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Abstract. A work of Manton showed how skymions may be viewed as maps between rie-
mannian manifolds minimising an energy functional, with topologically non-trivial global
minimisers given precisely by isometries. We consider a generalisation of this energy func-
tional to gauged skyrmions, valid for a broad class of space and target 3-manifolds where the
target is equipped with an isometric G-action. We show that the energy is bounded below
by an equivariant version of the degree of a map, describe the associated BPS equations,
and discuss and classify solutions in the cases where G = U(1) and G = SU(2).
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1 Introduction

The Skyrme model of nuclear physics was introduced in [29] as a nonlinear sigma model, in which
the pion field is encoded by a map ¢: R? — S3 constrained to be constant at infinity. Within
this framework, baryons are identified as topological solitons in the theory called skyrmions,
and baryon number is represented by a topological invariant, namely the degree of the map ¢.
Some time later this identification was given a firm foundation when the model was shown to be
an effective model of QCD in limit of a large number of colours [32]. Despite its relative simplicity,
over the years the model has been shown to successfully reproduce many realistic properties of
nuclei [23]. An important feature of the Skyrme model is its topological energy bound [18§],
which states that the energy of a map ¢ is bounded from below by a multiple of its degree.

Although originally described for maps ¢: R* — S3, in [22] Manton showed how to formulate
the Skyrme model for maps between arbitrary riemannian 3-manifolds. This geometrised Skyrme
model still admits a topological energy bound. The maps ¢: M — N that attain the bound and
minimise their energy are either constant maps or isometries [22]. So the geometrised Skyrme
model succinctly explains why the energy of a non-constant map ¢: R — S3 is always strictly
greater than its topological energy bound.

The Skyrme field ¢: R? — S3 can be coupled to a gauge field [4, 10, 11, 14, 15, 16, 17, 21,
25, 26, 27]. Much of the work on the gauged Skyrme model seeks to model interactions between
nucleons and electromagnetic fields, in which case the gauge group U(1) is most natural, but
other choices of gauge group have also been studied.

An important gap in the current understanding of gauged skyrmions is a general geometric
framework akin to Manton’s treatment of ordinary skyrmions. In particular, although topolog-

This paper is a contribution to the Special Issue on Topological Solitons as Particles. The full collection is
available at https://www.emis.de/journals/SIGMA /topological-solitons.html
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ical bounds are known for gauged Skyrme energies, to the best of our knowledge, there is no
systematic understanding of existence or non-existence of solutions of the corresponding BPS
equations. The aim of this article is to address both of these gaps in the literature. As we shall
see, the gauged geometrised Skyrme model is much richer than its ungauged counterpart, and
there are many more solutions besides isometries and constant maps. Despite this complexity,
we are able to classify solutions for important choices of gauge group: see Theorems 4.1 and 5.2.

A brief outline of the remainder of this paper is as follows. In Section 2, we discuss equivari-
ant differential forms and equivariant topological degree, which act as the necessary geometric
ingredients for gauging the Skyrme energy and its topological energy bound. In Section 3, we
use the ideas reviewed in Section 2 to write down an energy functional for gauged skyrmions,
a topological energy bound, and corresponding BPS equations. Sections 4, 5, and 6 are devoted
to studying the gauged Skyrme model, and analysis of solutions of the BPS equations, in the
cases of gauge structure group G = U(1) and G = SU(2). We have divided analysis by the
structure of the principal orbit space of the G action on N. There are three cases of principal
orbit which we consider: U(1) & S!, SU(2)/U(1) = 52, and SU(2) = S3, however it is only in
the first two cases that we analyse solutions of the BPS equations, whereas in the third case we
argue that our BPS formalism is not applicable. Although not the motivation of the present
article, it should be remarked that, from a physical standpoint, these three cases correspond to
the gauging of electromagnetism, isospin symmetry, and weak symmetry respectively.

2 Equivariant differential forms

In this, and the next section, we propose a generalisation of Skyrme fields and the Skyrme
energy to that of a gauge theory. The broad geometric setting is as follows. We consider two
riemannian 3-manifolds (M, gps) and (N, gn). Now let G be a Lie group which acts isometrically
on (N, gn), and consider a principal G bundle P — M over M. A gauged Skyrme field then
consists of a pair (¢, A), where ¢ is a smooth section of the associated bundle P xg N, and A
is a connection on P. As ¢ is not simply a function from M to N, we cannot define its degree
in the usual way using (de Rham) cohomology. Instead, we will make use of the equivariant
cohomology of N.

The importance of equivariant cohomology in gauge theory was first highlighted in the clas-
sic paper of Atiyah-Bott [5]. Its appearance in the topological solitons literature is somewhat
uncommon; notable exceptions include papers on Yang—Mills—Higgs vortices [13, 24, 28], and on
gauged sigma models describing magnetic skyrmions [31]. All of the aforementioned examples
focus on two-dimensional field theories, in contrast to the three-dimensional focus of the present
work. Therefore, it is useful to review the topic. The purpose of this section is to describe Car-
tan’s model of equivariant cohomology, and how it leads to a topological degree. This material
is not new, but is included to establish conventions and keep the discussion self-contained. For
a more general treatment, see, e.g., [6, 8].

2.1 Equivariant cohomology

Cartan’s model of equivariant cohomology of N is based on equivariant differential forms over N.
These are G-invariant elements of S*g* ® Q2*N. Here S*g* is the algebra of symmetric tensors
in g*, on which G acts coadjointly. Equivalently, an equivariant differential form is a G-equivari-
ant polynomial function from g to Q*N. If @ € SPg* and o € QIN we define deg(Q®@«) = 2p+q.
This gives the algebra of equivariant differential forms a grading.

Similarly, given any vector bundle £ — N equipped with an action of G, an FE-valued
equivariant differential form is a G-invariant element of S*g*®@Q*(N, F). An important example
of such a form is the linear homomorphism v: g — I'(T'N) which generates the action of G on N,
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i.e., v(X) is the Killing field associated to the action of G. The map v is an equivariant 2-form
valued in T'N; it is equivariant because

Lyxyp(Y) = (X)), v(Y)] = v([X,Y]),

and is a 2-form as it lies in S'g* @ T'(TN).
The differential of an equivariant differential form 8: g — Q* N is defined to be

dgB(X) = d(B(X)) — t,x)B(X) for all X € g, (2.1)

in which d: Q*N — Q*N is the usual differential, and ¢,(x) is contraction with respect to the
Killing field v(X). One may quickly verify that dg increases degree by one and squares to 0. The
cohomology of dg is isomorphic to the topological equivariant cohomology H (N, R) of N, also
known as the Borel cohomology, which is defined by the ordinary cohomology H*(EG x¢ N, R),
where EG — BG@ is the universal bundle over the classifying space BG.

2.2 Equivariant pullback

Now we describe how to pull back equivariant forms on NN using the section ¢ of P xg N and
connection A on P. We choose a local trivialisation of our principal bundle P and local coor-
dinates z* on M and y* on N. Then a section of P x¢g N is represented by a function oM (x),
denoted by indices p = 1,...,dim N. We choose a basis I, for g. Then a connection is rep-
resented by real 1-forms A%(x), with @ = 1,...,dimg. The curvature of this connection is
represented by the 2-forms

F*=dA® + 1 fe AP A AC,

where f are the structure constants of g defined by [I,, I.] = f{.I,. The curvature obeys the
Bianchi identity

dFe 4+ fA AP A FC = 0. (2.2)

The left action of G on N induces the Lie algebra homomorphism

d
v: g — I'(TN), X — T s exp(—tX) - y. (2.3)

By small abuse of notation, the vector fields associated with I, € g will be denoted v(I,) = I, =

I4(y) 5% € T(TN). Then

IMO, I — 11O, I, = [5,12, (2.4)
since v is a homomorphism.

For an equivariant differential form §: g — QIN, we define coefficients Bq;..ap;u...u, SUch
that

1
B(X) = WXCLI . "Xapﬁal...ap;m...yqdym A Adyta, X = X°I, € g.

The coefficients B4, .. .ap;p;...u, are chosen totally symmetric in a; and totally antisymmetric in y;.
The condition that 8 is equivariant translates into

_ JV 14 14
0= Ib V/Ba1a2--.ap;u1,u2--~uq + ﬁal(12~~-ap§’/l/f2~-l/fqaﬂllb + ﬁa1a2.--apw11/~-uqa#2[b +o
c c
+ falbﬁCGQ...ap;MIMQH-Mq + f@bﬁmc...ap;uluz...uq + - (25)
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We define the covariant differential of ¢ to be

0
oy’

8 a
g = aet 50 = (A9"(@) — A*(@) L (9(@))) (2.6)
This is a section of T* M ®¢*T N which can be understood more globally as ¢*4(I), where I is the
section of T* N ® T'N associated with the identity map on T'N. The pullback of an equivariant
differential form ( is then defined by

* 1 a a '
¢*8 = quﬁay..ap;m...uq () FU A AF® AAAGH A A dAgHa, (2.7)

This is a differential form on M. Its degree is the same as that of 3, namely 2p+ ¢, so equivariant
pullback preserves grading. We will see in Proposition 2.1 below that it also intertwines the
differentials d and dg.

