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Abstract. Seiberg—Witten geometry of mass deformed N = 2 superconformal ADE quiver
gauge theories in four dimensions is determined. We solve the limit shape equations derived
from the gauge theory and identify the space 97 of vacua of the theory with the moduli space
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instantons on R? x T2, of G-monopoles with singularities on R? x S!, the Hitchin systems
on curves with punctures, as well as various spin chains play an important réle in our story.
We also comment on the higher-dimensional theories.
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1 Introduction

In this work a class of quiver N' = 2 supersymmetric theories in four dimensions is analyzed. The
first problem of this sort was solved in [166, 167] for the SU(2) gauge theory in four dimensions
with eight supercharges.

We study mass perturbed N = 2 superconformal theories, and compute the exact metric

dsiy = Gz 7du”da

on the moduli space 9 of vacua of the low-energy effective theory. We also compute the vacuum
expectation values

<Oi,n>u

of all gauge invariant N' = 2 chiral operators.

Our theories have the gauge group G, which is a product of a finite number of special
unitary groups. The technique we use is the saddle point approach to the calculation of the
supersymmetric partition function of the theory in Q-background [140]. The partition function
is given by the sum over special instanton configurations. In the limit, where the Q2-deformation
is removed so that the theory approaches the original flat space theory, the sum over the special
instantons is dominated by the contribution of one particular special instanton configuration,
of a very large instanton charge (with the expected small effective density of instanton charge).
This configuration, the so-called limit shape, is found in this work using a novel approach,
built on the analytic techniques of [149]. Namely, we interpret the limit shape equations as the
conditions defining the analytic continuations of the generating functions

Yi(x) = exp(trlog(x — ®;))u,

where 4 labels the simple factors in the gauge group G, and ®; is the corresponding complex
adjoint Higgs scalar field. We get the system of (algebraic) equations determining these functions
by fixing the set of basic invariants of the monodromy of the analytic continuation.

Recall that a complex Lie group G is naturally associated with the quiver gauge theory. This
group is different from the original gauge group G, of the theory. Roughly speaking the Dynkin
diagram of G is the universal cover of the quiver of the gauge theory. The group G4 may
be infinite-dimensional. In fact, for the A" = 2 superconformal theories the corresponding Lie
algebra g, is the finite-dimensional simple Lie algebra of the ADE type g, or its affine version g,
or the algebra g?[oo.

Our main construct is the z-dependent element g(x) of the maximal torus ng of ng, which
can also be viewed as the multi-valued Tg-valued function. The group element is locally analytic
in x,

g@) = ] Pile+m) N Yile + )™, (1.1)

i€ Vert,

—_——

where 7 runs over the set Vert, of vertices of the universal cover of the quiver graph ~, the
polynomials P;(z) and the complex parameters p; are determined by the gauge couplings and
the masses of matter hypermultiplets, and )/ and A are the simple coroots and the fundamental
coweights of gq. It is also convenient to introduce another group element

goo(@) = [ Pilw+p). (1.2)

1€ Vert,
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The notation z?"v, w?"v used in (1.1), (1.2) and below should be understood with the help of
the exponential map Lie(Tq) — Tq, see Appendiz C. It is well-defined for the coroots a¥, while
for the coweights \V it is well-defined as valued in the conformal extension discussed below.

Our main claim is that the conjugacy class [g(x)] € T2/W (gq) is holomorphic in z, so that
the basic adjoint invariants of G, evaluated on [g(z)] (up to some twist discussed further) are

polynomials of z, leading to a system of equations relating Y and x:
Xi(Y(x)) = Ty(z) = Tiox"i + TiaxVi 4+ 4+ Thy,, (1.3)

which define what we call the cameral curve

Cu C Cpy x (CF) VM
The invariants X; are normalized characters of g(x) in the fundamental representations R; of G,
of the highest weight A;:

Xi(4()) = goo(x) ™ Trr, g(2).

Moreover, from the work of Steinberg [174] (see also [58]) we know that for the finite-dimension-
al G4 one can conjugate g(x) in G4 to obtain a smooth Gg-valued function g(x) of x. Further
inspection shows that g(x) is a quasi-classical limit of an element of the Yangian algebra Y (gq),
built on the Lie algebra g, of G4. Hopefully the analogous statements hold for all G¢’s we
encounter.

In this way one recovers all known results about the Seiberg—Witten geometries of the N' = 2
theories in four dimensions (we do not review all of them in this work) as well as finds new results.
We do not claim to reproduce all conjectured Seiberg—Witten geometries, as, e.g., theories with
non-classical gauge groups are outside the realm of our methods. In particular, we find the
families of curves describing the geometry of the moduli space of vacua for the theories which
were previously believed not to have such description. We also find that the special geometry
of the quiver theories with unitary groups is captured in general by a polylogarithmic system of
differentials on these curves.

Higher dimensions

The gauge theories we discuss can be also lifted to five-dimensional theories compactified on
a circle S%ﬁ) of circumference (3, or even to the six-dimensional theories, compactified on a two-

torus, of the area 32. In the limit 3 — 0 one recovers the original four-dimensional theory.
In the five-dimensional case the polynomials T;(z) in equation (1.3) are replaced by Laurent
polynomials in ¢/#?, while in the six-dimensional case the functions Tj(x) become elliptic.

Defreezing

One of the initial questions which led us to the subject of this work was the following. Consider
the SU(2) theory with Ny = 4 hypermultiplets in the fundamental representation, with the
coupling q. By now there is an overwhelming evidence [1] of connection this theory has to
Liouville conformal blocks on a sphere with four punctures. The momenta of Liouville vertex
operators at the punctures are related to the masses of the hypermultiplets, the locations of the
vertex operators are, e.g., 0, 1, q, oo, and the momentum at the intermediate channel is the
Coulomb parameter a.

Let us view this theory as a U(2) theory, and let us single out the maximal torus U(1)* of
the Spin(8) flavor symmetry group. Let us gauge these U(1) groups. This gauging is possible in
the noncommutative geometry setup. One acquires four additional coupling constants. What
will happen to the Liouville theory?
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Figure 1.1. The three major ways to construct A/ = 2 theories.

Upon some reflection one concludes that the resulting theory is a particular case of the B4
theory, with vo = vi = v = v4 =1, and vo = 2. We then decided to solve the general quiver
superconformal theory which led us to discover many other interesting things.

Classification

Another motivation comes from the question whether Hitchin’s system exhaust the list of all
reasonable Seiberg-Witten integrable systems. From the early discovery [38] that the N' = 2*
theory with Gy = SU(N) is governed by the SU(N) Hitchin system on a one-punctured torus
(which is nothing but the elliptic Calogero-Moser system, as shown previously in [75]), proposals
in [124], and subsequent developments culminating in the introduction of the “S-class” theo-
ries [1, 61, 63, 175] there was a lot of activity with experimental evidence suggesting that N' = 2
theories can be described by some version of Hitchin’s system. The underlying construction in
these approaches is the compactification of the six-dimensional superconformal (0, 2)-theory on
some Riemann surface embedded as a supersymmetric cycle in some ambient geometry, and it is
believed that the global features of the embedding should play virtually no réle in the effective
gauge theory dynamics.

Another way of engineering N' = 2 theories, using string theory, is the so-called geometric en-
gineering [100, 113], which is the study of the gravity-decoupled limit of the ITA compactification
on a Calabi—Yau threefold, with the Calabi—Yau becoming effectively non-compact. A large class
of models comes from toric Calabi—Yau’s. One then employs the local mirror symmetry to gen-
erate curves with differentials, whose periods capture the special geometry of the A" = 2 theory.

In our work, we presented another characterization of the integrable systems underlying the
special geometry of the A/ = 2 theories with the superconformal ultraviolet limit. Namely,
we identify these systems with the moduli spaces of some gauge/Higgs configurations, such as
monopoles or instantons, with the gauge group G, corresponding to the quiver diagram en-
coding, among other things, the matter sector of the theory. Unlike all previous approaches,
see Figure 1.1, which involved some reference to the non-perturbative dualities, or even embed-
ding of the gauge theory to string theory and M-theory, we derive these statements within the
quantum field theory, by analyzing the instanton contributions to the low-energy effective action.

In some cases (e.g., in a simple fashion for the A, type theories, in a more subtle way for
the D, type theories) our phase spaces can be identified with the phase spaces of Hitchin systems
on the low genus curves with punctures, using some version of Nahm—Fourier—Mukai transform,
but in general we don’t have such a duality. Provided a complete description of the Seiberg—
Witten curves and algebraic integrable systems for the N’ = 2 ADE quiver theories it would be
interesting to further investigate this ADE quiver class, along the lines of [62, 63] or [2] for the
“S-class”.
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classical | quantum | double quantum
e =0 €1 #0 €1#0
e =0 e =0 € #0

4d Cp,=C XXX rational G4 (C) Y (gq) .

5d Cy =C* XXZ trigonometric | Gq(C*) | Uy(gq)

6d Ciy=FEr XYZ elliptic Gy(E) | Erylgq)

Table 1.1. The (rational/trigonometric/elliptic) by (classical/quantum/double quantum).

In the other cases, e.g., the class II E, type theories we can use the relation between the
moduli of del Pezzo surfaces and the moduli of E-bundles on elliptic curve to assign to our
version of the Seiberg—Witten curve a one-parametric family of del Pezzo surfaces, which can
be viewed as an example of the mirror noncompact threefold of [101].

Outlook

In the companion paper [151] the connection between the class of ADE quiver gauge the-
ories and quantum integrable ADE spin chains was studied in some detail. In particular
we explain there that the five-dimensional version of the ADE quiver gauge theory on the
twisted bundle R4>~<S:<L61762; 3) [140] with the equivariant parameters set to €; = ¢, 2 = 0 as
in [156] is associated with the XXZ spin chain gq. The theory is solved by the quantum ver-
sion of the master equation (1.3): the group Gg is replaced by the quantum affine algebra
Uq(gq) with the quantum parameter ¢ = e'P¢. while the characters X; are promoted to the
g-characters of Frenkel-Reshetikhin [54]. (If Gq is itself affine Kac-Moody group G = G
then U,(gq) is naturally quantum toroidal algebra). In the four-dimensional limit the XXZ
gq spin chain turns into the XXX g4 spin chain, the quantum affine algebra U,(g,) degen-
erates into Yangian Y(gq), and the gauge theory on the twisted bundle becomes the four-
dimensional theory subject to a two-dimensional 2-background. Finally, the six-dimensional
theory compactified on a torus E7 corresponds to the XYZ g, spin chain, with the quan-
tum affine group U,(gq) elevated to the quantum elliptic group Er,(gq) [44, 49, 51], with
n = Pe/2m.

It is clear that there is an even larger picture in which the algebraic integrable systems we en-
countered in this work are quantized, or es-deformed, cf. Table 1.1, with the rational/trigonomet-
ric/elliptic trichotomy in the vertical direction established in [11, 47, 173] and connected with
the gauge theories in [138]. It would be exciting to explore the connection with H. Nakajima’s
work [130] on quiver varieties and quantum affine algebras as well as the connection with elliptic
cohomology [70, 77, 122] of moduli spaces. Notice that the quantum or double quantum explo-
ration of the ADE quiver world is in a sense orthogonal to the approach of [1] dealing with the
“S-class” world in Figure 1.1. Classically, on the overlap, the relation between the corresponding
algebraic integrable systems comes from the Nahm-Fourier-Mukai/Corrigan-Goddard/ADHM
reciprocity relating the moduli space of G-bundles and Hitchin systems. The (doubly) quantum
version of this Nahm transform, if it exists, seems to cover the “quantum” geometric Langlands
duality, separation of variables for quantum systems [46, 48, 52, 171, 172]. The new ingredi-
ent [157] in this relatively classic field of research are the supersymmetric gauge theories in four
dimensions. Table 1.1 has been basically filled in recent years.

1.1 Organization of the material

Section 2 introduces the quiver supersymmetric gauge theories which we shall study.
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Section 3 presents the classification of the gauge theories which are N' = 2 superconformal in
the ultraviolet. We distinguish three classes of such theories, I, I, and IT*. The I and II classes
have an ADE classification so that for class I G4 = G and for class II G4 = G where G is ADE

group, the IT* theories correspond to GL, group.

Section 4 reviews the special Kéhler geometry of the vectormultiplet moduli spaces 99 of
vacua of N = 2 theories. We also recall the relation of 91 to the algebraic integrable systems
and the hyperKahler manifolds. We give some examples to be used later.

Section 5 introduces our main tool: the limit shape equations, which summarize the micro-
scopic gauge theory calculation leading to the effective low-energy action, i.e., the prepotential F.

Section 9 presents the solution of the limit shape equation. We reformulate the equations
as the Riemann—Hilbert problem for the set of functions Y(z) and solve it by equating the
invariants X(Y(z)) of the monodromy group, the iWeyl group which we attach to every N' = 2
gauge theory, to some polynomials 7'(x). In this manner we find an (algebraic) curve C and
a system of differentials, whose periods give the special coordinates a and the derivatives 0F/da
of the prepotential JF.

Section 10 analyzes the solution in some detail. We interpret the data for the solution of
the class I theories as describing a holomorphic map with prescribed singularities of CP! to the
space of conjugacy classes T/W (g) in a complex Lie group G, which can be also viewed as the
moduli space of holomorphic G-bundles on a degenerate elliptic curve. For the class II theories
the analogous data parametrizes (quasi)maps to the moduli space Bung (&) of holomorphic G-
bundles on elliptic curve. In some cases we relate the curve C to the more familiar Seiberg—Witten
curves. For the theories corresponding to the A series we manage to relate our curves C to the
spectral curves of rational and elliptic Gaudin models (the Hitchin system on the genus zero and
one curves with punctures), and also reproduce the results of [169, 175]. For the class II D type
theories we reproduce the results of [95]. For the class II E type theories we find yet another
interpretation of our solution, in terms of families of del Pezzo surfaces. In this way we get
a field theory understanding of some of the local mirror symmetry predictions [101] and brane
construction [96, 98].

Section 11 discusses the moduli spaces B of vacua of the gauge theory compactified on
a circle S'. We don’t present the full analysis of the hyperKihler metric on B in this work.
Instead, we focus on the geometry of B in the complex structure inherited from four dimensions
(this complex structure is sometimes called the complex structure I), in which it presents itself
as an (algebraic) integrable system. Our solution of the four-dimensional theory comes in a form
which leads to a natural guess for the phase space P of the integrable systems corresponding
to our theories. For the class I theories it is the moduli space of G-monopoles on R? x S!
with singularities, forAthe class II theories it is the moduli space of G-instantons on R? x T2,
and for the class IT* A, theories it is the moduli space of noncommutative U(r + 1) instantons
on R? x T2. Of course these spaces have a natural hyperkihler structure which depends in the
expected fashion on all the parameters of the theory and its compactification. Although our
motivation comes from the field theory analysis in the previous chapters, our results confirm the
conjectures of [16, 18, 19, 20, 81, 95, 96, 98] which are motivated by the string theory analysis,
and in particular by the brane constructions.

Section 12 discusses the modifications of our solutions in the five and six-dimensional cases.

In Appendix A, we review the affine ADE graphs, the McKay correspondence and the M-
theory/D-brane picture for the present work; in Appendix B, we put our conventions on the
partitions and representations by free fermions; in Appendix C, we review some standard mate-
rial on Lie groups and Lie algebras which we use in solving our theories. We recall the notions
of the (co)root and the (co)weight lattices, Weyl groups, and the integrable highest weight rep-
resentations; in Appendix M, we collect our conventions for elliptic functions; in Appendix P,
we give some technical details on spectral curves of affine E-series.
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1.2 Notations

Quivers, Section 2

Vert,,
Edge,
s(e) € Vert,
t(e) € Vert,

Qia
Aja < ClI
Cij

r =rk(C)

Lie groups

i

Gy

Gq

Gum
G=aG"

G

G

T

T

Z

G =G/z
T =T/Z
Gl =Gq/Z
T =Ty/Z

Lie algebras

set of vertices

set of edges

the source of the edge e € Edge,
the target of the edge e € Edge,

gauge coupling constants

(Cli)z‘e\/em,

number of colors for i-th node gauge group SU(v;)

number of flavors for i-th node fundamental matter
eigenvalues of the complex scalars

the special coordinates on Coulomb moduli space

Cartan matrix associated to the quiver by its Dynkin graph
|Vert, | if v is finite ADE or |Vert,| — 1 if v is affine ADE

V-1

Gauge group of the four-dimensional theory

Kac—Moody group associated with quiver Dynkin diagram
the flavor group

finite-dimensional complex Lie group

affine Kac—Moody group for G

maximal compact subgroup of G

maximal torus of G

maximal torus of G
the center of both G and G

adjoint form of the complex Lie group G
the maximal torus of G4
adjoint form of the complex Lie group Gq

its maximal torus

gq Kac-Moody Lie algebra associated with quiver Dynkin diagram

g Lie(G)
h  Lie(T)

Representation theory, Appendix C

a; Kac—Dynkin marks

Q, AY

root lattice, coweight lattice
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A, QY weight lattice, coroot lattice

R; i'th fundamental representation of G
Ei i'th fundamental representation of G
Ri i'th fundamental representation of éioo

Spaces
B(g) T /W (g) the space of conjugacy classes in G
B(gq) T,/W(gq) the space of conjugacy classes in Gq
B(g) T/(Z x W(g)) the space of conjugacy classes in G
B™(gq) Ty/(Z x W(gq)) the space of conjugacy classes in ng
C complex plane C in 4d, cylinder C* in 5d, torus E in 6d
CP%@ = C(w) U {OO}
&(q) elliptic curve C* /q%
q H q;* for class II theories

i€ Vert,

Bung (&) coarse moduli space of semistable holomorphic G-bundles on &
m the Coulomb moduli space of the 4d xSU(v;) gauge theory
oext the Coulomb moduli space of the 4d xU(v;) gauge theory
LT — M the algebraic integrable system dim¢ P = 2 dime 9

P 5 MM the complex integrable system dime P = 2 dime M

Seiberg—Witten curves

Cu cameral curve: Section 9.6

Cy spectral curve: Section 9.7

¢ obscure curve: Section 9.8

T flat coordinate on Cy,,

Y amplitudes (the solution of the theory): Section 5.1

~
—~~
8

8
~— —

gauge polynomials of degree v;

=

Pi(z) matter polynomials of degree w;

g(z) ng valued analytic function on Cy,

g(z) Gq valued analytic function on Cuw

X; G, character (or Weyl invariant) for i-th fundamental weight of G

Partitions

A partition Ay > Ay > -+ > )\g()\) >0, )\ € ZZO
£(X\) the length of the partition A

o)
|A|  the size of the partition |\ = Z i
i=1

Let 2 € R” be a sequence (;);ez, with z; in some ring R.
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Consecutive products

k=j+i—1
[ _ Mk=—co %k
Hk:—oo xk’
210 — gl
el = gl
for example
20 = 1,
(2] _
Ty = X4Ts,
—1 -1
-4 _  —1,-1 -1 -1
Ty =X Ty Ty Ty .

Consecutive sums

7 0
L) = Z Tj — Z Ljs

j=—00 j=—00
Z(it1) = T(i) T Tit1,

for example

z) =0,

T(3) = T1 + T2 + T3,
T(—2) = —Tp — T—1,
Aoy = A

2 Supersymmetric quiver theories

Consider any N/ = 2 supersymmetric field theory in four dimensions whose gauge group is
a product of special unitary groups, while the matter hypermultiplets are in the fundamental, bi-
fundamental, and adjoint representations. The field content, the parameters of the Lagrangian,
and the choice of the vacuum are conveniently encoded in the quiver data, which is

1. An oriented graph v with the set Vert, of vertices and the set Edge, C Vert, x Vert, of
oriented edges. Let s,t: Vert, x Vert, — Vert, by the projections onto the first and the
second factors. They define the two maps s,?: Edge, — Vert, which assign to an oriented
edge its source and the target, respectively. In what follows we shall use the notation

|Vert,| = #Vert,

for the number of vertices in the quiver.

2. An assignment of polynomials to the vertices:

T,P: Vert, — Clz],

and v,w: Vert, — Z,, where

v; = deg T;, w; = deg P;,

The polynomials T;(x) are monic, the highest-order term coefficients q; of the polynomi-

als P;(z) are required to obey: |q;| < 1.
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3. A l-cocycle m € C!(v,C), in other words an assignment

e € Edge, — m. € C.

We now proceed with the explanation of the roles of the polynomials T, P, as well as that of the
cocycle m.

2.1 Gauge group, matter fields, couplings, parameters

2.2 The gauge group

We denote the gauge group by Gg. It is the product

Gg= [] SUWi). (2.1)

1€ Vert,

The vector multiplet therefore splits into a collection of vector multiplets for the SU(v;) gauge
factors

(I)g == ((I)i)iGVertv‘

We have a gauge coupling e; and the theta angle ¥; for each 7 € Vert,. As usual, we combine
them into the complexified gauge couplings,

1 191 41

| )= 2t T
Ti 27 08(di) 2 + e?

The bosonic part of the action for gauge fields is given by
1 i;
Lyv = Z — try, Fa, ANxFa, + —= | try, Fa, AFy, |,
. e2 i 1 7 87T2 i 7 7
1€ Vert, ¢

where tr, denotes the trace of a v X v matrix. The exponentiated coupling

2miT;
qi = ¢

enters the path integral measure. The perturbative effects do not depend on J;, while the non-
perturbative effects, which are the contributions of the gauge fields with non-trivial instanton
charge, depend on q;, §;. In other words, the partition function is expected to be invariant under
the shifts

7 — 7+ 1.

For 7 € Vert,, let ®; denote the corresponding complex scalar in the adjoint representation. The
bosonic potential of the vector multiplet field ®; contains a universal term

try, [®;, ®f]°

plus some possible non-negative terms coming from interactions with matter fields. If the matter
fields are massive then this term alone forces ®; to commute with its conjugate at low energies.
Therefore, at low energy the field ®; can be diagonalized:

P, — diag(ai,a);izl. (22)
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The gauge invariant order parameters are the vacuum expectation values of the coefficients of
the characteristic polynomial T; of ®;:

Ti(x) = (dety, (z — ©;)),, » (2.3)

where we assume the normalization (1), = 1, and det,, denotes the determinant of a v x v-matrix.
Therefore the polynomials T;(x) in (2.3) are monic.
Thus, a collection of polynomials T;(z), i € Vert,, fixes the choice of the vacuum u = (u; ) € M:

A\
Ti(z) =av + ) uiaz¥i? (2.4)
a=2

Because of the non-perturbative (instanton) effects the relation between wu;, and a;, is not
polynomial, and for the same reason T;(x) # Y;(z).

2.3 The hypermultiplets in the bi-fundamental, or adjoint representations

The bifundamental or adjoint hypermultiplet He, e € Edge, transforms in the following Gy
representation:

(Vs(e)vvt(e)) > (Vt(e)>vs(e)) for 8(6) 7& t(e)a
Adj(su(v;)) for s(e) =t(e) =1.
The masses of the bi-fundamental hypermultiplets are conveniently represented by the 1-cocycle:

m € C'(,C), e = m,. Let [m] € H!(v,C) be the corresponding cohomology class. If we denote
by m* a particular representative of [m] in C!(v, C), then

m=m*+6u,  peC(y,C) (2.5)
or, in components,
me = Mg + flye) — Ps(e)-

2.4 The hypermultiplets in the fundamental representations

These are assigned to the vertices ¢ € Vert,. We have w; such multiplets. Write

W

Pi(w) = ai | [ (= = mag).

f=1

Then m;; are the masses of the fundamental hypermultiplets, charged under SU(v;). A w;-
tuplet of fundamental hypermultiplets can be thought as a bifundamental (v;, w;) for SU(v;)
and an auxiliary frozen U(wy;), so that m;; can be interpreted as the values of the frozen scalar
field in the vector multiplet of U(w;).

3 The ADE classifications of superconformal N/ = 2 theories

In quantum gauge theory the coupling constants e; are subject to the renormalization which
leads to their dependence on the energy scale at which one measures the interaction between
the charged particles. The consistent theories have the gauge couplings which tend to zero
as the scale approaches ultraviolet, or approach some fixed values. These theories are called
asymptotically free and asymptotically conformal, respectively. Moreover, starting with the
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asymptotically conformal theory, one can perturb it by the mass terms. Then, by tuning the
masses and the bare couplings, one arrives at the asymptotically free theory. All asymptotically
free quiver theories arise in this way. Therefore it suffices to solve the asymptotically conformal
theories.

From the perspective of geometrical engineering the ADE quiver theories were studied in [101],
and three-dimensional ADE quiver theories were studied in [64].

3.1 Beta functions and Cartan matrix

The running of the gauge coupling 7; is described by the Gell-Mann—Low equations which are one-
loop exact for the N' = 2 supersymmetric theories, the result of [161]. The actual contributions
of the matter and gauge multiplets to the gauge couplings are

. dr
Bi = QWIdIOgA =w; —2v; + Z Vs(e) + Z Vi(e)> (31)

e: t(e)=t e: s(e)=i

where A is the energy scale. The theory is asymptotically conformal if 3; = 0 vanishes for
all i € Vert,,. The theory is asymptotically free if 3; < 0.

Let us define the incidence of the pair of vertices I;; to be the number of edges e connecting
the vertices ¢ and j:

Lij = #{e| s(e) =i, t(e) = j, or s(e) = j, t(e) = i}

with the understanding that if the vertex ¢ € Vert, is connected to itself by a loop, then the
corresponding edge contributes 2 to the incidence matrix element I;;. Define, for all quivers, the
Cartan matrix of size |Vert,| x |Vert,|

Cij = 20;5 — I;j. (3.2)
Then

Bi o< (w — Cv);,
where

(C’v)i: Z CijVj.

j€Verty

Let us solve the 8; = 0 conditions (cf. [85, 101, 111]. It is convenient to separate the solutions
into three cases, which we shall call the theories of class I, the theories of class IT and the theories
of class IT*. By r we shall denote the rank of the Cartan matrix C

r =r1k(C).

The main difference between the class I and class II, IT* theories is that the Cartan matrix of
class I theories has the maximal rank

T(ny of class I) = |Vertv’
while for the theories of class IT and class IT* the Cartan matrix has one-dimensional kernel,

T(C'y of class II) = ‘Vert’y‘ -1
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3.2 Class I theories

The solutions to the equations 5; = 0 with w # 0 are the theories of class I. It is well-known
that the graph v is in this case a Dynkin diagram of a finite-dimensional simple simply-laced
Lie algebra gq, of the ADE type, with Vert, labeling the simple roots of gq:

1 € Vert, — «;.

To solve the equation 5; = 0 is equivalent to finding two vectors

— Y — 4
V= g viag, W = E Wiy

1€ Vert, i€ Vert,
with non-negative components v;, w; € Z>, such that (cf. (3.2)
w = Cf%v, (3.3)

where C9% is the Cartan matrix of the corresponding finite-dimensional Lie algebra g4 of the ADE
type. Equivalently

V= g wi\,

1€ Vert

where )\ are the fundamental coweights of gg.
For class I theories we set Gq = G where G is finite dimensional complex ADE group.

Remark 3.1. In the case of gq of the A, type the dimensions v; must be a convex function of i.
In particular, they grow with ¢, for ¢ = 1,..., 4, and then decrease:

vi<va<- - <vy, 1SV, 2V 412 2 Ve (3.4)

Remark 3.2. The graphs of the D, and E, Dynkin type have a single tri-valent vertex, let us
call it i4. One can easily show using the 8; = 0 equations that v;, is the maximal value of v;
on ¢ € Vert,, and that v; decrease along each leg emanating from the tri-valent vertex i,.

3.3 Class II theories

The class II theories have w = 0, and [m] = 0. It is well-known that the graphs ~, such that
the corresponding Cartan matrix C' has a zero eigenvector with positive integer entries are in
one-to-one correspondence with the simply laced affine Dynkin diagrams (see Appendix A for
our conventions on ADE graphs and McKay correspondence):

o~

1) A, r > 2,
2) ﬁr,r25,

3) B, r="17,8,09.

These Dynkin diagrams correspond to the affine Lie algebras g associated to finite-dimensional
Lie algebras g of rank r. We set G4 = G and gq = 9. We discuss the relevant aspects of the
theory of affine Kac—Moody algebras in the following subsections.

Note that the /To case (its quiver has one vertex and one edge connecting it to itself), given
our constraint [m] = 0 for the class IT theory, corresponds to the N' = 4 superconformal theory.
It is well known that the classical moduli space of vacua gets no quantum corrections in this
theory.

The dimensions v are uniquely specified, up to a single multiple:

Vi = Na/ia

where a; are the so-called Dynkin labels. We shall recall several interpretations of these numbers
below.
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3.4 Class II* theories

The class IT* theories have w = 0 and [m] # 0. The first condition reduces our choice of v to
the affine Dynkin diagrams (including the /To case of the quiver with one vertex and one loop
connecting this vertex with itself). The second condition implies that «y is the Dynkin diagram
of the A, type for some > 1. Indeed, only in this the affine Dynkin diagram has H'(~y,C) = C,
the diagram being a regular (r + 1)-gon. The dimensions v; are all equal to N, a non-negative
integer.

In particular, the class IT* r = 0, go—theory with [m] # 0 is the celebrated N' = 2* theory,
the SU(N) theory with massive adjoint hypermultiplet.

We shall see that the Kac—Moody}Ee algebra which corresponds to the theories of class IT*

is the @ algebra, which contains u(r) as a subalgebra of r-periodic matrices.

4 Low-energy effective theory

We now can proceed with the main subject of our study. Our goal is to determine the two-
derivative/four-fermions terms in the low-energy effective action of our theory.

The low-energy effective theory of the NV = 2 supersymmetric quiver theory with generic
masses (me), (m;;) is the abelian ' = 2 theory of r vector multiplets,

r= Z (vi—1).

1€ Vert,

For generic masses the theory has the manifold 9 of vacua, which is a complex variety of
complex dimension r:

dime 9 =r.

The effective theory is a sigma model on 901, interacting with r abelian gauge fields Ag, 7=
1,...,r, and some fermionic fields. Our goal is to determine the metric on 9, the effective
gauge couplings Im 777 and the effective theta-angles Re 777 of these gauge fields.

4.1 Special Kahler geometry

One can interpret the eigenvalues (2.2) obeying

\Z
E Aja = 0
a=1

as the special coordinates on the moduli space 9t of vacua. As is well known, 97 is a K&hler
manifold, with a peculiar metric, and a rigid system of local coordinate systems. The cor-
responding geometry is called the rigid special geometry, and it is a limit [166] of the special
geometry of N = 2 supergravity, studied in [24].

Let us label the effective abelian vector multiplets AZ by Z = (4,a), i € Verty, a=2,...,v;.
In components

A =l + 99T +99(FF) +-- -,
where

(FE)* = 5 (FF £ xFF).
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The scalar components a’ < A, &= 2,...,V;, more precisely their vacuum expectation values
are the local special coordinates. Globally they are subject to monodromy transformations,
unlike the global coordinates (u;a) in equation (2.4), which are defined via the expectation
values of the gauge invariant local operators of the microscopic theory.

The monodromy transformations act by symplectic transformations mixing the special coor-
dinates o and their duals a? together with the masses (m.), e € Edge, and (m;j), i € Vert,,

f=1,...,w;. The dual coordinates are the derivatives of the prepotential F,
oF
D
ar = ﬁ (41)

The prepotential is a multi-valued analytic function of aZ, it is the superspace action which
determines the low-energy effective action in the approximation we are working:

ﬁeﬁ = ﬁ /TIJ(FE;) AN (F/‘Z)i + fIJ(Fi)Jr AN (F;Z)+ — iImTIj d.ClI /\*daj, (4.2)

where

0*F

T = 9aZdad 3

The invariant formulation of equation (4.1) is that the two-form
Z da? A da?
T

identically vanishes on 9t. The proper formulation of this condition uses the additional structure
which we review below.

4.2 Extended moduli space

In our solution of the theories of class I and class II it would be sometimes convenient to
trade the bifundamental masses formally with the U(1) factors as explained in (2.5) if one
considers X;evert., U(V;) gauge group instead of X;evert, SU(v;). The |[Vert,| — 1 bifundamental
masses’ and one overall U(1) factor add |Vert,| parameters to M. We set

M = M x CVort (4.4)
with

dime M = dime M + [Vert,| = Z v;.

i€ Vert,

For the class II theories

dime M™* = Y v; = Nh,

1€ Vert

where h = ZieVertfy a; is the Coxeter number of G. Recall that we only encounter simply-laced
Lie algebras for which h = h".

We should emphasize that only the true moduli space 9 of vacua has the special geome-
try with (4.3) defining a positive (outside the loci of singularities which signal the appearance

"Recall that in the class 1T A, theory there are r mass parameters that can be traded for the U(1) scalars and
1 additional “twist” mass parameter m™ promoting the class II to class IT*.
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of massless BPS particles) metric in the appropriate duality frame. On the extended moduli
space M the prepotential F still defines some kind of metric, but it cannot be positive ev-
erywhere throughout the variety of masses. This is because the dependence on masses is purely
perturbative. Once we gauge the flavor symmetry (an example of such gauging, promoting
the A; class I theory to the Dy class II theory, will be discussed in Section 10.20), we correct
the metric by the instanton contributions.

4.3 Finite size effects

Subjecting the gauge theory to some boundary conditions reveals more structure.

For example, we can compactify the four-dimensional A/ = 2 gauge theory on a circle S
of radius R. The resulting theory looks like a three-dimensional sigma model with the target
space 3 which is a hyperkahler manifold of real dimension 4r. The hyperkéhler metric on 3 con-
tains a lot of interesting information about the particle content of the original four-dimensional
theory.

The hyperkahler structure on P is a triplet of integrable complex structures, I, J, K, such
that every linear combination (aI + bJ 4 cK) for a? 4+ b? 4 ¢? = 1 is also an integrable complex
structure, and a triplet of the corresponding symplectic forms wy, wy, wk which are the Kéahler
forms for the metric g on B in the corresponding complex structures.

Among the two-sphere of complex structures, one complex structure, which is usually called I,
plays a special role. This complex structure and the corresponding (2,0) symplectic form
Q1 = wy + iwk are visible in the limit R — oo, where P as a metric space collapses to .
For very large but finite R the manifold 3 looks like a fibration over 9t whose fibers A,, u € 9N
are the abelian varieties (complex tori, which we describe in more detail momentarily) of diam-
eter which scales like R

These fibers A, parametrize the S! holonomy of the abelian gauge fields A and their du-
als AL, The reduction of the action (4.2) on S' gives

Eeﬁ3d = /iReTIJ dCVI VAN BJ
1
+ 5 Im 777 (Rda® A +da’ + R™da” Axda” + RBT A +B7),
where we denote by * the three-dimensional Hodge star, and by B the curvature of the three-
dimensional gauge field BT = dA%d which is obtained by decomposing Afd = otdf + Agd. The
scalar o is actually circle-valued, since the gauge transformations e*™z¢ shift it by 2winZ,
nt € Z. Next we dualize the three-dimensional abelian gauge field, by promoting BT to the

independent 2-form, and coupling it to the dual scalar Bz, which is also circle-valued, in order
to ensure the flux quantization of the original gauge curvature Bz:

ceffddd — /i(dﬁj + Retzs daI) A BY
1
+ 3 Im TIJ(RdClZ Axda? + R71do? A xda? + RBT A *Bj)
1
— };/ImTIJ da” A xda” + / (Im 7" dzz A xdzy. (4.5)

In the last line we have integrated out the unconstrained Gaussian field Bz. We also introduced
the holomorphic coordinates

ZI:ﬁI+TIja‘7, I=1,....r



18 N. Nekrasov and V. Pestun

on the fibers A, of the fibration ¥ — 9. Both az and zz are the I-holomorphic coordinates
on PB. By construction, the coordinates zz are subject to the periodic identifications:

27— 27 + 27ri(nz + szmj), nz,m* €7, (4.6)

which confirm our assertion that the fibers A, of the map P — 91 are abelian varieties (recall
that the metric Im 7da®da is positive definite, the unitarity requirement). The coordinates az, z7
are the Darboux coordinates for the (2,0) form Q:

Or=) daf Ader =) da? Adzf (4.7)
=1 =1

as well as the electric-magnetic duals af and 2% = (7_1)2‘75 7+ af. The fibers A, are La-
grangian with respect to €j.

The metric on B3, which enters the kinetic term in the equation (4.5) is actually not the
correct hyperkéahler metric on 3 for finite R. It receives corrections which are exponentially
small with R,

~ e M@R (4.8)

where M (a) is the mass of a BPS particle in the Hilbert space of the theory in four dimensions
built over the vacuum u € 9. As is well-known, the masses of some BPS particles vanish along
some loci in M, where the corrections (4.8) become significant. One can show, however, that
does not get corrected by the finite size effects of these BPS particles.

