value of the mass parameter as both an asymp-
totic moduli space metric of two centred SU(2) monopoles and the moduli space of one SU(2)
monopole with singularities completely parallels what happens in the Euclidean case. Multi-TN
is shown to be the moduli space of singular Euclidean monopoles in [23], where the singular
monopoles are-interpreted as smooth circle-invariant instantons on multi TN. The construction
in the hyperbolic case is completely similar [31] and has been used in [13] to construct singular
as well as smooth hyperbolic monopoles.

It is only natural to ask if the parallelism between the hyperbolic and Euclidean case extends
to the full centred 2-monopole space: Is there a complete metric on this moduli space which
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asymptotically reduces to negative mass h'TN? We are now going to show that, at least for
a specific value of the monopole mass, the answer is yes and such a metric is in the conformal
class of the family constructed in [22].

In [22], Hitchin constructed a family g, for k¥ > 3 an integer, of SO(3)-invariant metrics de-
fined on the non-compact space S*\RP2. The metric g, is half-conformally-flat and conformally
equivalent to an Einstein metric hy, on S* having positive scalar curvature

o (T
s = 2tan (%>
with a conical singularity of deficit angle % along an embedded RP2. For k = 3 there is no
conical singularity and hs is the round metric on S. For k = 4 the metric hy admits a smooth
global branched cover isometric to CP? with the Fubini-Study metric. For & > 5 the metrics
are new.
For our purposes, what matters the most is the fact that for £ > 5 these metrics are naturally
defined on the moduli space of centred SU(2) monopoles of charge 2 on H3. Taking H? to have
curvature —1 the monopoles have mass

k-4

P==

Equivalently one could take the monopoles to have unit mass and the curvature of H? to
be —1/p%. Importantly, as k& — oo the scalar curvature s, — 0 and h; converges to the
Ricci-flat Atiyah—Hitchin metric.

By [36], gx is determined by a solution of Painlevé’s 6th equation and the conformal factor
making g; Einstein can be expressed as an algebraic function of the data determining gi. The
main problem is thus solving Painlevé’s equation, which is done in [22] via twistorial methods.
Referring to the original paper for the details, we just note that gy is given by!

e nd | (-2

2
3 T
o) a0 a2

02

+ (3.1)

9k = 2(
The metric gj is negative definite for z € (1,00) and can be extended to = = 1, which is a bolt
with the topology of RP2.
It is shown in [22] that for large values of z,

02~ (k4—k22)27 02 ~ 41—4/1;;1—2%’ 02 ~ _W_ (3.2)
Making the coordinate change

T = 22_§u_g
in (3.1), and

2r _12

E:—m@3w) (3.3)

in gnpr, see (2.29), one finds that near u = 0, to leading order,

du?2 2% 2
SO N TS a0ty B
k R du u (k—2)

LOur conventions differ from those used in [22] by a different normalisation of the left-invariant forms on SU(2),
dn; = 7%Eijk77]' A n and relabelling. More precisely %7]1 =03, %772 = 032, %7]3 =01 1 = Q3, Q3 = Q1, where the
quantities on the left-hand side (respectively right-hand side) are those used here (respectively in [22]).
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where dQ? = 72 + 2 is the round metric on S2, provided that the mass parameter takes value

- ()

While g and gnrn agree to leading order, the approximation (3.2) is not precise enough to
determine the sign of M.

However the metric g¢ is determined exactly in [22] and given by, for x = 532(55:12 ),
36s(1 + s)ds? 9s%(s — 1)(1 + ) 9s3(1 + s) 9
g6 = - - ;s — n
(27 (2+5-2) (12045127 G-D2+o0+29"

B 9s2(1+s)

(s—1)(1+25)2

Making the coordinate change s = u~! in (3.4) and using (3.3) with & = 6 in (2.29) we now find
that for small u

(3.4)

_g gy du? de® A9 g
36  RZ  4u?  4u 8u 16
provided that the h'TN mass M takes value

M=%
8

Thus gg is asymptotic to h'TN with negative mass.

The main point of this work was to show that negative mass hTN emerges as an asymptotic
moduli space metric of two centred SU(2) monopoles, which was done in Section 2. This result
and the relation between negative mass h'TN and gg which we just discussed invite many further
questions which we leave for future work.

First, the asymptotics of g; for general k and its behaviour as £k — oo need further study.
In particular note that negative mass hTN converges in the zero curvature limit to negative
mass TN, which is the correct asymptotic form of the Atiyah—Hitchin metric, while it is the
Einstein metric h; rather than g, which converges to Atiyah—Hitchin as k& — oo. It is thus
natural to ask what is the & — oo limit of g and how is it related to the Atiyah—Hitchin metric.

Second, the metric hy constructed in [22] is special by virtue of being Einstein, but what
makes g, special within its conformal class? At least at the asymptotic level the answer may lie
with the Abelian monopole equations satisfied by (U, w,), dwa = *dU, which are not preserved
by a conformal rescaling of the metric. In the Euclidean case the Abelian monopole equations
imply that the three self-dual two forms w’ = wg A dz' + %ei ik VE da? A dz® are closed and
provide three hyperkéahler forms; it is possible that in the hyperbolic case they also determine
some special structure, although this remains to be explored.

Many other questions along the lines of “what is the hyperbolic analogue of” some property
of the Euclidean moduli space metric could be asked. We only mention the following one. Two
families of (hyperkéhler) gravitational instantons with ALF asymptotics are known: Ay, which
is the same as multi-TN with k£ + 1 NUTSs, and Dy, which includes the Atiyah—Hitchin manifold
as Dy. As shown in [32], ALF Dy manifolds with £ > 1 can be constructed by gluing NUTs
to Dy. Is it possible to obtain a hyperbolic analogue of ALF D; by similar means? While the
hyperbolic analogues of TN and Dy are at our disposal, the construction in [32] strongly relies
on the hyperkéhler structures on Dy and TN, which are not shared by their hyperbolic relatives.

Finally the case of non-centred configurations of two monopoles is worth investigating. The
problem is non-trivial already at the point particle level: While in Euclidean space the possibility
of factoring out the centre of mass motion makes the reduced dynamics independent of the total
momentum, in the hyperbolic case the dynamics does depend on the total momentum of the
system, see [33] and references therein.
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