It is important to check that our definition (2.7) of pullback is gauge-invariant. Infinitesimal
local gauge transformations are given by g-valued functions A = \%(x)l,, a = 1,...,dimg.
They induce gauge transformations on (¢, A) as ¢ +— exp(—tA) - ¢, A — exp(—tA) - A =
exp(—tA)(dexp(tA) + Aexp(tA)). The corresponding infinitesimal actions are

¢z

A%z

exp(—tA) - ¢ = A ()1 (d(x)), (2.8)

exp(—tA) - A% = d\%(z) + fLAY(2)\(x). (2.9)

) i‘
" dtli=o
d
)= &’t:(}
We then have the following statement.

Proposition 2.1. The equivariant pullback given in equation (2.7) is gauge-invariant, and
satisfies <Z>*Adgﬂ = d¢*4B.

Proof. For simplicity of presentation, we consider only the case p = ¢ = 1. Then
¢ = Bayu(d(x)) F* () A Ao ().

The action of a gauge transformation on d*¢ is calculated from (2.8) and (2.9) using (2.4) as
follows:

dAgH = dgn — A°TH — A%G¥ D, IF
= d(\TH) — (X + fLAPAOTH — AN TV O, IH
= dANUTF + N9 O, IF — ANCTE — APXC(fo It + 1VO, 1))
= \%d¢" D, IF — APV D, I
= \ed?¢ 9, IH.
Also the action of a gauge transformation on F calculated from (2.9) is
Fa = f FO)°,
Therefore, the action on ¢*43 is
0B = 30, BuuF* N A + Bagu e A AN + By PO N AR
= NI 0, Bap F* N AP + Bayu i FOXC A A" + Bayu F* A XA ¥ 0, Y
= NIy 00 Basps + FepBeu + Ouly Baw) F A d4¢* =0

by (2.5). So ¢*43 is gauge-invariant.
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Next we calculate exterior differentials. By definition (2.1),
¢*AdgB = 0y Bayp F* N dAPY N AAGH — By IEFO N FP.
Therefore,

d¢* B = d¢” 0, Bau A F* A dAGH 4 Bopd FO A dApH

— BapFO N AAPTE + By FO N AY A dg¥ 0, I}

= (4" + A1), Bayp A FO AN AP — Baf fLAY A FE A dAH!
— Basu F* A (FP = 12 A N AN + B, FO N AP A (A7 + A°TY)O, I

= ¢*AdgB + Bap F N AP N AL FLTY + 170,11
+ F* A Ab A dA(ﬁu(Ibyauﬁa;u + fcfbﬁc;u + @lwaujby)

= ¢*1d,,

by (2.2), (2.4) and (2.5). ]

Although our definition of equivariant pullback was entirely local, the notion can also be
described from an entirely global perspective. Very briefly, a connection A on P determines
a map U4 from the algebra of equivariant differential forms on N to the algebra of differential
forms on P X N [8]. This map is known as the Chern—-Weil homomorphism (in the special case
where N is a point and G = SU(n) acts trivially, it sends the polynomial tr(X™) to the Chern—
Weil form tr(F A --- A F)). In general, the equivariant pullback of an equivariant differential
form B on N by a section ¢: M — P x G is then given by ¢*4 = ¢*¥4(3). For more details
on this, see [8].

2.3 Equivariant topological degree

We are now in a position to define an equivariant degree of a section ¢. For simplicity, we now
assume that M and N are compact and three dimensional, and that HZ,(N, R) is one dimensional
and generated by

X = Vn + p(X).

Here Vy is a G-invariant 3-form on N and p is an equivariant linear map g — Q'N. This form
must be dg-closed, and hence must satisfy

du(X) == Ly(X)VN and (2.10)
Lyxyi(X) =0 for all X € g. (2.11)

The first condition (2.10) resembles the definition of the (co)-moment map found in symplectic
geometry, where here the role of the symplectic form is replaced by the volume form. For this
reason, we shall refer to such a map p as a moment map associated to the action v: g — I'(T'N).
The second condition (2.11) is a significant constraint on the moment map that has no analogue
in symplectic geometry; equivariance ensures ¢,,(x)u(X ) is constant, but not that this constant is
zero. As we shall explore later, even for simple natural examples there are no non-trivial moment
maps satisfying (2.11), ruling out the possibility of a suitably well-defined topological degree.

Equations (2.10) and (2.11) have been considered before in the more general context of
homotopy moment maps [12], with no constraints on the dimension of N or the degree of the
form. Existence and uniqueness results are established in [12], of which it is worth noting that
in three dimensions, for compact and semisimple G, a sufficient condition for existence is when
the G-action has a fixed point.
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The G-invariant 3-form Vi defines a non-trivial class in H%(N, R) provided that [y Vy # 0
(in addition to the constraints (2.10) and (2.11)). One could, for example, choose Vx to be the
volume form associated with the G-invariant metric gy. Assuming that these conditions are
satisfied, we define the equivariant topological degree of a section ¢ of P xg N by

StV + )
B fN VN '

As with the usual degree, we may remove the assumption of compactness of M by imposing
suitable boundary conditions on P — M, A, and ¢.

In suitable circumstances, the topological degree deg(¢) is an integer. We briefly explain
why, using equivariant homology. The equivariant homology groups HE(N,Z) of N are defined
to be the ordinary homology of EG x¢ N, in which EG — BG is the universal G-bundle over the
classifying space BG. There is a natural map N — N xg EG, and hence H,(N,Z) — HE(N,Z).
We denote by [N] the image in H{(N,Z) of the fundamental class of N, and assume that
this generates H{(N,Z). The dual map in cohomology is Hf(N,R) — H*(N,R) given by
[B(X)] — [B(0)] for an equivariant closed form . By assumption, this map is an isomorphism,
so if Viy + u(X) and Vi + ji(X) are two equivariantly closed differential forms that satisfy
fN VN = fN Vi, then their difference must be in the image of dg. This means (by Proposition 2.1)
that (2.12) is independent of the choice of Vy and pu.

By definition, the bundle P — M can be obtained as the pullback of FG — BG by a map
j: M — BG. There are hence natural maps P — EG and P xg N — EG xg N. So the section
¢ — P xg N determines a map M — EG xg N, and hence a map ¢.4: H3(M,Z) — H??(N7 7)
that is dual to ¢*4: H3(N,R) — H?(M,R). The image under this map of the fundamental class
[M] € Hs(M,Z) is by assumption equal to n times [N] for some integer n. Then [, ¢*4(V +p)
is equal to the pairing of n[N] with [Viy + ], which is in turn equal to n [ Vi.

deg(9)

(2.12)

3 BPS equations for gauged skyrmions

We shall now use the geometric ingredients reviewed in the previous section to describe a gauged
version of the Skyrme model, valid for a broad class of riemannian 3-manifolds (M, gys) and
(N, gn), and derive its BPS equations. To motivate our model, we begin by reviewing Manton’s
geometrised Skyrme model [22] from a novel perspective.

3.1 The ungauged Skyrme model

Let (M,gp) and (N, gn) be two riemannian 3-manifolds. The Hodge star of N is a map
*xn: AN — A?N. This corresponds to the section ¥ of TN ® A?2N defined by

gn (u, X(v,w)) = Vy(u,v,w) for all u,v,w € TN, (3.1)

with Viy the volume form on (V, gy ). The Skyrme energy of a map ¢: M — N is defined by

Elg] = /M on (A A xa1d6) + gn (675 A %31 6*). (3.2)

This is equivalent to the energy introduced by Manton [22]. In this context, the map ¢ is referred
to as a Skyrme field. Note that d¢ and ¢*¥ are sections of A'M @ ¢*TN and A’2M ® ¢*TN
respectively, and our expression for the energy uses the metric gy on T'N. The topological
degree of ¢ is the quantity

deg(6) = Voll(N) /M 5 V. (3.3)
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A skyrmion is a critical point of the Skyrme energy (3.2), and these are classified by their
topological degree. The energy (3.2) is bounded below proportionally by the degree (3.3). To
derive this energy bound, consider the identity

gn((dgp —*p @™ E) A (xprdep — ¢*%))
= gN(dqb VAN *Mdgb) + gN(qb*E VAN *Mgf)*z) — 2gN(d¢ VAN gb*z) (3.4)

Employing an orthonormal frame E, for TN, and a dual frame e for A'N, we can write the
last term in (3.4) as

—29N (B, Ey) 0" e A ¢* (xneb) = =20 (e A xye?) = —6¢* V. (3.5)
Thus, as (3.4) is non-negative, this leads to the topological energy bound

E[¢] > 6Vol(N)|deg ¢, (3.6)
which is saturated if and only if

oardep = ¢ 3. (3.7)

Solutions of this equation, if they exist, represent global minimisers of the Skyrme energy (3.2)
within the space of maps of fixed degree. Equation (3.7) is equivalent to the statement that the
pullback ¢* commutes with the Hodge star when acting on 1-forms, i.e., that the diagram

AN -2 Al

o | [ (3.8)

A2N -2 A2M

commutes. Since the maps x are isomorphisms, this holds only if the ranks of the maps
¢*: AN — A'M and ¢*: A2N — A2M are equal. If ¢*: A'N — A'N has rank 2 (resp. 1)
then ¢*: A2N — A2N has rank 1 (resp. 0), because if u € A'N is such that ¢*u = 0, then
¢*(uAv) =0 for all v € A'N. So this leaves only two cases: either the maps are both zero rank,
or full rank. The former case is when the map ¢ is constant. The latter case is equivalent to ¢
being a diffeomorphism, and in this case (3.8) commutes precisely when ¢ is an isometry.