One can also compactify the theory on a two-dimensional Riemann surface ¥ (with a partial
twist along X, to preserve some supersymmetry). For ¥ other then two-torus this leads to the
two-dimensional theory with N = 2 supersymmetry. One has various sectors labeled by the
electric and magnetic fluxes e = (ez), m = (m?) through X. In the sector where (e, m) # (0,0)
one gets an effective superpotential [120]:

r

T Z.D

W(e7m): E eza” +m-ar,
=1

which in four-dimensional theory is the central charge of the A/ = 2 superalgebra. It is also
equal to one of the action variables of the Seiberg—Witten integrable system [32, 38, 72].

If one compactifies on a two-torus, then the resulting two-dimensional theory is the NV = 4
supersymmetric sigma model whose target space P is the hyperkahler manifold.

It turns out to be quite useful to interpret the N' = 2 theory on a four-dimensional manifold X
which can be viewed as a two-torus fibration over some base B, as an effective sigma model
with B as a world sheet. In case where the fibration has singularities of real codimension
one (for example, if X is a product of a disk and a cylinder), then B has a boundary, and
the smoothness of the four-dimensional field configurations translates to particular boundary
conditions in the two-dimensional sigma model [159]. An interesting class of such boundary
conditions come from the so-called canonical coisotropic branes [97, 99, 159]. The algebra of
the open string vertex operators corresponding to such a brane turns out to be the deformation
quantization [107] of the algebra of holomorphic (in the appropriate complex structure) functions
on B. Remarkably, when P is an algebraic integrable system in one of the complex structures,
one can apply the fiberwise T-duality along the Liouville fibers, leading to the mirror perspective
on the quantization procedure. First of all, in the case of the Hitchin system the mirror manifold
turns out to be the Hitchin system for the Langlands dual group. In the general case the
mirror BV of the original hyperkihler manifold 3 is also expected to be an integrable system.
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The mirror of the canonical coisotropic brane is believed to be a holomorphic (in appropriate
complex structure) Lagrangian brane. In the case of Hitchin system this brane is argued [99] to
be the so-called brane By of opers, with evidence supported by exact computations in [87, 88,
89, 90, 112, 148, 158].

4.4 The appearance of an integrable system

The complex symplectic manifold (3, ), its projection 7: P — M with Lagrangian fibers
Ay = 71 (u), u € M, which are principally polarized abelian varieties (the principal polarization
comes from the restriction of wy onto the fibers) define what is known as the algebraic integrable
system [32, 35, 38]. It is one of the possible complexifications of the familiar notion of the
completely integrable system in the classical mechanics.

The other possibility, namely a complex symplectic manifold with the Lagrangian fibration
whose fibers are the complex tori (C*)¥, is also realized in the context of gauge theories. However,
the base of such a system typically parametrizes the space of mass parameters of the gauge
theory.

The fibers A,, are the Liouville tori, while (az, z7) are the action-angle variables. The novelty
of the complex case is the doubling of the possible choices of the action-angle variables with
fixed Liouville fibration. Indeed, the fibers A, are the 2r-real-dimensional tori, therefore in
producing the action variables as in the Arnol’d-Liouville theorem one has a choice of r out
of 2r cycles in Hi(Ay,Z). The lattice Hy(A,,Z) has a symplectic form w, which comes from
the polarization, i.e., a properly normalized class of the restriction wi|4,. It turns out that any
Lagrangian sublattice L in Hj(Ay,Z) defines a system of local coordinates (ar) on the base I
near the point u € 9, as well as the conjugate angle-like coordinates (z7) on the fiber A, itself.
Let Az be the integral basis of this sublattice L C H;(Ay,Z). Then

dat = 7{ Qr. (4.9)
Az
One can also define
da? = f Qr, (4.10)
BI

where BZ is the basis in the dual sublattice LY C Hj(A,,Z), such that
w(Az, A7) =w(BELB7) =0, w(A7,BT)=45]. (4.11)

One then shows that

> da’ Adaf =0 (4.12)
=1

on M, which, in turn, implies (4.1). The coordinates zz along A, are defined using (4.7) with
the normalization (4.6) that half of the periods of zz are in 27iZ.

The integrable systems which one encounters in the classical mechanics are rarely given in the
form of the action-angle variables. Usually one has the phase space 3, the symplectic form j,
perhaps some Darboux coordinates

Qr=> dpr Adq"
I=1

and the collection of Poisson-commuting functionally independent Hamiltonians Ui (p, q), ...,
Ur(p,q). One then looks for the action-angle coordinates, i.e., the Darboux coordinates (a, z),
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such that the Hamiltonians Uz(p, ¢) = uz(a) depend only on a, the action variables. The Hamil-
tonian evolution then linearizes on the fibers A,, which are the level sets of the Hamiltonians.
The motion is a constant velocity motion in the z coordinates:

r

ou

27(t) = 27(0) + ty—=.
T T ;jaaz_

It is interesting to study the level sets A, of the Hamiltonians, the Liouville tori. The algebraic
integrable systems are such, that the fibers can be compactified to become the polarized abelian
varieties. Where do the polarized abelian varieties come from?

4.5 Integrable systems from classical gauge theories

One source of the polarized abelian varieties are the Jacobians of the algebraic curves. The
Liouville tori of algebraic integrable systems can be often found inside the Jacobians of the
algebraic curves, constructed while solving some classical gauge field equations.

4.5.1 Hitchin system

There is an interesting class of algebraic integrable systems for which the Liouville tori are pre-
cisely these Jacobians. Take the U(N) Hitchin system on a genus g Riemann surface. The phase
space P is the cotangent bundle (up to a birational transformation) to the moduli space My .
of holomorphic rank N vector bundles E over ¥ with fixed first Chern class ¢ = ¢1(F). It is
convenient to take (¢, N) =1 to avoid complications coming from the reducible connections.

In the complex structure I the holomorphic coordinates on 3 are (/L <I>), where 0 + A is the
(0, 1)-connection on the smooth vector bundle E which endows it with the complex structure,
and ® € End(F) ® Q40(%) is the holomorphic Higgs field

0P + [A, @] = 0. (4.13)

The symplectic form on P comes from the (2,0) symplectic form on the space of all smooth
pairs (A, @)

Qp = / trd® A JA
b
by the symplectic reduction with respect to the action of the gauge group:
g: (A,®) — (97" Ag+g '0g,97 ' Pg).

The set of Poisson-commuting Hamiltonians is given by

Ui,a:/yi7atr<1>i, i=1,...,N, (4.14)
>

where v; 5 € H%! (E,Kg(l_i)), a=1,...,(20 = 1)(g — 1) + 6;,1 form a basis in the space of
holomorphic (1 — 4, 1)-differentials. Fixing the values u; 5 of all the Hamiltonians U; 4 gives us
a point u € 9 in the vector space

m =P u (=, kg,

One defines the spectral curve C,, C T*3 as the zero locus of the characteristic polynomial of ®:

Det(® — \) = 0. (4.15)
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It is a holomorphic curve thanks to (4.13), which is invariant under the Hamiltonian flows
generated by the Hamiltonians (4.14). The curve C' is an N-sheeted cover of X

m: Cy — 2.
Its genus can be computed using the Riemann—Hurwitz formula
2—2g¢c, = N(2—2¢gx5) — 0,

where § = 2N (N —1)(gs, — 1) is the number of branch points. The latter is the number of zeroes
of the discriminant of the polynomial (4.15), which is a holomorphic N (N — 1)-differential on .
Thus

gc, = N?(gs — 1) + 1.

The Jacobian of C' is thus an abelian variety of dimension

N

9o, =g+ > (25— (g — 1), (4.16)
=2

which is equal to the dimension of the base 9t of the Hitchin fibration. The fibers A, of the
Hitchin fibration are thus the Jacobians of the corresponding spectral curves.

One generalization is to study the SL(N) Hitchin system. In this case the corresponding
rank N vector bundles have the trivial determinant, and the corresponding Higgs field is trace-
less. The base of the Hitchin fibration now has the dimension (N?—1)(gx,—1), the equation (4.15)
has vanishing oc AV ~! term, and the fibers A, are not the full Jacobians of the spectral curve C,,,
which still has the genus g¢, (4.16) but the kernel Jy of the map 7,: Jac(Cy) — Jac(X), which
sends the degree zero line bundle L on C), to the line bundle £ = Det 7, L on X, whose fiber £,
over the point z € X is the tensor product of the fibers L, of L over all preimages of z:

L= Q) Ly

yer—1(2)

The Hitchin system can be defined [83] for any algebraic Lie group G, with the maximal torus 7.
Let g = Lie(G), h = Lie(T). The Hitchin space is the moduli space of stable pairs (P, ®),
where P is a holomorphic G-bundle over ¥, and ® is a holomorphic (1,0)-form on X, valued in
the bundle of Lie algebras g, associated with P via the adjoint representation:

® € H'(X, Ky ® ad(P)).

The Hitchin fibration is defined by fixing the gauge-invariant polynomials P;(®) € H° (E, K g 4 )
of the g-valued Higgs field &:

u= (B(®) € e —on
7=1

where d;’s are the degrees of basic Ad-invariant polynomials on g.

The fibers of the Hitchin fibration are now trickier to define. First of all, there is no preferred
notion of the spectral curve. For some gauge groups one can use the minuscule representation,
but this is not always available.

One option is to consider the so-called cameral curve C,, which is a W (g)-cover of the base
curve X. The points of the cameral curve C, are, over generic z, the pairs (p, z), where z € X
and ¢ € b is the element of the fixed Cartan subalgebra f C g which is conjugate to the
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Higgs field ®(z). This definition makes sense for the points z € ¥ for which ®(z) is semi-
simple, i.e., belongs to the ad(G)-orbit of an element in h. If this is not the case (e.g., ®(z) is
conjugate to a Jordan block in the GL(/V) case), one can find an appropriate representative in b
by modifying the equivalence relation (e.g., two matrices are equivalent if their characteristic
polynomials coincide). To stress the fact that C,, depends on u which is the set of holomorphic
d;-differentials P;(®) .

Over C, so defined one has 7 line bundles, £;, i = 1,...,r, which correspond to the fun-
damental weights A; € h*. The line bundle £; is a subbundle in the holomorphic vector bun-
dle R; = R; xg P, associated with P via the i-th fundamental representation R; of G. The fiber
of £; C R; over (g, z) is the eigenspace corresponding to the eigenvalue \;(¢).

To any weight vector A € A a line bundle £, over C, can be associated:

A= Zn)\ — Ly = (é)ﬁ?”i.
=1 =1

In a more physical language, the Hitchin moduli space is the quotient of the space of pairs (f_l, <I>),
where A is a (0, 1)-connection on smooth principal G-bundle P over ¥, and ® is a (1, 0) g-valued
form, which are compatible, i.e., solve the equation (4.13), and are considered up to the G-gauge
transformations:

g: (A,®) = (g7'9g + AdgA, Ady®).

By fixing the partial gauge ® = ¢ € h for fixed h C g, one reduces the gauge invariance from G
to N(T). The equation (4.13) imply that in this gauge A is a T-connection A = @, with the T
subgroup of N(T) acting by the T-gauge transformations @ ~ a + dx, eX € T. On ¥ the
T-valued gauge field and the h-valued Higgs field ¢ are not well-defined, since there are the
W(g) = N(T)/T remaining gauge transformations. On C, however, both ¢ and a are well-
defined. In fact, @ defines on C, a holomorphic principal T-bundle 7, so that L; = 7. The
T-bundle T is W(g)-equivariant. This is the translation of the fact that the Weyl group W (g)
acts simultaneously on ¢ and a. The isomorphism (properly understood at the ramification
points)

Holomorphic W (g)-covers C of X,

principal G-bundles P on X, CCcT*Y®Hb,

holomorphic Higgs fields & holomorphic W (g)-equivariant
® € HY (X, Ky ® ad(P)) principal T-bundles on C

allows to represent the Hitchin moduli space as a fibration over the vector space 9, whose
points are the W (g)-invariant curves C, sitting in the tensor product 7% ® b (this is almost
a tautology: a W (g)-invariant curve in 7*¥X ® b is a curve in T*X ® h/W (g), i.e., a holomorphic
section of the vector bundle T*% @ C[h]"V (@),

The fiber A, of the Liouville fibration (which is called Hitchin’s fibration in this case) is
a generalized Prym variety, which is, roughly speaking,

Ay ~ Homyy g) (A, Pic(Cy)) = Bung(C,)V®. (4.17)
The papers [30, 33, 34] correct the equation (4.17) in a couple of subtle points as well as provide
the additional theory.
4.5.2 Instanton moduli spaces as integrable systems

Hitchin’s equations (4.13), for flat X, are the dimensional reduction of the instanton (or anti-
self-duality) equations from four dimensions. It turns out that one can get an integrable system
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directly from the moduli spaces of four-dimensional instantons, or three-dimensional monopoles
(examples of integrable systems on moduli spaces of instantons were found in [136]).

We only briefly sketch the constructions here.

Let S be an elliptic K3 manifold, i.e., an algebraic surface, with the holomorphic w;,o form,
and with the projection 7: S — CP! whose fibers 71(2), z € CP! are the elliptic curves &,
(generically nonsingular). One can endow S with the hyperkahler metric. Consider the moduli
space P = My (G) of charge N G-instantons on S, i.e., the solutions to the system of partial
differential equations

Fahwi=FasANwy=FsANwg =0,
FY* =0

(the last equation is a linear combination of the J and K equations from the first line) of fixed
instanton charge N > O:

1
——— [ trFaNF4=N.
572 /s rFaNFa
Here G is some compact simply-connected simple Lie group, which has a simply-laced Lie al-
gebra g. The moduli space P = My (G) is also hyperkéhler, in particular it is holomorphic
symplectic, with the (2,0)-form given by

0 ¢ :/wg’o/\tréAAM.
S

The integrable system structure is obtained by studying the restriction of the instanton gauge
field on the elliptic fibers, where generically they define a point in the coarse moduli space
Bung (&.) of semi-stable principal holomorphic G-bundles on the fiber, see Appendix F. Thanks
to E. Loojienga’s theorem, this moduli space is a weighted projective space, which can be
identified for different non-singular fibers. One gets thus a section of the locally trivial bundle of

II: 2= U Bung(€,) — CPL.
2€CP1

One has to be careful at the singular fibers. The base 9t of the integrable systems is the properly
compactified moduli space of the holomorphic sections o: CP! — P of appropriate degree with
some ramification conditions at the discriminant locus of the original elliptic fibration .

In this work we shall not encounter these difficulties.

In fact, as we shall explain in more detail in Section 11, the moduli spaces of vacua of the
quiver gauge theories we study lead to the integrable systems which arise from the the moduli
spaces of G-monopoles on R? x S! for class I theories with G4 = G, or from the moduli spaces
of G-instantons on R? x T? for class II theories with G, = G. Here G is a compact Lie group,
whose complexification is the complex simple Lie group G.

The moduli space 8 of G-instantons, viewed in the complex structure where R? x T? = C! x &,
is birational to the moduli space of semi-stable holomorphic G-bundles on (CIPlx x &, with fixed
trivialization at oo x €. The moduli space I3 projects down to the moduli space 91 of quasimaps
from CIP’%QC) to the moduli space of semi-stable holomorphic bundles Bung(€) on a fixed elliptic
curve €. The moduli space of monopoles maps to the moduli space of quasimaps with prescribed
singularities on (CIP%) to B(g) = G/Ad(G) = T/W(g).

4.6 Extended moduli space as a complex integrable system

The extended moduli space ™' is a base of a complex, but not algebraic, integrable sys-
tem Pt — Mt The Liouville tori of this integrable system are acted on by an algebraic
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torus (C*)Ver* | so that the quotients are the compact abelian varieties, the Liouville tori fibered
over 9. The symplectic quotient of B with respect to (C*)Ve™*r at some level of the moment
map, which is linearly determined by the values of the bi-fundamental masses, gives 8. Recall
that Duistermaat—Heckmann theorem [45] then implies that the cohomology class [Qg] of the
(2,0)-symplectic form g on 9 is linear with masses.

The physics behind the reason P> — M is not an algebraic integrable system is that
the kinetic term for the instanton/monopole zero modes in the (R2 X T2)/(R2 X Sl) geometry
diverges. These modes are non-dynamical in the effective three dynamical theory obtained by
compactifying our N' = 2 theory from four to three dimensions. The electric-magnetic duality of
dynamical vector multiplets in four dimensions leading to the algebraic integrable system on the
moduli space of vacua of the corresponding three-dimensional theory is therefore broken.

5 The limit shape equations

In this section we return to the microscopic analysis of our gauge theory. Recall that the N' = 2
supersymmetry algebra is generated by four supercharges Q.;, « = 1,2, i« = 1,2 of the left
and by four supercharges Q%, & = 1,2 of the right chirality. The prepotential F(A) of the
theory is a function of the superfield A which is annihilated by Q,;’s. We shall now focus on
the observables which are in the cohomology of one of the Q,; supercharges, which we shall call
simply Q.

5.1 The amplitude functions

The basic such observable is the scalar ®; in the vector multiplet. More precisely, any gauge
invariant functional, in particular the local operator P(®;(x)), where P is some invariant polyno-
mial on the Lie algebra of SU(B;), and x is a point in space-time, is annihilated by Q. Moreover,
the observables P(®;(x)) and P(®;(x’)) for two different points x and x’ are in the same Q-
cohomology class. Therefore, one may talk about the vacuum expectation value of P(®;) without
specifying the point x.

Consider the observables O,, ; = try, ®I'. Form the generating function

Yi(w) = ¥ exp (— > <On>) , (5.1)

n=1

which turns out to be well-behaved for sufficiently large z. We shall denote the z-plane
where Y;(x) are defined, by C(y)- Actually, the analytic continuation in the z variable gives
us the set Y(x) of multi-valued analytic functions on Cy,y,

H(IL‘) = (gi(x))ie\/erty-

This set of multi-valued functions captures the vacuum expectation values of all the local gauge
invariant observables commuting with the supercharge Q.

Remark 5.1. The general relation between the amplitude functions Y;(x) and the polynomi-
als T;(x) generating the first non-trivial Casimirs of the gauge group Gy is

Ti(z) = (Yi(2))+,

where (...)+ denotes the polynomial part.

In what follows we shall use another set of (T;(z))ievert, polynomials, degT;(x) = v;, which
are not monic. The coefficients of T;(z) are related to the coefficients of T;(x) by a “mirror map”
change of variables, which will become clear in the course of our exposition.
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Remark 5.2. In the way we defined these functions, the information about the vacuum ex-
pectation values of these observables is contained in the expansion of Y;(x) near z = co on the
physical sheet of these functions. It would be interesting to see whether the expansion at x = oo
of the branches of Y;(x) contains information about the vevs of the chiral observables of the
theories, related to the one we started with via some version of S-duality.

The functions Y;(z) are the integral transforms of the densities
pi(x), xeR, e Vert,,

which describe the combinatorics of the set of fixed points of the symmetry group action on the
instanton moduli space used in the localization approach to the calculation of the supersymmetric
partition function of the gauge theory. For the introduction to the subject see [119, 140, 141, 142]
and for the novel applications and refinements [1, 163].

We now write down the equations obeyed by the amplitude functions, the so-called limit
shape equations, generalizing the limit shape equations studied in [149, 154, 168, 169, 170]. We
shall solve the limit shape equations using the analytic properties of the amplitude functions.
One finds that the analytic continuation of these functions is governed by the monodromy group,
which we shall call the iWeyl group (the instanton Weyl group).

The iWeyl group is the Weyl group W (gq). For the class I theories W (gq) is the finite Weyl
group W (g) of the corresponding ADE simple Lie algebra g, for the class II theories the iWeyl
group turns out to be the affine Weyl group W (g) of the corresponding affine Lie algebra g = g.
The Weyl group of (/}ioo shows up in the class IT* theories.

We solve the limit shape equations by constructing the iWeyl invariants X;(Y(z)) of Y;(x+ ),
for the appropriate shifts p;, and showing that these invariants are polynomials in x,

X;j(Y(x)) = Tj(x),  j € Vert,.

For the class II theories the invariants X; are convergent power series in q;. Moreover, in each
order in expansion in q = [[, q;" they are finite Laurent polynomials in Y;’s. For the class IT*
theories the invariants X; are convergent power series in q;, and finite Laurent polynomials in
Y;i(z+ pj+1m*), for a finite collection of integers [ € Z, again in every order in q expansion. For
the class I theories the functions X; are polynomials in P;(z) and Laurent polynomials in Y;(z).

5.2 The densities and the amplitude functions

The amplitude functions Y;(z) are the multi-valued analytic functions, which we defined, for
large x, via equation (5.1):

Yi(x) = exp(try, log(x — ®;))y. (5.2)
One shows, using the fixed point techniques that

Yi(x) = exp / dxpi(x) log(x — %), (5.3)

where the density function p;(x) has compact support which consists of v; intervals
Vi
supp p; = | J Jia-
a=1

The intervals I; o should be thought of as the “fattened” versions of the eigenvalues a; 5. More
precisely,

1:/ pi(x) dx, ai’a:/ xpi(x) dx. (5.4)
Ii [i,a

a
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Figure 5.1. Support intervals I; 5 of the densities p; and the cycles A;a.

The functions Y;(x) have, therefore, the cuts at the intervals I; 5, with the limit values H;-t of
the Y; function at the top and the bottom banks of the interval I; 5 being related via

x

YF(z)/Y; (z) = exp <2m /

—00

pi) ax ).

One then analytically continues Y;(z) across the cuts, which leads to the set of the multi-valued
analytic functions. We shall describe this analytic continuation in detail in the coming section.

5.3 The special coordinates

From the equations (5.2) and (5.4) one derives

1
Qja = o 7{41‘8 rdlogYi(z), (5.5)

where A;q is a small loop surrounding the cut I; o, see Figure 5.1.

6 The limit shape prepotential

The prepotential of the low-energy theory is expressed in terms of the densities as follows:

Flaimir) == [ axax’ 30 o )pxK = )

i€ Vert,
I/ / " -
+//R2 AX'dx" D" i) () ps(e) (&K — X" +me)
ecEdge,
X2 il
+ Z / dx p;(x) <(log ql)? + Z K(x — mm))
1€ Vert, R f=1

+ Z biya <1 - / pZ(X) dX) + Z afa (ai,a - / XpPq (X) dX) )
i,a Ii,a i,a Ii,a

where the constraints (5.4) are incorporated by the last two lines via Lagrangian multipli-
ers b; a, afa,

and Ayy is the UV cutoff scale. In fact, the Ayy-dependence drops out for the theories solv-
ing the 8; = 0 equations. However, in the intermediate formulae we keep the explicit Ayy-
dependence.
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6.1 The limit shape equations

Originally the limit shape equations were derived as the variational equations on F [149, 154].
These are linear integral equations on the densities p;(z): for any x € I; 5 the following should

hold
2/ i(X)K(x — x)dx + Z /ps(e K(z — x4+ me)dx (6.1)

e: t(e)=i

2
+ Z /pt K(z —x—me dx—i—Zle—mlf)—i—?log(qz)— afa+bi,a,
e: s(e)=i f=1
where aZDa, b;.a are some constants, the Lagrange multipliers for the conditions (5.4) which are

determined from the solution. Actually, a Z is the dual special coordinate, cf. (4.1),

oOF D
aaz’,a

a

(6.2)

We find it useful to rewrite the second derivative with respect to x of the linear integral equa-
tions (6.1) on p;(x) as the non-linear polynomial difference equations on the amplitudes Y;(x):

Y5 @)Yy (@) = Pi() [ Ys@@+me) I Yueole—me) (6.3)
e: t(e)=i e: s(e)=i
forx € I a, a=1,...,v;, where we used the notation:

Wy

Hf(m) =Yi(xz £10), x € lia and Pi(z) = H(a? — M)
f=1

6.2 The mass cocycles

In what follows we shall redefine the amplitude functions and the P-polynomials
Yi(x) — Yi(z + i), Pi(z) = Pi(z + i), (6.4)

so as to simplify the shifts of the arguments by the masses m, of the bi-fundamental hypermul-
tiplets:

Me — Me + Ht(e) — Hs(e)-

The equations (6.3) are the main equations which determine the low-energy effective action
as well as the expectation values of all gauge invariant chiral observables. One can view the
equations (6.3) as a Riemann—Hilbert problem. They are also similar, but not identical, to the
so-called Y-systems and discrete Hirota equations.

For the class I and class II theories the shift (6.4) maps the equations (6.3) to

Y5 @)Y (@) =Pix) [T Y@, (6.5)

jeVert.,,j#i

where for the class II theories P;(z) = q;. For the class IT* theory gﬁ, with the clockwise, say,
orientation of the quiver, we can make all masses m, to be equal, m, = N%lm, by using the
shift (6.4). More precisely, in writing (6.6) we chose the representative m™* such that if all the
edges are oriented so that t(e) = (s(e) + 1) mod (r 4+ 1), then m} = N%lm. Then,

Y (@)Y (2) = qi¥i- 1(:1:—1_1:1)%1“( +‘_1:1> (6.6)

where Y;1,11(z) = Yi(2).
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6.3 Analytic continuation

We use equation (5.2) to analytically continue the functions Y;(z) through the cuts I; o: for the
class I and II theories, after the redefinition (6.4) which eliminates m.,

rit Yi(z) — Yi(x)Pi(z) [ Y, (6.7)

j€Verty

For the class II* theories after the redefinition (6.4), we have the following analogue of (6.7):

Yio1(z — 39) Vi (2 + 555)
Yi(z) '

i 9i(T) — g (6.8)

7 The iWeyl group

The transformations (6.7) and (6.8) generate a group, which we shall call the instanton Weyl
group, or iWeyl group, "W, for short. This group can be defined for a much larger class of N = 2
theories, not necessarily of the superconformal quiver type we study in this work.

It is clear that the transformations r; are reflections r; o r; = Id, so the iWeyl group is the
group, generated by reflections.

Now, by comparing equation (6.7) and equations (C.16), (C.26), we see that for the class I
theories the iWeyl group is the finite Weyl group W(g). Similarly, for the class II theories the
iWeyl group coincides with the affine Weyl group W(g). For the class IT* theory the iWeyl group
is the Weyl group W(g[ ) of the group GL

The groups G, G GLOO and their Weyl groups are discussed in Appendix C.

8 Moduli of vacua and mass parameters

After all the redefinitions (6.4) the original mass parameters m., the moduli (aI)zzl of the
vacua u € 9, and the derivatives of the prepotential (8.7: / 80,1) are recovered from the study of
periods of certain differentials on the curve C, defined as follows.

8.1 The first glimpses of the cameral curve

The functions Y;(x), i € Vert,, after the maximal analytic continuation through the cuts I; o
form a local “W-system. It is easy to see that, as long as lgj| < 1 for all j € Vert,, there is
exactly one branch of Y;(z) as z — oo which behaves as

YPS () Vi
The other branches behave as
oy (1 7)o o
j€Verty

with nj; > 0, and
ani > 0.
J

Now, the branches meet at the cuts

U Ii,a

i€Verty; a=1,...,v;
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Figure 8.1. The cycle at z = oo surrounding the branch cuts of Hfhys(z).

for the class I and II theories, and at the cuts

m
U lia+ —2
i€Verty; a=1,....N "

for the class IT* theories.

The collection of these branches defines a curve C,, which we shall describe explicitly in the
next section. The curve C, is a iW‘—COVGI‘ of the z-plane C,y, with the branch points at the
ends of the cuts I; 5. Because of the “VV-action on C, and the relation to the Weyl groups which
permute Weyl cameras, the curve C, will be called the cameral curve, following [30].

8.2 The special coordinates and the mass parameters

Take the physical branch and expand it at * = co. Then the next-to-leading term gives u;,
the mass shift which determines (or partially determines, in the II* case) the bi-fundamental
masses:

H?hyS(m) ~ Vi vV (8.1)
The equation (5.5) is modified by the p;-shift:

1

Qo+ i = 5 — j@{ xdlogY;(x), (8.2)
Az‘a

where A;a is a loop on the physical sheet of C, which surrounds the cut I; 5. Note that the
only singularities of Y;(x) on the physical sheet are at x = 0o and at the cuts. Therefore (see
Figure 8.1),

1 1
Zj{ xdlogY(z) = }1{ xdlogYi(z) = viui,
= 27 Ja,, 2mi Joo

which is consistent with equations (8.1), (8.2) thanks to (2.1), i.e.,

> dia=0. (8.3)

a=1

Remark 8.1. The residues

1 )
Uji=— ¢ a2’/ dlogY;(z)

27 Jo

determine the “mirror map”, the change of variables (T3(z))ievert, — (Ti(%))icvert, We talked
about earlier.
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8.3 The dual special coordinates

Now let us discuss the dual coordinates a?,. First of all, the equation (6.2) does not quite make
sense in view of (8.3). Suppose we relax (8 3) by absorbing ; into the definition of a; 5. We can
then analyze the limit shape problem in the usual fashion. We should keep in mind, however,
that only the SU(v;) part of the gauge group is dynamical. The trace part of the dual special
coordinates afa,

Vi
D
=2
a=1
is ambiguous. The traceless part, i.e.,
vi
> ati
a=1
for any weight vector (\a),
S h=o
a

should be well-defined. Let us now see how this works in detail.
By differentiating (6.1) with respect to x, we find

—2/pz( W' (z — 7)dT + Z /pse (2)K'(x — T + me) dT (8.4)

e: tle)=

+ Z /’Ot DK (x — T —me) dm+Z/C’x—mzf)+xloqu—af)a, x € Ijq,
f=1

K'(z) = zlog <Ax )z C k() di

10AY
with

K"(z) = log (sz>

and Ayy = exp(1)Ayy. Using the definition (5.3) of Y;(z) functions, we find

xT xT
al = Ayy logq; — /A Az log YP°(z) + / dz <—10g yPhys ()
uv

Auv
+ Z log Hspggs(i" + me) + Z log thys( —me) + log ?Z(;i)> . (8.5)
e: t(e)=t e: s(e)=i

The integration contour in the above formula runs over a physical sheet from a marked point
p« € Cy, which sits over the point Ayy € Cyy to a point & € I; 5 which we view as sitting on Cy.
The choice of z is irrelevant? as long as x € I; a precisely due to the critical point equations (6.3).

2Physically the meaning of the integrand in the effective electrostatic problem is the force acting on elementary
charge, and the integral is the chemical potential for the charge, or the energy required to move an elementary
charge from the density support to infinity. The force vanishes on the support of the charge in the stationary
charge distribution.
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The above expression for aZDa

integral in (8.5) is in fact

can be converted into much nicer form by noting that the second

[ ’ log ("YPMS(7))dx, (8.6)

Auv

where r; is the i-th reflection (6.7). In other words, (8.6) is the integral of the analytic con-
tinuation of the function Y;(#) onto the mirror sheet of C, obtained from the physical sheet by
the “W-reflection r;, i.e., by continuing across any of the cuts Iia,a=1,...,v;, supporting the
density p;(x). Thus the integral of the expression in the brackets on the last two lines in (8.5)
is equal to the integral

| togti@as
ri(p«)

Thus we conclude

a2, = Ryv logq; - / log Y,(%) d, 8.7)

ia

where the contour B;, starts at the point p, which sits over x = INXUV on the physical sheet, runs
through the cut I; 5 to the mirror sheet r;(phys) and terminates at the point r;(p.), which sits
over r = AUV on the mirror sheet.

It is tempting to send Ayy to infinity. However, there is a subtlety which we already discussed
in the beginning of this section. The integral (8.7) diverges for Ayy — oo. The linear divergence
is canceled by the constant term Auv log q; due to

log ("YP™5 (7)) — log (YP™°(%)) = logqs, & — oo

However the subleading logarithmic divergence does not, in general, cancel. The simplest way to
calculate it is to compute the logarithmic derivative AUVda /dAuy and then send Ayy — oo:

AUVdAUV = _Zmz,f + Z Vis(e)Me — Z Vi(e)Me- (8.8)

e: t(e)=i e: s(e)=i

Luckily the right-hand side of (8.8) does not depend on a.
We can use the formal expression

D
Ui a :/ xdlogY;,
Bia
where the contour
B;a: OQphys — lia Ti(oophys)

starts at the point x = ocoppys on the physical sheet, then runs through the cut I; 5 to the mirror
sheet 7;(phys) and finishes at the point r;(cophys) on this mirror sheet.

The canonical contour B;; computing ag is an open contour, and, as we said above, the
integral of xdlogYy; is divergent. However the variation of Coulomb parameters in SU(v;)
concerns only the differences

0y — O = / _, wdlogl; (8.9)
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g‘d@é& Bi,a/,a” ~ WWZ C(phys)

Ii a’ : Ii,a“
:

: .

, foet TZ(C?:;)}IS)

Figure 8.2. The cycles Bf;;,

computed by the closed contour Bal o = DBiar — B running on physical sheet through the
cut I;5 to the mirror sheet n(phys) and then through the cut I;5» back to the physical sheet.
The divergence (8.8) cancels in the integration over B;p — Bjar.

In fact, the difference (8.9) is represented as the integral over the closed contour Bf,‘;/ with-
out any divergent quantities, as follows immediately from the (8.4), by connecting two points
x' € I; o and 2" € I; o» on the physical sheet and replacing the integrand as in the second in-
tegral of (8.5) over the physical sheet by an integral of —logY(z')dx’ over the return segment
from 2" € I; v to 2’ € I; 5 on the mirror sheet r;(phys), see Figure 8.2

In the weakly coupled regime we have the following BPS particles in the gauge theory: for
each gauge group factor i the W-bosons associated with the breaking SU(v;) — U(1)vi~1,
which correspond to the roots of the SU(v;), and magnetic monopoles, which correspond to the
fundamental weights. Accordingly, it seems natural to define the following cycles on the cameral
curve: the A- and B-cycles, more precisely Az, BZ, labelled by T = (i,a), with i € Vert,,, and
a=1,...,v; — 1:

Az = Aia — Aiar1),  B' =) Biw — % Z Biar.

i
a'=1 a’’=1

The cycles Az, BL determine the special coordinates
ot :% xdlogY;, a? :74 zdlogY;. (8.10)
Az BT

In the weak coupling regime the pairing (8.10) between the cycles and the differentials is non-
zero only for Z = (i,a), for some a = 1,...,v; — 1. The main property of these cycles is the
vanishing of the following two-form on the space 9t of u-parameters:

0= Z da® A daP,
I
which follows simply from the equation (6.2).

9 Solution of the limit shape equations

In this section, we solve the equations (6.3), (6.5), (6.6), and get an explicit formula for the
curve C,.
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9.1 From invariants to the curve

Our strategy is to define a set of basic invariants X;(Y(z)) of the ‘W group. We shall find the
basic invariants which are power series in q;’s, and which are normalized in such a way that, for
the class I and II theories:

Xi(Y(@) =Y+ D>, [ P @u(th(@), ... ¥ (2)),

v, [v|>0 jEVerty

v=(v,...,1), = > v, (9.1)

j€Verty
where ¥, (Y(z)) € C[Y;(z),Y;(x)"!] are quasi-homogeneous Laurent polynomials
0
Z Vj%’j@ + w;v; U, =v; U,
jEVert, J

For the class IT* theories there is one modification

Xi(Y(x) =Yile)+ D 3T (Y(2)),

v, |v|>0

-
V:(V07-"7VT)> |V|:Zij (92)
=0
where

)
i =[]d7
=0

and W, (Y(x)) € (C{%Ij(x + T%m),’jj_l(x + %m)] with —|v| < n < |v|. The functions V;, are

quasi-homogeneous:

o - 5
Z ajldj%%u =a; V.

j€Verty

9.2 Master equations

Now, the “W-invariance of X;(Y(z)) implies that they are continuous across all the cuts, that
is they are single-valued analytic functions of x. Given their large x asymptotics, they are
polynomials in z:

X;(Y(x)) = T;(x), (9:3)
where
Tj(x) = Tjo(@)z"7 + Tjn(@;m)z" " -+ Ty, (9.4)

The coefficients T} o(q) are determined by the gauge couplings q

Tio@) =1+ Y §W;(L,...,1).

The coefficients T} 1(q; m) are determined by the masses m, from (8.1), (9.1), (9.2).
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The rest of the coeflicients

~ j€Vert
(Ta(@ m,u))a s,

a=2,...,v

is determined by u = (u;.a) icvert,

‘. The equations (9.3) and (9.4) define an analytic curve
Cg C C<z> X ((CX)VertV,
which can be compactified to the cameral curve C, which is the “WW-cover of C]P’%m = CyU{oo}:

1

Cu — C]P’<x>
unramified (for generic q) over x = oo. The details of the compactification of C g,y x (Cx)Verty
and C;, C C, will be discussed elsewhere. In what follows we drop the superscript o in the
definition of C,.