This result is a reformulation of the result of Manton [22]. The equation (3.7) is equivalent
to Manton’s equations A1 = AaA3, Aa = A3A1, A3 = A1 )\e relating the eigenvalues )\12 of the
strain tensor g&l o ¢*gn. The only solutions of these equations are A\; = 0 corresponding to ¢
constant, or A\; = 1 corresponding to ¢ an isometry. An important consequence of this result is
that non-constant ordinary skyrmions ¢: R? — S2 cannot attain the topological bound (3.6) as
there is no isometry between R? and S°.

3.2 Gauged Skyrme energy functional

Now we assume that (N, gy) admits an isometric action generated by v: g — I'(T'N) and let
P — M be a G-principal bundle. Consider the following energy functional for a section ¢
of P x¢ N and a connection A on P:

E[p, A = /M a6+ eof "8I 4 eslo™ [ 4 ealo™
+ (0™ + oo™ pf, ¢™1E). (3.9)

Here c1,...,c € R are constants, ¥ € Q?(N,TN) is the 2-form (defined in (3.1)) representing
the Hodge star on N as was the case for the ordinary Skyrme energy (3.2), and pf: g — I'(TN)
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is the vector field dual to the moment map p (defined by the conditions (2.10) and (2.11)) via
the metric gy, i.e.,

gy (1F(X),v) = (X)) (v) forall X € g, veTN.
Also, the inner product (-,-) used in (3.9) is defined as usual by the metrics gy and gy as
(a, B) = gn(a A *pr), laf? = (o, a). (3.10)

Although clearly a lot more complex than the ordinary Skyrme energy (3.2), the energy func-
tional (3.9) possesses some important natural features, which are similar in spirit to (3.2). Firstly
it respects the obvious symmetries; it is gauge-invariant by Proposition 2.1, and invariant under
orientation-preserving isometries of gp; and gy by construction. It also shares the feature of
the ordinary Skyrme energy (3.2) that all terms are either quadratic or quartic in derivatives;
the quadratic term is \quﬂZ, and all others are quartic in derivatives since they are formed by
pulling back the equivariant 2-forms ¥, v, and pf, and then pairing them using (3.10).

The attentive reader may wonder why we have not considered a term of the form (¢*4v, ¢*4 puf)
in (3.9); indeed, if the motivation is to consider all quartic terms made from combinations of the
equivariant 2-forms ¥, v, and pf, this should be there. However, recall that part of the definition
of p is the equation (2.11) required so that Vy + p is equivariantly closed. It is straightforward
to show that this condition, ¢,(x)u(X) = 0 for all X € g, implies (¢* v, ¢*Aut) = 0 identically.
Such a term might be relevant for theories which do not possess topological degree, but since
the motivation of the present article is to describe BPS gauged skyrmions, we include the
condition (2.11), and hence do not have such a term in our energy.

One natural term which is not apparently present in the functional (3.9) as presented is
a Yang—Mills term, i.e., a term proportional to ]F|§, with F' being the curvature of A. A Yang—
Mills term in (3.9) can be reproduced by suitable combination of |¢*4v|? and |¢*4u#|?, both of
which are quadratic in F'. A caveat to this is that the Yang—Mills term may be accompanied by
additional non-trivial couplings between F' and ¢. This we shall see explicitly via an example
below.

We shall now illustrate how the functional (3.9) generalises previously studied energy func-
tionals for gauged skyrmions. Specifically, here we consider the case where N = SU(2) equipped
with the round metric on $% 22 SU(2), and G = SU(2) acting on itself via the adjoint action. As
we shall see, in this case the energy (3.9) may be reduced to the form of the energy introduced
n [15]. See also [12, Section 8.2].

For all g € SU(2) and X € su(2), the left and right actions of SU(2) on itself induce two Lie
algebra homomorphisms vy, g: su(2) — I'(T'SU(2)),

exp(—tX)g,  vR(X) = S| gexp(tX).

X p—
vL(X) dt lt=0

~ dtli=o
The adjoint action is described by

vV =V + VR.

The left- and right-invariant Maurer—Cartan 1-forms 0, g € su(2) @ I'(A'SU(2)) are defined by
0, = g~ 'dg, Or = (dg)g~! and satisfy the structure equations

dfr, 4+ 6 N0, =0, dfr —Or N = 0. (3.11)
Their contractions with vy, g satisfy

b0 = —t,x)0r =X,  wyx)fr=-9"'Xg9,  tuyxfr=9Xg" (3.12)
for all X € su(2), g € SU(2).
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The round metric on SU(2) is bi-invariant and takes the form
gN = —%tr(&LQL) = —%tr(@RQR).
The associated volume form is
Vn = —5tr(0, AL AOL) = —Ltr(0r A Og A bR).
Then from (3.12) and the structure equations (3.11)
L) Vn = $tr(X(0r ANOr — 0, A 0L)) = ditr(X (0r + 61)).

So a moment map is given by u(X) = 1tr(X (0. + 0g)). By (3.12), this satisfies (2.11), and so
allows for a suitably well-defined topological degree. In fact, as we shall explore later, it is not
the most general choice of moment map for the adjoint action, however this choice suffices for
the purpose of this illustration.
The dual u¥ is given by

pHX) = (e (X) — vr(X)), (3.13)
because

gn (- vp(X) = vR(X)) = = 561(0L (b, (x) — tup(x))0L)

= tr(9009 ' X + X01) = $tr(X (0r + 01)).

The forms ¥, v, puf are T'SU(2)-valued. In order to write down their pullbacks, it is convenient to
identify T'SU(2) with the trivial bundle su(2) x SU(2). Any T'SU(2)-valued form can be turned

into an su(2)-valued form by composing it with the Maurer—Cartan form 6 : T'SU(2) — su(2).
So v(X) and p*(X) become the su(2)-valued functions

wix)fr =X —g ' Xg, Lo = —5(X +97' Xg)
of g € SU(2). By the same token, ¥ becomes
uwx0r = 30 A0,
because
—%tr(cg(u,v)HL X) = gn(E(u,v),vr(X)) = Vi (u,v,vgr(X)) = —1tr([01(u), 01 (v)] X)

for all u, v € T,SU(2) and X € su(2).

Finally, the tautological section I of T'SU(2) ® A'SU(2) corresponds to the su(2)-valued
1-form 6r,. It then follows that, given a map U: M — SU(2) (which represents ¢) and an su(2)
connection A, the equivariant pullbacks are given by the su(2)-valued forms

A = ¢*(I) = LY .= U~(dU + [4,U)),
o (2) = L(LA A LY,
¢*Av)=F —UFU,
oA () = -L(F+U'FU).
Putting this together, the energy functional (3.9) becomes
E[U, A] :/ aa|LAP + 2 |LA A LA + L(des + ea) |[FI? + L(ea — de3)(F,UT'FU)
M
+ 1{(2¢5 — c6)F — (2¢5 + c6)U ' FU, LA A L), (3.14)

which is equivalent to the energy introduced in [15]. If ¢4 = 4cs, then the quadratic term in F'
is just the usual Yang—Mills term.



10 J. Cork and D. Harland

3.3 Energy bound and BPS equations

In this section, we discuss how to bound the energy (3.9) by the equivariant topological de-
gree (2.12). To do this it is useful to write the integrand ¢*4(Vy + u) of (2.12) using the
pairing (3.10). By definition (equations (3.1) and (2.10)), we may show analogously to the
argument in (3.5) that

Vn +p=2gn(IA(Z+34%))
(with I € I'(TM ® T* M) being the identity map). Pulling this back, we therefore find
O (Vi + p) = 2 (xud?, ™4 (S + 3u) ). (3.15)

In [15], general energy bounds for the SU(2) gauged Skyrme energy (3.14) were derived. The
arguments presented there did not explicitly rely on the SU(2) structure — they only needed
that the energy and charge may be expressed as quadratic forms, just as we have done here —
and so may be applied immediately to our energy. Using the methods outlined in [15], one may
use (3.15) to show that (assuming suitable constraints on the parameters ¢; so that E is positive)
one has the general bound!

2 2
Plo. A) > 6\/ culeslenes — 6) —49) iy ) e
C3 (962 +cq4 — 306) - 965

The disadvantage of this general bound is that it is not clear what the associated BPS equations
are. In general one should expect there to be several BPS equations, in which case finding
non-trivial solutions is unlikely. We therefore want to constrain the parameters ¢; in such a way
for which the number of BPS equations is small; specifically one or two sets of equations. In
order for this to be the case, it is straightforward to realise that this forces the energy density
for (3.9) to be of the form

€ = k|Axa A2 F ¢4 (S + 30 P + |0 (o + Bt + )| (3.16)
£ 26A{ s A4, 6™ (E + 34F)),
for some constants «, 3,7, k, A € R, k, A > 0 which should be related to the coefficients ¢y, . . ., cg.

By reorienting and rescaling (M, gar), we can fix the sign above, and choose A = 1. We may
also fix k = 1 by fixing an energy scale. So then, from (3.15) and (3.16) we hence have the
topological energy bound

E[$, A] > 6 Vol(N)| degg(6)], (3.17)
which is attained if and only if the BPS equations

wad?e — ¢ (S + 3p*) =0, (3.18)

" (aX + But +yv) =0, (3.19)

both hold. By comparing coefficients in (3.9) and (3.16), we see that in order for these steps
to be valid, the parameters in the energy must relate to the parameters in these equations and
bound via

ey =9+ (2 cs = 20, ce = 2(3+ af). (3.20)
These assignments define a choice of scale on M and the parameters for the energy (3.9) up
to a constant factor in terms of three free parameters «, 3,7 € R. In this case, the BPS

!This equates to the bound given in [15] for the case N = SU(2) under the identification
c1 = 21, c2 = X2, c3 = 2, ca =7, cs = —%, ce =3,

up to an overall constant factor in the energy expression.
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bound (3.17) holds, and is saturated by configurations satisfying the BPS equations (3.18)
and (3.19). The values of these parameters play a key role in understanding the possible solutions
of the equations (3.18) and (3.19).

3.4 Necessary conditions on ¢*4p!

Having established topological energy bounds for the functional (3.9), and the BPS equa-
tions (3.18) and (3.19), it is natural to ask if and when solutions exist. While we have not
been able to answer this question in full generality, we have been able to classify solutions for
specific choices of N and G. In this section we shall discuss some general ideas which may be
used to solve (3.18) and (3.19), which are similar in spirit to the arguments we used in the
ungauged case.

Like with (3.7), it is useful to view the left-hand side of the first of our BPS equation (3.18)
as the sum of three maps A'N — A2M. Because of the presence of the third term 3¢*4f, there
is no a priori reason to only consider the cases where d4¢ has zero or full rank; in fact, as we
shall see later, there are interesting solutions which occur in other cases which were not possible
in the ungauged equations. However, as we show below, the possible ranks of the maps involved
are constrained by the rank of d4¢. This will allow us to strictly constrain the possible solutions
of (3.18).

First consider when d4¢ has full rank. This means the map ¢*4: A'N — A'M is invertible,
and so we may write (3.18) equivalently as

K1 (v) = ¢ sy () 71 (0)) + 36" (1) ((6™4) ' (v) (3.21)

for all v € A'M. Here the action of 3¢*4(uf) on (¢*4)~1(v) is given by the pairing between
TN and A'N. We aim to view (3.21) as an equation which determines a metric gy;. As it
stands, (3.21) determines a map xp7: A'M — A%2M, not a metric tensor. The space of linear
maps A},M — A%M has dimension 9, while the space of metric tensors has dimension 6, so, not
every linear map A},M — AI%M arises as the Hodge star of a metric. The ones that do, and
hence the solutions of (3.21), are constrained by the following lemma.

Lemma 3.1. The Hodge star *;: A}JM — AIQJM of a riemannian metric gy; satisfies
tr (v 0 *pr: A;M — AZI;M) =0 for all V € T,M. (3.22)

Furthermore, the map gy — *pr s a homeomorphism from the space of riemannian metrics
on T,M to an open subset of the set of all maps x satisfying (3.22).

Proof. For the first part, we may choose a basis ¢’ for All)M which is oriented and orthonormal

with respect to gas. In this basis, xjre! = %Eijkej A eF and so letting E; denote the dual basis
for T, M, we have

; L koA k1 il k
> igxu e = g geuet At =D (e — 67'eF) i =0,
j Jkl Gkl

as required.

For the second part, we note that gas — 37 is clearly continuous, and that the space of maps x
satisfying (3.22) has the same dimension as the space of metric tensors, namely 6. Therefore, it
suffices to exhibit a continuous left inverse * — (gas)sx of gasr +— *as. A suitable map, written in
terms of dual bases e’ and Ej, is

3
(ga)s (VW) =5 ) e (V, Ej) x €' (E;, W) for all V,W € T, M. (3.23)
ij=1

)]
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This is clearly independent of the choice of basis. It is also straightforward to check that if
* = %) then (gar)« = gum- |

Now consider the case where d¢ is not full rank. These cases are constrained by the following
lemma.

Lemma 3.2. If rk(d¢) < 3, then rk(¢*! xy ) = max{rk(d?¢) — 1,0}.

Proof. Suppose u € A'N is such that ¢*4u = 0. Then ¢*A(u Awv) =0 for all v € AIN. So
as * is an isomorphism the result holds when ¢*4 has rank 0 or 1. In the rank 2 case, so far

all this shows is dimker ¢*4xy > 2. However, by definition, in this case there exists non-zero

el,e? € AN such that ¢*el, ¢*4e? are linearly independent, and hence e! A e? is a non-zero

vector not in the kernel of ¢*A . |

In the particular case, where d4¢ has rank 2, we have a following stronger constraint.
Lemma 3.3. If d4¢ has rank 2, then xpr¢** + ¢* % n: ALN — A2M has full rank.

Proof. First, we show d4¢ and ¢*4%y have trivially intersecting kernels. To do this let v € AIN
and suppose that ¢*4u = ¢*4 x5 u = 0. Now, there exist v,w € A'N such that xyu = v A w.
Then ¢*4v A ¢*4w = 0, so we can find (a,b) # (0,0) such that a¢** v + bp**w = 0. Then
av + bw and v are two linearly independent vectors in ker ((b*A), contradicting the assumption
that rk(¢*4) = 2.

Now let f1, f2 € A'N be a basis for ker (QS*A *N ) Then ¢*Af1, ¢*4 2 are linearly inde-
pendent, and hence form a basis for the image of ¢*4, because ker ((;5*‘4) N ker ((;5*A *N ) = {0}.
Then the triple

ST RSV E A VY
are linearly independent: ¢*4 ( fIAf 2) is non-zero because ¢*4 f1, ¢*4 f2 are linearly indepen-
dent, and is orthogonal to both *3;¢*4 f1, %1,¢*4 f2 by definition of the Hodge star. Now let
2 =N (f1 A f2). Since ¢*4f1, ¢*4f? are a basis for im(qS*A), ¢*A £3 is a linear combination
of *4 f1 and ¢*4 f2. Therefore,

(kar™ + ¢ ) f1 = Har ™A f,

(kar™ + ¢ ) f2 = Har ™ f2,

(*M(ls*A + ¢*A*N)f3 _ *M(b*Afg + ¢*A(f1 A JcQ)7

are linearly independent. So x37¢*4 4+ ¢*4%x has rank 3, i.e., is full rank. |

Putting this all back into the context of equation (3.18), we can summarise the results in this
section as follows.

Proposition 3.4. Let (¢, A) be a solution of (3.18) and let n be the rank of d4¢. Then

1. If n =0 or 1, then ¢*Aut has rank n and ker ¢*Auf = ker d4.
2. Ifn =2, then ¢*Au? is full rank.
3. If n =3, then the linear map

Ly © (d)*A,uﬂ) o ((j)*A)fl: AM — AT M

is traceless for all V. TM. Here we regard ¢**uf € A2M @ TN as a map A'N — A2M.
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Proof. The first two cases follow immediately from Lemmas 3.2 and 3.3 and consistency
of (3.18). For the final case, we apply Lemma 3.1. Since the maps %7 and ¢*4 oxy o (¢*4) ™! are
defined from metrics, they automatically must satisfy the condition (3.22), and so consistency
of (3.18) requires the stated condition. [

These necessary conditions will allow us to either rule out possible solutions, or to constrain
the possibilities for solutions. In particular, in the full rank case, the constraint then allows us
to recover a metric g, as in the proof of Lemma 3.1 in equation (3.23), from (3.21). We shall
return to these later via some explicit examples.

4 Solutions with principal orbit S*!

We now turn our attention solutions of (3.18) and (3.19). The different choices of G and its
action on N lead to different solutions. We start our discussion of solutions in this section with
the simplest case, where the structure group G = U(1) acts nontrivially on N. This means the
target manifold N may be viewed as a fibration over a surface C' with typical fibre S,

Sl — N

|

C.

The S fibres may collapse above certain points in C.

4.1 Invariant metric on N

We begin by describing the geometry of N in more detail. The Lie algebra u(1) of U(1) is
isomorphic to R, and is generated by 1 € R. For brevity, we will write v = v(1), p = p(1),
p = p¥(1) which generate the Killing field and moment map respectively. Since both p and gy
are U(1)-equivariant, we have that [1/, ,uﬁ] = 0. Therefore, we can choose local coordinates
(0,x,y) on N such that

0 0
— i
v 0 and o . (4.1)

The U(1)-invariant metric can be written in the form
gn = flz,y)(d0 +w)* + gc, (4.2)

in which the 1-form w and 2-tensor g¢ satisfy w(9p) = 0 and gc(0g, -) = 0. Invariance requires
that the 1-form w and symmetric tensor g¢ satisfy

Lo,w =0, Lo,9c = 0.
Moreover, since gn (pf,v) = pu(v) = 0 by (2.11), it must be that w(d,) = 0. So
w = wy(x,y)de.

Note that by (2.11) and (4.1), p = pg dz + py dy = gn(0z, 0y) dz + gn(0y, 0y) dy. So from (4.2)
it follows that

2
gn = f(,9)%(d0 + w)® + 5= + h(z,y) da?