9.3 The periods

The cameral curve C, depends on u, forming a family C of curves parametrized by the “u-
plane” 9. The family C depends on the microscopic couplings q; and on the mass parameters.
Let us keep the masses fixed. When |q;| < 1 for all i € Vert, we have a well-separated system of
cycles Az and BY, which we defined in Section 8. We transport this system of cycles throughout
the moduli space of gauge couplings via Gau3~Manin connection.

9.4 Vector-valued Seiberg—Witten differential

Let us introduce the following vector-valued 1-differential which is schematically given by

dS== Y  (dlog¥iey — dlogPi(z)N),

i€ Vert

where o and A\ are the simple coroots and the fundamental coweights of g,. We shall have
more specific notations for each class.

The differential dS takes values in the vector space CVe'* which is acted upon by the Y-
group. The group ‘W also acts on the curve C,. It is clear from our construction that dS is
"W-equivariant:

w*dS = w - dS

for any w € ‘W.

9.5 Degeneration and filtration

In this section we consider the theories of class I and class II, and the extended Coulomb moduli
space IMM™! (which includes the masses of bifundamental hypermultiplets, recall equation (4.4)).
Consider conformal quiver with assigned dimensions (v, v,w) at vertices and recall that they
satisfy w = Cv, w; > 0, v; > 0 where C is the Cartan matrix of v. We say that the theory
(v, v, w) strictly contains the theory (v,v/,w’) if 0 < v/ < v, 0 <w <w and Cv' = w/, and
(v, v/, w') # (v,v,w). The extended Coulomb moduli space M of theory (v, v,w) contains
a locus related to the Coulomb moduli M’ space of (v, v/, w’) as follows. Suppose that given
a point my € C,y the polynomials T;(z), Pi(z), i € Vert, factorize as follows:

Ti@) = Ti(@) (@ —mp)" ™, Pi(a) = Pia) (x —mp)™ (9:5)
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Then it is clear that the character equations (9.3) factorize as well, and the Y;(z) functions solving
the theory (v, v, w) are expressed in terms of Y(x) functions solving the theory (v, v’,w’) as

Yile) = (& —mp) VY2,

Suppose that the degeneration equation (9.5) is minimal, i.e., there is no intermediate and
different (v, v",w"”) such that v/ <v” < v and w < w” < w. Then we see that 9" includes
the loci M x Cy,y

gﬁext’ % C(a:) c DﬁeXt7

where C ;) parameterizes the location of my.

In the monopole picture of Section 11.1 such degeneration corresponds to the complete screen-
ing of the point-like non-abelian monopoles by several Dirac monopoles.

Recall that dimensions v for the theories of class II parametrized by a single integer N such
that v; = Na; where a; are Dynkin marks. Therefore, the above inclusion is

gﬁ?\)/(t_l X C<$> C Qﬁ?\);t.

Geometrically, such inclusion for theories of class II is associated with freckled (point) instantons
described in more details after equation (9.13).

9.6 The cameral curve as a modular object

In this section we give the modular interpretation of the curve C,.

9.6.1 The class I theories

Let G = G4 be the simple complex Lie group corresponding to the quiver of the class I theory.
Let Z be its center, and let CG be the conformal extension of G. Let A/, &', ¢ = 1,...,7 be
the fundamental coweights and the simple coroots in Ch C Cg. Let

g(z) = [] Pi(2) N Yi(2)™ € CT  CG. (9.6)
=1

In the notations of (C.25),
9(T) = 8P(x), Y1 (),.... Y ()
We also use
9oo(T) = 8p(a) 1,....1-

The importance of g(x) is that it transforms by the reflection in the Weyl group W(g) when
crossing the cuts I; o, cf. (C.26),

g+(x) — g-(v) =" g4 (),

which implies that for the class I theories the iWeyl group ‘W is the Weyl group W (g) of the
corresponding simple Lie group G. In order to construct the “W-invariants one could take any
CG-invariant function on CG. In fact, cf. (C.25),

Xi(Y(2)) = goola) Mxi(g(x)).
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Using the formulae (H.1) and (H.2), we write

(Y (@) = Ys Al (ﬂa- 1v.% ) , (9.7)
=1 k=1

V:(Vl ----- vr)

where
i r
Cv = XRip\i—j_ viey vELL.

In fact, the sum in (9.7) is finite, i.e., only for a finite number of vectors v’s the multiplicity c!,
iS non-zero.

We thus obtain the following geometric picture. The solution of the class I theory is a C,)-
parametrized family [g(z)] of conjugacy classes in CG, which vary with x polynomially, in the
appropriate sense, and such that the value of the D-homomorphism on [g(x)] is fixed for the
theory:

D(g(x)) = < II j’j(a?)ljf>
j=1

Zg

e=1

Actually, as we explain in Section C.3.1, the coweights j\iv are not uniquely specified. The group
element g(z) in (9.6) defines a well-defined conjugacy class [g(z)] € B™(gq) in Gq/Z. Its lift
to CG can be twisted by any C-valued (meromorphic) function of z. We shall use this freedom
in our manipulations with spectral curves.

The cameral curve C, can be viewed, geometrically, as the lift to C'T of the parametrized
rational curve in CT/W (g) ~ (C*)%* x C":

x+— D(g(x)) x (Ti(x),...,T.(x)).

9.6.2 The class II theories

As we mentioned above, the quivers of the class II theories correspond to the simply laced affine
Kac—Moody algebras, i.e., g4 = g. Let G be the corresponding Kac-Moody group. Let Y, @
be the corresponding affine coweights and coroots, i = 0,1,...,r (see Appendix C.4). Define

g(x) = TTa; ¥ Yi(2)® €T c G. (9.8)
1=0

Again, strictly speaking g(x) takes values in G /Z and so we should consider the modification
of G corresponding to the conformal extension C'G, but since the subtlety with the center Z C G
only involves the z-independent factor

T ~
~ Y
Yoo = q; *
i=0
it will not affect the xz-dependence of the invariants. The limit shape equations, as in the class I
case, translate to the jump conditions

i

g+(x) — g—(x) =" g4+ ()

for © € I, 5, with r; being the simple reflections generating the affine Weyl group W (g), which
is the “W group for the class II theories.
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The invariants of W (g) are constructed using the characters y; of the fundamental represen-
tations R; of G:

Xi(Y(z) = (%) Rilg(@)). (9.9)

They can also be obtained by starting with Y;(z) and averaging with respect to the W(g)-
action. The W (g)-action consists of the translations by the coroot lattice QV and the W(g)-
transformations. The QVY-averaging produces the lattice theta-functions of various characteris-
tics, of the schematic form (the details are given in Appendix I):

= >
veQVv

where
a=]]a" (9.10)
1=0

The affine analogue of the formula (9.7) is an infinite sum, however, it is a power series in g.
Using the fact that the weights X of the fundamental representation R; differ from the highest
weight )\ by a positive linear combination of simple roots, A= )\ -7,

= E viQy, Vj €y,

we can write, with

=114
j=0
=Y E sq” H Yl (9.11)

k,j=0

where we made the q = (qo, ..., q,) dependence explicit, and
& = Xhusiw

Write v = nd + v, where n € Z,, and v € Q belongs to the root lattice of g. Notice that the
factor ﬁ in (9.11) depends on n only via the g™ factor. For fixed n the number of v € Q such
that ¢’ cmer # 0 is finite.

The characters of G are well-studied [93]. Physically they are the torus & = C*/q% conformal
blocks of the WZW theories with the group G, and levels k = a;, i = 0,1,...,r (see [29] for
recent developments). The argument of the characters can be viewed as the background G
(0,1)-gauge field A, which couples to the holomorphic current J = g~1dg:

Zu(rid) = [ Dgexpk<5wzw(9)+ / <J,A>)= Y o %Ea)

X at level k

The background gauge field has only ~ moduli. In practice, one chooses the gauge A = TS
where £ = const € b.

Technically, it is more convenient to build the characters using the free fermion theory, at
least for the A,., D, cases, and for the groups Fg, F7, Eg at level 1. We review this approach in
Appendix K.
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The master equations (9.3) X;(Y(z); §) = Ti(z) describe a curve C, C Cyyy x (C*)"+! which

is a W (g)-cover of the z-parametrized rational curve ¥, in C"*! = SpecC[Xy, - - ., X+], cf. (9.9):
- (Y :
xi =114, ( ])Ti(x), i=0,...,r (9.12)
J
Now, as we recall in Section F, the characters ¥;, ¢ = 0,...,r are the sections of the line

(orbi)bundle O(1) over the coarse moduli space Bung (&) of holomorphic principal semi-stable
G-bundles over the elliptic curve &. Therefore, (9.3) and (9.12) define for each u a quasimap U
of the compactified x-plane (CIP’%@ to Bung (&), which is actually an honest map near x = oo,
whose image approaches the fixed G-bundle P. This bundle can be described, e.g., by the
transition function g, which is one of the T lifts of

.

_ A

oo =] " €T/Z
=1

By definition, the local holomorphic sections of Py are the G-valued functions ¥(z), defined in
some domain in C* such that

¥(q2) = gV (2).

The complex dimension of the space of quasimaps U with fixed U (c0) is the number of coefficients
in the polynomials (73(z))ievert, excluding the highest coefficients, that is (cf. equation (4.4)),

dime M = Z v; = Nh.

1€ Vert,

We say that U is a quasimap, and not just a holomorphic map (C]P’%@ — Bung (&) for two
reasons. Technically, a collection of X; in (9.12) defines a point in WP®:®1- only if the
polynomials T;(x) don’t have common weighted factors. If, however, for some my € C,:

Ti(z) = Ty(x)(z — my)™, forallt=0,...,r, (9.13)

then the map CIP’@ — Bung(€) is not well-defined at * = my. It is trivial to extend the
map there by removing the (z —my)% factors. This operation lowers N — N — 1. In a way,
the point m; carries a unit of the instanton charge. Such a configuration is called a freckled
instanton [121]. Thus, the extended moduli space equation (4.4) of vacua Mty of the gauge
theory with Gy = x;SU(Na;), contains the locus 9™ y_; x C(y). Allowing for several freckles
at the unordered points myy, mya, ..., my; we arrive at the hierarchy of embeddings of the moduli
spaces of vacua of the gauge theories with different gauge groups Gg:

My = Ity MMty 1 x €y UMy x Sym? Cpgy U -+ -

U W%Xt]\f_i X Symi C<m> U---U SymN C<x>,
where text ~ stands for the space of degree N rational maps U : (CIP%@ — Bung(€).

This hierarchy of gauge theories is more familiar in the context of class I theories. Presently,
the freckled instantons to Bung(€) correspond to the loci in 9t where a Higgs branch of the
gauge theory can open. Indeed, if (9.13) holds, then we can solve the master equation (9.3) by
writing

Y;(z) = (& —my)*Y;(x)
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with Y, () solving the master equation (9.3) of the
XiGVertWSU((N - 1)01)

gauge theory. In the IIB string theory picture (see Appendix A.3) the full collection of fractional
branes in the amount of a; for the i-th type recombine, and detach themselves from the fixed
locus, moving away at the position m; on the transverse R? = Cy-

Now let us take u € Dext ~n- The corresponding map U defines a rational curve ¥, in Bung (&)
of degree N.

Remark 9.1. Actually, there is another compactification of text N, via genus zero Kontsevich
stable maps of bi-degree (1, N) to CP! x Bung(€) (see [71], where the space of quasimaps is
called the toric map spaces). It would be interesting to study its gauge theoretic meaning.

Remark 9.2. The highest-order coefficients T;o(q) of the polynomials T;(x) depend only on
the gauge coupling constants, and determine the limit U(x), x — oo

U(oo) = [P] € Bung(€).

The next-to-leading terms T; 1 (q,m) depend only on the gauge couplings and the bi-fundamental
masses. These define the first jet ‘J'[pa]Zu of the rational curve X, at x = oco.

Summarizing, the moduli space My of vacua of the class II theory with the gauge group
Gg = XiEVert—YSU(Nai)
is the moduli space of degree N finely framed at infinity quasimaps
U: CP, — Bung(€) ~ WPttt

where the fine framing is the condition that U is the honest map near x = oo, and the first jet
(the value and the tangent vector) at x = oo are fized:

(U(oo),U'(oo)) < (q,m).

We also have the identification of the extended moduli space I with the space of framed
quasimaps

9.6.3 The class IT* theories

The theories with the affine quiver of the ;4\7, type can be solved uniformly in both class II

—

and class IT* cases. This is related to the fact that the current algebra u(r+ 1), the affine
Kac—Moody algebra based on U(r + 1) is a subalgebra of gl , consisting of the (r + 1)-periodic
infinite matrices.

Let 7y be the affine Dynkin graph of the A, algebra. We have, Vert, = Edge, = {0,1,...,7}.
Choose such an orientation of the graph ~ that for any e € Edge,: s(e) = e, t(e) = (e + 1)
mod r 4+ 1. Let me, e =0,...,7 be the corresponding bi-fundamental multiplet masses, and

r
m= E Me.
e=0

We are in the class IT* theory iff m # 0.
It is convenient to extend the definition of m, to the universal cover of ~v. Thus, we define

M = My mod(r+1) Yi(%) = Yimod(r+1)(® — m(y)), i € L. (9.14)
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The extended amplitudes Y;(z) obey

Yirri1(2) = Vi — m). (9.15)
Define
. Yi(x)

ti(x) = J , 9.16

i@ =ty o (916)
where

b1 = Gmoaernts  [[G=1 T =ab. (9.17)

§=0

Then
titr+1(z) = qtj(z —m),

where for the ET—series,
T
a=1]a
§=0

Now, consider the following element of (/}iooz
g(x) = Yo(2)™ x [ ti(x) " (9.18)
1EZ

with ¢;(z) from (9.16), and E; ; denoting the matrix with all entries zero except 1 at the i-th row
and j-th column. A closer inspection shows (9.18) is the direct generalization of (9.8) with the
(r + 1)-periodic matrix goo, and (Y;())icvert, replaced by the infinite array (Y;(z))iez. Indeed,

the simple coroots of (/}ioo are the diagonal matrices, shifted in the central direction
o) = K&+ Ei; — Eit1,41, 1€ Z
so that the analogue of (C.31) holds
K= Z aiv
1EZ
if we drop the telescopic sum ZieZ Eii—Eit111~0.

We do not need to deal with all the coweights of (/}ioo, only with the (r + 1)-periodic ones,
defined via:

r RV r+1 5
T by \Litb(r+1),i4+b(r+1)
1o, =TT ("%) -
Jj=0 beZ j=1

These coweights are the coweights of the ET Kac-Moody algebra, embedded into gl as the
subalgebra of (r + 1)-periodic matrices

g a; ;i F; ;, it 41 j4r+1 = i j-
ijEL

We shall describe the solution of this theory in detail in the next section.
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9.7 Spectral curves

The cameral curve captures all the information about the limit shape, the special coordinates,
the vevs of the chiral operators, and the prepotential. Its definition is universal.

However, the cameral curve is not very convenient to work with. In many cases one can
extract the same information from a “smaller” curve, the so-called spectral curve. In fact, there
are several notions of the spectral curve in the literature.

Suppose A € Hom ((C*)Yer*» C*) is a dominant weight, i.e., A(}) > 0 for all i € Vert,.

)

Let Ry be the irreducible highest weight module of G with the highest weight A\, and my: G4 —
End(R)) the corresponding homomorphism. Then the spectral curve C in Cy X Cyy is

detg, (1 —t"'¢(x) 'mr(g(x))) = 0, (9.19)
where

1. for the class I theories we introduce the factor
¢(z) = goo(2)? x a rational function of z,

having to do with the lift of the conjugacy class [g(z)] from G®! to CG. The rational
function is chosen so as to minimize the degree of the curve Cf | as we explain in the
examples below.

2. for the class II, IT* theories the factor ((x) is a constant.

Generally, the curve C* defined by (9.19) is not irreducible. The equation (9.19) factorizes
into a product of components, one component for each Weyl orbit in the set of weights Ag, for
the module R). Each Weyl orbit intersects dominant chamber at one point and therefore can
be parametrized by dominant weights p. Therefore,

Cf“ = U mult(\ : p) - (CF),

/LEAR)\ NAt+

where mult(\ : ) denotes multiplicity of weight p in the module Ry. If Ry is minuscule module,
then, by definition, the curve C2 is irreducible.

Example 9.3. Consider the A; theory and take A = 3\, i.e., the spin % representation. If
Ti(x) = trg, g(z) = t(x) + t(x)~! one finds that

Oy 0=1-T1(2)t + %
Cfax: 0= (1—Ty(z)t+ t2) (1+ 3T (x)t — 11 ()3t + t2).
Let 2‘)/V,,J C “W be the stabilizer of p in “W, a subgroup of Y. Consider the map
Ver
Pu: C<x> X (CX) b — C<x> X C(t)
given by
Pu: (x7 (yi)ie\/ert—y) = (l‘,t(.’B)),

t(x) = g(a) [gsa(x) = ] 1.

i€ Vert,,

Under the map p,, the curve C, maps to Cl; = C,/ iW“ C Cy) X Cyy, the irreducible p-component
of the spectral curve. This curve comes with the canonical differential, which is the restriction
of the differential on C ;) x Cy*:

dS:xﬁ.
t



42 N. Nekrasov and V. Pestun

Actually, in the case of the class II, IT* theories the commonly used notion of the spectral
curve differs from the one in (9.19).

Although we suspect the study of spectral curves associated with the integrable highest
weight representations of affine Kac—-Moody algebras may be quite interesting, in this paper for
the analysis of the class IT and IT* theories we use the conventional notion of the spectral curve
used for the study of families of G-bundles.

To define it, let us fix an irreducible representation R of G, 7r: G — End(R), and let us
study the theory of a complex chiral fermion valued in R, more precisely, an (1,0) bc system in
the representations (R*, R):

dim R

Lbc = Z /bzécl
=1

coupled to a background G x C* gauge field A @ A, and compute its partition function on the
torus €&:

Z(t,t,q) = Try, ((—t)gt"0g™).
Mathematically, we consider the space
Hr=R[z,27'] = H} @ Hy (9.20)

of R-valued functions on the circle S*. In (9.20), we took Laurent polynomials in z € C*, which
correspond to Fourier polynomials on the circle. We may take some completion of Hg but we
shall not do this in the definition of the spectral determinant below. Consider an element g € G
of the affine Kac—-Moody group, i.e., the central extension of LG = LG x C*, the loop group LG
extended by the C* acting by loop rotations. We have the canonical homomorphism-projection
f: G — LG with the fiber C*, the center of the central extension

fr g0 9(2)a%. (9.21)

The projection is topologically non-trivial. R
Now, LG acts in Hp via rotation and evaluation, and so does G thanks to (9.21): for ¥ € Hp:

(f(@) - ¥) (2) = mr(g(2)) - ¥(qz).

We would like to define the spectral determinant of f(g) in the representation Hg. The eigen-
values of f(g) are easy to compute

Eigen(f(9)) = {t"¢" | p € Ar, n € Z}, (9.22)

where we transformed g(z) to a constant t € T by means of a z-dependent G-gauge transfor-
mation:

9() = b1 (2)g(=)h(gz) = t.

The fibration f: G - fé, restricted onto C; x T C LG becomes trivial, f~! ((C; X T) ~
CX x C; x T. Let us denote by c the coordinate on the first factor.
The eigenvalues (9.22) concentrate both near 0 and oo, so we define

detrr, (1—t7'9) == dety+ (1 —t7'g) detyy— (1-1t57)

=[] ﬁ (1— g™t ") (1 — ¢" ). (9.23)

uwEAR n=0
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The expression (9.23) is W (g)-invariant. The shifts by Q act as follows, cf. (E.5):
(tv C) = (qﬁ : t’ tﬁq%<ﬂﬂ> : C)?

where we view 8 € Q both as a vector in the root lattice and as a vector in the coroot lattice,
and (, ) is the Killing metric. The level kg in (9.23) is defined as follows:

> i, B) = krB (9.24)

HEAR

for any vector € Q. Geometrically the spectral curve corresponding to R is obtained as
follows: consider the universal principal G-bundle U over Bung(€) x €, and associate the vector
bundle R with the fiber R:

RA:ZIIKG_R.

Now restrict it onto the rational curve ¥, C Bung(&). We get the R-bundle over ¥, x €.
For generic point = € (CIF’lx over the corresponding point U(z) € ¥, we get the vector
bundle R, over &, which is semi-stable, and splits as a direct sum of line bundles

Rx = @ Lu,x’

HEAR

where the summands are the degree zero line bundles on €. Under the identification Picg(&)
with € the line bundle £, , corresponds to the point t(z)* mod g for some t(x) € T/qQ". The
closure of the union

U {t(@)* | peAr} C (C]P’%@ x &€

1
xECP<m>

is the spectral curve CE C CIP’%I) x €. It is given by the vanishing locus of the regularized
determinant (9.23):

c(x)r H 0(t 't(z)";q) =0
HEAR

the choice of the z-dependence of ¢(z) seems immaterial at this point, as long as ¢(z) € C*.

Degree of the spectral curve

The z-degree of the spectral curve for class II theories in representation R is Nkgr where kg is
given by (9.24). The kg is the proportionality constant for the second Casimir in representation
R trr(-,-) = kr(-, )2 where the (-,-)2 is the canonical Killing form in which the long roots have
length square equal to 2. The standard computations leads to

dimp
KR = —
dimg

(AR AR + 2p)2,

where p = %E aso @ is the Weyl vector. For fundamental representations R; we find for all
cases

kR, (Ar) =1, kR, (Dy) =2, kR, (Eg) = 6, kR, (E7) =12, kR, (Eg) = 60.
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9.8 Obscured curve

In the previous construction, in view of the identification £, ; ++ t(z)* we can decompose, for
each weight

r T
=S An G- QL
i=1 i=1

for some “basic” line bundles L; , corresponding to the fundamental weights. These basic line
bundles are ordered, so they define a point

{Li,..., Ly} € Picg(E)" = €7,

the Cartesian product of r copies of the elliptic curve. Taking the whole family and including
the parametrization we obtain the obscured curve C,:

Cu={(@:L1z,...,Lra) | 7 € CPl,} € CPL, x €.

Let us present another simple construction of €,. Namely, let us use the fact [31, 55, 56, 59, 60],
that

Bung(€) = (€ @ Q)/W(g), (9.25)

where the tensor product is understood in the category of abelian groups. At the level of
manifolds, (9.25) simply says that

Bung (&) = €"/W(g)

for some natural action of the Weyl group W (g) on the Cartesian product of r copies of €. Let
us denote by 7y the projection

mw: & — Bung(€) = &"/W(g).

The rational curve ¥, in Bung (€) lifts to a curve in €", and the graph of the parametrized curve
Y, € (CIP%@ x Bung (€) lifts to the graph in CP%@ x €" which is our friend obscured curve C,. It
is the quotient of the cameral curve by the lattice QV:

eu = Cu/Qv

In Section 11.2, we shall present yet another construction of L; ,’s, using gauge theory.

There is the so-called determinant line bundle L over the moduli space Bung (&), whose sec-
tions are the fundamental characters x;, i =0, 1,...,r. In Loojienga’s identification Bung (&) ~
WP?0-41>--% this line bundle is just the O(1) orbibundle over the weighted projective space.

We have then the line bundle £ over £":

L =my L.

Let us call this line bundle the abelianized determinant line bundle.

10 The Seiberg—Witten curves in some detail

In this section, we shall discuss the geometry of curves describing the limit shape configurations
and the special geometry of the gauge theories under consideration. When possible we identify
the cameral or the spectral curves with the analogous curves of some algebraic integrable systems,
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namely the Hitchin systems on the genus zero (i.e., Gaudin model) or genus one (i.e., spin
elliptic Calogero—Moser system) curves with punctures. These identifications are less universal
than the identification with the spectral curves of the spin chains based on the Yangian algebra
built on g, g, or GL, respectively. The latter identification is a subject of a separate venue
of research which touches upon various advances in geometric representation theory, study of
the symplectic geometry of moduli spaces of instantons and monopoles, quantum cohomology of
quiver varieties, to name just a few. We shall only mention the relation to spin chains in a few
examples, in this work.
Throughout this section we shall use the notation

ga(z) = ¢(x) 'ma(g(x))

for the projectively modified operator in the representation (Ry, 7)) of G4, corresponding to the
group element g(z) € Gq.

10.1 Class I theories of A type

This is the so-called linear quiver theory. The set of vertices Vert, = {1,...,7}, the set of
edges Edge, = {1,...,r — 1}, the maps s, ¢ for a particular orientation are given by s(e) = e,
t(e) = e+ 1. The bi-fundamental masses are a trivial cocycle:

Me = He+1 — HMe-

The corresponding conformal group CG = GL(r + 1,C), the fundamental characters x; are
the characters of the representations A'C™*!. We shall now describe the spectral curve in the
representation Ry, ~ C"*!. The corresponding group element gy, (x) in (9.6) is the diagonal
matrix

g () = diag(ta(2), - .. trya1 (2))

with

ti(2) =((@)Y1(x),  ter(@) = ((@)P (@)Y (2) 7,
ti(x) = C()PP (@) Yi(x)Yimr ()Y, i=2,...,r (10.1)

with some normalization factor ((x) which we choose shortly, and the explicit formula for the
invariants X;(Y(x)) is (we omit the z-dependence in the right-hand side):

1—1
Xi(Y(x) = [[ P/ ei(Yn, 997 P, Yy P,y el (10.2)

Jj=1

where e; are the elementary symmetric polynomials in 7+ 1 variables. Our master equations (9.3)
equate the right-hand side of (10.2) with the degree v; polynomial T;(x) in z, cf. (9.4).

It is convenient to organize the invariants (10.2) into a generating polynomial, which is nothing
but the characteristic polynomial of the group element g(z) in some representation of CG. The
most economical is, of course, the defining fundamental representation C"+! with the highest
weight Aq:

i—1

det (- Lrgq — gx, (z)) = 771 + Z D (@) T] 257 () Xa(Y ()

j=1

z))r H P (). (10.3)
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vi 0 4] 7] 8 5
w 0 1) 2] 4 20

Figure 10.1. Degree profile example for A4 theory and (vy,ve,vs,vs) = (4,7,8,5). For convenience
one can set boundary conditions vg = v, = wg = w41 = 0.

The group ‘W is the symmetric group S, 1, which acts by permuting the eigenvalues of g(x)
n (10.1). The cameral curve C, is the (r + 1)!-fold ramified cover of the compactified -
plane (CIP’%@. The points in the fiber are the ordered sets of roots (¢1(x),...,t,41(x)) of the
polynomial (10.3).

The curve C, covers the spectral curve C,. The latter is defined as the zero locus of the
characteristic polynomial (10.3). The cover C,, — C,, is 7! : 1, it sends the ordered (r + 1)-tuple
of roots (t1,...,tr11) to the first root ¢1. The cover C, — Cyy is (r +1) : 1.

Explicitly, the curve C, is given by

r+1 -
0="P(t,z) =Y (-t (x H Y IT (2 (10.4)
i=0 7j=1

10.2 Relation to Gaudin model

It is easy to see, using the equations (3.3), (3.4) and Figure 10.1 that w;, = w4 + w_, where
wy = v, — Vi1 20, w- =Vi, = Vi1 20

and it useful to record
Vi=Wi+ -+ W, 1+ W,

Ve =W+ + Wi 1 + Wy,
tx—1
= Z TW; + 14 W_,
i=1
T

Ve = Z (r+1—d)w;+ (r+1—i,)wg.
1= +1

Accordingly, we can factorize the polynomial P; (z) as

Pi(@) = 0, P ()P (2),
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where P+ are monic polynomials of degrees

deg Pt =
We can actually transform (10.4) into something nice, by adjusting ((z):

C(2)7t = P ()P (). (10.5)
Then D(g(x)) is given by

P()(.’L’)
P ()’

Py(x) =PH () [ Pyl
j=ist1
Gx—1

Poo(z) =P~ (2)" [] Pi(x)
j=1

Then P(t,x) can be written as

D(g(z)) =

tx—1

Hqg :

oox

where P(t,x) is a degree N = v;, polynomial in z, and the degree r 4+ 1 polynomial in ¢, which
is straightforward to calculate

ix—1

—1)= [[ Pt ) = (—qi,) "t Puo(a +Zt’“+1 Ti(x)ay (=25 (@) [ ()
L -
T . o i—1 o
+ ) @) (=P @) [ P (@)
i=tx+1 j=ix+1
+ (1) Py (). (10.6)

Now, recall that T} is fixed by the couplings g:

qu (1, 91,9192, -+, 9192+ - Qi - -5 q1 - - - )

and the coefficient 7} 1 is fixed by the masses m;; and m..
Therefore, the coefficient of %V in P(t,z) can be computed explicitly

r+1 s r
Z(—l)ZtT_Fl_Z H q;lei(l, 91,9192, ---,9192 - - - Q45 - -5 91 - - - q,«) = H (t — tvl),
=0 Jj=1 i=0

where

H;‘:l a5

ti = =2 , 1=0,...,7
H;'*zchj

We thus rewrite the curve Cy, in the (x,t)-space, defined by the equation

P(t,x) N

- =Tl - m) =™ +

N
0="Ra, (t, l’) = m 1 Hl: g 10 7)
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where
N = Vi,

It is clear from the equation (10.7) that as ¢t — {; one of the roots z;(t) has a pole, while the
other N — 1 roots are finite. Near ¢ = 0 the polynomial P(¢,z) approaches:

P(0,z) = (—1)" "7 Py(x),
while near ¢t = 0o
P(t, )t = (=0i.)" Po().

Let

dS:x@.
t

Then our discussion above implies that the differential dS has the first-order poles on Cy: at
one of the N preimages of the points #;, i = 0,1,...,r, and at all preimages of the points ¢t = 0
and t = co. The residues of dS are linear combinations of the masses of the hypermultiplets, in
agreement with the observations in [38, 167].

Remarkably, we can identify C,, with the spectral curve of the meromorphic Higgs field ®:

r+1

dt
(at =3 @ (10.8
Jj=-1
where f_1 = 0, £,41 = 00, and ®; are N x N matrices, which have rank one for j =0,1,...,r,
and have the maximal rank for j = —1,r 4+ 1. Moreover, the eigenvalues of ®; are all fixed in

terms of the masses. The spectra of ®;, j = —1,...,7 + 1 have specified multiplicity:

1. The matrix ®_; has w, eigenvalues of multiplicity r + 1 — i, and w,.;_; eigenvalues of
multiplicity j, for j = 1,...,r — i; the eigenvalues are fixed by the masses.

2. The matrices ®;, j = 0,1, ..., has one non-vanishing eigenvalue each, and N —1 vanishing
eigenvalues. We can write

for some vectors u/,v; € CN, obeying

N .
> ulvd = M; (10.9)
a=1

and considered up to an obvious C*-action, for some M; which is linear in the bi-
fundamental and fundamental masses.

3. The matrix ®, 11 has w_ eigenvalues of multiplicity i., and w; eigenvalues of multiplicity 7,
for j=1,...,4,— 1.

Then
ar\ v dt
(t) Ra, (t,x) = det <:rt — <I>). (10.10)

We can make an SL(N) Higgs field out of ® by shifting it by the scalar meromorphic one-
form % Try ®, which is independent of the moduli u of the curve C,.
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The moduli space of (r 4 3)-ples of matrices ®;, obeying

r—+1

Y 2;=0 (10.11)

j=—1

with fixed eigenvalues of the above mentioned multiplicity, considered up to the simultaneous
SL(N)-similarity transformation, is the phase space ‘I.igr 43 of the genus zero version of SL(N)
Hitchin system, the classical Gaudin model on r 4 3 sites. The general Gaudin model has the
residues ®; belonging to arbitrary conjugacy classes.

See [109, 110] for the geometry of complex coadjoint orbits. The Hitchin system with singu-
larities was studied in [35, 75, 79, 80, 137, 178]. In [61, 131, 132, 133, 134] this Hitchin system
with singularities was discussed from the point of view of brane constructions such as [61, 175].

Remark 10.1. The curve C, is much more economical then C,. However, the price we pay is
the complexity of the relation between the special coordinates a;s, ag and the moduli u of the
curve C,. Roughly speaking, all special coordinates are linear combinations of the periods of
the differential

dt

Tr—

and the masses. The coordinates ai5 come from the periods

j{xdloggl(x) N fxdt/t,

the coordinates ao, come from the periods

fxdlog(gl(x)gg(x)) N ?{xdt/t + ?{xdt/t,

the coordinates a;; come from the periods

fa?dlog(gl(x) e gi(x)) ~ %xdt/t—i— TR %xdt/t,

etc.
Remark 10.2. In the Ay case our solution matches the one found in [169].

Remark 10.3. We can connect the cameral curve C, to the spectral curve C, via a tower of
ramified covers:

Co— C = UV =5 ) =, — CP,,

which we can call the Gelfand—Zeitlin tower of curves. The curve C’l(f) is the quotient of C, by
the subgroup W (A,_;) of the Weyl group W (A, ), which acts on the amplitudes (Y;11,...,Y,)
while preserving (Y1,...,Y;).

Remark 10.4. We should warn the reader that our cameral curves need not be the cam-
eral curves of Hitchin systems [30]. We mapped the spectral curve of the family of conjugacy
classes [g(x)] corresponding to the fundamental representation R; to the spectral curve of the
GL(N)-Gaudin system, i.e., the genus zero Hitchin system, corresponding to the N-dimensional
representation. One could then build the cameral curve for the GL(/N)-Gaudin system. This
curve has all the reasons to differ from our cameral curve C,,.

However, the identification of 9 with the moduli spaces of curves describing the spectrum
of the transfer matrix in the quasi classical limit of the Y (A,) spin chain is more natural, and
carries over to the level of cameral curves.
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Figure 10.2. The example quiver variety for A, quiver at v = (7,10,8,5) and w = (4,5,1,2) with
i, =2 and w, = w_ + w with w_ = 3 and w; = 2. The labels at vertices denote the dimensions in
the pattern as explained.

Remark 10.5. In view of [61], it is natural to identify the space of couplings g = (q1, .. ., q,) with
a coordinate patch in the moduli space My, +3 of stable genus zero curves with r+3 punctures. In
this fashion the linear quiver theories (the class I type A, theories) can be analytically continued
to other weakly coupled regions (weak coupling corresponds to the maximal degeneration of
the stable curve). Most of these regions do not have a satisfactory Lagrangian description.
Nevertheless, it would be interesting to try to generalize the limit shape equations even without
knowing their microscopic origin. What would the iWeyl group look like in this case?

10.3 Quiver description

We have thus found that a particular subset of Gaudin—Hitchin models, with all but two residues
of the minimal type, are the Seiberg—Witten integrable systems of the class I A, type theories.
As a check, let us compute the dimension of the moduli space ‘Bg{r 3 of solutions to the (traceless
part of the) moment map equation (10.11) divided by the SL(N, C)-action is equal to

tx—1
2(r+1)(N —1)—2(N? —1) + <N2 - jwy - izw_>
j=1

+ <N2_ i (T+1—j)2Wj—(T+1—’i*)2w+> :Qi(vl_l):2dlm9ﬁ

G=ist1 i=1

Actually, the moduli space ‘I?é{r 43 can be described as a quiver variety. Its graph is an (r+3)-
pointed star, with r + 1 legs of length 1, and two long legs, of the lengths [_; = v, — 1 and
lr+1 = vi1 — 1, respectively. The dimensions of the vector spaces assigned to vertices are: the
(r + 3)-valent vertex (the star) has dimension N, the tails of the short legs all have dimension 1,
the dimensions along the long legs start at 1 at the tails, then grow with the step 1 for the first wy
(respectively, w,) vertices, then grow with the step 2 for the next wy (respectively, w,_1) and
so on. (See example in Figure 10.2.)

The extended phase space B for the class I A, type theories is easy to describe. One just
need to relax the C* moment map constraints (10.9) as well as the analogous C* constraints for
the ®_1, @, residues. In the quiver description we make the quiver gauge group the product
of the special unitary groups as opposed to the product of unitary groups.

10.4 Reduction to the spin chain

The simplest example of the class I theory of the A type is, of course, the Ay theory. This is the
celebrated Ny = 2N, theory, with wi = Ny, vi = N, = N, in our notation. Let q = q1 and let
T(z) = TiOlTl () denote the monic degree N polynomial.