Hy
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for some function h(z,y). The volume form associated with this metric is

VN =/ fhpy d0 A dx A dy.
Therefore, ¢, Viy = /fhp, dz A dy, and by (2.10) this must equal dp. Therefore,

(Oupiy — ay#:v)Q .
Py

fla,y) =
In summary, the metric on N takes the form

0, -0 2 1
Pty Hy

4.2 Solutions of the BPS equations

Solutions of (3.18). We shall begin the analysis of the BPS equations in this case by first
considering all possible solutions (¢, A) of (3.18). As outlined in Section 3.4, it is helpful to
consider the possible ranks of d4¢.

In the zero rank case, d4¢ = 0 and (3.18) implies F = 0, so the solution is equivalent to the
constant solutions in the ungauged model.

Now we argue that there are no solutions in the cases of rank 1 or 2. In the case rk(qub) =1,
by Lemma 3.2 we have ¢*4% = 0, and so (3.18) may be rearranged to

0
A

This implies that 0 = ¢*4df := df — A (using the definition of d* from (2.6)). So F =
dA = d% = 0, which via (4.4) forces rk(d4¢) = 0, a contradiction. In the case rk(d4¢) = 2,
Proposition 3.4 tells us that ¢*4uf has rank 3. But ¢*uf = F ® 8% has at most rank 1, so this
case also yields no solutions of (3.18).

It remains to consider the case where d¢ has full rank. Thus d¢ is a linear isomorphism
TM — TN. So there exists a unique vector field V' on M such that

dh(V) =t =

2.
Using Proposition 3.4 (3), we thus require that
wwF =0.
Writing ¢ using our local coordinates on N as ¢ = (6, z,y), we have
pA0=do— A, Mz =dz, ¢*dy =dy.
It follows that
w(df — A) = do(p?) = do(9,) = 0.
Therefore,

Ly(df —A) =diy(dd — A) — 1y F = 0.

So df — A is invariant under the flow generated by V.
We now aim to solve (3.18) for the metric gas (as in (3.21) and the proof of Lemma 3.1).
To do this we fix a convenient gauge. Specifically, we first choose a gauge in which 1y A = 0.
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Then, since tyF = 0, it follows that LA = 0. So this gauge choice is preserved by gauge
transformations A — A + d\ in which Ly A = 0. We may use this gauge freedom to set one of
the two remaining components of A to zero. Without loss of generality, we may therefore choose
a gauge so that A = A, dx.

In this gauge ¢*AVy = (O by — Oyptz)dO A dx A dy. Since d4¢ has full rank, this is non-zero,
so 0, x, and y are a good system of local coordinates on M. In these coordinates V = 8% The
pullback of the metric (4.3) on N is

_ 2 2
h/,Ly ,uy
Solving (3.18) for gjs then gives
Fou vy > <(aac,uy - ay,uac)2 2 2 s
gy =|1+3 df+w—A)"+ hdz” | + —. 4.5
< (Outty — Oypiz) Dy ( ) Hy (45)

Solutions of (3.19). We now address the second BPS equation (3.19). Clearly these are
solved when @ = 8 = v = 0. As we shall see, in general this is the only non-trivial case
compatible with the solutions of (3.18).

Suppose & = 0 and 3, v are not both 0. Since v and uf are linearly independent, (3.19)
then implies that F' = 0. This is compatible with the solutions of (3.18) found in the previous
subsection, however they are just solutions of the ungauged Skyrme model, i.e., ¢ is locally
an isometry or is (covariantly) constant.

When «a # 0, again by linear-independence of v and pf, (3.19) implies that ¢*4% has rank 1
or 0. However, as we saw above, (3.18) is inconsistent when d¢ has rank 1 or 2, so by Lemma 3.2
the only possibility is the trivial solutions where F' =0 and d4¢ = 0.

Summarising, we have proved the following statement.

Theorem 4.1. If G = U(1) acts non-trivially on N, then the BPS equations (3.18) and (3.19)
have solutions with F # 0 only when o = 8 = v = 0. When a = § =~ = 0, the solutions
consist (locally) of the identity map ¢: M = N — N, a choice of connection A such that
A= LuuA = EMA =0, and a metric gy; given by

g = gu+ (1 4+ 3*n (F'Ap))ge,

in which g, = /ﬂ/u(uﬁ) and go = ¢*Agn — Iu-

The theorem only says that ¢ is the identity map locally; it may not even be a bijection
globally (for example N may be a quotient of M by a discrete group). However, if ¢: N — N
is globally just the identity map then its topological degree is 1. This is because

/]V¢*A(VN+M):/JV(VN—ALVVN+dA/\M):/

(Vi + d(A A ) :/ Vy.
N N

4.3 Example

Consider the adjoint action of U(1) on N = SU(2). We identify SU(2) with S and choose
coordinates (6, z,y) € (0,27) x (0,%) X (0,47) such that

¢ = (sinz cos ¥, cos z cos b, cos z sin 6, sin z sin ¥)
and v = %. The round metric on S in these coordinates is

gn = cos®(z) d6? + da® + 1 sin®(z) dy”.
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Then Vy = 5 sin(z) cos(z)df A dz Ady and ¢,V = du, where p = £ sin?(z) dy. This choice of
leads to pf = 8%, consistent with our earlier conventions.
When o = f = v = 0, the energy function (3.9) with BPS coefficients (3.20) is given by

E_/ (\LA\2+\LAALA—gU—l{iag,U}FF),
M

in which L4 = U~ (dU + 1 A[o3,U]), U = ¢4 —1i 22:1 ¢jo; and o; are the Pauli matrices. This
shows that the model includes a Yang—Mills term, but the coefficient of this term depends on U.

Following the discussion above, solutions of (3.18) are given by the identity map ¢: S% — S3
and a gauge field A = A(z,0)dxz. The metric on M should then be chosen to be as in (4.5),
which here takes the form

gv = (14 30pA, tanx) (COSQ(ZL‘) do? + de) +1 sin?(z) dy?.

5 Solutions with principal orbit S?2

We now look to cases with G = SU(2). In this section, we consider where the stabiliser of a typical
point in N is U(1). Then the principal orbits of the SU(2)-action are S$? = SU(2)/U(1), and N
is a compactification of the manifold

T x 52,

where Z is an interval. We begin our discussion by describing the geometry of N in more detail.

5.1 Geometry of Z x S?

We model S? as the set of unit length elements of the Lie algebra su(2). More precisely, we
choose the inner product (X,Y) = —1tr(XY) for X,Y € su(2), and choose the orthonormal
basis defined by Pauli matrices —io;. Then S? is the set of x = —iz/o; € su(2) such that
(z,x) = 1. The metric on S? is induced from that on su(2) and can be written as

gs2 = (dz,dz) = da? da’.
The corresponding area 2-form is
wgz = —3tr(zde A dz) = Sej gidz? A dz”.

The action of g € SU(2) is g - = gzg~!. By choosing a suitable coordinate ¢ on Z, the most
general metric on N invariant under this action may be written as

gn = h1(€)* d&® + ha(€)* gse, (5.1)
where h;: 7 — R are smooth functions. The associated volume form is
VN = h1(§)ha(€)* d€ A wge. (5.2)
The section ¥ of A2N ® TN that represents the Hodge star of the metric (5.1) is given by
0 ha(€)? 0
Y =*xydé® — dx = —+h dé A xdex. 5.3
*N §®a§+*N$ 7 (€) w52®8§+ 1(§)dE Nz dz (5.3)

In this equation, we are representing tangent vectors to S? as su(2) matrices X satisfying
(X,z) = 0. Equivalently, we are identifying —ic; with 0/027.
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From (2.3), the linear map v: su(2) — I'(T'N) describing the adjoint action is
d
v(X) = Tt himo exp(—tX)xexp(tX) = [z, X]. (5.4)
It follows that

tx)VN = —1h()ha(€)? dE A tr(z da [z, X]) = 2h1(E)ha(€)* dE A (dz, X),

where the second equality makes use of the identities > = —1 and xdz = —dz . Finally, to

determine the moment map p: g — Q(V), we start by writing the most general form of such
a map with the assumption of SU(2)-equivariance. This is

u(X)(& ) = m(€) A (X, z) +m2(6) (dz, X) +13(€) (dz, [X, ]), (5.5)
where 11,m2,m3: Z — R are smooth. Imposing the constraint du(X) = ty(x)Vn forces
2h1()ha(§)* =15(8) —m(€),  ms(§) =0. (5.6)

It is straightforwardly verified that these constraints on p also allow for ¢, x)u(X ) = 0, and
so in this case all conditions are satisfied so that the equivariant topological degree (2.12) is
a well-defined invariant for this model.

Using the metric gy, we hence find

G o m(©)
HX) = g 00 5 Rate

Altogether the metric and moment map depend on four functions 7y, 72, h1, he. These are
subject to one constraint (5.6), and can further be fixed by choice of the coordinate £. For
example, we could choose coordinates in which hi(§) = 1, and take (5.6) as the definition of ha,
written in terms of two functions 7y, 72 satisfying 1y —n1 > 0. So altogether, the metric on N
and the moment map p combine to give two functional degrees of freedom from which one can
determine the other objects in the BPS equations.

There are two natural ways to obtain a compact manifold N (without boundary) from
T =(0,T): we can either identify (0,z) with (T,z) to obtain N = S! x S2, or we can col-
lapse the spheres {0} x S? and {T'} x S? to points, obtaining N = S3. In the first case, we
require that 71, n2, h1, ho extend to periodic functions of £ € R, so that gg» and p extend
smoothly to the compactification. In the second case, working in coordinates where hi(§) = 1,
we require that hy(€),n;(£),72(&) — 0 as € tends to 0 or T'. In either case, [;7,d¢ =0 and so

/m d¢ = —/ 2h1h3 d¢ = — Vol(N)/2r < 0. (5.8)
T T

In particular, n; is non-zero.

Remark 5.1. In the case hq (&) = 1, ha(€) = siné, (N, gn) is the round three-sphere S3 = SU(2).
Using the diffeomorphism U: (0,7) x S? — SU(2) given by

U(§,x) = cos& +siné x,
we can reconcile the moment map (5.5) with the choice identified previously in (3.13) by setting

m(€) =—-1,  m(f) = —zsin2¢.
It is easily checked that these functions satisfy (5.6).

(X — (X, 2)z). (5.7)

Having described the geometry of N, we now identify some natural solutions of the BPS
equations (3.19) and (3.18). Recall that, locally, ¢ is a function M — N. Using our model
of N as a product of Z and S? C su(2), this corresponds to a pair of functions £&: M — Z and
®: M — su(2), such that ®2 = —1. Globally, we may view ® as a section of End(E), where
E — M is the vector bundle P Xgy2) C2. Then there is a natural splitting £ = L @® L*, where L
and L* are the eigenbundles associated to the eigenvalues i and —i of ®, respectively.
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5.2 Dirac monopoles

The simplest solutions that we have identified are where ® is covariantly constant, by which we
mean that d4® = 0. In this case, d4¢ = dfa% has rank 1, and so by Lemma 3.2, ®*4% = 0.
We choose a local gauge in which @ is constant. Since ® is parallel, the connection A restricts
to a connection ia on L, and we can write A = ®a and F' = ® da. Then, from (5.4) and (5.7),

Ay = [®,F]=0  and

*Aﬁ:m(f) F® 2 n2(§) F—F<I><I>:m(£)d o
= e P B tep T B = g e
The BPS equations (3.18) and (3.19) are simply
m(§) Q
%(5)2‘i ®as >
ha(§)*d¢ 0
o R LT

In order to obtain non-trivial solutions, we choose 5 = 0. Then the first equation is trivially
satisfied. In coordinates where 7;(§) = hl( ki , the second is the BPS equation x3;d§ = —da
for abelian monopoles. The most well- known solutlon is the Dlrac monopole, for which a is
a connection on a degree 1 line bundle over R?\ {0} and ¢ = o~. Similar solutions with point-

like singularities can be found on other manifolds (M, gar) (see for example, [9]).

5.3 Solutions from spinor bundles

For our next family of solutions, we choose a Riemann surface C' with local holomorphic coor-
dinate z and metric go = (z,%) dzdz. Let S — C be a spinor bundle for C, which is a vector
bundle of rank 2. Let ®: .S — S be given by Clifford multiplication with the volume form
we = %Q dz A dz. The eigenspaces of ® give two subbundles S* such that S = S~ @ ST and
ds = +is for s € S*.

The Levi-Civita connection on T'C' induces a natural connection V*© on S. There is a second
natural connection V4 on S defined as follows

Vis=Vi¥s+1V.s forallseI(S), Ve (TC) (5.9)

(this connection previously appeared in the classification of riemannian manifolds admitting
real Killing spinors [7]). The curvature of this connection is given in terms of the Gauss curva-
ture K by

FA= 11~ K)we ® ®. (5.10)
This identity is easily verified by direct calculation. First, the Levi-Civita connection coincides

with the Chern connection, so is given by VLC% =(0hnhQ)® % Therefore,

LC —éﬁ 1 9
\% (Q az>_2(6 8)1nQ®az

We choose a representation of the Clifford algebra in which

9 (00
0z 1 0/°

[NIE

O
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9 (00 _(0 =

0z 10/ \0o 0}

We rllote that Clifford multiplication with Q2 dz is the same as Clifford multiplication with
2072 %, because they are related by the musical isomorphism. Therefore,

Then

SIS

O

.1 1o |10 10
wc-s—4{Q2dz,Q2dz}-s—1[Q 2£,Q 282]-5

for all s € .S, and hence

P = (‘é ?) (5.11)

In this representation, the Levi-Civita connection takes the form
VLC —d + —ia 0
0 ia/)’

for a 1-form a. Then

7o) =2 (D)

Comparing with our earlier calculation, we deduce that ia = %(8 —0)InQ. So the connection
matrix of V4 in this gauge is

Its curvature is

FodA4+AnA=(2°"2wc 0 ) (5.12)
0 —3p+ 3w

in which p = —i001nQ = Kwc is the Ricci form. This completes the proof of equation (5.10).
This explicit calculation also shows that

IS
g 0 —ifEdz) (5.13)
—iQ2dz 0

from which it follows that

P*Agg = —Ltr(d*® d*®) = Qdzdz = gc,

P*Awg = —1tr(®d® A d4P) = 1Qdz A dZ = we.
Returning to the BPS equations, we choose M = Z x C' and choose E = S to be the spinor
bundle of C, pulled back to Z via the obvious projection. The section ® and connection A are
those defined above (but pulled back to Z x C'). The function £: Z x C' — Z is just projection

onto the first factor.
From equation (5.10) (or, equivalently, equations (5.11) and (5.12)), we find that

“Ay=[0,F4 = 0.
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We will assume that @« = f = 0, then (3.19) is solved. Turning to (3.18), we choose the
coordinate £ on N so that h; =1 and from (5.3) obtain

P*AY = hd ‘”Caag +deéADdD. (5.14)

On the other hand, from (5.10), and the fact that (&, ®) = 1, we obtain

¢t = gm(1 - K)wcafg- (5.15)

We make an ansatz for the metric on M of the form

gu = d€* + f(&)gc,

so that *)rd¢ = f(&)we and

_iOsgz 10k 1>
wardA® = xy ( - 292‘1’2) = (_1 ’, 292dz> — de A DA,

2ol
2
VY]
[oN
N
o

So
Ay _ A
*pd? o = f(§we +dEN P A7D.
Combining this with (5.14) and (5.15), we see that (3.18) (or equivalently (3.21)) is solved by

gu = dE + (ha(€)* + 3m (&) (1 — K))ge- (5.16)

This may or may not be a riemannian metric, depending on the sign of the coefficient of g¢.
Note that gps is in general not the pullback of the metric on N. The latter is given by

¢*gn = d€? + ha(€)%gc.

Since 7; is a non-vanishing function, gy = ¢*4gn only when K is constant and equal to 1,
and g¢ is the metric on the sphere of unit radius. In this case A is flat and ¢ solves the BPS
equation of the ungauged Skyrme model.

We now consider the global topology of our solutions. Suppose that C' is compact and that N
is compact. Recalling that we have chosen h;(§) =1, (5.8) gives

Vol(M) = /Ixc(h2(§)2 3 (6)(1 - K)) d€ Awe
— [ (e - 3ma(€*(1 ~ K)) d A
IxC
= /Ih2(£)2 d¢(6mx(C) — 2 Area(C)).

If (5.16) is a riemannian metric, then this integral must be positive. Therefore, this construction
gives solutions with M and N compact and riemannian only when the Euler characteristic
satisfies x(C') > 0, i.e., when C' is a sphere. This means that M and N are homeomorphic to
either S' x S% or S? (or a quotient of one of these spaces).

Interestingly, M and N need not be homeomorphic. To see this, consider the case where gy
is the round metric on N = S3. Recall that hy(¢) = sin(¢), and we may choose 71 (¢) = —1. If
the Gauss curvature K of C' = S? is greater than 1, then the metric (5.16) extends to S* x S2,
which is clearly not homeomorphic to S3.
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Continuing our discussion of the global topology, we consider the topological degree (2.12)
of our solutions, assuming that M and N are compact. The volume of N is

Vol(N) = 4n / ho(€)? dE.
z
We need to compare this with the integral of ¢*4(Vy + u) over M. From (5.5), we find that

¢V = ho(€)’dé Awe and M = (1 - K)m(§) d¢ Awe.

Since m1 = 1} — 2ha(£)?,

/M Ay = /I (Lo — ha(€)?) de /C (1 K)we = /I ha(€)? de <27rx(0) - /C wc>,

where we made use of the boundary conditions for 72 discussed earlier. Therefore,

. C
[ o+ = 2mx(0) [ e g = X vor,
M 7
So the topological degree of these solutions is half the Euler characteristic of C, or equivalently
one minus the genus of C. Note that this is positive only when C' = S?, which is consistent with

the fact that gps is riemannian only in this case.

5.4 Twisted spinorial solutions

Now we consider a small variation on the spinorial solutions discussed above. For horizontal
vectors V € TC we let V{} be given by the same formula (5.9), but let

Vo.s=BP-s  forall sel(9)

for some constant B € R. In other words, A differs from the pullback of the connection (5.9) by
a 1-form B® d¢. Going through the calculations shows that d4® is still given by (5.13), but F
is now given by

F=11-Kwe®®-BdiAd*d.