The reduced curve (10.6) assumes a very simple form

qP~ (@)t + PH (@)t = (1 + q)T(z). (10.12)
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It is not difficult to recognize in this formula the quasiclassical limit of Baxter’s T-Q) equation [10]
for the XXX sl spin chain. In fact, it was observed already in [73, 74] that the Seiberg-Witten
curve of the N’ = 2 supersymmetric QCD can be interpreted using the integrable spin chain,
albeit in a somewhat different fashion. Note that a possible lift of [g(z)] to CG = GL(2,C) in
this case is given by the diagonal matrix

g(x) = (qt?(_) (@) t_lg?+(x)> :

where ¢ solves (10.12). However this choice of g(x) is not continuous in z. As we cross the
cuts I; o the matrix g(x) will have its diagonal entries exchanged. We can conjugate g(z) —
h~=Y(z)g(x)h(x) into a form, e.g.,

- q7 () L
g(z) = <q (T%(z) — P*(2)P () T(ﬂﬁ)) ’

whose entries are polynomials. This is a particular case of a general statement [174], lifting a fam-
ily of conjugacy classes in G4 to Gy itself (slightly adapted for the conformal extension CG).
The lift (10.13) does not depend on the split P(z) into the product of P* factors.

There is yet another lift of [g(x)] to CG, which does depend on the factorization, and makes
closer contact with spin chains. We shall discuss it in the section devoted to the study of the
phase spaces of the integrable systems corresponding to our gauge theories.

(10.13)

10.5 Duality

In the mapping to the Gaudin—Hitchin system we employed a particular lift g(z) of the conjugacy
class [g(x)] in SL(r+1,7Z)/Z,+1 to the conjugacy class in GL(r+1, C) by a judicious choice of the
normalization factor ((x). More importantly, the spectral one-form describing the eigenvalues of
the Higgs field, is equal to xdt/t where x is the argument of the amplitude function, and ¢ is the
spectral variable describing the eigenvalues of g(z). For the group GL(r + 1, C) the eigenvalues
of g(z) in some representation take values in Cy = C* which gets naturally compactified to CP!
to allow the degenerations.

To summarize, the Lax operator of Gaudin—Hitchin system, the Higgs field ®(¢)d¢t lives on
the curve Cy of the eigenvalues of the “Lax operator” g(x) of the gauge theory. Vice versa, the
“Lax operator” g(z) of the gauge theory lives on the curve C/y) of the eigenvalues of the Higgs
field of Hitchin system.

We shall encounter some versions of this “eigenvalue — spectral parameter” duality in other
sections of this work.

10.6 Class I theories of D type

These are the SU(vy) x --- x SU(v,) theories whose quiver contains a trivalent vertex which
connects two one-vertex legs to a leg of the length » — 3. The corresponding group Gy is
Spin(2r, C), its conformal version CG is the extension of G by C* or C* x C*, depending on
the parity of r.

Passing from the A type theories to the D type theories we encounter new phenomenon.
In addition to the exterior powers A’V of the vector representation V = C*" of Spin(2r) the
fundamental representations of the group G, come also from spin representations S+. We should
use the cameral curve C, to get the special coordinates and the prepotential, however a lot of
information is contained in the spectral curve CF in some fundamental representation R, which
we shall take to be the vector 2r-dimensional representation V = Ry, = C?". In order to
describe the spectral curve we need to know the characters of the group element g(x) (9.6) in
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the representations A'V, for i = 1,...,2r. When we deal with V and its exterior powers only,
we do not see the full conformal version of G, only its one-dimensional extension (which we shall
denote simply by CG) which consists of the matrices g € GL(2r, C), such that gg' = D(g) - 12,
with D(g) € C* a scalar.

The spectral curve C,, = C in the vector representation can be modified by the transforma-
tion similar to (10.5) to get the curve of minimal degree in z. Let us label the vertices of the D,
Dynkin diagram in such a way, that the trivalent vertex is r — 2, the tails are r — 1, r, and the
end vertex of the “long leg” has the label 1, see Appendix A. Then the product of the matter
polynomials P,._; and P, has degree

deg(:PT—l(Pr) = 2(Vr—1 + vy — V’r‘—2)-
Now we shall factorize P,._1P, into a product of two factors of equal degrees
Pr 1P =PTP, deg Pt =degP™ =v,_1 +V, — V,_o. (10.14)

There are many possible factorizations. For example, if w,_; < w,., then we can take: P,(x) =
?+($)S($), P (.%’) = S(x)g)r—l(x) for any degree Ve +Vpl —Vp2 S W, = 2Vr — Vpr_2 subfac-
tor P*(z) in P,(x). We shall normalize P*(x) so that the highest coefficient in both polynomials
equals

vV 9r—19r-

That there exist different decompositions (10.14) is a generalization of S-duality of the S-class
N = 2 theories of the A, type studied in [61]. The spectral curve C,, corresponding to the
2r-dimensional vector representation of C'Spin(2r,C) is mapped to the curve PST (t,z) = 0 in
the (¢, x)-space, where

Pgr (t,x) =t " Poo(x) detp, (t - 1o, — g(x)) (10.15)

with some polynomial Py (z) to be determined below. The group element g(z) in the vector
representation C*" of CGy is given by

g(z) = E~® diag(g1(2),.. ., gor(x))E
with F being any matrix such that

(EEt)ij = 0i2r+1—j

represents the symmetric bilinear form on C?" and

91(z) = ((x)Y1(x),

gl( ) (( ):P ( )yz_l(.%')’ 2,..., 27
o) = () Plr=2] () Ir=1(2)¥r(z)
gril( ) g( )T ( ) 1é'r—2($) ’
xr) = T [7”_2} x T y"’(x)
or(2) = C@)PF @01 (2) g

gr+1(2) = C@)PF @)Dy (@)Y () Y0 (),

gr+2(2) = ()P @)Yy (2)/ (Y1 (2)Yr (),

P )PP () Yoo (2)
Pl)  Yile)

g2r = () PV ()Pl (w)yix)'

92r+17z‘($) =
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The factor ((x) which likely gives the minimal degree curve is
()™ = PF ()Pl (a).
Thus, the scalar D(g(x)) is equal to

D) = (]

and the prefactor in (10.15) is

r—2
Po(x) = PH ()" [] Pi(2). (10.16)
j=1

After some manipulations, we find

[%] r—2
()P, (t, ) = TPPrq + T2 P =T i Tr 4+ > Tr21< 11 ?;‘T”l)gl?

=1 j=r+1-21
(7] r—2
-> Tr211< 1T Tg_THlH)&&H,
=1 j=r—2l
=@ - (@t Y, p=Ptt+P L (10.17)

This equation has degree N = 2(v, + v,_1) — v,_2 in the z variable. Note
Vr—g < N < 2V7‘—2-

As in the A, case, the curve C, has branches going off to infinity in the z-direction, over 2r
points #;, £-1, i =1,...,r in the ¢-line (CIP’;‘tl which correspond to the weights of R;

; 1 q[i—l]
o V14, glr=2"

In addition, there are special points ¢ = 0, co. Over these points the curve C, has N branches,
where x approaches one of the roots of the polynomial Py(z)

and Puo(x), cf. (10.16), respectively.
The curve C, is invariant under the involution

P_(x)
Pi(x)

The fixed points of (10.18) are the points of intersection of the curve C, and the curve

t 1, (10.18)

PHa)t — P ()t =0. (10.19)
The equations Rp, (t,z) =0 (10.17) and (10.19) imply

T2(2)Pr_1(z) + T2 (2)Pr(2) = Tr1(2)Tr () (PT (@)t + P (2)t 1)
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and

T2(2)Pr_1(z) = T2 | (2)P(2).

r r—

Again, the curve C, is more economical then the full cameral curve C,. Again, the special coor-
dinates a; o and the duals af?a are the linear combinations of the periods of the differential = dt¢ /¢
and the masses.

Let us map the curve C,, to the curve ¥, in the space S which is a Zs-quotient of the (blowup
of the) Cyy x CP} space, parametrized by (z, s), where

_ P (@)

2
B T_(m)t'

The curve ¥, is described by the equations s + s~ = 2¢ and
Pgr (z,¢) = A(z, ¢)* = 2P.(2)Pr_1(z)(c 4+ 1)B(z, ¢)* = 0,

where A, B are the polynomials in x and ¢ of bi-degrees (N, [g]) and (V'r‘—l + v, [’”5—1]),
respectively,

[5] o
Aw,e) = TP + TP+ 2 Cule)Toa® P [ #5777,
=1 j=r+1-21
5] L
B(z,¢) =T, 1T, +2 Z D;(c)Tp_g_1PL P H :‘]3;*7"+2l+1’
=1 j=r—2l

where the degree [ polynomials C;(c), D;(c) are defined as follows:
1
Ci(c) = §(sl + s_l) -1, s+s =2,

sl — sl -1 4
D0 = Ty = oo

j=0
Over the points ¢ = 1 and ¢ = —1 the equation for ¥,, becomes reducible at ¢ = 1:
P35 (z,1) = (P, T2 — P, T2 ) (10.20)
and at ¢ = —1:
Pj (v,—-1) = A(z, —1)% (10.21)

It is easy to see that the curve ¥, has double points at (z,s) where either s = 1 and x being
any of the NV roots of (10.20) or s = —1 and z is any of the N roots of (10.21). The locations
of these roots are not fixed by the masses of the matter fields.

Let us normalize the equation of ¥, by dividing PL%T by the coefficient at 2V:

PET (z,c)
Ty (s =) (1= s717%)

times a constant such that Rp, (x,c) is monic in z and a rational function of c.
We thus arrive at the following interpretation of the curve ¥,. It is the spectral curve

241\ /ds\ 2 d
Rbp, <x, sl > <8> = Detoy (xs — <I>(s)>
2s s s

Rp,(z,c) = (10.22)
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of the genus zero Higgs field

where J C CP! is the set of 2r 4 2 singularities
J={0,00}U{&, £ i=1,...,r}
Let 0: CP! — CP! be the involution o(s) = s~'. The Higgs field must obey
o*d = Qa0 (10.23)

where (2 is a constant anti-symmetric matrix (cf. [95]), which defines the symplectic structure
on V = C?V. If we expand

o) =0+ 307 L

@mz—éo—Z(@jJrcbi ),
=1

then (10.23) implies

Doy = QOO O =@ )0, i=1,...,r

]

Also, the matrices (I>i+, ®,7=1,...,r, must have rank one, while the matrices ®¢ o +1 have

rank 2/N. We can interpret
T
p=00+ P+ Y (Bf +®;), =070
i=1

as the moment map for the Sp(2N) group action on the product of some orbits

Og x O_1 x 01 xi_ O,
which generates the action ®; — g~ '®;g of g € Sp(2N), such that

gQgt = Q.

It would be nice to develop further the theory of these orbifold Hitchin—Gaudin systems. We
shall encounter a genus one version of such theory in the class I D,. section below.
The differential whose periods determine the special coordinates is equal to

dS—:L"E
s

10.7 Freezing example

Here we will illustrate how the D, theory with v; = v3 = v4 = v, v9 = 2v and w; = w3 = wy = 0,
wo = v reduces to Az with v1 = v3 = v, v9 = 2v and wy = 2v when the node 4 freezes under
q4 — 0. Keeping in mind unfreezing to the affine lA?4, let polynomial Yy of degree v denote the
fundamental matter polynomial attached to the node “2”.
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The Dy spectral curve for the node “1” from (10.17) in terms of variable n

41939394

=t (10.24)

where Yo = Yyt is
Rop,(n,2) = 'Y — *T1Yo + n* (01 T2 — 4939393045 ) + n(—0a3 927574 + 49393939471 Y0)
— 4qta3a394T% + 97930475 + 3950375 - (10.25)

Notice that the curve is polynomial of degree 4 in 1 with polynomial coefficients in x of degree 2v.
In the limit £ — oo we find the limiting values of n are

1+ 3930504, 91+ 91039304, G192 + 91929394, G123 + 19304

Notice that the differential is
dt dn

A=x— ==z
t

N

(n? — 49%939394)

11
Also notice that at n = +2q1q2q3 q; the curve factorizes as

11
Rp, (£ 241020307, ) = aia3(q3Tu (@) F q4T3(x))” (10.26)
as well as it factorizes at n = oo
Rp,(n = o0, x) = Yo(x)?. (10.27)

We can interpret the multi-valued nature of A on the 7-plane as the deformation of the
punctured sphere underlying the A,-type theories to the curve describing the D,-type theories,
by opening punctures into cuts. Perhaps one can elevate this observation to the corresponding
deformation of the Liouville theory coupled to some conformal matter, along the lines of [66, 106].

We see that in the decoupling limit ¢4 = 0 the above curve reduces to

Ra,(n,x) = n'YE — *T1Yo + i Te — nataaT5Ys + q5a3q3 Y7, (10.28)

where we just set that Y, freezes and converts to a factor of degree v contributing to the
fundamental matter polynomial for the node “2”; we denote this factor by Yy = Y4 = T4. The
curve (10.28) is precisely the Ag curve for the node “1” (10.6) in terms of the variable Y, = Yon.
This curve corresponds to the GL(2) Hitchin system with punctures at four punctures

I, g1, 9192, d1929s.

Moreover, from the discussion after (10.8) (we have wo = 0, wo = 2, w3 = 0 and i, = 2 and
wy =w_1 = 1) it is clear the eigenvalues of the Higgs field residues at n = 0 and at n = oo are
doubly degenerate which effectively means that SL(2,C) part of the Higgs field does not have
punctures at n = 0 and 7 = oco. We can continue the freezing reduction and now we shall set
q3 = 0 declaring the function Y3 as contributing to the fundamental matter at the node “2”, we
denote Y3 = T3 = Y3. After factoring out 7, the curve (10.28) reduces to the Ay curve

Ra,(n,z) = 1°Y5 — n*T1Yo + nan Tz — 9792Y3Ya. (10.29)
The corresponding Gaudin system has punctures at n = 0 and n = co and at

I, q1, 9192
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Finally, we can freeze the node “1” by sending q; to zero and rescaling n = 7nq; so that the
former punctures i, qiqo on the 7-plane in terms of 7} become

17 q2

while the puncture n = 1 is send away to 77 = co. We set Y1 =Y; = T3 and find that (10.29)
reduces to the familiar A; curve with gauge polynomial T5 of degree 2v and four factors
(Yo, Y1,Y3,Y)) of degree v which make fundamental polynomial of degree 4v

Ra,(n,2) = —*V1Yy + Ty — q2Y3Y3.

The punctures of the corresponding Gaudin model in 7 plane are at (0, g2, 1, 00).

10.8 Class I theories of FE type

We are using Bourbaki conventions to label the nodes on the Dynkin graph of E, series, see
figures in Appendix A. One can construct the analogues of the spectral curves C,, or %, using the
minuscule representations in the Eg and E7 cases. For Eg one can construct the spectral curve
using the adjoint representation 248. However it seems more advantageous to use the degenerate
version of del Pezzo/E-bundle correspondence, which we review below in the discussion of class 11
theories of E type. For the standard conformal F, quivers, which are obtained by freezing of
the node “0” in the affine F, quivers with ranks v; = Na; where a; are Dynkin marks, we
find spectral curves of (¢, x)-degree equal to (27,6N) for Fg, (56,12N) for E; and (240,60N)
for Eg. These degrees can be understood from the degeneration of ET spectral curves computed
in Section 9.7.

10.9 The Eg theory

The spectral curve in the fundamental representation Rg = 27 associated with the node “6”, in
which the group element of the conformal extension of Eg is g(x) = (Ye(x),...) has the form

R Es (t, l‘) = 0,
where the explicit expression is of the form?

REG (t, m) = detR6 (t - 1lg7 — g(l‘)) =27 — t26T6 + t25T6T5 — t24?5?%T4
+ 13 (—PEPEPIPLPETT + P1PIPEPIPLIPETs + PyPEPLTLT
— PPy PIPEPETI T5 + PIPPIPIPEPLTG) + - - - — PIEPFTPIOPIPLE PO, (10.30)

where we have omitted the explicit expressions for the terms from t2* to t!, and we omitted
the dependence on x in the notations for the polynomial coefficients so that P; = P;(z) and
T; = Ti(z). The curve (10.30) has xz-degree 27vg, and, of course, is not the most economical. By
rescaling g(z) — ((z)g(z) with a suitably chosen ((x) of degree —vg made of some powers of
the factors in fundamental polynomials we can reduce the degree of (10.30).

The most standard conformal Eg quiver, which arises from the degenerate limit qo — 0 in
the node “0” of the affine Fg quiver, has matter polynomial Py = oYy of degree N only at
the node “2” to which the affine node “0” was attached, while the degrees of the gauge polyno-
mials are fixed by the Dynkin marks v; = Na;, that is (vy,...,vg) = (N,2N,2N,3N,2N, N).
For such conformal Eg quiver, the curve (10.30) has canonical reduced form under the choice

3The explicit expression, which we do not list here, is available upon a request; it is computed by the straight-
forward expansion of the exterior powers A® Rg in the representation ring Rep(FEs) over the fundamental repre-
sentations R, ..., Rs.



58 N. Nekrasov and V. Pestun

¢(7(z) = Yp() and the degree of the reduced curve is 6N = 2v, where v, = v4 = 3N denotes
the rank in the trivalent node “4”. The reduced curve of such special conformal Fg quiver is
REG(t,x), with P; = q;, ¢ # 2; P2 = q2Yp we find

Rigg (t, ) = 27 — Y5 T + t%°q6 Yy Ts — t* qsq5 Yy T + 17 (- 0393919596 Y0 11

+ 910593049596, T3 +—q4q5q6Y65151% q293959395Y5 1175
+393q505a2q8YE To) + - - - — t2q1°03%q3 10 a2 g2 v Ty

+t91°03°q3 a3 a5” q2431>11 — a1°037 a3 03" 057" Yy, (10.31)
where again we only indicated the middle terms but skipped the explicit expressions. Indeed,
one sees that the curve (10.31) of the Eg quiver with the standard rank assignments v; = Na;
has degree 6 N. At the limit z — oo the 27 roots of R, (¢,x) in (10.31) approach the set of
points in the ¢-plane labeled by the weights A in the 27 representation of Fg and given explicitly

i ydA—A;
by ]._[z 1q£ ) » OF

6
{]i[q?i
=1

where n; are the coefficients of the expansion in the basis of simple roots of the difference
between a given weight in 27 and the highest weight. One can associate a Higgs field to the
spectral curve (10.31) with poles in the 27 punctures (10.32) with certain relations. In other
words, the curve (10.31) realizes a certain embedding of the standard conformal Eg quiver theory
with gauge group ranks v; = (N,2N,2N,3N,2N, N) to some specialization of the Agg theory
with ranks (6 N,6N,...,6N), and this embedding can be lifted to the Higgs field spectral curve
representation of (10.31).

For non-standard assignments of w; and v; for the conformal Fg quiver we did not find
a simple choice of ((z) reducing the curve (10.30) to the minimal degree. For small ranks v;, w;
we can find the reduced curve using the brute search minimization problem on the total degree
of the reduced curve under g(z) — ((x)g(x). We have found different chambers in the space of
parameters w;, v; with piece-wise linear dependence of the reduced degree of w; or v;’s but not
a simple expression. For example, in several examples we find

6
Zniai =X—A\ AE Weights(Rg)} , (10.32)
i=1

(w;) (v3) reduced curve z-degree
(0,4,0,0,0,0) (4,8,8,12,8,4) 24
(3,0,0,0,0,3) (6,6,9,12,9,6) 33
(6,0,0,0,0,0) (86101284) 40
(4,0,0,0,0,1) (6,5,8,10,7,4) 31
(6,0,0,0,0,3) (10,9,14,18,13,8) 53

where the first three lines list different conformal Fg quivers sharing the same v, = 12, and one
can see that the curve of the minimal degree 2v, is obtained in the standard assignment w; = 0,
1 # 2 associated to the degenerate limit of the affine Fg.

10.10 E; theory

We write the spectral curve in, for example, the 56 representation of Fr similar to the Fg case.
If (vo,...,v7) = Na; where a; are Dynkin marks of FE; quiver, again, similar to Eg quiver we
find that the reduced curve of the standard conformal E7 quiver obtained from the degenerate
limit of the affine theory has x-degree 12N = 3v, where v, = v4 = 4N is rank at the trivalent
node. The standard E; quiver spectral curve hence is realized as a specialization of the spectral
curve for Ass quiver with ranks (12N, 12N, ...,12N), or Hitchin system with 56 punctures on
t-plane associated to the weights in 56.
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10.11 Eg theory

For Fs the minimal representation is adjoint 248. The reduced curve in the adjoint representa-
tion for the standard conformal Eg quiver obtained from the degenerate limit of the affine theory
has x-degree 60N = 10v, where v, = 6N is rank at the trivalent node. Hence the standard
conformal Eg quiver spectral curve is realized as a specialization of the spectral curve for Aoy7
quiver with ranks 60(NN, N, ..., N), or Hitchin system with 240 punctures on ¢-plane associated
to the non-zero adjoint weights in 248.

10.12 Class II theories of A type and class II* theories

Let us start with the simplest nontrivial examples, and then pass onto a general case.

10.13 Class 11 A\l theory

For the class I theory we shift the arguments of Y;(z) by p; to get rid of the bi-fundamental
masses. -
Let g(z) € SLa:

5N

9(@) = a5 0 ay 1 Yo (2)0 Yy (2)7

We have: q = qoq1,

2
ooy = 2,

- qug7 g(x)_(S =q, g(x))\o = y(](x)

The normalized 5/E characters (9.9) of the fundamental representations ]/%0, ]/%1 are equal to

Yo(z Y (z)?
oo a) = 2o (B ).
(o T Yo(a) Yi(2)*
X1 (Y(x),q) = (q0> o) 02 (ql%(w)g,q ) (10.33)

(see Appendix O for our conventions on elliptic functions). The characters (10.33) are invariant
under the Weyl transformations

Yo — qo%l‘zﬁ, Y — leéfl%

and therefore we can equate them to the polynomials

—1. .2
Yo(Y(a).q) = To(x).,  Top = W
1 -1, 2
Xi(Y(x).q) = Ti(),  Tio = (20) W

The values of characters (10.33) and ¢, q; define Yo and Y; up to an affine Weyl transformation.
To recover Yo and Y; we invert the relations (10.33):

Y1(z) = q%‘éo(x)t, Yo(z) = ¢(q)

= WTO(J/‘)

and express

<q0>193(t2;q2> Ty(x)
ai/) 6:(t%9%) Ti(x)
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Actually, the ratio

¢= <q0>i93(t2;q2)

ai) 62(t%q%)
is a meromorphic function on & with two first-order poles at ¢ = £i and two simple zeroes at
t = £iq. Therefore
X(tv q) B XO

R S LV —— Xo:= X(i X1 := X(i
X(t7q) _X17 0 (1q7q)7 1 (laq)

gzgoo

foo = <%>“1‘93(1aq2)

q1 (92(17512)

and the explicit g-series for X(, q) is given in (O.2) and (O.2). Hence, the algebraic Seiberg-
Witten curve C,, describing the A; theory is a two-fold cover of the rational curve ¥,

(€ocTi(z) — To(2)) X — (§c T (@) Xo — To(2)X1) =0
defined by the Weierstrafl cubic (O.3). There are 4N branch points of the 2 : 1 cover C, — Xy

EooT1 (-Too,a) - TO(CUoo,a) =0,

(gooTl (xa,a) - TO(xa,a))ea - (gooTl (xoz,a)XO - To(xa,a)Xl) =0,

a=1,23, a=1,...,N,
which can be split into 2 groups of N pairs, corresponding to the cycles A;5 with i = 0,1,
e.g., Apa is a small circle around the cut which connects 15 to 24, while A, is a small

circle around the cut which connects x3 4 to oo a. The special coordinates are computed by the
periods of

dX
dS_ =xdlog(t) = T

The curve C,, is the spectral curve. The cameral curve C, is a Z-cover of spectral curve C,
which is given by the same equations but now with ¢ € C* as opposed to t € €. On cameral
curve C, we have the second differential

dSy = xdlogbs (tQ; q),

which would be a multi-valued differential on spectral curve C, whose periods are defined up to
the periods of dS_, similar to the polylogarithm motives [15].

10.14 Class IT* A, theory

This is a (noncommutative) U(1) N/ = 2* theory. This theory was solved in [149] by the similar
method. There is only one amplitude Y(x) = Yo(x), with the single interval I as its branch cut,
the single function

9(z)

t(z) =to(z) = Yo+ m)

with two branch cuts I and I —m. Crossing the I cut maps ¢(z) — qt(z —m). Crossing the cut
I —m has the opposite effect: ¢(x) — q~'t(z + m). The extended functions

tj(x) = ¢’t(z — jm).
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The analytically continued function ¢(x) has cuts at I +mZ. The sheets of the Riemann surface
of t(x) are labeled by j € Z, so that on the sheet j the cuts are at [ —jm, and I —(j+1)m. Upon
crossing I + jm the ¢;(x) function transforms to ¢;;1(x) function. As  — oo on this sheet the
corresponding branch of ¢(z) approaches ¢/. These conditions uniquely fix the inverse function
to be the logarithmic derivative of 6;:

d
= t—log 6 (t; q).

10.15 Class IT A, theories

In order to solve the general rank r theory, it is convenient to form a linear combination of
fundamental characters of ﬁr. Ultimately we would like to define a regularized version of the
characteristic polynomial of g(x), where, as in the general case, after the shift of the arguments
of Yi(x) = Yi(z + p):

T ~
-AY Y
gle) = 1] ™ Yi(z)%

i=0
Using t;(x) = g(x)% (see the appendix), we compute
Yi(x)

ti(x) =60, i=1,..

LT, (10.34)

where we extended the amplitude functions Y;(x) defined for j = 0,...,r to be defined for all
J € Z by periodicity Yj(z) = Y;4(4+1)(x) and where

t(z) = (t1(x), ta(x), ..., tr41(2))
represents an element of the maximal torus of SL(r + 1,C), i.e.,

r+1

[[ti) =1

i=1

The #; are the asymptotic values at x — oo of t;(x) and are given by

= .
ti=(q...9,) " (mq5...q7) T, i=1,...,r+1,

and

g@) P =q,  g(@)™ = Yo(x).

Now we shall explore the relation between the conjugacy classes in Kac-Moody group and the
holomorphic bundles on elliptic curve €. We will consider a family of bundles on € parametrized
by the C,-plane, e.g., as in [60]. We start with individual bundles.

Let V be a rank 7+1 polystable vector bundle of degree zero over the elliptic curve & = C* /g%,
with trivial determinant,

detV =~ Oc¢.

Such bundle always splits as a direct sum of line bundles

r+1

V= @Li.
i=1
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Each summand is a degree zero line bundle L; which can be represented as L; = O(po) 1 O(t;)
where O(p) is the degree one line bundle whose divisor is a single point p € E and pg denotes
the point t = 1 corresponding to the identity in the abelian group law on the elliptic curve €.
A meromorphic section s; of L; with a simple pole at ¢ = 1 and zero at ¢ = ¢; can be written
explicitly using the theta-functions:

0(t/ti;q)
0(t;q)

and is unique up to a multiplicative constant. To each degree zero vector bundle V' with the

S; (t) =

divisor
Dy = —(r+1po+t1+--+tr1

of det V' we associate a projectively unique section s of its determinant det V' which has zeroes
at t1,...,t,+1 and a pole of the order not greater than r+ 1 at t = 1:

r+1 .
s(tit) =[] W (10.35)
=1

where we explicitly indicate the t dependence of the section s. Now set t; = t;(z) given
by (10.34). The meromorphic sections s(t;t(x);q) can be expanded in terms of the theta-
functions ©;(Yo(x); t; q) and characters of A, (see (J.4) and (J.3)) as follows

r+1
) 1155 Zq Fq T, (Holw); ) )6 (15)

1=

= ZX’L HO )¢l(t q)

where the functions ¢;(t;q) are normalized meromorphic elliptic functions defined in Appen-
dix O.3. Hence we find from (9.16) and (O.6) that the section s(¢,z) (10.35) obeys

Yo(z)s(t ZX@ Yo(z ;) M5 (a)¢5(4; 9),

where qgj(t; q) denotes the Weierstra$ monomials of Weierstrafl elliptic functions X (¢,q) and
Y(t,q); and M is a certain modular matrix as defined in Appendix O.3. Recalling (9.3)
that the characters (x;(Yo(z);t(x);q)) evaluated on the solutions (Y;(x)) are polynomials in z,
from (9.9) and (9.12) we get

=0

The section s(t,z) vanishes at the r + 1 points #1(),...,t,41(z) for each x € C,y, and hence
defines the (r + 1)-folded spectral cover of C, plane by the equation

R(t,z) =0, (10.37)

where R(t,z) is the right-hand side of (10.36). The curve (10.37) coincides with the curve
in [175] constructed from by lifting to M-theory the ITA brane arrangement realizing the elliptic
model with m = 0.
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10.16 Class IT* theory

Recall that in (9.14) we defined an infinite set of functions Yj(x), ¢ € Z . The analogue of the
formula (1.1) is the matrix g(z) € GLoo, (cf. (9.16)):

g(z) = Yo(2)" x diag(t;(2))icz, ti(z) =t

(10.38)

where %;, i € Z solve
tit1 = Qimod (r+1)fz‘,

and are normalized as in (9.17)

so that for i = 1,...,r + 1 the #; coincide with those in (9.17), and

b(b—1)

firpreny =tig?, AP0l gl (qraty T (10.39)

The fundamental characters of GLqo evaluated on g(x), xi(g(x)) are associated with represen-
tations R; of GLs with the highest weight taking value (cf. (J.13)):

9@ = Yi(2)il) = Yo ()t ()1,

The characters are given by the infinite sums over all partitions A = (A1 > A2 > --+ > Ayy) > 0)
and so are the normalized invariants

o ) Yien ()
(Y50 9) = il () 2N )
l s %Jllfﬂmﬂﬁu> e
Yig1(2)Yioi(z)
B Ve . .. 10.40
where we use the notation Section 1.2.

The invariant X; in (10.40) is a convergent series for |q;| < 1 like the theta-series, if ¢;(x)
is uniformly bounded. In fact, for the periodic chain of arguments, i.e., for Y;(z) = Yiy,41(2)
the gl character (10.40) reduces to the usual affine character of gl,. The convergence of X; in
the class II* case is more subtle. We shall comment on this below. For the moment let us view
the invariants as the formal power series in q with coefficients in Laurent polynomials in Y;(z).

For the class II* theory the extended amplitudes Y;(z) are quasi-periodic in i, cf. (9.15), so

Xiprs1({Yj(2)}, a) = Xi({Yj(z — (r + D)m)}, q). (10.41)

The cameral curve C, for the class IT* A, theory is defined by the system of r 4+ 1 functional
equations

Xi({Y;(2)},9) =Ti(x),  i=0,...,7,
with

N )

Ty(z) = Trox™ + Tiaae™ '+ uiaz™ 2, Tio=> H g ]+1
a=2 A =1
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Let us now describe the IT* analogue of the spectral curve, and find its realization in terms
of some version of the Hitchin’s system. Along the way we shall get an alternative derivation
of (10.36) with the benefit of getting its Hitchin’s form as well.

We form the generating function of X;’s and study its automorphic properties. The idea is
to regularize the infinite product

[Ta —ti@)/t)/ (1 —4/1),

€L
while keeping the same set of zeroes and poles. Thus, we define

Yo(z)
Dy(t;q)

[T (= tu(@)t ) (1 =t (2)7"), (10.42)

k=1

R(t,z) =

o0 . r+l (9(75/72 CI)
_ IS § RAATL )
H (1 -4t (1 -t L) 11:11 o

First of all, given that at large z the eigenvalues t;(z) approach £, which, in turn, behave as g = ,
we expect (10.42) to define the converging product, at least for large enough z.

Secondly, let us check that (10.42) is ‘W-invariant. Let i = 0,...,r, a = 1,...,N. While
crossing the I; 5 cut the “eigenvalue” t;(x) maps to t;41(z), which, in case i > 1 or i < 0,
leaves (10.42) manifestly invariant. For ¢ = 0 several factors in A(t,z) transform, altogether
conspiring to make it invariant

Yo(z) = qo¥Y-1(2)Yi(2)/Yo(x) = t1(z) /to(2),
(1=t ()t 1) (1 = tto(x) ")

= (1= to(z)t™) (1 — tty(z)7Y) = 2

(1 —ty(z)t™ ) (1 = tto(z) ).

Thirdly, let us introduce the analogues of the spectral determinants for all fundamental repre-
sentations R;:

Ai(t,z) = Yilz) H (1= tr(2)t™ ) (1 = ttgipr—(z) ),

Dit;q) , 27,
[ee]
Di(tia) = [ (1=@t™) (1= ti, ).
k=it1

Using D;+1(t;q) = ttz+1 i(t:q), Yiri(z) = ti+1(z)f;+11Y;(:1;) we derive: A;(t,z) = R(t,z) for
all 7 € Z.
Then, the quasi-periodicity (10.39) and (10.41) implies
R(qt,xz +m) = Ay (t,z) = R(t, z). (10.43)

Given the large x asymptotics of Yy(z) and t;(x), we conclude

N
R(t,z) = 2™ +) o)z F,
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where d;,(t) are the quasi-elliptic functions, which have the first-order poles at t = #;,i = 0,...,r
on the elliptic curve & = C*/q”%. Indeed, the poles come from the Dg(t;q) denominator, while
the quasi-ellipticity of 0y (¢) follows from (10.43):

5i(qt) — 6;(t) = m’ + polynomial in m linear in d(qt), k<.
Now use (J.11) and (J.12) to rewrite R(t,x) as

_ Ziez(_t)iﬂi]xi({Yj(x)}aq) _ 1 _Nigli
R(t,z) = Do 1) = Boltd) é( ) T (2), (10.44)

where we extended the definition of gauge polynomials T;(z) to i € Z by quasi-periodicity
implied by (10.41):

Tiri1(z) = Ti(z — m). (10.45)

Armed with (10.39) and (10.45), we reduce (10.44) to a finite sum: let

T

r(t,z) =Y (=) T (),

=0

then (cf. (O.5))

R(t.a) = 5 Zr(t,x—bm)((_t)bq%)r“

DO(ta q) beZ
= DO(:;a q) (0(_(_t)r+1; CITH) *m T(t, x))v

where the *j-product is defined by the usual Moyal formula:

2

_92 9%
(f 1 g) (t,x) = " Fr0m " 0a0m |, F(t+ 1,2 + E2)g(t+ 1, @ + &),

The appearance of the x-product is the first hint that the class IT* theory has something to
do with the noncommutative geometry. We shall indeed soon see that a natural interpretation
of the solution to the limit shape equations of the class IT* theory involves instantons on the
noncommutative four-manifold R? x T2, where the noncommutativity is “between” the R? and
the T? components.

10.17 Hitchin system on T2
The above solution can be represented by the affine GL(/N) Hitchin system on &:

O(qt) = ®(t) + Nm - 1y
with r + 1 rank 1 punctures ;:

dt
J

t N
qulej@Vj, uj,v]-E(C s

j=1...,r+1,

whose eigenvalues are fixed in terms of masses

viu; = tr®; = Nmj. (10.46)
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Actually, the vectors and covectors v;, u; are defined up to the C*-action

(vj,uj) — (zjvj,zj_luj), z; € C*
and (10.46) is the corresponding moment map equation, defining the coadjoint orbit O; of
SL(N,C). We can shift ®(¢) by the meromorphic scalar matrix

r+1

ijg (t/L;) le,

which gives the followmg traceless meromorphic Higgs field (see [137]):

N
w01 (t/tjwp/wq )0 (1)
91 (t/t;)61 (ws/wa) ’

a,b=1

which depends, in addition to the SL(N, C)-orbits Oy,...,O,4+1 on the choice (wy,...,wy) of
a holomorphic SL(NV,C) bundle on €, and the dual variables (pi,...,pn), subject to

N N
Zpa =0, H wy = 1.
a=1 a=1

There are additional constraints
r+1

a,j __
E U, =
Jj=1

which generate the action of the residual gauge transformations in the maximal torus T =
(C*)N=1 of SL(N, C). The dimension of the corresponding phase space 93, whose open subset °
is isomorphic to

P° ~ (T*Bungrn,c)(€) X X;EOJ')//T
is equal to

dimP =2(N — 1)+ (r + 1)(2(N — 1)) = 2(N — 1) = 2(r + 1)(N — 1) = 2r,

®(t) = pa(sb—i—Zqu 1—5

which is twice the dimension of the moduli space 9 of vacua of the class II* A, theory with
the gauge group Gy = SU(N )"+1. The remaining r 4+ 1 mass parameters are encoded in the
symplectic moduli of the coadjoint orbits O;, as expected.

The relation to our solution is in the equality of two spectral determinants

R(t, ) = Dety [(m - ijg(t/tj)> Sy — @(t)} =0, (10.47)

which is established by comparing the modular properties and the residues of the left and the
right-hand sides.