We find that

*Ay = —2Bd¢ A DAAD,
0 B

*A g T o D A
¢ = 5= Kuc g = 79 dend’e,

while ¢*4% is unchanged from (5.14). So the BPS equation (3.19) is equivalent to

ah2(5)2 + %Bm(&)(l - K) =0,
2vyB—a =0,

Bpna(§) = 0.
We will assume that hi(§) = 1, 712(§) = 0 and v # 0. Then the third equation is satisfied,

and the second equation is solved by B = % If o # 0, then the first equation implies that

ho(€)? = Bm(€)(K — 1)/2a. Since hg # 0 this means that 3 # 0. Note that 8 can be non-zero
only if the Gauss curvature K of C is constant (as aha(€)? is independent of the coordinate on C).

Since we have assumed that 7o = 0, ¢*4u! is given by the same formula (5.15) as in the previ-
ous calculation, and the BPS equation (3.18) is once again solved by choosing the metric (5.16).
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5.5 Spherical solutions
For our next family of solutions, we choose M = T x S? and choose ¢: M — N to be the
identity map. In particular, £: Z — 7 is the identity map and ®(z) = x. Our connection A will
be spherically-symmetric and take the following form

A=3(f(&)-1Dazde. (5.17)
Then

F=1(ff-1)dzndz+1ifdéAzrds and d*® = fda.
It follows that

g = —Ltr(® A0 A d4D) = fPwge.

Thus, from (5.2), (5.3) and (5.5),

. hif2 )
Y = 21 w52®8f£+h1fd§/\xdx,
2 /
o h on? 5P e T on2 Enwde,

¢ v =1 d¢ nda.

The BPS equation (3.19) is then equivalent to

20h1h f2 + B (f2 — 1) =0, (5.18)
20h1hif + fmaf =0, (5.19)
vf =0.

If v # 0, the equations imply that f is constant. Also if & # 0 and § = 0, then f = 0. These
solutions both correspond to a special case of the spinorial solutions. If « =y =0 and § # 0,
they imply that f?2 = 1 and hence that F = 0. So we consider instead the case where v = 0
and «, 8 # 0. In this case, the two equations (5.18) and (5.19) need to be solved in conjunction
with (5.6). These three equations imply that

i m_,
=1 ’
af n2 M

We choose the coordinate £ on N such that 72/n1 = . Then these two equations are solved by

FO=VI+CIE,  m(€) =Cotf(E) a

for constants C and Cy. The full system (5.6), (5.18) and (5.19) is then solved by

m(&) = Cz f(§) =,

B
m(©ha(e) = — 107612
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This completes the solution. We note that the equations do not constrain the metric functions
h1, ho, but only the combination h h22. We also make note of one important solution: if Ch =1,
Cy=-1, =2aand hy = 1/(1 +&?), then (5.16) and (5.5) are

dé
1+ &2

£
1+

(X,{L‘)—

¢ \*, ¢
H=—= 5 (X, d) and gN = < > + m%‘?-

1+ &2

Changing coordinates to 5 = arctan ¢ shows that these are the moment map and metric of S3.
We still need to solve (3.18). Using (3.19) (still with v = 0 and « # 0), this is equivalent to
xrd?Ao = (1 — 3%)(15*‘42 and takes the form

= (- 2)

*yr dx = <1— 3ﬁ> hidé A xdz.

t30é

Assuming tha = 1, we can solve these equations by choosing

B

For later use, we point out that these spherical solutions can be reformulated in the language
of spinors. The map 7,5° — End(C?) given by X — xdz(X) obeys the Clifford algebra
relation (r dz(X))? = (2X)? = —|X|?Id, where we think of x and X as su(2) matrices satisfying
(r,z) = 1, (x,X) = 0. Therefore, the trivial bundle S = S? x C? is isomorphic to the spinor
bundle and z dz(X)s = X -s for any s € C2. The endomorphism ® corresponds to multiplication
with the area 2- form wg2, and its eigenbundles are therefore the bundles S* of chiral spinors. The
connection d — fx dx makes ® parallel so restricts to an abelian connection on the bundles S +
Since its curvature is constant it must be the Levi-Civita connection of S2. So when f(¢) =
the connection (5.17) coincides with the spinorial connection (5.9) for C' = S2.

gn = <1 - 3a> (h(§)%AE? + £(6)*h2(€)gs2).-

5.6 Symplectic solutions

For our final family of solutions, let C' be a 2-manifold and let L — C be a hermitian line bundle.
Let a be a U(1) connection on L with nowhere-vanishing curvature da. Then we := —2da
determines a symplectic structure on C.

Let J¢ be a compatible family of almost complex structures on C that depend on £ € 1.
This means that, for each { € Z and p € C, J¢,: T,C — T,C satisfies J2p = —1 and that
goe(u,v) = wc(u Jev) is a family of riemannian metrics on C. Then J¢ determines a family of
subbundles A1 %C c C®AC. Let we be a family of sections of A1 'c® L?, normalised so that
2iwe N wg = wc. Here w¢ denotes the dual of w with respect to the hermitian metric on L? and
is a section of Ag’l ® L2

We choose M =7 x C, £: T — T to be the identify function, ¥ = L* & L, and

A:<_m _%>, ¢:<‘19>.
we 1a 0 i
We assume that o = v = 13 = 0 and that 5 # 0. Then the BPS equation (3.19) is equivalent to

0= B¢t = B(da + iwe A wg) ® %
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This is automatically satisfied by our choice of a and w¢ by construction. Since we now have
that ¢*4uf = 0, equation (3.18) is equivalent to x4 = ¢*4%y and is solved by g = ¢*4gn.
An explicit calculation shows that

gu = h1(€)*d€? + 4ha (&) wewe = h(£)2dE* + ha(€)goe.

This is a riemannian metric only if w¢ is non-vanishing. This means that L? is isomorphic
to Tg ¥C and that 2a is a connection on TH0C. If C is compact, it further means that

X(C) =1 (T10C) = 27T/021da— /wc>0

so C' must be a 2-sphere.

5.7 Classification of BPS solutions

Having presented several solutions of (3.18) and (3.19), we are now ready to state and prove
a theorem that classifies solutions.

Theorem 5.2. Let G = SU(2) and let N = ZxSU(2)/U(1), with metric and moment map given

n (5.1) and (5.5). Suppose that n1(§) is non-vanishing and that o, B3, v are not all zero. Then
any solution of the BPS equations (3.18) and (3.19) is one of the solutions described above, i.e.,
either a Dirac monopole, a spinorial solution, a twisted spinorial solution, a spherical solution,
or a symplectic solution.

Before proving the theorem, we comment on the hypotheses. The hypothesis that 7y is
non-vanishing is motivated by the observation made below (5.8) that, if N is compact, 7y is
non-zero. It is moreover reasonable to assume that «, [, v are not all zero, as otherwise the
BPS equation (3.19) is trivial.

Proof. We begin by fixing a gauge where ® is constant. Explicitly, we choose

P = <_(i) ?) , A= (j}‘j _32) . (5.20)

In this gauge, we obtain

Ax 0 —2iw _ (wAw—ida —dw
d7e = <—2iw 0 )’ F= d%w ida —wAw)’ (5.21)

in which we have introduced d*w = dw + 2ia A w and d*w = dw — 2ia A w. The BPS equa-
tions (3.18) and (3.19) take the form

h2

ah—21w AW+ B (da +iwAw) =0, (5.22)
1 1

712

20hidé A w + <ﬂh2

+ 217) d%w = 0, (5.23)
h3 m

—=2iw A w + 35 (da + iw A w) = xprdé,
hi hi

2h1d§/\fw+3% d%w = —2i %y w. (5.24)
2
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We note that (5.24) implies that

25pp [w|? = w A + @ A xpyw = 2B d(w A w) + 2ihy dE A w A . (5.25)
2

We will solve the equations in two separate cases, according to the rank of d4¢.

First we consider the case where the rank of d4¢ is less than 3. We will show that in this
case all solutions have w = 0. This means that the solutions are Dirac monopoles, as discussed
in Section 5.2.

Since d4¢ is not full-rank, ¢*AVy = 0. This means that

dEAw A @ = 0. (5.26)
If B2 # 0 or v # 0, then (5.23) implies that

2ah1h22
dw=——""==_dé Aw. 5.27
Y= o+ 2y N (520

Substituting this into (5.24) gives

3ang

ayw=1ihy (1 - —22172
M 1< Bng + 2iyhi

> dé A w.
This, together with (5.26), implies that @w A xp;w = 0, and hence that |w|? = 0.

On the other hand, if v = 0 and 872 = 0 then either 5 = 0 or 72 = 0. In the former case, we
must have a # 0, and it follows from (5.22) that w A w = 0 and then from (5.25) that [w|?> = 0.
In the latter case, if 72 = 0 it follows immediately from (5.25) and (5.26) that |w|? = 0.

Now we consider the case where d¢ is full rank. Then d¢, w, @ are a frame for the
complexified cotangent bundle of M. Let V, W, W be the dual frame for TM. Then 1y dé =
tww = tpyw = 1 and twd§ = tyw = tww = 0. Since V is nowhere-vanishing it generates a flow
on M. Let C be the quotient of M by this flow, which is homeomorphic to a level set of £ and
hence is a 2-manifold. There is a natural projection M — C. Combining this with the map
&: M — 7, we obtain a map

M —TIxC,

which is in fact a diffeomorphism. Under this diffeomorphism, V' is identified with the tangent
vector 0/0¢ to Z, and we will write V = 9/0¢ from now on.