Note the duality of the twisted periodicities of the gauge theory and Hitchin’s system Lax
operators

d(qt) =w ' ®(t)w+m- 1y € sl(N,C),
q-g(z—m) =9 g(x)S € GLo,

where S is the shift operator S = > ., Ej;irq1, and w = diag(wy,...,wy). The equa-
tion (10.47) can be suggestively written as

DetN(x — @(t)) ~ DetH(t - g(a:)),

where H is the single-particle Hilbert space of a free fermion 1.
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10.18 Relation to many-body systems and spin chains

The parameters of the spectral curve (10.47) are holomorphic functions on 3°, which Poisson-
commute, and define the integrable system. One way of enumerating the Hamiltonians of the
integrable system is to mimic the construction of Hamiltonians (4.14) of the higher genus Hitchin
system. For example, the quadratic Casimir is a meromorphic 2-differential on € with the fixed
second-order poles at t = fj

r+1 r41
tr <I)(t)2 = Z sz]zp(t/fj)dtQ + Z U271,j§(t/tvj) + UQ’O.
o =1

The Hamiltonians Us g, Us,1,; are computed explicitly in [137]. They describe the motion of N
particles on € with the coordinates wy, ..., wy, which have additional GL(r + 1, C)-spin degrees
of freedom. However, in view of our gauge theory analysis, it seems more natural to view this
system as the GLoo-spin chain. We conjecture that the deformation quantization of the properly
compactified phase space B will contain the subalgebra Ay, of the Yangian Y (GL) algebra,
which is a deformation of the Yangian of the affine A,.

The relation of many-body systems and spin chains based on finite-dimensional symmetry
groups was discussed in the context of Hecke symplectic correspondences in [114, 162]. One can
also interpret the results of [50] as the quantum version of this correspondence.

10.19 Class II theories of D type

In this section gq = ﬁr.

The fundamental weights of ﬁr are Ao, /)\\l = a;/)\o 4+ A, i=1,...,r where \; are fundamental
weights of D,, and Dynkin labels are (ag,...,a,) = (1,1,2,...,2,1,1) (see Appendix D.2).
Correspondingly,

t1(z) = t1Y1(2)/Yo(z),
ta(z) = f2¥2(x) /(Y1 (x)Yo(2)),
ti(z) =Y j( x)/Yi1(x), i=3,...,r—2,

trl()
tr(x)

:tr 1Hr 1( ) 7“( )/yT*Q(:C)’
69 (x)/Yr-1(2)

with

ol
S
I
[S—
=
|
~

iz = (CIiCIz‘+1 v qr—2)_1 (Qr—qu)_ s
- 1 - 1
tr—1 = (%—1%)_5, ty = (qr—l/qr)i- (1048)

There are 4 irreducible D hlghest Welght modules RO, Rl, Rr_l, ]%« at level 1, and r — 3 irre-
ducible D highest weight modules Rg, . Rr o at level 2. In this section, to shorten formulae,
we are using not the characters of R themselves but the closely related affine Weyl invariant

functions 25le7 at level 2 and 15C§) at level 1 expressed terms of theta-functions explicitly as given
n (J.10). Such functions 15C§7 and Qij differ from the actual characters by a simple power of

Euler function ¢(q) and some g-dependent constant, also 15C5) , 1D~Cf) appear as a linear combina-

tion of Eo and §1 characters, while 15CTD , 15C?_1 appear as linear combination of ﬁr,l and }ABT
characters (see (J.10))

1P (Yo(2), t(2)i0) = Ty(a),  oXP (Yo(w), () @) = T (2), (10.49)
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where polynomials T;(x) are of degree N for j = 0,1,r—1,r and of degree 2N for j = 2,...,r—2.
so that 1 X2 is of degree 1in Yq for j = 0,1,r—1,r and 2 XL is of degree 2in Yo for j = 2,...,r—2.
Also, in this section the highest coefficient of the polynomial T}(z) is normalized differently then
n (9.9); one can find it as theta-series evaluating (J.10) on ;.

Using the standard embedding so(2r) C sl(2r), we construct the algebraic equation of the
spectral curve of the lA?r theory as the specialization of the spectral curve for A\2r—1 theory.
Indeed, a vector bundle V associated to the vector representation of SO(2r) splits as the sum
of r pairs of line bundles

Lti D Lt._1
with the degree zero line bundle L; being
Lt = (’)(po)*l(’)(t)

and pp € € is our friend ¢ = 1. Then we proceed as in (0.5), (0.7), (10.35) by considering
a meromorphic section of the determinant bundle det V ~ O¢

o 0t /ti(x);q) O(t/ti(x) "5 q)
s(t,x)_g o) T (10.50)

From Section O.5, we find

r

Ygs(t,x) = D Zi(Yo; t(x); ) My () X (¢ 9), (10.51)

1=0

where X7 (t, q) are powers of Weierstral monomials forming a basis in the space even(S O(2rpy))
of meromorphic functions on elliptic curve symmetric under the reflection t — t~! and with
a pole of order no greater then 2r at the origin, and M;;(q) is a certain modular matrix.

The linear relations (J.9) allow to express Z; in terms of

éznglD, 1=2,...,7r — 2,
é:( ZD), i=0,1,r—1,r
as
I8
Ei= ) E;M;(a),
i=0

where M :(q) is a certain modular transformation matrix. Using the character equations (10.49),
the spectral curve (10.51) turns into

Y2s(t, ) ZT )X (t,q), (10.52)

where ]\Z/;j(q) = Mgi(q)sz(q) and

Ti(x) = Ti(x),  i=2...,r—1,

1

T(e) = (@), i=01r-1r,

7

The spectral curve of the D, theory is the algebraic equation R(t,z) = 0 where R(t, ) is the
right-hand side of (10.52) combined with the Weierstrafl cubic equation (0O.3). The D, curve
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is the specialization of the 121\27»_1 curve in two ways. First, there are no odd in Y monomials
n (10.52), and, second, the polynomial coefficients TZ(:U) of degree 2N in x satisfy factorization
condition: they are full squares for i =0,1,r — 1, 7.

To interpret the curve in Hitchin—-Gaudin formalism, we will rewrite it in a slightly different
form. First, notice that®

01 (/) 01 (t)E _
H 01(t;9)  61(4;q) ZHIQI i9)01(f 5 0) (X = X5). (10.53)

We used here the notations (O.2) and (0.4) for the Weierstrafl functions and
3
Xi = X (fi39), H i — €a)

Then, if we divide (10.50) by (10.53), we find®

o (i 01 (t/t:(x);0) 0 ¢/t (x); 9)
5 0 2% 0 i 1; =R 7X t, )
x)ll;[l 1( UI) 1(1 q)Zl;Jl: (91(75/ti7 ) Hl(t/ti 17 ) (IL‘ ( q))
> o T )M~ (q)X7
| (X - Xi)
Now, at the order two points on &, the value of the section R(z, X) can be expressed in terms

of the weight 1 invariants 15621, 156?, 15%5, 15C{5 (compare with (J.10) and (J.5), (J.6)), and it
factorizes as

R(z,X) := (10.54)

R(z, X)|x 500 = (Tr—1(2))?,

R(CE, X)’X—)el - CQ(EI)(TT(‘T))27

R(z, X)X e, = c3(8)(To(2))?,

R(z, X)X se5 = ca(@) (T (2))?, (10.55)
where

cr(§) = H O1(l5:0)0 (1 :9) k=234 (10.56)

Hk(tzaq)ek( 7q)’
The Seiberg—Witten differential is given by

dXx
A=zx—0!.
Ty
It is defined on the two fold cover C,, of the curve R(z, X) = 0, which is a curve in the product
CP%X:Y:Z) x C(gy, given by the equations

V2Z =A(X —e12)(X — e22)(X — e3Z),  F(x,2,X)=Z"R(x,X/Z)=0.  (10.57)

“Indeed, the left-hand or right-hand sides is the meromorphic elliptic function with 2r zeroes at points X;, Y
and X;, —Y and the pole of order 2r at ¢t = 1, or X = oco. Such function is unique up to a normalization which
is fixed by the asymptotics at ¢t = 1.

®And use 61 (t,q) in lieu of A(t,q) as the basic function, so that strictly speaking there is slightly different

transformation matrix ]\;[;j compared to (10.50) and (O.7).

SFor example, the points (1, -1, fq_l/Q,ql/z) in the t-parametrization, where vanish the respective theta
functions 01 (¢;q), 02(¢;q), 03(¢;q), 04(¢; q), or, equivalently, at the four branch points in the X plane: (oo, e1, €2, €3).
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The curve C,, can be interpreted at the spectral curve of GL(2N) Hitchin—Gaudin system on
the orbifold €/Zs, such that at the fixed point X = 00, €1, e2, e3 the GL(2N) system reduces to
the Sp(2NN) system. For more details on the Hitchin system, Nahm transform and the brane
construction of the spectral curve for the ﬁr quiver see [95, 96]. Our main result is the rigorous
derivation of the spectral curve and its periods from the gauge theory considerations.

10.20 Deforming the Ny = 4 SU(2) theory

The 134 theory can be interpreted as the theory obtained from gauging the flavor group of the Dy
theory with (vi,va,v3,vq) = (N,2N, N, N) theory, and with (w;,wo, w3, wy) = (0, N,0,0)
matter multiplets. In the limit qg — 0 the elliptic curve € degenerates to the cylinder C<Xt>, while

Seiberg-Witten curve (10.57) degenerates to the Seiberg-—Witten curve of the Dy theory (10.22).
Let us consider the case N = 1. Let us parametrize the polynomials Ty, 11, T3, Ty as

Ti(x) = Tio(@)(x —mi),  i=0,1,3,4, (10.58)
and
To(x) = ngo(ﬁ)(a:Q — mox + u),

where parameters ¢;, m; and u are related to the microscopic couplings q; and the U(1)* x SU(2)
Coulomb moduli

1 1
T50(q) = H91 (&), Tyo(q) = H92 (&),
i=1 i=1
4 4
Too(q) = H93 (), Tio(q) = H94 (i),
=1 i=1
To0(d) = Z2(1,t,q), (10.59)

where #; are defined in (10.48). Then the spectral curve of the Dy theory (10.54) and (10.55)
has the generic form

R(z,X) =T%(z) + —,
(z, X) = T3 () XX,

=1

(10.60)

where b;(x) are some polynomials of degree 2 that we want to relate to the coupling con-
stants and Coulomb parameters. The first thing to notice is that R(z, X) in (10.60) obtained
from (10.54) does not have poles at X = X; at  — oo in the leading order x2. Therefore,
the polynomials b;(x) are actually degree 1 polynomials containing 8 coefficients. There are
6 linear equations on these coefficients coming from 3 factorization equations (10.55) viewed as
coefficients at x' and 2" (and notice that the equations at 2?2 are identically satisfied because
of (10.56) and (10.59))

4 (o
> M~ ari) - )

e —X
L bi(x)
Y e =T (z) — T3 (x),
im7 e2 X
L bi(x)
d o =T (z) — T3 (). (10.61)
ez — X;
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The above three equations determine four linear functions b;(z) up to a single linear function,
which depends on two parameters ms, u:

bi(z) = (—1)/ (—rgx + @) Det ||—

ea—Xb

b=1,...,4,b%j

a=1,...,3 (10.62)
From (10.54), it is clear that mg, @ are proportional to mg, us. To summarize, we can describe
the spectral curve (10.60) of ﬁ4 theory by the coupling constants q;, ¢ = 0,...,4, which de-
fine the elliptic curve €(q) with modulus q = qoq1939394 and positions of 4 punctures X; in
the Cx) plane for Weierstra8 cubic using (10.48), the 4 parameters m;, i = 0,1,3,4 entering
into relations (10.61) through (10.58) and 2 parameters g, @ in (10.62).

Now consider the limit qqg — 0 which turns the 1/54 class II quiver theory to the Dy class I
quiver theory. In this limit the Weierstrafl cubic degenerates: e; = —2es, ea = e3 = 1/12,

Y2 =4(X —e3) (X + 2e3)?
with

t 1 t(1+1)
X=——os+—= Y = :
(1—1t)2 HETS (1—1)3

dt

The Seiberg—Witten differential x% becomes x5. The elliptic curve & degenerates to the
rational curve which is the double cover ¢t — X of the complex projective line (C}P%(. To make
contact with the Seiberg—Witten curve of the D4 quiver theory it is convenient to work in the
coordinate which is related to the coordinate X by rational transformation

n=2+ =t+t '

X — €3
The function n(X) is degree two meromorphic function on & with values at the four Zg invariant
points given by

n(ez2) = n(es) = oo, n(e1) = -2, n(oco) = 2.

Rewriting (10.54) in terms of 7(x), we find the equation of spectral curve RP*(n, ) = 0 for
RP(n, ) =Y n'pilw),
i=0

where p;(z) are some polynomials of degree 2 in . Moreover, the factorization conditions (10.55)
translates to the statement that RP*(n,z) is full square at 7 = oo and at 7 = £2 in the
polynomial ring of z. Notice that this is precisely the factorization conditions (10.26) and (10.27)
of the curve (10.25) for the Dy quiver. (The variables ¢ and 7 in the equations (10.25) and (10.24)

1 1
correspond to ¢ and 7 of this section multiplied by a factor q1q293 q3 )

Given the above discussion and Section 10.7, let us summarize the freezing hierarchy Dy —
Dy — As — Ay — A;. TFor 134 theory, we start with elliptic curve €(q) with Zy reflection
symmetry t — ¢t~ (or Y — —Y) and 8 Zy-symmetrically located punctures in 4 pairs (fz-, fi_l).
As we freeze qp — 0, the elliptic curve &(q) degenerates to a Zs-symmetrical cylinder C;* with
4-fold pairs (fi,fi_l) of punctures. The cylinder C; double covers its Zs-quotient CP;. This
is the situation of Dj quiver theory (10.25). As we freeze q4 — 0 the second sheet of the
double cover C;* — C, is removed to infinity and we are left with 4 punctures of A3 quiver
at (ql_l, 1, C|Q,C|2C|3).7 Notice, that as discussed after (10.28) the SL(2,C) residues of the Higgs

"Keeping in mind the ultimate configuration of the A; quiver dynamical at node “2” we have rescaled the
position of punctures by a factor of q;.
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0, 01 0y 0y 01
1 2, 3 1 2, 3 1 2, 3 1L 2 3 1 2, 3
4 4 4 4 4

Figure 10.3. The freezing ﬁ4 — Dy — A3 — Ay — A;. The live nodes are denoted by red, the frozen

nodes are denoted by blue. The nodes are labeled as i,.

field vanish at the punctures in 0 and oo. As we freeze q3 — 0 the puncture at qoqs (with non-
trivial SL(2, C) residue of Higgs field) merges with the puncture 0 and we are in the situation
of the Ay quiver with SL(2,C) punctures at (ql_l7 1,42,0) and GL(1,C) puncture at co. Finally
as we freeze q; — 0 the puncture at q; ' (with non-trivial residue of the SL(2, C) Higgs field) is
merged with the puncture at oo and we are left with CP! with SL(2, C) punctures at (0o, 1, g2, 0)
for the A; quiver theory defined at the dynamical node “2”. See Figure 10.3.

10.21 Class II theories of FE type

The main technical tool is the natural isomorphism between the moduli space of the Ei-bundles
on elliptic curve € and the moduli space of del Pezzo surfaces Sy, which are obtained by blowing
up k points in CP?, and have the fixed elliptic curve & as the anticanonical divisor. The spectral
curve is found using the “cylinder map” [94], and see [25, 36, 37] for applications.

Another way of encoding the geometry of the moduli space the Fi-bundles is in the unfolding

~

of the parabolic unimodular singularities [3] T, p . with

1 1 1
-+ -+-=1,
a b ¢
which are
E6:P8:T\3’3,3: 23+ % + 23 + mayz, m3 + 27 £ 0,

Er =Xy = f27474: ot +yt 4+ 22 + mayz, m* — 64 # 0,
Eg =Jip= f273,6! 28 + y3 + 22 + mxyz, 4mS — 432 7é 0.
We shall not pursue this direction in this work.

Remark 10.6. Another important question left for future work is the connection between
our description of the special geometry via the periods of dS and the periods of non-compact
Calabi-Yau threefolds of [101].

10.22 Del Pezzo and Eg bundles

The Del Pezzo surface Sg € WPLLLL = CP? is a zero locus of a homogeneous degree 3 polynomial

3
T'3(Xo, X1, X5, X3) = Y X§7Gi(X1, X3, X3),
=0

where G; is the degree ¢ homogeneous polynomial in Xy, Xo, X3. In particular,
G3(X1, X, X3) = —X1 X5 +4X3 — 2 X7 X — g3 X7
defines the elliptic curve £, which determines the gauge coupling q = exp(27ir), cf. (0.3),

B $5dX/Y

P = B — X =X/X Y = X3/X;.
T fAdX/Y’ 2/ 1 3/ 1
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The rest of the coefficient functions Go 12 is parametrized as follows:

Go (X1, Xo, X3) = poX] + p1 X1 Xs + peXo X,
G1(X1, X2, X3) = po X1 + p3Xo + p5 X3,
Go(X1, X2, X3) = pa4.

The isomorphism classes of Sg surfaces containing the fixed elliptic curve € are in one-to-one
correspondence with the points

[p] = (po:p1:p6:p2:p3:ps:ps) €M

in the weighted projective space M = WPLL122.23 which is also isomorphic, by E. Loojienga’s

theorem [118], to the moduli space BunsESG(C) (&) of holomorphic semi-stable principal Fg-bundles
on €. We label the projective coordinates p; in such a way that the projective weight of p; equals
Dynkin mark a; in our conventions Appendix A. The correspondence between the Eg-bundles
on € and the del Pezzo surfaces Sg is geometric: there are precisely 27 degree 1 rational curves
(“the (—1)-lines”) Cy on Sg, a = 1,...,27, which are the divisors of the line bundles £, on Sg.
The direct sum

27
U=ep-L.
a=1

has no infinitesimal deformations as a bundle on Sg. The mapping class group of Sg acts on
the (—1)-lines by the Eg Weyl transformations. As a result, the bundle U/ is a vector bundle
associated to a canonical principal Eg(C)-bundle Ps, over Sg with the help of a 27 representation:

U= PS6 XE@((C) 27.

The restriction of Pg,|g is the holomorphic principal Eg(C) bundle over E which corresponds
to the point [s] in Loojienga’s theorem. Again, the associated rank 27 vector bundle U|g splits

27
Ule = P La.
a=1

The line subbundles £, can be expressed as

6
f= @™,
=1

where wq;, @ = 1,...,6, a = 1,...,27 are the components of the weight vector. The line
bundles IL;, i = 1,...,6 are defined up to the action of the Fg Weyl group. Let us now compute
the £,’s. The rational curve of degree one in Sg is a rational curve of degree one in CP? which
is contained in Sg. A parametrized rational curve of degree one in CP? is a collection of 4 linear
functions: ¢ — X((),

X(¢) = (Xo + Cuo, X1 + Cv1, X2 + (v, X3 + (v3).

The two quadruples

X(¢) and (€ + d)X(aC + b)

c +d
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for
a b
<C d> S GLQ((C)

define identical curves in CP3. We can fix the GLy(C) gauge by choosing the parameter ¢ so
that

X(C) = (C? le +CUXaY +CUY)-

The requirement that the curve lands in Sg € CP? reads as

3

I‘3 (C717X + CUX,Y +CUY) = ZCiEi(Xay;vX7UY) = 07
=0

which is a system of 4 equations
Zi(X,Y;vx,vy) =0, 1=0,...,3
on 4 unknowns X, Y, vy, vy:
Eo=-Y?+4X% - X — g3,
E1 = —govx + peXY +p1 X + po + 12X vy — 2Y vy,
By = psYux + prox + peXvy + psX + psY + pa + 12X0% — 03,

H3 = pevx Uy + p3vx + Psvy + pa + 4v.

The equation =y = 0 in the above system is the equation of the elliptic curve €. To find the
equation of the spectral cover associated with the vector bundle U/|¢ in the 27 representation we
can express vy from the equation =; = 0, then plug it into the remaining equations =2 = 0 and
=3 = 0, compute the resultant of these two polynomials with respect to the variable vy, reduce
modulo the equation =y = 0 defining the elliptic curve &, arriving at

CF (X, Y1 99,93, 10, - - -, 06) = —4Y *resyy (Baluy 2,20, Z3lvy=y=0) mod Zp. (10.63)

The resultant C¥6(X,Y; g2, 93,0, - - -, pe) is a polynomial in X, Y with polynomial coefficients
in g2, g3, po, - - - , Pg of the form

CP5(X,Y; 92,93,p0, - -,06) = (94 + -+ ) + (6pgpr + -+ ) X + -+ (=256p3 +---) X2
+ (12g3piaps + - )Y + (32g3pips + -+ ) XY + -
+ (—256p3 + -+ ) X2V

(A short Mathematica version of this formula is given in Appendix P.1.1.) Now let us imagine
having a family U of the Fg-bundles on F.
In our solution the vacuum u of the gauge theory is identified with the degree N quasimap:

p: (C]P’%m> — Bung,(g)(€) = WPL11.22.23
given by the polynomials p;(z) of degree Na;

pi = pi(x), i=0,...,6.
Together with the equation of the Weierstrafl cubic Zo(X,Y, g2, g3) = 0, the equation

CE6(X7 Y§92793ap0($)7 o 7p6(x)) =0
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defines the Seiberg—Witten curve of the affine Eg theory as an algebraic curve. Given that the
degree of X on & is 2 and the degree Y on & is 3 the polynomial C¥6 is of degree 27, i.e., the
equation CF¢ = ( defines 27 points on the elliptic curve €.

The top degree coefficients of the polynomials p;(z) are determined explicitly in terms of the
coupling constants g;. Indeed, the Eg characters, or more conveniently in the present case, the Ejg
theta-functions, ¢;(Yo, t,q) as set in (1.3), define a set of projective coordinates on WP!1:1,2:2:2,3
(which differs slightly from the set (;)%_):

(co:cr:ce:cates:cs:cy).

In these coordinates the solution of the theory has the canonical form (9.12)

Ho,tq <HJ)\(/\ ) )

The “del Pezzo projective coordinates” (p;)%_, are related to the theta-function coordinates (c;)
on Bunj ) (€) by a polynomial map of the form

pi = Z Miv{jldz,js,-..}(q)chcjzcj?, ceey

J1<j2<73...

where Mi,{j1,j2,...}(q) is certain modular transformation matrix. This matrix can be explicitly

computed by comparing the spectral curve (10.63) and the Ao spectral curve (10.36) specialized
to the the embedding Eﬁ C ﬁ% by fundamental representation. The coefficients M; ¢, 4, 5. 3
are modular forms for modular group I'(6) with a certain modular weights that can computed
by observation that the weights of variables (X, X1, X2, X3) under the modular transformation

7 — —7 1 on &(q) for q = exp(2rir) are

Xo X1 X2 X3
6 1 2 3)°

This implies that the modular weights of p; are

Po P1 Pe P2 P3 D5 P4
0O -2 -5 -6 -8 —9 —-12/°

The (¢;) have modular weight 3 because they are rank 6 lattice theta-functions. From this
assignment of weights one finds the modular weights of all coefficients M; ¢;, . ; 1(q); for exam-
ple My ¢4) has modular weight 15. The space of modular forms for I'(V) of a given weight & is
a finite-dimensional vector space. (For any integer k£ > 0 the dimension is k + 1 for I'(3) and 6k
for T'(6)). Matching a finite number of the coefficients in the q expansion one finds explicitly
the modular coefficients M; ¢;  1(q), see Appendix P.2.

10.23 Del Pezzo and E- bundles
The story for the F7-bundles is similar. There is a family of del Pezzo surfaces S; € WPL 112,

described by the degree 4 equation

1
T'4(Xo, X1, X5, X3) = Y X{Ga—i(X1, X2, X3)
i=0

with

Ga(X1, X0, X3) = — X35 +4X1 X5 — 2 X3 X0 — g3 X7 (X3 — 4X1X5 + 2 Xo X3 + g3 X7),
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G3(X1, Xa, X3) = po X7 + prXiXo (a1 X} + aa X2 X7),

Ga(X1, Xo, X3) = p1 X7 +p2 X1 X2 + pe X5 (b1 X7 + 0o X1 Xo + b3 X3),

G1(X1, Xo, X3) = p3 X1 + ps Xo(c1 X1 + c2X2),

Go = pa.
Again, the divisor X = 0 is the elliptic curve &, which is realized as a zero locus of the degree
4 polynomial equation G4(X1, X2, X3) = 0 in WPL1.2,

The isomorphism classes of S7, containing the fixed elliptic curve &, are in one-to-one corre-
spondence with the points

[Pl = (po: p7:p1:p2:ps:ps:ps: ps) € WPLLZ2ZSSA,

Again, we study the “(-1)-curves”, which in a particular gauge look like

X(C) = (Ca 17 X + CUXa Y + CUY + ;C2wY)7

where (X,Y;vx,vy,wy) obey a system of 5 equations Z;(X,Y;vx,vy,wy) =0,i=0,...,4:
4
L i
Ta( €1 X +Cox, Y + Coy + 5Cwy | = D C5i(X,Yiux, vy, wy),
i=0
where

Bo = —Y?+4X° — g — g3,
po + Xp7r + 12X2’UX — govx — 2Y vy,
Zo = p1 + Xpo + X%ps + prox + 12X0%k — 03 — Ywy,

=3 = p3 + Xps + pavx + 2Xpevx + 4vy — vywy,

2
- _ 2 Wy
24 = P4+ Psvx + PeUx — Vi

—_
=1

We proceed similarly to the Eg case: we solve for vy and wy from the equations Z; and =,
plug the solution into the polynomial =3 and =4 and compute the resultant

CP(X,Y;92,93,P0s - - -, p7) = —2'0Y Presy  (Z3]uy wy :=1.0=0 Zdlvy wy =21 2—0)  mod Zo,

which has the structure of the degree 28 polynomial in X with the coefficients polynomial in
(po, - - ., p7) of total degree 12:

CE(X,Y; 02,0300, - -, p7) = (052 + 24g3p°p1 + -+ ) + (2492pt°p1 + -+ ) X + -+
+ (2161)451 o 219p4p§p6 + 220;0421]?%))(28. (1064)

(A short Mathematica version of this formula is given in Appendix P.1.2.) The polynomial
CF(X,Y; 92,93, po(z),...,pr(x)) together with the Weierstra$ cubic Z¢(X,Y’; g2, 93) defines
the algebraic Seiberg—Witten curve for E7 quiver theory. Since on the elliptic curve € the degree
of X is 2, at each x € C,y the spectral curve (10.64) defines 56 = 2 x 28 points on & encoding
the vector bundle in the 56 representation of E’.

The relation between the del Pezzo parametrization (p;) and the theta-function parametriza-
tion (¢;) of Bunj y(€) can be in principle written in terms of a certain modular matrix M(q),
as in the the Eg theory (see Appendix P.2). We do not record this transformation in this work.
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10.24 Del Pezzo and Eg bundles

To get an effective description of Eg-bundles we study the family of del Pezzo surfaces Sg C
WP1’1’2’32

T6(Xo, X1, X2, X3) = — X3 +4X5 — XoGa(Xo, X1) — G3(Xo, X1) = 0,

4
Ga(Xo, X1) = g2 X1 + > a; X0 X177,
j=1

6
G3(Xo, X1) = gsX§ + > b X7 X777
j=2
The isomorphism classes of the del Pezzo surfaces Sg containing the fixed elliptic curve
Y? =4X3 — g X — g3
are parametrized by
[s] = (a1 :a2:ba:ag:bs:aq:by:bs:bg) € Wpl:2:2:3,3,4,4,56

The “—1”-curves in Sg are described by the parametrizations x(¢) = (C, 1, X+Cvx+ %€2wx, Y+
Cvy + %CQwY + %C%y), where (X,Y,vx, vy, wx,wy,uy) to be found from the equations

Ei(Y7Y7UX7UY7wX7wY7UY)207 1=0,...,6,

where

1 1 1
I's <C, 1, X + Cux + §C2wX,Y + Quy + §C2wY + 6C3uy>

6
= (E(X, Y, vx, vy, wx, wy, uy).
i=0

To find explicitly the equation of affine Fg spectral curve, one shall proceed in spirit similarly
to the Fg, Er cases considered above. However the explicit computation becomes much more
tedious as the minimal representation of Eg is 248, and the expected z-degree of the curve
is 60N (see below). We leave this task for future investigation.

11 The integrable systems of monopoles and instantons

As we reviewed above, the N' = 2 gauge theory compactified on a circle S' becomes, at low
energy, the N/ = 4 supersymmetric sigma model with the hyperkabler target space B. The
triplet of complex structures on 3 is in correspondence with the choices of a supercharge O,
which is nilpotent up to an infinitesimal translation along S'. The one supercharge which is
nilpotent even in the decompactified theory (it corresponds to the topological supercharge of
the Donaldson theory, for pure N' = 2 super-Yang-Mills theory) corresponds to the complex
structure I. In this complex structure ¥ has the structure of an algebraic integrable system

(B, 2, h):
h: P — M, Q|h*1(u) =0, u € M.

The I-holomorphic (2,0) form € is the form which we previously denoted by €.
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We shall now describe these systems for the class I, IT and IT* theories we studied so far. For
some theories several presentations of the same integrable system are possible.

In all cases we study the phase spaces I3 have parameters corresponding to the masses m of
the matter field in the gauge theory. The cohomology class of [Q2] is linear in m. An explanation
of this fact in the symplectic geometry is the existence of a “larger” symplectic manifold 3
with the holomorphic Hamiltonian torus T = (C*)M action, whose holomorphic symplectic
quotient of Pt at some level m of the moment map produces ‘L.

The explanation in gauge theory is the three-dimensional mirror symmetry. Our phase
space ‘B is the Coulomb branch of the three-dimensional N' = 4 gauge theory, obtained by
the S' compactification of the four-dimensional A" = 2 theory. The masses of the matter fields
are the vacuum expectation values of the scalars in the vector multiplet. Under the three-
dimensional mirror symmetry [86] these are exchanged with the Fayet—Iliopoulos terms, which
are the levels of the three moment maps in the hyperkéhler quotient construction [84] of the
Higgs branch of the mirror theory.

It is amusing to identify B®** and the action of the torus in the examples below. We shall
treat the case of the class II theories in some detail, leaving other examples to the interested
reader.

11.1 Periodic Monopoles and the phase space of class I theories

We shall now demonstrate that for the class I theories the phase space B is the moduli space of
the charge v G-monopoles on R? x S! with Dirac singularities, whose location and the embedding
of the Dirac U(1)-monopoles into G' is parametrized by w and the masses m; .

Let us discuss the monopole moduli space in more detail.

The ordinary G-monopoles are the solutions of Bogomolny equation on R?

Dap+*F4=0 (11.1)

with finite L?-energy
EAD) = [ (FairEa) + (Dt eDad). (11.2)
R

One shows that as & — oo, the conjugacy class of ¢(Z) approaches a fixed value. Equivalently,
A(F) — g &) Poog(T), for some fixed ¢ € bhr, the Cartan subalgebra of the maximal compact
subgroup G. Actually, ¢oo € hr/W(g), but, since SZ, is simply connected, one can choose a
uniform representative ¢, € hr. This lift from hgr /W (g) to br is going to be trickier in the case
of periodic monopoles we shall study below.

Suppose ¢ is generic, i.e., the only gauge transformations which commute with it belong to
the normalizer N(T) of a maximal torus 7. The restriction of ¢ onto a two-sphere S% of a very
large radius defines a map

¢: S2, — GJT

and a T-subbundle T of the trivial G-bundle P = G x S%,. The latter is characterized by its
Chern classes, which can be also identified with the class [¢] of ¢ in

m(G/T) = m(T) = QY,

also known as the magnetic charges of the monopole solution. The magnetic charge can also be
read off the solution of (11.1) by projecting the curvature F4 to the Cartan subalgebra b defined
by gblggo , and by taking the corresponding integrals
1

o

my A

27 Jsz
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Now let us compactify one of the spatial directions, i.e., replace R? by M3 = S! x R2. Let
¥ € [0,27) be the angular coordinate on S! and let x = x7 + izs be the complex coordinate
on R?. Let us normalize the metric on M? so that the circumference of S! is equal to one.
Consider the complex connection in the S! direction (we use the physical convention where A
is represented by Hermitian matrices, i.e., by a real-valued one-form for the U(1) gauge group):

V =0y +iAy — ¢.

The equation (11.1) implies that the z-variation of V is an infinitesimal gauge transformation
0zV + [Az,V] = 0.

Therefore, the conjugacy class of the holonomy g(z,z) of V around S! varies holomorphically

with z, and, in the gauge where g(z,z) € T, it is locally holomorphic

o) = [Pew ( § 100400, + 10002, )| € @) (113

As we shall clarify later, when x — oo,

Vv

l9(z)] — [Hqﬂ] = boe € B*(g).
=1

One is left with the quasimap u: (CIP’@ — B*(g). It is instructive to calculate (11.3) for the

Dirac monopole on M?3.

Recall that the Dirac monopole at p € R? is the connection in the U(1) bundle over R3\},
which is a pullback of the constant curvature connection on the Hopf bundle over S? via the
projection map

!

=

mp BAF— 8, ) =

!

The corresponding curvature two-form F' is given by

=

i (7~ ) - dF x dF
2 Z-pF

F = 27ri7r;)iw2 =
where

wo = 1.
S2

The fact that up to the | — p]? rescaling the two-form s coincides with the volume form
on S? obtained from the flat metric on R? implies that F' solves Maxwell equations in R?\p and
moreover there is a magnetic potential ¢, such that

d¢+*3F =0.

Moreover, if ¢ is normalized to approach zero at infinity, then
1
2|7 —p|’

The periodic Dirac monopole, i.e., the solution of Maxwell equations on M3\p = (v, %o, Zo)
can be obtained from the basic monopole in R3 by taking the superposition of the fields of an

6= (11.4)
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—_—

infinite periodic array of monopoles, living on the universal cover M3\p = R3\ (19 + 27Z, 20, Zo).
The magnetic potential is given by the regularized sum of potentials (11.4)

(Y, x,T;p) = doo + log +Z( (Y — o — 2mn, x — x0)+1_5n’0>,

4|n|
nez
1

o, x) = NI

We calculate
1 [ 1
o ), O, 2, 7 )y = doo + 5 log |z — o).

The calculation of

27
/0 Ay, z,Z;p) dyp

is a bit tricky. Fortunately, its derivative is easy to compute

2w

) - o (x — z0)dZ — (T — Zp)dz
d 0 Ay (b, z, 25p) dyp = fF 42/ (|Jz — zo|? + (¢—¢0+27m)2)3/2

Thus
d?{(Aw +i¢)dy = idlog(x — zg)

and the monodromy is equal to

g(@) = (x — z) "

up to some multiplicative constant. Now, if we have a superposition of several Dirac monopoles,
in the theory with the gauge group 7', with the monopoles of the type 4, i.e., corresponding to
the coweight A} € Hom(U(1),T) located at the points (1}, m;,mM;s), then the monodromy of
the corresponding complexified connection A + i¢ dy is equal to

T W;

x) X H H(x - m@f)_)‘iv.

i=1f=1

Now let us consider the nonabelian Bogomolny equation on M3. Instead of solving the equa-
tion (11.1) modulo G-gauge transformations, let us solve two out of three equations in (11.1),
namely the equation

[Dz, V] =0 (11.5)

modulo the action of the group G© of G-valued (complex) gauge transformations. In fact, (11.5)
can be viewed as the complex moment map for G€, acting on the space of (A, @), endowed with
the GC-invariant holomorphic symplectic form:

1

Q=g | {0V N 6A;) dydadz. (11.6)
™
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Let us now try to analyze the solutions to (11.5) in some domain D x S! € M3 over D C Cuy-
We fix the G-gauge where Ay, +i¢ = {(z, ), 0y¢ = 0. This gauge leaves some residual gauge
freedom. Passing to

g(w) = exp(2mi§(z))

partially reduces the residual gauge invariance. The equation (11.5) implies that dz¢ = 0, and
Az = az € h. We then proceed with constructing the cameral curve C, which is the union of the
W (g)-orbits of g(z) over all z € (CIP’%@ = C(;) U{oo}. The fiber A, of the projection h:  — M
is the space of W (g)-equivariant T-bundles over C, of fixed multi-degree. We shall discuss in
more detail the analogous situation for the class II theories in the next section.

The asymptotics of the solution to (11.1) is characterized by a vector of magnetic charges.
Namely, over T2 = S! x S!_ where S, is a large radius circle in R?, the gauge group G is broken
down to T'. The gauge bundle is therefore characterized by the vector of the first Chern classes:

m € H*(T%,m(T)) = Q.

One can compute m by analyzing the behavior of the conjugacy class of the holonomy g(x) of
the complexified connection V. One can show that the finite energy (11.2) solutions with non-
trivial magnetic charge do not exist. Indeed, macroscopically the system looks two-dimensional,
and asymptotically it looks like a charged vortex, whose energy diverges logarithmically at large
distances.

However, infinite 3-dimensional energy solutions may correspond to the finite tension higher-
dimensional objects. For example, the noncommutative U (1) monopole describes a finite tension
string, which is attached to the worldvolume of the gauge theory [78]. Similarly, the infinite
energy periodic monopole solutions have interpretation in the higher-dimensional theory, e.g.,
in the brane realization [175] of the pure N' =2 SU(N) gauge theory in four dimensions [18].

One can actually make the energy finite in the infrared by allowing point-like singularities
in M?3. The idea is to screen the asymptotic magnetic charge of the non-abelian solution by the
opposite charge of the Dirac monopole singularities.

Let us study the general situation. Suppose 7 C Cy,) is a closed contour. For each point
x € 7 compute the holonomy g(z,Z) of the complexified connection V, e.g., starting at the
point 1 = 0 on the fiber S'. It is a functional of the gauge field A and the Higgs field ¢:
(A, ¢) — g(x,z). The gauge transformed (A, ¢) leads to the similarity-transformed function
g(x,7): (AR, ") h=1(0, 2, %) g(x, Z)h(0,2,Z). We have a well-defined map

[94]: v —, B(g),

which is a restriction on 7 of the holomorphic (cf. (11.5)) map U: CP%@ — BY(g), U: z
l9(2)].

Now let Z(g) C B*l(g) denote the set of irregular orbits of W(g) in T/Z. Generically the
image ¥, of [g(z)] crosses Z(g) at some isolated points, which are the branch points of the
cameral curve C:

By = U_l(zu N E(g))-

Let us consider the subvariety B(g)™® = B*d(g)\Z(g). The fundamental group 7 (B(g)™#) is
related to Artin braid group associated with the g root system. Let us also define T"® to be the
subvariety in T consisting of the regular elements, i.e., the elements of the maximal torus whose
stabilizer in G is the maximal torus T. It is invariant under the translations by Z. We have
a map: m,: m(T™) — 71 (B(g)"®), induced by the projection 7: T — T™8/(Z x W (g)).

Now, let us go back to the loop 7. We would like to define a T-bundle over S! x ~y, by choosing
a gauge where Ay +i¢ is 1)-independent element of the Lie algebra h C g. Then Bogomolny
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equations imply that Az also belongs to b, assuming that A, + i¢ is regular, i.e., its stabilizer
in G is the maximal torus T.

There is an obstruction for such a gauge being possible throughout v. Namely the class of v in
71 (B(g)"8) should lie in the image of m,. This is related to our solution of the four-dimensional
N = 2 theory of the class I as follows.

For the asymptotically conformal theories, with the assignments of dimensions v, w, we have
defined a G/Z-valued function on C,) minus a finite number of points:

g9(z) = [[ Pila) N Yi(2)™ (11.7)
i=1
We identify g(x) in (11.7) with the holonomy in (11.3). The factor
goo(w) = [ [ Pit) ™
i=1

clearly corresponds to the Dirac monopoles sitting at some points (v, m;,m;;) with the
charges \Y. The remaining factor has to do with the nonabelian monopoles.
Recall that the map U: C ;) \Z; — B(g) is determined by the collection of gauge polynomials

Ti(x),i=1,...,r. The singular locus =, of U are at the zeroes and poles of the discriminant
_ 2
Afz) =g()™ ] (9()*=1)7,
a€ERL

where R, is the set of positive roots of g, and

p=5 > o

acRy

The discriminant A(zx) is a rational function in T;(x)’s and P;(x)’s. Now, given a loop v in
C(z)\Zz, when can we lift [g(7)]|, to the T-valued loop?

For the simple root «; let us denote by =, ; the set of solutions to the equation g(x)* =1
on the physical sheet of C,.

Bei = {7 | g(x)" =1}

so that

Actually the points of =, ; are the endpoints of the cuts I; a.
Our claim is that for the loops v = A;a which encircle the individual cuts I; 5 the class
[g(x)] € B(g)™8 lifts to T™8, and defines a T-bundle over S! x . Its characteristic class is equal

to o € QV.
Thus the magnetic monopoles which correspond to the limit shape of the N/ = 2 theory
have the Dirac monopole charges qpi = —Z;l Wz‘)\;/ which are distributed at the points

(¥s5,m;5,m;5), and the nonabelian monopole charges qigp = S, viay which are located
over the cuts I; 5. The net charge at infinity is equal to

apir + Qtap = 0

for the asymptotically conformal theories.



Seiberg—Witten Geometry of Four-Dimensional AV = 2 Quiver Gauge Theories 83

For the asymptotically free theories the net charge at infinity is equal to (cf. (3.1)):

.
apir + Qe = — Y BidY.
i=1

The fact that 3; < 0 should follow from the positivity of energy (as it does in the A; case) but
we could not find a simple proof for general G.

The relation of the monopole picture of 3 to the Hitchin system picture we had in Section 10.2
goes via the Nahm transform, or, since we are ultimately working only in a particular complex
structure of the moduli space, via a version of Fourier—Mukai transform. The U (k) monopoles
on R? are mapped via Nahm’s transform to the solutions of a one-dimensional system of Nahm’s
equations. The U (k) monopoles on R? x S! are mapped via Nahm’s transform to the solutions of
a two-dimensional system of Hitchin’s equations, with singularities. Indeed, our spectral curve
in the form (10.47) captures the solutions to two, 94® = 0, 4@ out of three Hitchin’s equations.
The remaining equation F4 + [®,®] = 0 away from the punctures would fix the hyperkihler
metric on PB. Unfortunately we are not in the position to discuss the metric on P as long as we
stay within the realm of the four-dimensional gauge theory. See [14, 22, 82, 129].

We do need to discuss the holomorphic symplectic geometry of 3. The symplectic form on
descends from the two-form (11.6) via the Hamiltonian reduction with (11.5) being the moment
map. The textbook construction of the action-angle variables of the integrable system produces
the special coordinates a”, a% of the gauge theory. We claim this construction is equivalent to
the one using the periods of the differentials x d log Y; on the cameral curve. The essential points
of the demonstration are identical for the class I and for the class II theories.

We thus return to this question in Section 11.2.

Now let us study the A; case in some more detail. We wish to present yet another perspective
on the phase space .

Consider the product of N A; surfaces O,, a = 1,...,N, the complex coadjoint orbits
of SL(2,C). Each surface O; is a quadric in C3, given by the equation

Gtmt =5
with some fixed constant s, € C. The surface O, has the holomorphic symplectic form

d&e A dng
Wa = —"F5—)
Ca

which has the period s, along a non-contractible two-sphere in O,. The moment map for the
action of SL(2,C) on O, is a 2 x 2 traceless matrix. Let us extend it into a general 2 x 2 matrix
(which corresponds to the conformal extension of the group)

. T+ & Na +1Cq
La(x) - <_77a +i¢, z—& )

and define the “monodromy matrix”

L(z) = (8 (1)> x Ly(z — pn)Ln-1(z — pn-1) -+ Li(z — ).

It is actually better to work with the somewhat differently normalized “local Lax operators”

1 ul vl
9a(z) =12+ — . (v; ) (11.8)
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where
uf—sa:tga, Uf:ig'a:tna
obey
ufu, —viv, =0
and define
q 0
g(z) = 0 1) % gn(z — pN)gN—1(x — pn—1) - - g1(x — p1). (11.9)
Then, cf. [74],
P*(x)
Det =
ct(9(@)) = a- -
where we defined
N
PE(z) = H(at — fig £ Sa)-
a=1

Now, define the phase space to be the complex symplectic quotient of the product of the Ay
surfaces by the diagonal action of the C*,

P = %7104/ /C (11.10)

generated by

N
Hy, = Zfa-
a=1

The variety (11.10), defined by fixing the level £ of H; and dividing the corresponding level
set H| 1(¢) by C*, carries the induced holomorphic symplectic structure. The functions hy,
defined as

trog(z) = (1+q) <1 + Z x_khk).
k=1

Poisson-commute with respect to the induced Poisson structure. Moreover,

and the next N —1 h;’s are independent. The rest of the expansion coefficients can be expressed
in terms of the first V.

We argue that the normalized Lax operator g(x) is the complexified monodromy field g(x)
in the corresponding periodic singular monopole problem, with the monopole group U(2) (the
compact form of CG) and p, + s, are the locations of 2N Dirac monopoles. Of course, our
methods do not allow to establish the correspondence with monopoles outside the identification
of complex symplectic manifolds, for complex structure I and (2,0)-form .

It is not difficult to convince oneself that the “local Lax operator” (11.8) is indeed the
complexified monodromy of a single U(2) monopole screened by two Dirac monopoles of the
opposite U(1) charges, located at +s,.
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What is amusing is that the equation (11.9) suggests that the complexified monodromy of
the charge N U(2) monopole screened by 2N Dirac monopoles factorizes as the product of N
elementary monodromy matrices.

Note in passing that if we do not perform the reduction with respect to C* generated by Hj,
i.e., work with the 2N-dimensional phase space 33 (this is a first step towards the extended phase
space P!), then Sklyanin’s separation of variables [171, 172] identifies its open subset ’f3° with
the N-th symmetric product of (which is most likely [76] resolved into the Hilbert scheme of N
points on) C,y x C»*. Incidentally [39], this manifold is symplectomorphic to the moduli
space of regular charge N SU(2) monopoles on R3.

In recent years the connection between the gauge theories and the spin chains, and the
inspired duality between the Gaudin-like integrable systems and the Heisenberg spin chain was
discussed in [17, 41, 126, 128], building on the earlier work in [68, 69, 127, 155, 156].

Before concluding this section, note that the masses of the bi-fundamental matter hypermulti-
plets are encoded in the next-to-leading terms in the asymptotics of the complexified connection
Ay +i¢ near x — oo. We shall explain this in more detail in the similar context in Section 11.2.

The moduli space of singular G-monopoles with fixed conjugacy class of the monodromy of
Ay +i¢ at x — oo, with unspecified location of Dirac singularities of specified charges defines
our extended phase space P, It is acted upon by the torus T' x Ty, where Th; C Gy is the
maximal torus of the flavor group. The action of T is via the constant gauge transformations
preserving the gauge field and the Higgs field at infinity, while Ty acts by changing the glueing
data for the grafted Dirac monopoles. Fixing the level of the corresponding moment maps and
reducing with respect to the complexification of the T' x Ty, action produces J.

Summarizing, we conclude with the conjecture: the moduli space of singular G-monopoles
on R? x St is acted upon by the Poisson—Lie group, which is a quasi-classical limit of the Yan-
gian Y (gq). The deformation quantization of B (in the complex structure I) produces the
Yangian Y (g). Fizing the asymptotics of the complezified gauge field at infinity as well as the
locations of the Dirac singularities would specify. It should be interesting to explore the holo-
morphic symplectic geometry of 8 in all of its complex structures and find the analogue of the
variety of opers (cf. [152, 159]), which in the A, case is the variety of local systems on the genus
zero curve coming from the N-th order differential operators with regular singularities at r + 3
punctures with the monodromies whose eigenvalues coincide with our description of the residues
of the Higgs field just above the equation (10.10) (cf. [53]).

Note that in [67] a connection between the representation theory of Yangians and the moduli
spaces of monopoles on R? was found. Also, in [6, 7] the relations between the monopole solutions
and the solutions to the Yang—Baxter equations were discussed. It remains to be seen, whether
any of these connections carries over to the R? x S' case and whether it is the one we need.

What happens if one tries to study periodic é-monopoles where G is Kac—Moody affine
group? Omne naturally finds double periodic instantons similar to relation between (A}—monopoles
and periodic G instantons [65].

11.2 Double-periodic instantons and class II theories

Let us now discuss the class II theories. Recall from Section 9.6.2 that an elliptic curve & =
C* /q%, with q given by (9.10), is associated with the class IT gauge theory. Also recall that the
gauge group is the product of special unitary groups

Gy = x"_,SU(Na;)

for some number N. Using (9.12), we have identified the extended moduli space MF* of vacua
of the theory (4.4), dim¢ zm?e;t = NhV, with the moduli space of degree N framed quasimaps
of (CP%@,OO) to the moduli space Bung(€) of holomorphic G-bundles on €, sending oo to
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a particular bundle [P;]. This space of quasimaps is a natural base of the projection from the
moduli space

Py & Bung y(Se) o0

of framed semi-stable holomorphic principal G-bundles P, c2(P) = N, on the surface Se =
(CIP%@ x &, where the framing is the identification of the restriction of P at the fiber at infinity

P‘{oo}x& ~ PEI

In what follows we drop the subscript V.

The projection P>t — M is defined on the open dense subset of P! by restricting the
bundle P € P to the fiber €, and taking its equivalence class t(z) = [P|¢,] in Bung(€). This
gives the desired quasimap U: x + t(z). This quasimap is a map near x = oo, approaching
a particular holomorphic bundle [P;] € Bung(€) over €4 = {oo} x €. The reason U is not,
in general, a map, has to do with the usual difference between the stability condition in two
complex dimensions and the fiberwise stability condition, cf. [121].

The semi-stable framed holomorphic principal bundles P on Sg, are in one-to-one correspon-
dence with the G-instantons on R? x T? with the flat metric (cf. [40]), i.e., connections on
a principal G-bundle P over S? x T?, endowed with some metric, which is conformally flat on
R? x T2, which obey

FA:—*FA

and have finite action,
/ (Fqg ANxFy) < 00
R2 x T2

(as we explain later, these instantons correspond to the M2 branes and the instanton action is
the tension of the stack of M2 branes) and this forces the curvature F4 of the G-gauge field tend
to zero as |T| — oo, ¥ € R%. We fix the instanton charge:

1
N = T 352h e (Fg N\ Fa)
(remember that (, ) is the Killing form, which is the trace in the adjoint representation). The
real dimension of the moduli space Pt of G-instantons of finite action on R? x T? with fixed
framing at infinity T2 is equal to 4Nh.

Actually, there is a subtlety here. The moduli space of charge N G-instantons on R? x T?
may have several components. This has to do with the fact that the moduli space of flat G-
connections on T3 = S!_ x T2, which parametrize the asymptotics of instantons on R? x T2, may
have several components [177]. We shall assume we are always in the component of the trivial
connection.

Note that ! is acted upon by the maximal torus T of G, the symmetry group of the flat
connection at infinity. This action lifts to the action of the algebraic torus T on the moduli
space of framed holomorphic bundles $B®*t. This is entirely parallel to the action of the group G
on the moduli space zmgamed (R4) of framed G-instantons on R%.

A holomorphic principal G-bundle P on Se¢ can be described using the transition functions
9ap: Uag — G defined on the overlaps U,3 = U, N Ug of the open sets in the appropriate open
cover (Uy)aca of Sg. The transition functions are holomorphic 5ga5 = 0, must obey the cocycle
condition gaggsygya = 1 on Usg, = Uy NUgNU,, and the cocycles differing by the holomorphic
coboundaries define equivalent bundles

Gap ™~ gagozﬁgﬁ_la

where g, : U, — G are holomorphic G-valued functions on the open sets U, themselves.
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Another way to describe the holomorphic bundle is to introduce a connection V =d + A on
a smooth bundle, such that its (0, 1)-part is (0, 2)-flat

VZ=0. (11.11)

The local holomorphic sections of P, = P|y, are the solutions to Vs, = 0. Over an intersec-
tion U,g these solutions must differ by a holomorphic G-valued gauge transformation:

Sa (Cv 6) = ga,B(C)Sﬁ (Ca 5)7

where ¢ stand for local holomorphic coordinates. This is sometimes expressed by saying that
locally A is a pure G-gauge

[l}U& = —sglésa.

In the case at hand ¢ = (z, 2), where x € C,y C C]P’%m and z is the additive coordinate on €.
The equation (11.11) reads

This equation can be viewed as the complex moment map equation for the action of the group G
of the G-gauge transformations on the space A of connections on a given smooth principal
G-bundle over Sg, endowed with the holomorphic symplectic form

Q= [ deAndzA(BANGA). (11.13)

Se
We have a little subtlety here. The two-form dz A dz was perfectly good on Sg but on Sg is has
a pole along the divisor €4, = {oco} x €. We impose the condition that Az approaches a specific
value as © — 0o. More specifically, recall (F.2) that generic Az can be G-transformed to the
normal form A; — 2&

L& e, 0,6 = 056 = 0. We impose the boundary conditions:

T—T

2mi

As(x,z) — €0 + 0(\x|72), |z| = oo (11.14)
T—T
for fixed £, which we relate to the gauge couplings q;, ¢ = 0,1,...,r, via
1 T
oo = Tom ;1()%%/\;/-

The limiting gauge field 05 + ffiffoo corresponds to the holomorphic bundle P; on €. The decay
rate (11.14) makes the integral (11.13) convergent. One can impose weaker conditions, allowing
even the O(z™1) (but no z7'z~! terms!) decay, which would make (11.13) convergent with the
principal value prescription. In fact, these subleading terms correspond to the bi-fundamental
masses of the Gg-theory. Let us interpret them using the T-action on 3.

The constant T-gauge transformation with the parameter ¢ € h acts on the (0,1)-gauge

field A as follows:

§A =g, Al + Ve, (11.15)

where n.(z,Z, z,Z) is the compensating gauge transformation which sufficiently fast decays at
x — o0o. Contracting the vector field (11.15) with Q in (11.13) gives us a closed one-form dm. on
the space of connections obeying (11.12), where m, is linear in €, m, = (¢, m) for some m € b

dm, = / dz Adz A (([e, Al + Vgn:)6A) = / dz Adz A0 (e, 0A)
Se Se
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zéé_oodx <5/ dQZAZ>. (11.16)

Thus the moment map m for the T action is the residue at x = oo of the zero mode of
the h-projection of the Az gauge field. The analogous statement holds for the monopoles of
Section 11.1.

Now let us solve (11.12) locally over some domain D in C . We choose the gauge (I.2) over
each point z € D:

o
Az(z,Z;2,T) — ik

£(z,7) €. (11.17)

T—T

If co € D, then, using (11.16), in the gauge (11.17)
§@,3) =ty T,

where m € b is a linear function of the bi-fundamental masses (me)eeEdgew.

Recall that G is a simple simply-connected Lie group. Therefore, the restriction Ple, is
trivial as a smooth G-bundle. Therefore A is just a g-valued (0,1)-form on D x €. Now let us
decompose Az = az + Wi, with az € h and W5 € b+ C g, the orthogonal decomposition being
provided by the Killing form (-,-). Then (11.12) implies: 9z&(x,Z) = 0, dzaz = 0, Wz = 0,
the latter equation being valid for generic £(z), corresponding to the irreducible bundles on €.
Indeed, the %2 = 0 equation (11.12) splits in g = h @ h* as follows:

=[&.Wz] = 0. (11.18)

For generic ¢ € b (irreducible ad(P)*) the h-equation (11.18) does not have non-zero solutions,
hence Wz = 0. As for the h-equation (11.18) in our gauge its solution is

az(x,T,2,2) = ag)) (z,7,2) + 20 (2, T).

Since on D x € the connection form Az dzZ+az dZ is simply an h-valued (0, 1)-form the component
az(r,T,%z,Z) must be z-periodic. This is only possible if 9z¢(z,Z) = 0, which also implies
az(x,Z, z, Z) is z-independent.

Of course, (11.17) is not the complete gauge fixing: there remain the z-independent T-valued
gauge transformations and the W (g)-transformations (F.3), which combine into the locally z-
constant N (T)-gauge transformations. There are also the shifts (F.4) by the lattice Q¥ & 7QY,
generated by the (z, z)-dependent T-valued gauge transformations with discrete, as far as the
(z,Z)-dependence is concerned, parameters 31, 32 € QV. Let us expand:

E(z) =) &)y
=1

The residual shifts act on the components &;(x) by
Ei(x) = &(x) + i+ Bour,  i=1,...,r+1,

where 31,52 € Z, for i = 1,...,7 are the expansion coefficients:

r
514 == ZﬁA,ia;/7 A= 17 2.

i=1
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Let t(z) = (ti(z) = 62“@(1))::1 € (C*)" and [t(x)] € E" be the equivalence classes for the
actions of the lattices QY and QY @ 7QV, respectively.

Thus, dividing by all but the locally z-independent N (T)-gauge transformations we arrive at
the collection of r points on &, or, in a more sophisticated fashion, a point [t(z)] in € ® Q, in
addition to the h-valued gauge field az(x, Z)dz. This is all done over the generic point = € C]P’%x).
We haven’t completely fixed the gauge, though.

Let us forget for a moment about the gauge field
a = az(x,z)dz. (11.19)

Then we’d divide by the action W(g), giving as back the point [P|¢, ] in the orbispace Bung (&) =

€ ® Q/W(g), the holomorphic G-bundle on & whose holomorphic structure is given by dz +
27 ¢(z). The (quasi)map U: z — U(z) = [P,] is point u € M™* in the extended moduli space
of the four-dimensional class II gauge theory.

The considerations similar to those in [60] show that the instanton charge co(P) = N bundles
on Seg correspond to the degree N quasimaps u: CIF’%@ — Bung(€). This is of course in line with
the original observations on the relations between the sigma model and gauge instantons [5].

By following the whole W (g)-orbit of [t(x)] in €" as x varies, we obtain the curve C,, which
is a ramified W (g)-cover of (C]P’%w. The fiber of the projection C, — CIP’%@ over a point z is the

orbit

W(g) - [t(r)] C €@ Q.

This leads us to the obscured curve which we have encountered earlier in our solution of the
gauge theory using the limit shape equations.
Now, as in our prior discussion of Hitchin systems, let us recall the gauge field a in (11.19).

It looks like the h-valued one-form on C]P’%w, since it is locally z-independent, and therefore

might be a (0, 1) part of a T-connection, defining a holomorphic T-bundle over CIP)%@. However,

we have |W(g)| worth of choices for 0 + @ at any particular point z since the residual W (g)-
symmetry acts both on [t(x)] and a@. This means that @ becomes well-defined when lifted to C,.
The way it transforms under the W(g)-action permuting the sheets of the cover €, — (CIP’%I)
makes it into the W (g)-equivariant gauge field on €, defining a W (g)-equivariant holomorphic
T-bundle T over C,:

T € Ay, = Bunp(€,)"V® ~ Homyy 4 (A, Pic(Cy)), (11.20)

the idea of the last equality is that every weight A € A = Hom(T,C*) defines a C*-bundle T*
on C,, in the W (g)-compatible fashion.

Of course this discussion is not adequate at the branch points, yet hopefully it can be extended
similarly to other constructions of spectral covers [30, 83]. In particular, the analysis near the
branch points should demonstrate that the bundle T has a fixed topological type, which we shall
not attempt to determine in this paper.

We conjecture that (11.20) is the fiber of the projection 7: Bt — MMt sending the extended
moduli space of vacua of the class II gauge theory on R? x S! to that of the infinite volume four-
dimensional gauge theory. Since the projection P +— U is roughly of the form (Az, Az) — Az, it is
Lagrangian with respect to (11.13). This is in agreement with dimc Bt = 2 dime M™* = 2Nh.
From now on we fix the masses, divide by the global T-action and work with 3 and 1.

Thus the study of holomorphic bundles on Se brought us the following picture: over each
point x € (CP%@ we hang the W(g)-orbit of [t(x)] in € ® Q. As z-varies, so does the orbit,

spanning a curve G, in (C]P’%@ X € ® Q, which projects down to C]P’lx . However €, is not yet the
cameral curve C,. It is however relatively straightforward to lift €, to C, using the abelianized
determinant line bundle over € we discussed in Section 9.8.
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Now let us discuss the period map. The moduli space P carries the holomorphic symplectic
structure 2 which descends from (11.13). From the complexified textbooks on classical mechan-
ics we learn, as we reviewed in Section 4.4, that choosing some basis A7, BZ, in the integral
homology Hj(A,,Z) lattice, such that the cup product of the basis vectors obeys (4.11) and
then defining of, a? using (4.9), (4.10), one verifies (4.12). It remains to compare this definition
of the special coordinates with the periods of the differentials x dlog Y;(z).

Let us work in the domain |q;| < 1. The cycles Az and B? which we defined (cf. Figures 5.1
and 8.2) on the cameral curve C, define the corresponding one-cycles on G, = C,/Q" and
consequently on A,,.

Now let us compute the symplectic form 2 on the reduced phase space 3. Using that in our

gauge

[ @2asta,a) = €(a),

&
we obtain
1
Q:/d% Saz A 6E) = ——— 5a A dp) ,
(Gaz 1 08) = 15l Jo, (0004

where we denoted by a the W(g-equivariant T-gauge field on €, and by d¢ an h-valued, W(g)-
equivariant (1,0)-form on C,, given by

dp = €.

It is now easy to pin down the periods of dS among the periods of dp. One uses the cycles in A,,
where the monodromy of the gauge field @ along the cycle Az or BZ changes by 2.

To conclude this section, in parallel with the class I story we conjecture, that the theories of
class II lead to the representation theory of the Yangians built on the Kac—Moody algebras, i.e.,
the toroidal algebras. It would be nice to see whether the Kac—-Moody symmetry of instanton
moduli spaces [28, 117] leads to the quasi-classical limit of the Yangian action, at the level of
the phase space P symmetry.

11.3 Noncommutative instantons and class IT* theories

In this subsection, we show that the data ¢;(x) with the cross-cut transformations (6.8) corre-
spond naturally to the charge N instantons on the noncommutative space R? x T2, with the
gauge group U(r+1). We shall use the constructions analogous to the constructions [139] of in-
stantons on the noncommutative R* adapted to the periodic case. The noncommutative solitons
on a cylinder were studied in [27].

The idea of the construction is the following. Consider first the commutative situation. Let
us denote the coordinates on R? by z1, x2. Let (u1,us) € T2 C C* x C*, |uj| = |ug| = 1. Let
us denote by z, x the holomorphic local coordinates on C,y X &,

1
x = x1 + 19, z= %(log(ul) + 7log(u2)).

Consider the (0, 1)-component of U(r + 1) gauge field A = A;dz + Az dz, where Az, Az are the
(r4+1) x (r+ 1) complex matrices. They obey (11.12) and in the gauge (11.21). we have

As = 2T diag(6i(e, 7)) (11.21)

=1

-7

where, by the considerations analogous to those around (11.18), we conclude that 0z&; = 0.
Again, there are the residual gauge transformations

Az — GT1A:G + G706,
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which permute the eigenvalues &;(x): {&i(z)} = {{5¢)()}, for some o € 8,11, and shift them
i(w) = &i(x) + 1 — ™y (11.22)
The latter are generated by the diagonal gauge transformations
G = diag (uj'u3) 1.
We can partially reduce the ambiguity (11.22) by passing to the exponential variables
tj(z) =¥™&@ =141
The residual gauge transformations (11.22) become
b(a) = (), () o b (@)
for some integers n; € Z and permutations o € Sy41.
Let us now consider the noncommutative case. Let us replace the algebra of functions of u,
ug, X1, T2 by the noncommutative algebra, with the generators w1, s, T1, T2, obeying
Uit =T+ hi -1, Uy 'Bila =T;,  Uylla = Uglly, [Z1,Z0] = 0, (11.23)

where

P = h = hy + ihs.

Then the analogue of (11.22) for

. ~n; AL\ TH1
G = diag (a1 ),

gives

nip (o M 4 ,
(@) gt (o - Sm) (@) ot (@),

These are precisely the YWW-transformations of the class II* type A, gauge theory, with ¢;(x)
given in (6.6) and (10.38).

Instead of giving more systematic discussion along the lines of [4, 21, 43, 139, 153, 165] let
us comment on the relation to the group GLoo. We claim that the U (r 4+ 1) instantons on the
noncommutative R? x T? with both R? and T? separately commutative, can be interpreted as
the commutative periodic monopoles on R? x S! with the gauge group éioo.

The idea is to interpret the noncommutative U (r+1) gauge fields on R? x T? as the (/}ioo-gauge
fields on RZ, ., x S, using the relation of the group GLe to the quantization of the volume-
preserving diffeomorphisms of a cylinder R}, X S;, i.e., the pseudo-differential operators ¥ DO
on Stlz‘ Here the generators @2, Z12 of the algebra (11.23) are related to the commutative

coordinates (21, x2,%) of the monopole theory and the generators (p, e'?) of (/}ioo in the via

ag = e”’b, 61 = elq, 53\1 =T — ihlaq, 52 = T2 — ihzaq.
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12 Higher-dimensional theories

In this section, we briefly go over the higher-dimensional generalizations. We shall consider the
lifts of all our theories to five dimensions, and the lifts of some of our theories to six dimensions.
The latter restriction comes from the possibility of encountering gauge and mixed anomalies in
six dimensions, which would prohibit the decoupling of the gauge sector from the supergravity
and ultimately string theory modes.

The classical N' = 2 theories in four dimensions admit a canonical lift to the A/ = 1 theories
in six dimensions. Under this lift the vector multiplets become the vector multiplets, and the
hypermultiplets become the hypermultiplets. The structure of the hypermultiplet does not
change, while the structure of the vector multiplet does change, for the complex scalar ® in the
adjoint representation becomes the remaining component As + iAg of the gauge field.

We then compactify the theory on a two-torus T?. In addition to the metric on the torus
we shall also fix a background B-field, a constant two-form. The combined metric and the two-
form moduli are described by a 2 x 2 matrix G, with the positive definite symmetric part g.
It is convenient to parametrize G by two complex numbers T, U, with ImU,Im7T > 0. The
parameter T encodes the complex structure of T?, while the parameter U is the complexified
Kahler class:

U:/ B+i/ Jaet(g), 1= fetivdetl)
T2 T2 g11
Five(six-)-dimensional supersymmetric gauge theory compactified on a circle (two-torus) would
look four-dimensional at low energy. The microscopic gauge coupling 7 in four dimensions is
proportional to U while T" determines the complex geometry of the z-plane C;). One can study
the corresponding Seiberg—Witten geometry. Its key feature compared to special geometry
of more traditional four-dimensional models is the periodicity in the z-variable [138]. In the
five-dimensional theory the z-plane becomes the cylinder C<$>X, while in the six-dimensional
theory the z-plane becomes the two-torus C .y /27i(Z @ TZ). It has to do with the large gauge
transformations. The result of these additional symmetries is the relativistic nature of the
corresponding integrable systems. For example, the periodic Toda chain describing the pure
N = 2 theory in four dimensions becomes the relativistic Toda chain. The Hamiltonians of
the relativistic systems have periodic dependence on momenta, which are the rapidities of the
particles. The resulting quantized Hamiltonians are the difference operators.

Our discussion modifies in the case of five-dimensional gauge theories in two aspects. First,
the notion of the amplitude function accommodates the large gauge transformations:

Yi(z) = exp < try, log (eiﬁ(:rfcbi) _ 1)>

where the dimension length 5 characterizes the circumference of the compactification circle. The
limit shape integral equations (6.1) generalize straightforwardly, with the kernel

i log(iBA 1 .
= £X3 — MXQ — — Lig (e—lﬂx)‘ (12.1)
12 2 iB

u?

Kps(x)

Secondly, there are additional couplings in five dimensions: the levels k; of the Chern—Simons in-
teractions CS5(AY), i € Vert,. Effectively the Chern-Simons term changes the gauge coupling g;
to the x-dependent quantity

i — g’
In the six-dimensional case the amplitude and the kernel (12.1) modify to

Yi(z) = exp < try, log H(eiﬂ(:’:*(bi); Q) >u,
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iB 3 log(iBAuv) »

Ka(x) = 15 5 X —Eng B ; Liz (e*Q") + Liz (e 77*Q")),

where @ = exp(27iT), and now 32 is the scale of the area of the compactification torus T2,

A McKay correspondence, D-branes, and M-theory

A.1 From finite groups to Lie groups

McKay correspondence states [125] that the affine ADE graphs « can be constructed from the
representation theory of finite subgroups I' of SU(2).

The vertices i € Vert, in this case are the irreducible representations of I', 7 — R;. One usu-
ally enumerates them, Vert, = {0,1,...,7}, so that 0 corresponds to the trivial representation
Ro = C. By r in this section we denote the number of nodes in the finite graph =g, obtained by
discarding the node “0” from affine . In all cases r is the rank of the Cartan matrix associated
to Dynkin graph. Moreover, the Dynkin marks a; are the dimensions of V;, and the numbers of
colors in affine quivers is

Vi = Na/ia

where a; = dimR;, and N is some non-negative integer. As we said above, i = 0 corresponds to
the trivial representation, so ag = 1. In the table of McKay correspondence we write “i(a;)” by
each node to denote its label ¢ and Dynkin mark a;. We label the nodes in Bourbaki conventions.

The number of edges I;; in the McKay graph between the node i and the node j is the
multiplicity of representation R; in the tensor product of R; with the defining representation C?

CoR;=@CH @R,
J
The equation 8; = 0 is verified by computing the dimensions of the left and the right-hand sides.
The order of ' agrees with the dimensions of the irreducible representations / Dynkin marks

of the McKay /Dynkin affine graph computed using the standard relation from the orthogonality
of characters

IT| = ZdlmR2 Za

McKay’s observation is that ~ is affine ADE Dynkin diagram, with the trivial representa-
tion Ry associated with the affine node “0”. The finite Dynkin graph ~g, is always a tri-star
graph Tgp . with one trivalent vertex and three legs containing a, b, ¢ vertices (where in the
counting we included the center trivalent vertex). Hence the rank of the finite quiver g, is
a+ b+ c—2. In fact a, b, c have simple interpretation: the group I' is always a Coxeter group
Cox(a, b, c) defined on three generators (x,y, z) subject to relation

2% =3P = 2° = xyz.
The affine graph of E series is also a trivalent graph denoted by ( ab C) in the table of McKay
correspondence. Note that for each of the three cases Eg, E7, Eg the identity

1 1 1
-+-+-=1
a b ¢
holds, which makes contact with the unimodular parabolic singularities.
Now we shall list explicitly the discrete subgroups of SU(2), the classification going back to

Plato and Klein [105].
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Polyhedron T° Topc Affine Dynkin graph « with labels i(a;) Lie g
20 10
. A
(r=5) (r=5)
b(1)
o1 71 ~
BD,_ D
2 Tr—222 "
(r=T7) 1) |22 32 42 |52 60 (r=7)
[ @ & o
0(2)

T3 3,2 2(2 o
BT 2% @ Eg
(T53,3)

1) 32 43 52 61
@ & & @

2(2)
T ~
BO %’3’2 E;
(Taa.) oL 1(2) 33) A4) 53) 6(2) 7D
[ & . 4 & @ 9

2(3)
T ~
BI 252

(T6,3.2) 12 34 |48 55 @ 6@ 73 82 01
° ° o ° ° . °

A.2 Platonic symmetries
A.2.1 Cyeclic group

Let us present cyclic group Z,4+1 in the (a,b, c¢) notation: consider group generated by z, y, z
subject to

T =y=2z=uayz.

Then z =y and zy = 1 and y = 2", hence
1,7‘-{-1 — 1
hence Z,4; = Cox(r,1,1) = McKay(A,). The order of I is

Zpsa| =r+1=) al=(r+1)-1.
1€y

A.2.2 Dihedral group

The dihedral group D,_9 ~ Z,_o x Zg of order 2(r — 2) is the symmetry group of regular
(r — 2)-gon considered as a subgroup of SO(3). The lift of dihedral group Zy — BD,_9 — D, _9
to a subgroup of SU(2) is called bidihedral group BD, which has order 4(r — 2). The BD, is
generated by (z,y, z) subject to relations

r—2 2 2

T =yt =2 =ayz
hence BD,_y = Cox(r — 2,2,2) = McKay(Dr). The order of I is
BD, 5| =4(r—2) =) af = 4441

i€y
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A.2.3 Tetrahedral group

The tetrahedral group T ~ Ay, of order 12, is the subgroup of SO(3) realizing the symmetries
of tetrahedron. The lift of tetrahedral group Zs — BT — T to a subgroup of SU(2) is called
bitetrahedral group BT, which has order 24 and is generated by (x,y, z) subject to the relations

3 =y =22 =y

Hence BT = Cox(3,3,2) = McKay(Es). The order of I is

BT|=24=> af =3- (1> +2°) +3° = 24.
1€y

A.2.4 Octahedral group

The octahedral group O ~ Sy, of order 24, is the subgroup of SO(3) realizing the symmetries
of the cube/octahedron. The lift to SU(2) is called bioctahedral group BO, of order 48; the BO
can be generated by (x,y, z) subject to relations

ot =P =22 =ayz
associated to the symmetry axes of the cube/octahedron of the order 4,3 and 2. Hence BO =
Cox(4,3,2) = McKay(E7). The order of T is

BO| =48 =) af =2- (17 + 22+ 3%) +4° + 2.
1€y

A.2.5 Icosahedral group

The icosahedral group I ~ As, of order 60, is the subgroup of SO(3) realizing the symmetries of
the icosahedron/dodecahedron The lift to SU(2) is called biicosahedral group BO, of order 120;
the biicosahedral group BI can be generated by (x,y, z) subject to relations

0=y =22 =y
associated to the symmetry axes of the icosahedron/dodecahedron of the order 5, 3 and 2. Hence
BO = Cox(5,3,2) = McKay(Esg). The order of I is

BI| =120 = Y af = (12 + 2% + 3% + 4% + 5% 4+ 67) + 2> 4 47 + 3%,
1€y

A.3 D-branes at singularities

The physical explanation of the relation between the C?/I-singularities [108] and the supercon-
formal theories with A/ = 2 supersymmetry is the following. Consider the IIB string in the
background C2/T x C! x RY3, where I' C SU(2) C SO(4) acts on C? ~ R* by the hyperkiihler
rotations. This background preserves half of the ten-dimensional IIB supersymmetry. Now add
a stack of N regular D3 branes. At the orbifold singularity the regular D3 brane splits as a col-
lection of r + 1 types of fractional branes, which correspond to the irreducible representations
of T [42, 92]. Moreover, the regular brane contains a; fractional branes of the R; type. The
stack of N regular brane splits, therefore, as a collection of Na; fractional branes of R; type,
for all « = 0,...,r. Each cluster of fractional branes can be classically moved anywhere in the
two-plane, transverse to the singularity and the D3 brane worldvolume. To summarize, the D3
branes are located at:

Nag N Nay 1,
Ox{,uoao,,ulal,...,ura}xR 3,
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Here { ey ,u}’r} represents the positions of the v; copies of the R; type of the fractional
branes in the two-dimensional plane C! ~ R? transverse to the singular ALE space C2/T" and
the worldvolume R of the branes. The positions ; are the ones which enter the equation (2.5).
At the low energy the worldvolume theory on the D3 branes is the quiver gauge theory we are
studying. If all p; parameters are scaled to zero (or at least all coincide), the theory has no scale
except for the string scale which is absent in the low energy description. Therefore the theory
has the scaling invariance, which is promoted to the full N' = 2 superconformal invariance. The
couplings 7;, except for

T:iaﬂ'i, (Al)
1=0

which corresponds to the IIB dilaton-axion field, are not of geometric origin. The gauge cou-
plings 7;, i = 1,...,r, come from the twisted sector fields

Ti—/ BRrr + 7BNs,
E.

7

where Bng, Brr are the Neveu-Schwarz (NSNS) and the Ramond-Ramond two-form fields of

—

the IIB supergravity, and 3; stand for the non-trivial two-cycles in the resolved C2/T" geometry.
These exceptional cycles are well-known to correspond to the simple roots of gq.

The 4d gauge theory on the stack of D3 branes in the above geometry is N' = 2 supersymmet-
ric theory of the affine ADE quiver type. To find the algebraic integrable system associated to
the IR solution of such theory we compactify the worldvolume of the D3 branes (x¢, z1, 2, x3)
on a circle S', say, along 3. Hence, our setup is N D3 branes along R? x S! inside the I1IB
string theory on R%2 x S%IS X Cgy X C2/T. Here C/(z) is the real-two-dimensional space asso-
ciated with the scalars of /\} = 2 vector multiplet in 4 dimensions. For 4d theories this is affine
complex line C;) = C, for 5d theories on S this is a cylinder C(;) = C* and for 6d theories
on T2 this is a torus Cuy =&y

Given this type IIB string theory realization of the affine ADE quiver theory, first we perform
T-duality along S%m). The stack of N D3-branes converts to the stack of N D2-branes on R*!

in type IIA string theory on R? x S%m) X Cyy X C2%/T. Next we lift the type ITIA string to
M-theory on RbM2 x St | x Cy ¥ C2?/T x S%gm), where S%

(z3) *10)

of M-theory circle is determined by IIB coupling constant (A.1). We treat the product of two
circles along x3 and along x1g as the elliptic curve € = S%ﬂm X S%{Em which has elliptic modulus
q = e2™7. The stack of N D2 branes converts to the stack of N M2 branes along R'2. So finally

we arrive to the M-theory picture.
That is, we consider the following configuration in M-theory: the space-time background is

is the M-theory circle. The radius

RY2 x Xy x C?/T (A.2)

to which we add a stack of N M2 branes whose worldvolume is R1? in (A.2) localized at the
orbifold singularity in C?/T", and anywhere in X, = Cy x €q. The M-theory on C2/T is believed
to contain the seven-dimensional G-gauge theory with sixteen supersymmetries, localized at
the singular locus. The maximal torus T part of the gauge bosons and their superpartners
descend from the supergravity modes associated with the hyperkéahler deformations of the metric
on R*/T". In particular, the gauge fields are the modes of the three-form field C3 integrated along

the collapsed two-cycles 3;, ¢ = 1,...,r in the deformed geometry I@\//F. The remaining W-

bosons come from the M2-branes wrapped on various two-cycles in Hy(R*/T',Z) =~ Q.
In the IR, the stack of N M2 branes stretched along R'? in this 7d G-gauge theory on
RY2 x X, dissolve into the charge N G-instantons on X4 = Ciy x&q [13, 26, 86, 95, 96, 101, 176].
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The moduli space of framed charge N G-instantons on X4 is the phase space of the algebraic
integrable system (see Section 4) we have found from the microscopic four-dimensional instanton
counting in the quiver gauge theory.

B Partitions and free fermions

Recall that a partition A is a non-increasing sequence of integers, stabilizing at zero,

The number £(\) > 0 is called the length of the partition A, while

£

A=)\
i=1

is called the size of the partition .
Consider the theory of a single chiral complex fermion, which is a (1/2,0)-differential, in two
dimensions

L= / Do. (B.1)
The theory (B.1) has a U(1)-symmetry

(V,9) = (e, e79). (B.2)

One can couple the fermion to the background abelian gauge field corresponding to this sym-
metry:

0+— 0+ A,
so that the Lagrangian (B.1) deforms to
L— L+ //_L],

where J = ¢t is the U (1) current, which we define as an operator below.
In studying the space of states H corresponding to the quantization of the theory (B.2) one
can distinguish various sectors, corresponding to twisted boundary conditions. Expand

1 1
dz\ 2 . = (dz)\? ~ .
0= (L) X e dw-(Z) X de
reZ+o réelZ—a
where a = fsl A. The fermion modes 1, 1, form the Clifford algebra
{wr;'&s} = Or4s,0;s {wraws} = {I;Ta@/;s} =0.
The vacuum state |@; «) is annihilated by all the a-positive harmonics

U |5 a) =0, r> a,
|25 0) =0, r> —a.
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The space of states is built by acting on |@;a) with creation operators ¢,, r < «, and Vs,
s < —a. The resulting Hilbert space H, has a basis labeled by partitions:

Hoc = @(C|A;Ot>,
A

A5 @) = ton tal—ra+1ta Vo -+ 140> Voaloas1 Y ari_en)|@sa).

Define the normal ordering with respect to the o = 0 vacuum:

calyenly e — 1/]11}]7 j>07
i {—%‘%7 j<o.

The U(1) symmetry of the Lagrangian (B.1) is promoted to the u(1) current algebra symmetry.
It is generated by the operator

J(z) = 4p(2)Y(2): = Z Jpz "z,

neE”L

I = Z :1/;7‘wn—r:-

reZ+o

The generating function

[e.e]

AL _ 1
z)\:q t _Hl—tq"

n=1

—

is a character of the fundamental u(1) module, Hy.

C Lie groups and Lie algebras

In this section we fix our notations for the notions from the Lie group and Lie algebra theory
we are using in the work. In this section we work over the field C of complex numbers.

C.1 Finite-dimensional Lie algebras

Let g be a finite-dimensional simply-laced simple Lie algebra, § its Cartan subalgebra. Let G
be the corresponding simply-connected simple Lie group, and T C G the corresponding to §
maximal torus. We have the exponential map expy: h — T, which is a restriction on h of the
exponential map expg: g — G. We shall only use the expy map in this work and will omit the b
subscript in what follows. We also use the notation

e(x) = exp(2mix) = *™* ¢ T, for x € b. (C.1)

C.1.1 The coroots

The kernel of the map (C.1), i.e., the set Q¥ C b which is mapped to the identity element in T,
is called the coroot lattice (it is obviously an abelian group). The coroot lattice Q" has the rank
r =rkG = dim b. Let us denote by o, i = 1,...,r its integral basis

QY =Za{ ®Zay @ --- @ Za,).

V

The generators ;" are called the simple coroots.
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Now, let z € C*, and oV € QY, then

2 =e (log(z)oﬂ) €T (C.2)

2mi

is independent of the choice of the branch of the log(z). This identifies the coroot lattice with
the lattice of homomorphisms:

Q" = Hom(C*, T). (C.3)

Using equation (C.2), we can parametrize T by

T a\/
z:(zl,...,zT)HtZ:Hzi’,
=1
where z; € C*.

C.2 The weights

The dual lattice is called the lattice of weights
A = Hom(T,C*).
Let us represent element t € T as
t = e(x) (C4)

for some x € h, which is defined, as we recall, up to an a shift by an element of the coroot
lattice QV. Then for any A € A, the value of the homomorphism A on ¢, which we denote by
t* € C*, can be computed as

t)\ _ eZﬂ'i)\(X)’ (05)

where A\(x) is a linear function of x. In this way we view \ as an element of h*, so that A C h*.
In order for (C.5) be independent of the choice of x in (C.4), the value of A on any element of
the coroot lattice must be an integer

AQY) C Z,
which is another definition of the dual lattices. Let us fix the basis (A;)l_; of A:
A=ZMDZX2 D --- DL\,
dual to the basis (o;)!_; of simple coroots, so that
i (a}/) = 0.
C.2.1 The roots
The torus T acts on G via the adjoint action
Ad: TxG =G, (t,g)—t gt

Infinitesimally, it acts linearly on the Lie algebra

Ad: T — Aut(g),  Ady(€) = % L exp(s€)t € g (C.6)
s=0
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for £ € g, and finally, this defines an action of § on g:
ad: h — End(g), adx(§) =[¢§,x] € ¢

forxebh, eg.
This action gives us several structures: the root decomposition of g:

6="ho P Ce,

aER
where R C A is a set of non-vanishing weights of the adjoint representation
adi(eq) = t%q.

These weights are called roots, and the lattice Q C A they generate is a sublattice of A, called
the root lattice. It has a basis (o;)l_; of positive simple roots

Q=Zo1 ®Zas® --- & Lay,
which allows us to define the Cartan matriz C® of g:
Cigj = q; (a}/), (C.7)

which is non-degenerate. The additional requirement we impose on g is that it is simply-laced,
i.e., by an appropriate choice of integral bases one can make C'% symmetric:

Cigj = C’?i.
C.2.2 The center
The quotient

Z=A/Q

is an abelian group, which is a subgroup both of T and G. In fact, it is the center of G. Clearly,
the center does not act in the adjoint representation, so that in the equation (C.6) it is the
quotient T'/Z which acts faithfully. Hence the root lattice

QCAcCH
can be also identified with the lattice of T/Z characters
Q = Hom(T/Z,C*).

Finally, the coweight lattice AY C b is both the integral dual to Q, and the lattice of T/Z
cocharacters:

AY =Hom(C*,T/Z) (C.8)
with the basis ()‘iv)::p dual to that of Q:

The expression

w = e<10g(w))\v> eT

2mi
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G 2g || le, §=1,... a4
A, r+1

Do 2,2

Dos 11 4

Eg
Er
Es

[ e G R

Table C.1. The number of cyclic factors in Z with their orders.

does depend on the choice of the branch of the logarithm log(w), however, the ambiguity is in
the multiplicative Z-valued factor, since for any AV € QV:
e(\V)eZcCT.

Thus, for any w € C*, w*” is well-defined as an element of T/Z, as is claimed by (C.8).
The center Z, being a finite abelian group, is isomorphic to a product of cyclic groups

Zg
7~ QL)L
e=1
for some zg, which is equal to 0, 1, or 2.
Table C.1 shows the values of z;’s and /¢’s for all simple simply-laced Lie groups.
Let we € T be the generator of the Z/{¢Z factor in Z C T. In other words,

wE#1 fork=12...6~1 and wi=1€T (C.9)
Of course, the equation (C.9) does not characterize w¢ uniquely. Indeed, for any integer s,
which is mutually prime with /¢, i.e., (55,65) = 1, the Z element wy = wzf also generates
L[l Z. We write
Zg
e()\;/) = wlgg, 1=1,...,7
£=1
_ - Wej v

for some integers [;¢, w¢; € Z, which are normalized

0 <lie <L, 0 <wej < L (C.11)
and

(wejs be) = 1.
Note that

A(A) = (€35 e (C.12)
By combining equations (C.12) with (C.10), we derive

(€9, = Zg: ZEZ@ + L8, (C.13)

¢=1

where £9 is some integral matrix. Note in passing that if we were to study the group G over
the field F,,» where p divides ¢, then ij would correspond to an affine (or even double affine)
root system.
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C.2.3 Killing metric
Another structure we gain from the adjoint action of T' on g is the Killing metric on b,
1 2
(x,x) = ™ trg ady, (C.14)

which identifies § with h*, Q" with Q, and AV with A, and the constant hg is chosen so that

<>\’ivaj> :51]7 <aiaaj> :Cg

5 e = ()
C.2.4 The Weyl group

The torus T has some symmetries within G. Namely, for any ¢ € T there are transformations
of the form:

t— g g (C.15)

for some g € G, for which g~ 1tg € T also. Such transformations form a group, which is called the
normalizer N(T) of T. This group obviously contains T, since the transformation (C.15) with
g € T doesn’t even move t. It turns out that there are additional nontrivial transformations.
These additional transformations form the Weyl group W(g) = N(T)/T.

For t € T and w € W (g) let us denote by “t the result of the application of g,, representing w
in N(T) C G:

Ut = gy tgw-
By taking the limit ¢t — 1 we get the action of W(g) on h: for £ € b
e e = S| v (expse)
ds 5=0 '

It is clear that W (g) acts on h by the orthogonal transformations preserving the metric (C.14).
The action of W(g) on h* (h) preserves both the (co)root lattice and the (co)weight lattice.

The less trivial result is that the group W (g) is generated by reflections r; at the simple roots.
The corresponding transformations on h and T are

"
N =z — i)y, Tt =t(tT)%.
The W (g)-action on T can be also described in the z-coordinates

\
7

T‘itz — tz (tz—az)a

:tia

where
s Cg
Zi=zy,  j#i, éizzink ik, (C.16)
k=1

C.3 Weyl group and the center

Since W (g) acts on T by similarity transformations in G, the center Z C T C G is fixed by any
w € W(g). In particular, r; preserves we for any ¢ and £, which is equivalent to

w =1. (C.17)
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Substituting into equation (C.17) the representation (C.11) and recalling the definition (C.7)
of C9 we get

ngjcg_cg €L, E£=1,...,2, i=1,...,m

Combining this relation with equation (C.13), we obtain

Zg r
0ij =Y L€ + > LICE.
=1 k=1

On the other hand, using the equation (C.10), and the relations >7_ C’fj)\;/ = «a), and
Y%

e(a)

; ) =1 for any ¢, we derive

r
C ljg
I

which implies
1 &
j=1

C.3.1 Langlands dual, adjoint, and conformal groups

The simple Lie group G/Z has a trivial center, but it is not simply-connected. This group is also
denoted by G24, since it is represented faithfully in the adjoint representation g. The maximal
torus T? of G*, is the quotient T/Z = h/Q. Also, since the lattices of weights and roots of G
and G2? are dual to each other, these groups are Langlands duals, “G = G2d.

The group G2! is not very convenient to work with. For one thing, the center Z looks
differently for different groups. One defines the conformal extension CG of G as the group
(see [57, 115, 116] for recent applications in a related context),

CG=(CxG)/z,

where the center Z acts on G in the usual way, and on C via some character
x € Hom(Z, C).
For example, we can choose
x(@s) = (),
where (; is the primitive [-th root of unity
G = e,

The elements of the group CG are the classes of pairs [(b; g)], where b € C is the zg-tuple of non-
zero complex numbers, b = (by,..., b, ), and g € G, under the equivalence (b;g) ~ (“b; @.g),
where

= (0,6,""),
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with the multiplication law

[(b1591)] - [(b25 g2)] = [(b1b2; g192)]-

The maximal torus CT of CG has rank r + z;. The center CZ of CG is the subgroup of CG
which consists of the equivalence classes containing (b; 1), with b € C. Clearly, CZ ~ C. In this
way, the centers of the conformal extensions look the same for all groups of equal zg.

The lattice

CQY = Hom(C*,CT) (C.18)

is an extension of Q" by the rank zy lattice with the generators ﬂg/ yE=1,..., 2

T Zg
Q¥ =P zay & Pzsy.
i=1 =1

The root subspace decomposition of ¢g = Lie(CG) = g @ C** is easy to compute. There are r
simple roots which we denote by «;. They act on c¢h = Lie(CT) as follows:

ai(a)) =C5,  wi(B) = ¢, (C.19)
so that if we define
K¢ = *fg,ﬁg/ + ngjoz}/, (C.20)
j=1
then
ai(Ke) =0 (C.21)

for any ¢, . The meaning of (C.20) is the following. The lattice of cocharacters of the maximal
torus of C x G is the direct sum of the lattice Q" of coroots of G and the lattice

Zg
Hom(C*,CxT)=L®QY, L=m(C)=HzK,,
n=1
so that a generic element of C x T can be represented by
Zg i r v
o~ s
tog = H b, ¢ x ng‘ ’ (C.22)
=1 i=1

(again, in writing (C.22) we assume normalization e(K¢) = 1 € C.) The action of Z on C x G
translates to the action on b, g:

~ ~ K+ wea)
we: tb,gth,gCZE e vael,

The quotient CT = (C x T)/Z is coordinatized by

v BY Yo av —£ - i
[(6;t2)] = fuw = [Jue* [[2" €CT,  we=0b.°  z=g]]0" (C.23)
) Py

in agreement with (C.18). Simply put, ﬁg/ € Hom(C*,CT), Qﬂg € Hom(C*,C x T), and
B¢ ¢ Hom(C*,C x T).
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Clearly, there are other choices of the Z-invariant coordinates, which differ by multiplication
of z; by any function of ug’s.

Comparing the equations (C.23) and (C.22), we arrive at (C.20). The equation (C.21) simply
reflects the fact that C acts trivially in the adjoint representation. The lattice CQ generated
by «; is isomorphic to the root lattice Q.

The weight lattice CA of C x G is the direct sum of the weight lattice of C and that of G:

CA = Hom(C x T,C*) = L @ A.

The weight lattice CA of CG is a sublattice of CA which consists of the weights which are trivial
on the elements of C x T of the form

C—KerEf:l weia)
Le

for any £. In the CA-basis (me3Ni), € =1,...,25, i =1,...,r such that

pe () = 6¢ s He (O‘;/) =0,

Ai(Ky) =0, Ai(a)) = 6y

the lattice CA is spanned by

fig = —Lepig, Xi =X+ ngius-
£

An easy computation gives
fie(8y) = b, Ai(a)) =05,
fig(e) =0, Ai(By) =0.

Finally, the lattice CAY of coweights of CG, which is dual to the root lattice CQ, is generated
by the fundamental coweights A}, which obey

(67 (5\;/) = 61] (0.24)

The equations (C.24) define Xiv up to the shifts by the integer multiples of K¢. We choose the
representative

T Zg
N =D Lo+ lieh.
7j=1 é=1

Shifting 5\;/ by d¢ K¢ would change the coefficient l;¢ + ;¢ + fede.
As we see, the coweights \Y are the integral linear combinations of the coroots o* and Y,
as if CG were the simple simply-connected group with the trivial center.

C.3.2 The D-homomorphism
By construction of the conformal group, there is a homomorphism
D: CG—C/Z=~=C,
D[(b; 9)] = (b¢):2,-
In terms of the weights, the restriction of the homomorphism D onto C'T is given by

D(fuz) = ((5)5, = (ue),.
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C.3.3 Twisted Weyl group action

Now we can define the twisted action of Weyl group W (g). It is nothing but the natural action
of W(g) on CT. However, we shall encounter a somewhat redundant parametrization of CT,
by T x T:

5V

U VI
goy =[P " ¥i", (C.25)
i=1

which is equal to fu,z with
—lje —Lji
ugznj)j s ZZZHZH:P] .
J J

Using (C.19), we compute the Weyl group W (g) action on C'T: under the reflection r; the group
element gpy maps to "igpy = 89> where

. o ~ -
Y=Y, d#i Yi=2Y]]Y, 7 (C.26)
J
The homomorphism D is W (g)-invariant

D(gry) = D(gpg) = ( 11 ?j_l“)
j=1

Zg

¢=1

C.4 Affine Lie algebras

The affine Lie algebras g show up in the solution of the theories of the class II. In preparing this
section we consulted with [9, 93]. Given a simple Lie group G with its Lie algebra g one defines
the loop group LG and the loop algebra Lg of (suitably defined, analytic, formal, polynomial)
maps of the neighborhood of a circle in C* into G and g, respectively,

LG = Maps(C*, G), Lg = Maps(C*, g), (C.27)

with the point-wise product and Lie brackets, respectively. Then one defines the central exten-
sion Lg = Lg & CK by

A1) ® 6K, £(O) ® K] = [0, (0] @ § @AG, ROIK

and the additional (non-central) extension g of IAJE; by C, which acts on Lg by the infinitesimal
rotation of C* in (C.27). The elements of g can be represented as the g-valued first-order
differential operators on S' plus a constant:

7d+ f(t) ® aK €7, T,a€C, f(t)eg
with the commutation relations
[md+ fi(t) ® a1 K, 7od + fo(t) & ax K]
= 0-d+ (A3 = nfi(0) + AL AO1® § (RO dROK (C.29)
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Analogously, one defines the central extension LG which is a non-trivial C*-bundle over LG
(this is analogous to the construction of the conformal group CG in the previous section), and
then the extension G of LG by C* which acts by rotation of C* in (C.27).

The algebra g can also be defined by the general construction of the generalized Kac-Moody
algebras associated with the Cartan matrix C’igj. The affine Cartan matrix has exactly one
eigenvector with the eigenvalue zero:

S Claj =0 (C.29)
j=0

The Cartan subalgebra E of the corresponding affine Lie algebra g with the underlying finite-
dimensional simply-laced Lie algebra g of rank r is the complex vector space of dimension r + 2.
The dual space E* contains the root lattice Q - E*, which is generated by the simple roots a;,
1=0,...,r, of which the simple roots @; with 7 > 0 generate the root lattice of g. Likewise, the
Cartan subalgebra H contains the coroot lattice QV - /h\, generated by the simple coroots o,
which obey:

ai(ay) = C3.

The following linear combination of the simple roots:
r—1 N
0= ad;€h* (C.30)
i=0

is called the imaginary root. It annihilates the simple coroots, cf. (C.29),

é(af)=0, i=0,...,r—1

)

The analogous linear combination of coroots

r—1
K=Y aa)eh (C.31)
=0
obeys
a;(K) =0, 1=0,...,r (C.32)

and generates the center of the affine Kac-Moody algebra since (C.32) implies it commutes with
everything in g. Then

~

Ql=h@®CK, Qc=h"aCs,

where h and h* are the Cartan subalgebra and its dual space of the corresponding finite-
dimensional simply-laced Lie algebra g, respectively. In order to generate § and h* as the
vector spaces over C we need to add one more generator in addition to the simple roots and the
simple coroots, respectively:

h*=QceCh, h=QtaCs
which obey:

Mo (@Y) = a:(6Y) = b

)
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The generator ¢V is equal to the generator of the infinitesimal loop rotation d we used in (C.28).
The weight lattice A of g is generated by the fundamental weights \; € b*, i = 0,1,...,r:

A=A®Zx C b,
which obey the following basic relations:

N@) =65 NV =0,  §(6Y)=ao=1.
The fundamental coweights X;/ € H obey

a;(\) = &
and form the coweight lattice

AV = ézxy C b.

i=0

The level of a weight A € A is defined as k = X(K ) so that the level of the i-th fundamental
weight is equal to

N(K) =a; = 5(\).

Note that Qé is the Cartan subalgebra of the central extension I/JB of the loop algebra Lg.
Adding 6V makes up the Cartan of the affine Kac-Moody algebra of g, which is an extension
of EB by the operator of the infinitesimal loop rotation, the zero mode of the Virasoro generator.
In physics literature the more common notation for 6" is Ly.
Also we notice that
Ai(AY) = (€9 i,j=1,...,r

ij

hence

~ R 0 0
() = <0 (09)1> )
ij
A useful relation obtained from identity operator [A;){a’ ’ + |5><5V’ is
Do N(N)an(@y) = ax () - 6(X))ar(8") = 6 — a;oo.
=0

Let A € h* for XAG 6* denote the image of the projection E* — b*, i.e., forgetting components
spanned by 0 and Ag. Then

/):V aiév + )\;/, /):j = aj/):() + Aj.

i =

D ADE Cartan matrices, roots and weights

Our ADE conventions are summarized in the table in Appendix A.
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D.1 A, series

The Cartan matrix C{? with 4,7 =0,...,r
2 -1 0 ... ... —1

-1 2 -1 ... ... 0

A _ o -1 2 -1 ... 0

0o 0 ... ... 2 -1

-1 0 ... ... =1 2

The affine simple roots are
ap=0—0, ar=e —e, Qs=ey—e3, ..., Op =€ —€ryi],

where 8 = e; — e,41 is the highest root. The Dynkin marks are a; = 1, ¢ = 0,...,r. The
fundamental weights are

/):07

~ - 1

AL =X +e——e
T

~ ~ 2
)\2:)\0—{—614-62—;6,

where
e—=e1+---+e.

The inverse Cartan matrix of the block i,5 = 1...r, i.e., the inverse Cartan matrix (C’AT)_1 of
g=A,is

ij

M) = (04) = max(i, 5) o bi=len
D.2 D, series
In the standard basis {e; | i = 1,...,r} the simple roots of D, are
o = €; — €41, i1=1,...,r—1, Qp =€r—1+ €

and the fundamental weights are
Ai=el+e+---+e, 1=1...r—2,

1
A1 =glertezt - Fer1 —er),

1
A=glertert - teiter)

The highest root is = >, aa; = e1 + ea.
In the basis (e;) the root (coroot) lattice of D, is given by

Q=Q"={necZ ||nc2z}.
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The weight (coweight) lattice of D, is

®_1Zxi= | J @z +e).

szo,%

The inverse Cartan matrix is

1 1

1 1 1 1 1 3 3

1 2 2 2 2 2 2

1 2 3 3 3 3 3

1 2 3 4 4 4 ¢

D1 —

(€)™ = IO = Co
1 2 3 4 r—2 52 =2
i 2 3 4 r—2 roor=2

2 2 2 2 2 4 4

1 2 3 4 r=2 r=2 T

2 2 2 2 2 4 4

The basis of the affine Cartan dual is {\g,d,e1,...,e,}. The simple roots are ag = § — 6 and
the roots a; of D,. The fundamental weights are

/):0, Xi:ai/)\\0+/\i, 1=1,...,7
where \; denote the fundamental weights of D,., and a; are the Dynkin labels:
(agy...,ar) =(1,1,2,...,2,1,1).

D.3 Esg

The Cartan matrix of Fjg is

2 0 -1 0 0 0
0 2 0 -1 0 0
s _ |1 0 2 -1 0 0
0 -1 -1 2 -1 0
0 0 0 -1 2 -1
0 0 0 0 -1 2
and the inverse is
4 5 4 2
3 1 3 2 3 3
1 2 2 3 2 1
5 10 8 4
Bn-1_13 2 3 4 3 3
(%) " = 2 3 4 6 4 2
4 8 10 5
4 9 8 4 10 5
3 1 LI
31 3 2 3 3

In the affine Cartan matrix the affine node “0” of E(; connects to the node “2” of Fg. The
Dynkin marks

(ag, ... a6) = (1,1,2,2,3,2,1).
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D4 E-,
The Cartan matrix of E7; is
2 0 -1 0 0 0 0
0 2 0 -1 0 0 0
-1 0 2 -1 0 0 0
ckr=1 0 -1 -1 2 -1 0 0
0O 0 0 -1 2 -1 0
o 0 0 0 -1 2 -1
o 0 0 0 0 -1 2
and the inverse is
2 2 3 4 3 21
2 24 6 3 33
346 8 6 4 2
) '=[4 6 8 12 9 6 3
326 9 %53
2 3 4 6 5 4 2
1 32 3 5 23

In the affine Cartan matrix the affine node “0” of E7 connects to the node “1” of E;. The
Dynkin marks

(ag,...,a7) = (1,2,2,3,4,3,2,1).

D.5 Ej
The Cartan matrix of Eg is
2 0 -1 0 0 0 0 0
0 2 0 -1 0 0 0 0
-1 0 2 -1 0 0 0 0
s _ 0 -1 -1 2 -1 0 0 0
0 0 0 -1 2 -1 0 0
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 -1
0 0 0 0 0 0 —1 2
and the inverse is
4 5 7 10 &8 6 4 2
5 8 10 15 12 9 6 3
7 10 14 20 16 12 &8 4
(CES)_l _ 10 15 20 30 24 18 12 6
8 12 16 24 20 15 10 5
6 9 12 18 15 12 8 4
4 6 &8 12 10 8 6 3
2 3 4 6 5 4 3 2

In the affine Cartan matrix the node “0” of Eg connects to the node “8” of Fg. The Dynkin
marks

(ao,...,ag) = (1,3,2,4,6,5,4,3,2).
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E Affine Weyl group

For the class II theories the relevant reflection group turns out to be the affine Weyl group W (g).
As a group, it is a semi-direct product of the finite Weyl group W (g) and the root lattice Q of g
(recall that for g the root and the coroot lattices are identified):

W(g) =W(g) x Q.

We can view W(g) as the group acting in /h\, preserving the non-degenerate scalar product (-, -)
which extends the Killing form on b by the pairing between K and §V as follows:

r=76"+0K +¢, T,oeC, &e€b, (E.1)
(z,2) = (£, §) + 270

The group W(g) is generated by simple reflections 7;, ¢ = 0,1,...,r. The action of r; on H is
given by

rii x— 1 — a(r)ay, i=0,...,r (E.2)
for x € H Similarly, the action of r; on H* is given by
ri: p—p—p(a))o, i=0,...,m (E.3)

Note that K is invariant under the reflections (E.2), while ¢ is invariant under the reflec-
tions (E.3), cf. (C.30).
On the hyperplane

Hy={x|d(z)=7}Ch (B.4)

the group W(g) acts by orthogonal transformations, generated by the ordinary reflections, and
by translations. In the decomposition (E.1), we have

ro(10V + oK + &) =76 + oK + & — (17— 6(£)) (K — 6Y),

where we introduced the highest root § € h*, and the highest coroot 8V € b:
T T
9:5—040:2:%0@, HV:K—ag:Zaiozl\-/,
i=1 =1

which obey 6(6Y) = (6¥,6") = 2, and also §(¢) = (£,6") for any £ € b.
Now, to make the translational part of the W (g) action explicit, let us perform an additional
reflection at 6:

roro(x) = ro(x) — 9(5 —(r— 0(5))( - OV))H\/ =78+ (0 —T+O(E))K + & — 710V,

Finally, the general element of W (g) can be represented as a pair (w, 3), where w € W (g) and
5 € Q, with the composition rule

(w1, B1) - (wa, B2) = (w1 - wa, 1 + B57).

The element W = (w, #) acts on x € H;, as follows:

(76 + oK +€)7 = 76" + (7 — (€, 8) = Z(8,8)) K + (6” + 7B). (E.5)
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The dual picture is the action of W (g) on the fixed level hyperplane H} = {p | p(K) =k} C b*.
Write

p:k])‘o_‘_/ié—‘_n’ neh*7kaueca
then

p(z) = ko + T +n(§).

Then the affine Weyl transformation wg generated by 8 € Q acts on p as follows:

wp(p) =p+ <—<77,ﬁ> + §<ﬂ,6>> 5+ kp. (E.6)

We need the affine Weyl lattice action (E.6) to construct lattice theta-functions in Appendix I.

F Conjugacy classes and moduli of bundles

In this section we recall the relation of the moduli space of holomorphic G-bundles on elliptic
curve and the space of conjugacy classes in g, see, e.g., [8].

Let H; be the hyperplane (E.4) and let B, be the quotient H,/CK, i.e., we forget about
the o K part in the expansion

,
r=16" —I—UK—I—Z@a;/.
i=1
We can identify the quotient with the Cartan subalgebra b of the finite-dimensional Lie algebra g,
B, ~ b. In this way we arrive at the 7-dependent action of W (g) on b:

§r €7 ="+ 78,

Note that this action does not preserve the coroot lattice QV C h. However, it preserves the
“doubled” coroot lattice Q¥ + 7QY C b.

Recall that Bernstein—Schwarzman group W, (g) [12] is the semi-direct product of W(g) and
the lattice Q¥ +7QY C b. The quotient

b/W:(g) (F.1)

is identified with the coarse moduli space Bung(€) of holomorphic principal semi-stable G-
bundles on the elliptic curve &€ = C/(Z + 7Z) [135, 164]. Let us denote by z the additive
coordinate on €:

z~z+m+nT, m,n € 7.

We can perform the quotient (F.1) in two steps: first, divide by QY, and then, divide by the
action of W(g). The first step is accomplished by the exponential map from b to h/QYV ~ T.
In the second step we divide by the lattice 7QV, giving us € ® Q¥ (as an abelian group), and
finally we divide by the Weyl group W (g):

T/W(@) = (T/7Q")/W(s) = (€2 Q")/W(g).

It is instructive to recall “Dolbeault” realization of the moduli space of bundles, since it will be
useful in our further analysis. A holomorphic structure in the G-bundle is a (0, 1)-connection
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V: = 0z + A; on a principal smooth G-bundle P, which is topologically trivial since we as-
sume G simply connected, and therefore Az is a g-valued (0, 1)-form on €. The gauge equivalent
connections V3 correspond to the isomorphic bundles:

A; = g ' Asg+ 97109, g€ C™(E,Q).

Recall that the holomorphic structure on P is determined by the condition that the local holo-
morphic sections of P are annihilated by V3, e.g., in an open neighborhood U, C &, the
holomorphic sections s, obey

Visa =0 & Asly, = —(agsa)sgl.
One can find a gauge for Az, where it is a given by a constant h-valued (0, 1)-form

27

Vg:85+

3 (F.2)

T—T

which still leaves a room for the residual gauge transformations, which preserve the fact that
¢ €band 0, = 9:§ = 0. There are two kinds of transformations (the general such transforma-
tion is a composition of these two):

§— &V = galﬁgw, Guw € N(T)/T = W(g) (F?’)

and
T—T
f'—>§+ﬁ3510gg:§—51—752, (F.4)

where

—Z 2T — 2T
— 51+ - 52)
-7 T—T

9(z,2) = exp 2mi (Z

with 81,82 € QY, cf. (C.3). Thus the space of all the (0, 1)-connections V; modulo the smooth
gauge transformations is isomorphic to the quotient (£ ® Q)/W (g), as we claimed.

E. Loojienga’s theorem [118] identifies the moduli space of G-bundles on € with the weighted
projective space:

Bung (€) ~ WPe0:aL-aer, (F.5)

There are several mathematical interpretations of this theorem [31, 55, 56, 59, 60]. We shall
give yet another, more physical explanation of this result, using g representation theory. This
realization of (F.5) is closer related to our problem.

G Infinite matrices and their Weyl group

We shall also encounter the group G/:ioo. It is the group whose Lie algebra is the central extension
of the Lie algebra gl(oo) of infinite matrices which have only a finite number of non-vanishing
elements away from the main diagonal:

A= ZaijEij7 CLZ']':O for |i—j|>>0,
i,jEZL

where E;; is the matrix with all the entries vanishing except for the (i, j) entry. The central
extension is given by the cocycle

[A@aK7B®/BK]:[AuB]GBV(AuB)Ka ’Y(A7B):tI'A[J,B],
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where

1 . o1
J = 5 Z&gn <z — 2)E“
€L

The Cartan subalgebra EOO C gl(oc0) consists of the diagonal matrices plus the span of the central
generator:

b = P CE; & CK.
1€Z
The Weyl group W(gT(\oo)) is the group of finite permutations of the eigenvalues of the infinite
diagonal matrix.

H The representation theory

Let us start over with the finite-dimensional simple Lie group G. Recall that the weight u € A
is dominant, p € Ay iff p(o)) >0 foralli=1,...,r.

Recall that to every dominant weight u € A, an irreducible highest weight finite-dimensional
representation V,, of the group G is associated. In particular, the fundamental representations
R; = V), of the group G correspond to the fundamental weights A\;. Moreover, the Grothendieck
ring Rep(G) of finite-dimensional representations of G is generated by R;.

Example H.1. For the A, series, the group G = SL(r+ 1, C), the fundamental representations
R; = \'C™* i=1,...,r, are the exterior powers of the defining (r + 1)-dimensional represen-
tation. The center Z = Z, 1, the adjoint group G*! = PGL(r + 1,C) = SL(r + 1,C)/Z+1.

Example H.2. For the D, series, the group G = Spin(2r, C), the fundamental representations
R; = N'C*, i = 1,...,r — 2, ie., antisymmetric tensors of the corresponding rank, while
R,_1 =S_, R, =S, are the chiral spinors. The center Z = Z4 for r odd, and Z = Zs x Zy for r
even.

H.1 Weights of the representation

The representations of G produce the W (g)-invariant functions on T. To every finite-dimen-
sional representation V' of G, my: G — End(V'), one assigns a function on T, the character

xv(t) = try Ty (t), teTCG,

which is the trace of the element of T viewed as the element of G in the representation V. By
definition of the Weyl group W(g) = N(T)/T it acts on T by conjugation in G, therefore the
character yy is W (g)-invariant. The representation V', viewed as a representation of T C G,
splits as a direct sum of one-dimensional representations Ly, i.e., the sum of weight subspaces L)
for some A € Ay C Hom(T,C*) = A. Here Ay is the (finite, for finite-dimensional V') set of
weights of the representation V. The character xy (t) can be written as

xv(t) = Z xvat?, (H.1)
AEAY

where xy,\ € Z4 is the multiplicity of the given weight X in the decomposition of V:

V= @ CXvix @ L
AEAY
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and t* € C* is the value of A\ € Hom(T,C*) on t € T. For the highest weight representations Vi
with the highest weight 1 the set Ay contains p, with multiplicity xv,, = 1, while all the other
elements A of Ay obey

T
n—A= Zniai, n; > 0, Zn, > 0. (H.2)
i=1 i

The Weyl group W (g) action on t € T can be traded for the W (g)-action on the set of weights Ay :
(tw))\ — t)\“’ )
In other words, the set Ay C A is W(g) invariant, including the multiplicities

XV = XVaw for any w € W(g).

The ring of W (g)-invariant rational functions on T is generated, as a vector space, by the char-
acters of all the irreducible representations of &, and polynomially by the characters x; = xr,
of r fundamental representations of G (Chevalley):

(C[G]Ad(G) = C[T]W(g) = C[zl,...,zr,zfl,...,zr_l]w(g) =C[x1,--+Xr]-

H.2 The action of the center

Any element z of the center Z of G acts in the irreducible representation (V,my) of G by
multiplication by a scalar character:

v (z) = py(2) - 1y, py € Hom(Z,C*) =~ A/Q.

For the highest weight module V' = V), this character is easy to compute

A
vy (wy) = wy .

In particular, the character m; = pp, corresponds to the image of the fundamental weight \; in
the coset A/Q:

mi(wy) = .;Uyz

H.3 Representation theory of affine Kac—Moody algebras

The affine Kac-Moody algebra g has the positive energy highest weight irreducible represen-
tations ﬁz, i = 0,1,...,7, which are integrable, i.e., lift to the representations of the corre-
sponding Kac— Moody group LG. The highest Welght of R is )\ The representations R are
infinite-dimensional of finite type: the dimensions of the eigenspaces of ¥ are finite, so that the
character

makes sense as a function in the domain |q| < 1, where

g=t7%eC*.
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H.4 On E. Loojienga’s theorem

In view of what we explained above, this theorem has the following interpretation. The funda-
mental characters X; of LG, with ¢ = 0,1,...,r are the W (g)-invariant functions on the maximal

torus T of LG. The T is a trivial fibre bundle over C(;XV

T=C} xT (H.3)
with the fiber over the point q = ™7 € C}, being the (r 4 1)-dimensional torus

T=C} xT=H/Q", (H.4)

where Cj is the center of LG. Note that the central extension of LG is topologically nontrivial.
However, its restriction on any torus of LG (which we can identify with the space of constant
loops valued in T C G) is topologically trivial, hence (H.4). Now, since K generates the center
of fé, the ¢X-dependence of /'/t\'l is a simple factor

X (F) = X (D).
On the other hand, as we explained above, forgetting the Cy-factor in the quotient
B, = (H./Q")/W(g) = T/W(3)

leads to the quotient B;/W(g) = Bung(€). In other words, the space B, is the total space of
a Cx-bundle over Bung(&). The ring of holomorphic functions on B; is identified with the ring
of polynomials in the fundamental characters ¥;:

(C[B—;—] = (C[)/(\Ovjelu v 7557”]'

Dividing (or, better to say, grading) by Cj makes Bung (&) out of B. on the left-hand side,
and the space of holomorphic sections of the bundles O(k) over the weighted projective space
Wpao:a1,92:-9r o the right-hand side.

I Affine Weyl group, characters and theta-functions

The affine Weyl group of affine Lie algebra g is the semi-direct product W(g) = W(g) x QV.
For each weight = hV the affine transformation wq by o € QV is a parabolic transformation
which linearly shifts the h component of h\ by o and quadratically adjusts the d-component of h)
keeping the norm (/\ )\) invariant. Concretely, if \ is of level k we represent it as A= EXo + A
with A € hY, and then we have (cf. equation (E.6))

wa(X) =X+ ko — %((ka%—X)Q _Xz)_

For each weight X we introduce theta-function O5

S=e _2%s Z oWa(A (L.1)

aeQVY

equivalently

@X:ek/\o Z eW*W, (1.2)
YEA+EQY
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where formally omitted the arguments in the exponentiated Cartan of g, i.e., T. The theta
function ©5 can be evaluated on an element g = (c, t, q):

[V

~

GA(Cataq) = Ck Z t'Yqﬁ
YEAFEQY

Sometimes it is convenient not to include the prefactor in the definition of the theta-function (I.1)
and for all fundamental weights we set

2
cile.t.q) = 472 05, (¢, t,9). (1.3)

From (1.2), it is clear that O depends only on the affine Weyl conjugacy class of Py

The ring of affine Weyl group invariants is generated by the theta-functions ©+

AO,...,@XT for

the fundamental weights Xo, . ,XT.
Another important function is the Weyl skewsymmetric function

Ry = T[] 1=t =3 (peeioe,

aceAt weW

where p is the Weyl covector defined by p(a;) = 1 for all ¢ = 0,...,r. The equality of the two
representations above for Weyl denominator for affine algebras leads to the famous Macdonald
identity. By definition, R(h) is Weyl skewsymmetric.

J Characters

For the weight X € A let us denote by 7%3 the irreducible g-module with the highest weight A
Let x5 (t) be the character evaluated on an element ¢ of T (H.3):

X5 (t) = Z t’\multﬁ)\.
Aebh*

The Weyl character formula literally holds for the affine Kac—Moody algebras

> wew (@)t Ao

[oea+s(T—t7)
where Ay is the set of positive roots in g, e(w) = =1 is the parity of Weyl transformation
weWw.

If g is simply laced affine ADE algebra and R is an irreducible g-module of level 1, then the
character can be also computed in terms of theta-functions [93]

Xalt) = o) S 1w, (J.1)

aceQV

xz(t) =

More generally,

cha(t)= > A6, (J.2)

AE P, mod kQV

where the string function cl)}(q) depends only on q =t~ and counts multiplicities of weights on
the vertical rays A + ZJ in the g-module L(A)

2
Ag) = q_%k Z g"mults (A — nd).
nez
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The formula (J.2) follows from the invariance of the multiplicities under affine Weyl group, with
non-trivial information now contained in the finite set of the functions cﬁ\\. If Ais of level kK =1
and g is simply laced affine ADE then there is only one non-zero inequivalent string function

) = a7 éla)~"

reproducing formula (J.1).
In what follows, we use the notations

1 '
n=(ny,...,n,) €Z, ﬁ:(le,...,fzr)€<Z+2> ,

T T T
In| :Zni, Q| :Zﬁi, HQZZTL?, ﬁQZZﬁ?,
i=1 i=1 i=1 ;

J.1 A\T theta-functions

If we specialize (I.1) to fundamental weight Xj, we get

_ 2 ~
q_%qQ(Z-H)@X- — Z ewal(Aj)
’ aeQVY

For each fundamental weight /)\\j, J =0,...,7 we define the theta-function ©; = ©,;. We use the

~

basis of multiplicative coordinates on exp(h) > g as follows: ¢ = g, q =g, t = (t1,...,t;41)
subject to H:ill t; = 1 in our conventions for the basis in the root and weight spaces of A,. We
find

2
0,(g) =cq T Y gz, (1.3)

where
Aj={neZ*"|[n|=j}.

Consequently, from (J.1) and (I.1) the character of the j-th fundamental representation for A, is

. .2
-1 J
Xj(etq) = ¢(q)"q 2 T 0(c; t; ). (J.4)

J.2 ﬁr theta-functions

LetteT, 1= (1,1,...,1,1) = 2\, t; = t%, q = t~%, ¢ = t*. The level 1 theta-functions are
associated to the fundamental weights Ao, A1, A\r—1, A. According to our definition (I1.2) we get

Oo(citia) =c > tnqz"’,
n,|n|€27
Octig)=c Y tg™

n,|n|—1€2Z

O ilti—c Yt

fi,|f| - 5 +1€22
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Olatiq)=c Y thgt.

ﬁ:‘ﬁ|7

(J.5)

We can express ﬁr theta-functions of level 1 in terms of Jacobi theta-functions as follows

60(C7t7q):;<1—[03 tzaq +H04 tlv )a
O1(c;t;q) = ;(H% tisq —H94(tz';q)>,
@r(C;t;CI)_;<H92 tuq Hgl t“q)

97“ 1 Catvq <H92 17 lrnel(tlvq)> (‘]6)
i=1

To construct D, affine Weyl invariant functions at level 2 we use the embedding so(2r) C
sl(2r), i.e., D, C Agy—1 in which the maximal tori are mapped as

Tsoe2r) = TsL2r);
(t1yente) = (Bt ). (J.7)

It is easy to check that ﬁr affine Weyl group action on EDT at level 2 is a subgroup of /Tgr_l
affine Weyl group action on h 4, , at level 1. Therefore, using (J.7), we can construct D, affine
Weyl invariant functions at level 2 using Ag,_; theta-functions at level 1. From (J.3) and (J.7),
we get

S D S s
n,mez’, [m|=i
with
Ei = Z-i = Zor i
The theta-functions =; fori =2, ..., = 2 compute the characters of the level 2 fundamental l/jr

modules RZ with the highest weight \; = 2\¢ + \; and the character is

2

1 _i 2
Xg,(ctiq) =c Sz 24 Zi(Yos t; 9).-

There are relations obtained immediately from the definitions (J.5), (J.6), (O.1)

T 2
(©0+01)% =[] sti;0)* = 2D a7 Z,(t

i=1 JEZ
(©p — ©1)? —c2H94t“q —c22q4r —1)7Z,(t; q),
JEZ
(=10, =6,1)* = ¢ H91 ti;q) 22‘147 —1)7Ej (),
=1 JEZ
(0, 4+6,_1)?2=c H02 ti;q)> 2Zq4rﬂ +(t;q). (J.9)

i=1 JEZ
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Notice
¢ 2p(q)* (xr + Xr-1) = q 1(0, +0,_1)?
2r—1
i _ _ ”
=Y HE ) = 2@ Y S ey,
JEL SEZ §'=0

is similar the relation

ses= P AV

1€0...2r

where S = ST @ S~ is the spin representation of D,. As the fundamental invariants of lA),,
we will take the set of theta-functions associated to the irreducible representations with the
fundamental highest weight. For ¢ = 2,...,r — 2, we define the invariants of level 2, and for
s=1,...,4, we define invariants of level 1 as follows:

Oy + 61, s =0,
PN — =1
(1XP) = S0 =61, T (J.10)
i"(O, —0,-1), s=r—1,
O, +06,_1, s=r.

The linear relations (J.9) allow to express =g, Z1, Z,_1, =, as linear combinations of 2 X2, ...,
D D)2 D)2
2%}72 and (1961 ) geeuy (1DC4 ) .

J.3 Infinite matrices

The fundamental representations R; = of (/}ioo are labeled by a single integer ¢ € Z. They are
highest weight by representations, also infinite-dimensional of the finite type. Let us compute
their characters (we shall remind the fermion construction of these representations in the next
section). Let t = (¢;);cz be the generic infinite diagonal matrix, with entries behaving as q° for
large 4, for some |q| < 1. In other words t is close (in the topology of Hilbert space operators) to
the evolution operator q™° (with L being the energy operator), and let ¢, for ¢ € C* represent
the center of (/}ioo

g = & xt.
The characters x;(g) can be arranged into the generating function
) o0
> (xalg) H (1+Ctp) (L4 ¢, (J.11)
1€EZ n=1
which is explicitly W(gl/(\oo))—invariant, with the Weyl group acting on the eigenvalues ¢; of t by
the finite permutations,
(ti)iez = (to(i))icz,  o(i) =1, i[>0,
while the central element ¢ transforming via

0
to(i)
C+— C H T
7

1=—00
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Example J.1. The transformation tg <> ¢; acts on ¢ by
g Ctl/to.

The character x; of R; is given by the sum over the partitions. The formula is most simply
obtained by expanding (J.11) as a sum over partitions

x(g) = e T e, (7112

X =1

In (J.12) the infinite product is to be understood in the following way

00 £(N)
H Eximit14i _ 41 H Ihi—it1+j
wn i i bt

The value of the highest weight A on g is equal to

gt = cthl, (J.13)

K Free fermion representation

In describing the representations of LG and éioo it is convenient to use the free fermions.
One can realize the level 1 representations of g using r flavors of chiral complex fermions in
two dimensions:

L, = Z @Ea&ﬁa-
a=1

o —

The currents of so(2r) are
JU=gtt T = Jay = Yt (K.1)

The currents (K.1) do not preserve the U(1) charge Jy = ¢ ha¥h®:, however they preserve its
parity. Therefore, one can construct the following four representations: take the fermions in
the NS or R sector and project onto the even or odd Jy subsectors. Recall that the NS sector
fermions are anti-periodic on the circle |z| = 1,

1 1
_,f(dz\?2 ~ ~ . (dz\?2
W= YT e () o a= D Vane <>
n€Z+3 neZ+;
and their modes obey the anti-commutation relations

{Pams ¥} = 8a0nsm,0-
The full space of states in the NS sector for the theory with r fermions is

NS _ NS NS
H™ = Heven © Hodas

even
where
NS _ r NS
Heven/odd - @ ®i:1HMi'

N ezr
> M; even/odd
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The character of the Hgvsen Jodd representation is given by

1
Xglin/odd = ¢r(q) 67‘/7‘—1-

In the Ramond sector the fermions are periodic on the circle |z| =1,

a __ afndz% T 7 fndzé
w *anz <Z> , %—Z%,nz <Z>

neL ne”Z

and their modes obey the anti-commutation relations

{@Ea,nv Wn} = 525n+m,0-
The characters of the Ramond representations are

1
R _
Xeven(odd) - ¢(Q) @0/1-

The remaining fundamental representations are constructed using 2r complex fermions (hence
level two)

Ly = Z (Jjaéf‘/}a + "@ag%),

a=1

whose gq symmetry is generated by

J = Pyt — hbap?, Jg = ™ — ™, Jab = Dt — Vpta,

which is actually a subalgebra of the level one su(2r) symmetry. Accordingly, gq commutes with

—_

the u(1) Kac—-Moody generated by
J = :&awa: + :lzaﬂ)a:

we can construct the representations V,, p = 0,...,2r — 1 by taking the charge p subspace
in the space of states of 2r fermions. Unlike the case of r complex or 2r real fermions, for
the 2r complex fermions there is no difference between the NS or R boundary conditions (in
fact, one can continuously interpolate between them using the spectral flow). The corresponding
characters are given by =,.

The exceptional affine Kac-Moody algebras are realized using spin operators which map the
NS sectors to R and vice versa. For example, to realize Eg, we take 8 complex fermions 1/~Ji, V.

The C/%ioo representations also have the free fermion realization.

The generators of C/}ioo are given by the expressions

O, = Z aij iy

1,JEL
L Examples of conformal extensions

We list here the examples of the groups G, their conformal extensions CG, and the homomor-
phisms

D: CG — C = (C¥).
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L.1

. The A, series. The conformal group CG = GL(r + 1,C), i.e., the group of non-degenerate

(r+1) x (r + 1) matrices h. The homomorphism D is given by the determinant
D(h) = det(h).

. The D, series. First we describe the conformal extension of the group SO(2r). This is

a group of the conformal linear transformations of C?, i.e., the group of 27 x 2r matrices h,
such that

hh' = D(h) - 1a,, D(h) € C*

with the homomorphism D(hjhy) = D(h1)D(hz), such that D(h)" = det(h). In other
words, these are the linear transformations which preserve the non-degenerate symmetric
bilinear form up to a scalar multiple. The group CSpin(2r) for r even has two independent
central elements c;, c_, so that ¢y acts trivially in S_ and c_ acts trivially in S which act
non-trivially in the spin representations S, while in the tensor representations A'V both
act as ¢!, and their product is equal to D(h). For  odd there is one central generator c
which acts as ¢! on AV and as ¢*! on Sy.

The Eg, E7 case. The Eg, 7 groups can be characterized as the symmetries of certain poly-
linear forms in the 27 and the 56-dimensional vector spaces, respectively. Their conformal
versions preserve these forms up to a scalar multiple. For example, Fg is a stabilizer of
the cubic form

Q(z,7,y) = Pt(z) + 2(z A y),

where z,y € V ~ CS, 2 € A2V* =~ C'°.

The maximal torus T and the action of Z

The maximal torus Ty can be coordinatized by (C*)" via

r
(g17"‘7g7‘) € (CX)T = Hglal eT
i=1

since in our conventions exp 2mia; =1 € T.

1. The maximal torus of the A, series is the group of diagonal matrices of size r + 1

g = diag (91,9291 ', 9395 '+, 909,11, 9,") (L.1)
with unit determinant. The formula (L.1) corresponds to the standard choice of the simple
roots

Q5 = €5 — €541, j:1,...,7“,
where e; represent the vectors of some orthonormal basis in Crtl. The center Z =
Z/(r +1)Z acts on T, in the g; coordinates, via

27i

gj — wgj, w=ertl

so that the matrix ¢ in (L.1) is multiplied by w. The generator { = (; of the center Z can
be chosen as follows:
T

1 .
C:r—l—lzjaj'

j=1
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2. The maximal torus of the D, series can be identified with the group of block-diagonal
matrices of size 2r x 2r

g = diag (R(91), R(9297 ), - - R(9r-199,5) R(9,9, 1)) (L.2)
where for ¢t € C:

wo-1(0 )45 (1)

Of course, equation (L.2) defines only an element of the group SO(2r, C), in order to define
the element of the spin cover Spin(2r, C) we have to specify the way ¢ acts in the spin
representations S, S_. This is equivalent to the choice of the square root of g2 ; and g2,
respectively, and the parametrization

g=]s" (L.3)
=1

corresponds to these square roots being g,—; and g,, respectively. In equation (L.3) the
simple roots of the D, algebra are

Q= €; — €41, 1=1,...,r—1, Qr = €r_1 + €.
The center acts on T as follows. If r = 2s + 1, then the transformation generated by the
4-th root of unity w, w* = 1, acts by

Gom11 > W Gam 1,

g2m — G2m, m=1,...,s—1,

g2s > W gas, 92541 > WY2s+1
and multiplies ¢ by w?. The center is Z = Z/4Z in this case. If r = 2s, then the
transformations generated by wi, we, such that w? = w3 = 1, act on g; via

92m+1 = W1W2g2m+1,

92m — G2m, m=1,...,s—1,

g2s—1 7 W1G2s—1, g2s 7 Wag2s
and multiply g by wiws. The center is Z = (Z/2Z) x (Z/27Z) in this case.

3. In order to describe the action of the center Z = Z/3Z on the maximal torus of the
group FEjg let us choose the canonical basis of simple roots of Ejg:

Q1 = €1 — €, Q3 = €2 — €3,
Q4 = €3 — €4, Q5 = €4 — €5,
6
Qg = €5 — €6, oy = —e; —ex —e3 +ne, 625 €i,
i=1
where n = ‘f/%l. Then the element w € Z, w3 = 1 acts on the element of the maximal
torus of Fg

6
QZH%‘% €Ty
i=1

g — H (wzgz)az — wal—a2+a4—o¢5g.
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4. For the group FE~, the simple roots are

Q] = €] — €2, Qa3 = €2 — €3, Q4 = €3 — €4,

Q5 = €4 — €5, Qg = €5 — €6, Q7 = €eg — €7,
7

Qo = —e1 — ez — e3 + ne, 625 €i,
i=1

where n = % The generator w, w? = 1, of the center Z = Z/27Z acts on the element of
the maximal torus of E7

7
g=][g"eT
=1

by

astartaz

g—w g.

M The elliptic curve and elliptic functions

The combination
a= [ qF =" (M.1)
i€ Vert,
of the multiplicative couplings q; plays a special role. It defines an elliptic curve
&=C"/q%, (M.2)

which underlies many constructions related to the class II and class IT* theories.
The infinite product

¢a@) =1 -da") = (20
n=1
is the Euler product. Dedekind eta-function
1
77(CI) =1 .
q21¢(q)

N Coordinates on &

The elliptic curve € can be described in several coordinate systems. The multiplicative coordi-
nate system

t ~q't, teCx, n ez

is used in (M.2). The additive coordinate system
z~zZ+m-+nT, z € C,

where
TeC, Im7>0

is defined in (M.1), and m,n € Z, is related to the multiplicative one via:

t = eZmz'
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O Elliptic functions

0.1 Jacobi theta-functions

Our conventions for the theta-functions, associated to the elliptic curve € = C*/ q%, are

Oty =i Y (~1)" 3t

nEZ+%

Oo(tia) = Y t"q=",

neZ+3

O3(tq) = > t"q"",

nez

Os(t;a) = Y _(~1)"t"q="". (0.1)

nez

Note that in older literature on elliptic theta-functions q is used to denote the nome” guome =

e = q%. In order not to be confused we shall always specify the ¢ modulus in the formula
for 6,(t;q).
It is often convenient to use basic pseudo-elliptic #-function

lpb— -
Otia) = > (~1)'a="* ) = (1= t) +q(t* =)+,
beZ

which is related in a simple manner to 6, (t;q):
0(t;q) = —iq 5t201(t; q)
and also to the ;1\1 Weyl denominator in the affine Kac—Weyl character formula

0(t;q) = R(h) = H (1—tq")(1— g™ (21—t g™ ™).
n>0

The transformation rules for 6(¢; q) are
0(at;q) = 0(t"5q) = —t'0(t; q)
and transformation properties of 0, (t,q) are
1
01(qt;q) = —q~ 2t 01(t;9).

The relation of Jacobi theta functions to the Weierstrafl functions is described below.

0.2 The & and gp-functions

Define the function
§(t;q) =ty log 01 (t; q),
which satisfies
E(at;q) =&(ta) — 1, £(t7Ha) = —¢(ta)

and has simple poles at t = q”. Therefore, up to a shift by a linear function of log(t), £(¢; q) is
the Weierstrafl (-function.
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From the product representation of 6, (t;q) we immediately get
1 t + 1
S(ta) = 577 — 20" D (t
n>1 dn
The expansion of £(t;q) near t = 1 reads as
1 k
E(t,q) = 1T ka(t -1)
k>0
with {g = 1/2 and
nk d
Sa)=-2 ) k" =20"logo(q).
n>1,k>1 q

The function
d
o(t; q) = —t9:E(t; q) + po, ©o0 = 2qdfq log n(q)

is elliptic function, i.e., a meromorphic function on €&:

p(at;q) = p(t;q),

which has a single second-order pole in €, and on the covering space (C<Xt> it has a double pole
at t = qZ.

The function p(t;q) is actually the Weierstral p-function: the double-periodic version of
the Z% function in the plane z € C/(Z @ 7Z), with the constant g chosen so that the constant
term in the expansion of p(t = e2miz, q) in Laurent series in z at z = 0 vanishes. This gives

t 1 A -
p(t,q):erﬁJer qk(t +17F —2). (0.2)

One more differentiation with respect to logt defines the Weierstrafl elliptic function with
the pole of the third order

©'(t,q) == top(t,q)

and the expansion near ¢ = 1:

1+t
/ 2 : 2
k>0

—tF).

Define the functions X (¢,q) and Y (¢,q) by

X(taq) = p(tvq)v Y(t7q) = @I(tvq)

and define the weight 4 modular form g»(q) and weight 6 modular form gs(q)

1 s 3 4
k=1
& k
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The Weierstrafl functions X (¢,q) and Y (¢, q) satisfy the cubic equation

3
Y(t,q)* = 4X(t,9)* — g2(q) X (£, ) =4[ x (0.3)
a=1
where
e1 = p(—1;9),  ex=p(—q%;q), ez =p(q7:q). (0.4)

The periods of the holomorphic differential dX/Y on € are equal to

1 dX 1 dX
b - = ]., b - = T.
2mi Jy 2mi Jp

0.3 ¢, and (55 -functions

We shall also need to deal with meromorphic functions on € with the higher-order poles at
t = 1:% on & with the only pole of order < (r + 1) at ¢t = 1. Explicitly,

(—a/t)'0( = (=) 'q " q"11)
0(t; q)r+1 '

¢i(t;q) = (0.5)

The r + 1 meromorphic functions ¢;(¢;q), @ = 0...r with the pole of order r + 1 at ¢t = 1 form
a basis of H°(&,O((r + 1)po)) =~ C™*1. On the other hand, if we represent elliptic curve & in
the Weierstral form (0.3), Y2 = 4X3 — g2 X — g3, then the basis in the space of meromorphic
elliptic functions on € with the pole at ¢ = 1 of less then r + 2 order can also be chosen as the
monomials

i Xi/2 if 2‘5 i
~ t, - ~ l ] S 07 27 R/ + 1 ’
¢;(t,q) {X(J—3)/2Y it2(G+1), { Y

since X (t;q) = p(t;q) is the Weierstrafl elliptic function with the pole of second order at t = 1
and Y (¢;q) = t9p(t; q) has the pole of third order at ¢ = 1. There is a linear relation between
the Weierstral monomials ¢5(¢;q) and the ratio (O.5) of theta-functions ¢;(t; q) which we shall
denote as

Z )é5(t; 9), (0.6)

where M =(q) is a certain g-modular (r + 1) x (r + 1) transformation matrix, see example in
Appendix O.4.

0.4 Expansion of Weierstraf3 functions in terms of theta-functions

The matrix M (q) for the change of basis from meromorphic elliptic functions (O.5) to Weierstrafl
functions for r =1 is

(xeg) = (i Ay (o)

8Tt is easy to verify that ¢;(tq,q) = ¢i(t, q).
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with
My = 05(1,q),
My = 02(1,q),
1 1 (1) (2)
Moy = My | — 6m2(2§ q) + §m2(4; q)" — dma(40)™ |,
1 1
Moz = My, ( — =ma(2i0) = sma(4 ) + dma (4 q><2>>,

where my(N;q)® denotes i-th modular form for modular group T'g(N) of weight k in a certain
basis. Concretely

ma(2,q) = Op,(q) = (93(004 +04(a)*),

2
TTL2(4,C|)(1) = m2(2 q )

1
ma(4,q)? = E92(q)4 = 1

0.5 Even ¢ functions for D series

From (J.8), we find

2r—1 9
2}_[1 t/ttq (t/i)((t;)q) )_;(—1)iq5+fw5i(%o;t(w);q)cbzm(t;q)’ (0.7)

where quZ@T) (t;q) are the meromorphic functions, with the pole at ¢ = 1 of order not greater
than 2r, associated to the holomorphic sections H%(&, O(2rpy))

t—ze( o tQTq—i; q27‘)
0(t;q)%

Using Zg,_; = £, we get

o\ (t;q) =

15(2)8(ta55):z~z(130, (x);9) Mi;(9) X7 (; q) (0.8)

with
do(t;0) = 0" (t; ),
i) = (~0iatE (6P () + a2l (1), i= 17—,
r(tia) = (~1)"q 176> (t; q).

The 7 + 1 functions ¢;(t;q) for j = 0,...,r form the basis in the space even(E O(2rpy)) of
meromorphic functions on elliptic curve symmetric under the reflection t — ¢~! and with a pole
of order no greater then 2r at the origin. Another basis in &,0(2rpyp)) is given by the
powers of Weierstrafl p-function

X(t;q)7, j=0,...,7

even(

Let M;;(q) be the transformation matrix between these bases in H2., (€, O(2rpo))

t;q) = Z Mij(9) X7 (t; q),
=0

then (0O.8) can be written as (10.51).
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P Affine FE spectral curves

P.1 The E, spectral curves from del Pezzo
P.1.1 The Eg spectral curve from del Pezzo

E6Pezzo[X0_, X1_, X2_, X3_] := -X1 X372 + 4 X273 - g2 X2 X172 -
g3 X173 +

X0 (pl0] X172 + p[1] X2 X1 + p[6] X2 X3) +

X0~2 (p[2] X1 + p[3] X2 + p[5] X3) + X0°3 pl4l;

E6Xi = CoefficientList[E6Pezzolz, 1, X + vx z, Y + vy z ], z];
vys = First[Solve[E6Xi[[2]] == 0, vyll;

E6PezzoCurveU = -4 Y"4 Resultant[ E6Xi[[3]] /. vys, E6Xi[[4]] /. vys,
vx] ;

E6PezzoCurve =

PolynomialRemainder [E6PezzoCurveU, E6Pezzo[0, 1, X, Y], Y] //
Expand

P.1.2 The E; spectral curve from del Pezzo

E7Pezzo[X0_, X1_, X2_, X3_] := -X37"2 + 4 X1 X273 - g2 X2 X173 -
g3 X174 +

X0 (p[0] X1°3 + p[7] X1°2 X2 ) +

X0°2 ( p[1] X1°2 + p[2] X1 X2 + p[6] X272 ) +

X073 ( p[3] X1 + p[5] X2) + pl[4] X074 ;

E7Xi = CoefficientList[

E7Pezzo[z, 1, X + vx z, Y + vy z + 1/2 2°2 wyl, z];

vys = First[Solve[E7Xi[[2]] == 0, vyll;

wys = First[Solve[E7Xi[[3]] == 0, wyll /. vys;

E7PezzoCurveU = -1024 Y~18 Resultant [(E7Xi[[4]] /. wys /. vys),
E7Xi[[5]] /. wys /. vys, vx];

E7PezzoCurve =

PolynomialRemainder [E7PezzoCurveU, E7Pezzol[0, 1, X, Y], Y] //
Expand

P.2 The map from del Pezzo to theta-function coordinates

In this section, we record the modular matrix M; g;, . ;3(q) discussed in Section 10.21 for Ep
bundles on €(q). The result is presented in terms of a certain basis (my) in the space of modular
forms of I'(6) of weight 1 with the expansion at the cusp q = 0 starting as

= (143 )
n=1

(If the argument of my, is not explicitly spelled out it is always assumed to be g, i.e., in this
section we set my, = mp(q)). Concretely, the basis of weight 1 modular forms of I'(6) is

mo = [172,29,31,672] +3[11,272,373,6°] =1+ 6q+6¢°> +---,

m ::[1—2,23;8,6—1]::q%(14_2q4_2q24_2q34_.“)7

D=

1
17,38 =q3 (1 +q+29> +2¢* +---),

Wl
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= [1_1,22,3_1,62} :q%(1+q+2q3+q4+...)7

N[ =

2
=276 ] =q3(1+q*+29" +--),

CAJ\[\')

=[11,27237.6 =q(l—q+ ¢’ +a" — "+ 20"+ ),
where we use the standard notation for the eta-products

L

(7 2r2 32 Lee] = [ n(a?)™,

J=1

where 7(q) is the Dedekind modular function
i o0

In particular, notice that the Weierstral parameters g2(q), g3(q) are expressed as

92(q) = mo(5mi + 18m?% ) = & + 20q + 1809* + 5609° + 1460q* + - - -,
3

95(a) = =570 + Gmom + 2T = — 305 + 59+ 770" + F5Ra% + Bl 4
3 3
We remark that mg(q) and m1(q) are modular forms for I'(3) and they are equal to the
3

theta-constants of the //1\2 lattice associated respectively to the fundamental weight Ag and Ay

Z q%(a,a)7 _ Z q%(a,a)'

a€Q(Az2) a€A1+Q(A2)

Wl

With all notations in place we finally present the explicitly computed? components of the

modular matrix M; ¢ 1(q) (the fixed argument q is assumed for all M; g5,y and my,) in the
following table of relations

MO,{O} = mg + 54m?%7

1

Mo, {1y = 75md (mg — 270m3),
My 16y =0,

M, g0y = 27m0m2%,

3
My g1y = —me% (5mg + 108m?%),

Ml,{6} = —mé (3m% — mO)Q(m% + 3m%m0 + 977”%)2
MQ,{Q} = f4m0m

%(mo — 12m1)3(m0 — 4mq)(mgy — 3my) (m% + 12mymg — 72m%),

1
My g3y = —gm%(mo - 12m1)3(m0 — 4my)(mo — 3m1)(mg + 12mimg — 72m%)

x (mg — 108mym§ + 864mimg — 1728m3),

Ms 51 =0,

9The authors used computer algebra MATHEMATICA to find these expressions for modular forms by matching
the first coefficients in the g-expansion.
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M 10,0y = 72m0m1 (mo — 3my),

My 0,1y = —12m3 (mo — 3m1) (m§ + 52mimg — 384mimg + 576m3),

My 11y = —%m%(mo — 3mq) (m§ — 200mymg — 96mimg + 20736mimg — 110592mimg
+ 165888m3),

M 16,61 = —ﬁm%(mo — 12m1)*(mo — 4m1)(mo — 3my) (m§ — 780mym]
+ 40680m3mg — 648000m3mg 4 4914432mimg — 19906560mim3
+ 41803776m$mg — 35831808m]),

M3 (3 = 3m(2)m%m§(mo — 12mq)*(mg — 4mq)(mo — 3mq) (m§ + 12mymg — 72m3),

M 5y = —4m%m%(m0 — 12m,)%(mg — 4mq)(mg — 3m1)2(m% + 12mymg — 72m%),

M3 10,0y = 216m%m%(m0 —3my),

M3 g0,1y = —12muimz(mo — 3ma) (Tm + 48mimo — 288m7),

M3 406y = —16m%m%(mo — 12my)*(mo — 3m1)2(m3 + 12mymg — 72m%),

1
M 1,0 = 5momams (mo — 3ma) (13m{ + 360mim§ — 2592mimg + 3456ms),

2
Ms 116y = gmom%m%(mo — 12m1)2(m0 — 3m1)2(m8 + 216m1m% — 1728m%m0

+ 3456m3),
My {4y = 16m3 (3m% —mo)*(m§ + 3mimo + Im3)?(36m3 —my),
3 3 3
Mi 0,2y = 24m (3my — mo) (m§ + 3mymo +9m3 ) (11m{ + 108m? ),
3 3

My 10,3 = 2m{ (mo — 3m1) é( +3mamo + 9m1)(13m3 + 864m?%),

M47{1,2} = 2m(2) (mo — 3m1) 3%(mo + 3m1m0 + 9m1 ) (13mg + 864m%),
1

My13) = —g"mo (mo — 3m%)mé (mo + 6mé) (mo + Sm%mo + 9m2%)

x (m§ — Gm1mo + 36m21) (11md + 108m3i),

2
My (56} = mg(mo - 3m1)3 3 (mo +3mamg + 9m1)3,
M4,{0’070} = 720m%,
M4,{0’071} = —540m3m?%,
My (01,1} = 15m0m?% (Tm§ + 54m?% ),
1
M47{0,676} = ﬂmo (mo —3m1 )m?i (m% + 3m%m0 + 9m21) (133m8 + 5292mim8
3 3 3
— 338256mS ),
3
5)
My 00y = —Tm?i (17mg + 54m?im3 +5832m ),
3 3
1
M47{17676} —@ml (3m1 — mo) (m% + 3m%m0 + 9m2;) (Glmg — 36936m?im8
3 3

+ 1014768mS m{ + 6298560m ),
3 3

Ms 19y = —12m%m§(mo — 12my)3(mg — 4my) (mg — 3m1)(m(2) + 12mymg — 72m%),
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1
Ms 1661 = &momém%(mo — 12m,)3(mg — 4m1)(mg — 3m;) (7m8 — 780mymyg

+ 11160mimg — 74304m3mg + 228096mimg — 248832my),

Mg g0y = 27m0m2%,

w

M (1y = —3m1 (5mp + 108m1),

Mg (61 = mé (Sm% - mo)Q(mg + 3mémo + 9m2%)2.
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