Consider the BPS equation (3.19). Each term is a section of A2M ® ¢*T'N, or equiva-
lently, a map from A'N to A2M. Since d4¢ has full rank, we can invert ¢*4 to obtain
((;5*’4)_1 : A'M — A'N. Asexplained in Section 3.4, composing each term in (3.19) with ((;5*‘4)_1
results in the equation (3.21), each of whose terms is a map A'M — A%2M. As explained in
Proposition 3.4, the term involving the moment map must be trace-free, and we will see that
this fact constrains the solutions.

First we write the constraint explicitly. From (5.5) and (5.21), we obtain

sA ¢ T oo 0 (0 —d'w
o h12(da—|—1w/\w)<§©8§—i-h22 (daw 0 .

In this equation, we are identifying the tangent space to S? at ® with the space of matrices
orthogonal to ®. From (5.21),

dAgb(W):(_in 8) and d%(W):(g ‘fj),
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while d4¢(9/9¢) = 9/9¢. Therefore,

(6" pt) o (¢*A)—1 — ;Z%(daJriwAw) ®88£+212222(d“w®W—d“w®W).

The trace-free constraint from item (3) of Proposition 3.4 is

m 112 _
0= h—lzLagda + oh3 (twd®w — pd*w), (5.28)
where we have made use of the fact that tgew = tpew = 0.
We now assume that at least one of 8n2 and 7 is non-zero (we will return to the case
Bn2 = v = 0 at the end of the proof). Then (5.23) implies that d*w is given by (5.27).
Substituting this into the constraint (5.28) gives

4aynahihi
(Bm2)? + (27vh3)

Contracting this with 9/9¢ tells us that ayns = 0, and in turn that ny.5.da = 0. Then we are
in one of the following three situations: either a = 0, v = 0, or 772 = 0. We consider these in
turn.

If @ =0, then d*w = 0 from (5.27). Recall that 1y, w = 0. We may choose a gauge in which
tp.a = 0 also. Moreover,

Ui
0= hf}%da — Sde.

Ly.a= (1g.d+dig)a=0 and
Lo,

W = (19.d + dig, Jw = 19, (d"w — 2ia Aw) = 0.

Then a and w are both 1-forms on C that have been pulled back to M, because their Lie
derivatives and contractions with a% vanish.

Consider now the metric go = ®*4gs2 = 4ww on C. An orthonormal frame is given by

el =w+w, e =i(w — w). Then d*w = 0 implies that

de! —2ane? =0, de*+2anel =0. (5.29)

Equation (5.29) says that the metric-compatible connection Ve! := 2a ® €2, Ve? := —2a®e! is
torsion-free, so it must be the Levi-Civita connection of go. Moreover,

1 0 —LxW
TC — End(E), X — 5 <LXw 0 >

satisfies the Clifford algebra relation X-X = —go (X, X)Id, so (L*®L) is isomorphic to the spinor
bundle of C. Then the ansatz (5.20) is precisely the spinorial ansatz considered in Section 5.3.
If v = 0 then d“w is given by (5.27)

_ 2Ozh1h22
B2

Again, we choose a gauge in which tp.a = 0 and find that Ly.a = 0. On the other hand,
(5.30) implies that

d%w = dé A w. (5.30)

2ah1h22
B2

where we used tp.a = 0. This equation implies that w = f(&)wp, where wy satisfies £3§w0 =
to.wo = 0 and f satisfies the differential equation (5.19).

Lo.w = (tg.d + dig, )w = — w,
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From (5.22), we obtain

9 2
da = —i <1+ ahlh?) 12wy A @o.
Bm

Since Eagda = Eagwo Awg = 0, the real function (1 + M) f? must be constant. Without loss
of generality, we can choose f,wg so that this constant is 1. Then d%wy = 0, so, reasoning as
above, a must be the Levi-Civita connection for the metric go = 4wgwg. Since da = —iwg A Wy,
this metric has scalar curvature K = 1, i.e., it is the round metric on S?. The map

TM — End(E), Vs % (wo(()v) _“_’%(V)>

satisfies the Clifford algebra relation, so E is the spinor bundle of S? and we are in the situation
described at the end of Section 5.5.
If 72 = 0, then d*w is given by (5.27)

h
dw = i%dg Aw. (5.31)

We choose the coordinate & so that hi(§) = 1 and choose a gauge in which Lp.a = « /27. Then
once again Ly.a = 0, while

Lo.w = (dege + toed)w = 19, (d"w — 2ia A w) = 0.

The connection ag = a — (a/27)d§ satisfies tg.a9 = 0, Lg.a9 = 0 and d*°w = 0 so, reasoning
as above, it must be the Levi-Civita connection for the metric g0 = 4ww. We are now in the
situation described in Section 5.4.

So, the solutions for which d4¢ has full rank and at least one of 87y, is non-zero are those
described in Sections 5.3, 5.4 and 5.5. We now consider the case where 81y = v = 0 and d*¢
has full rank. In this case, (5.23) implies that a = 0, as d§ Aw # 0 by assumption. Then g # 0,
since we are assuming that «, 3, v are not all zero, and therefore 7o = 0.

Since m1 # 0, (5.22) implies that da = —iw Aw. This in turn implies that 15, da = 0. Working
in a gauge where 1p.a = 0, it follows that Ly.a = 0. Therefore, a is the pullback of a connection
on a line bundle over C. Its curvature is non-vanishing, because d4¢ has full rank and therefore
idé Ada=déAwAw #O.

A short calculation shows that 2iw A @ = ®*4wg: =: we and that ®*Agge = dww =: go. It
follows that w is a (1,0)-form with respect to the complex structure defined by the metric g¢
on C. Note that this metric and its complex structure could depend on &, because Eaéw may

not vanish. However, the area form satisfies Ly.wc = —2Ly,da = 0. We are now in precisely
the situation considered in Section 5.6. Therefore, full-rank solutions in the case 1o = v = 0
are the symplectic solutions of that section. |

6 Principal orbit S3

In this short final section, we consider the case where G = SU(2) acts on N with principal or-
bit S3. In other words, we consider N = SU(2) acting on itself by left-multiplication. Without
going into any of the details, the basic summary of this section is that the BPS equations (3.18)
and (3.19) are not relevant at all in this setting, as the quantity (2.12) is not a well-defined
topological charge. From a high-level perspective, this makes sense since the equivariant coho-
mology HSU(2) (S3, ]R) = 0 is trivial. From a more explicit perspective, the issue that arises here
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is that there is no moment map g which solves the constraint (2.11). So for this reason, we do
not look for solutions of the equations (3.18) and (3.19) in this setting.

We now briefly discuss why there are no p satisfying (2.11). The condition that SU(2) acts
on (SU(2), gsu(z)) by isometries forces gsy() to be left-invariant. The volume form will thus be
of the form

K K
Vz =——tr(0p N0 NOL) = ——tr(0r NOgp N O
Su2) 13810 AL A OL) 15 0r A Or A OR)
for some K > 0, where 0, g are the left- and right-invariant Maurer—Cartan forms discussed in
Section 3.2. From (3.12), the vector field vy, corresponding to the left-action of SU(2) on itself
contracts with Vgy(g) to give

LVL(X)VSU(Q) = %tr(X Or N\OR) = d%tr(X Or),

where in the last line we used the structure equation (3.11). It is straightforward to see that the
only left-equivariant choice for u satisfying du(X) = v, (x)Vsy(2) is hence

p(X) = ftr(X Or).
On the other hand, using (3.12), this satisfies
by () p(X) = —tr(X?) = SX[* £ 0,

and so there are no p satisfying both (2.10) and (2.11). Although for this case we have shown
that the topological charge cannot be realised as an equivariant topological degree, it is worth
remarking that an alternative topological description may be used by considering the differ-
ence between the ordinary topological degree (3.3) and a Chern—Simons functional; this is the
convention taken by those studying electroweak skyrmions (see, e.g., [16, 17]). Our focus has
been on the BPS equations (3.18) and (3.19) relevant for theories admitting topological charge
given by the equivariant degree (2.12), and so analysis of possible BPS equations relevant for
electroweak skyrmions is reserved for future work.

7 Concluding remarks

We have described a geometric framework for gauged skyrmions on arbitrary space and target
3-manifolds, generalising earlier work of Manton [22] on ordinary (ungauged) skyrmions to the
setting of gauge theory. In particular, we have studied some BPS equations (3.18) and (3.19) for
gauged skyrmions, and classified all relevant solutions in the U(1)- and SU(2)-gauged case. Our
results show that, unlike ordinary skyrmions which are only BPS when constant or isometries,
a rich variety of BPS solutions may be found, many of which are neither constant nor isometries.

We now comment on areas requiring further attention. Firstly, a limitation in our formulation
is that it is explicitly 3-dimensional, and so direct generalisation to other dimensions cannot
be made which allow for BPS solutions. If one wanted to change the dimension of the target
manifold (for example, to describe gauged hopfions), this would automatically change the degree
of the forms ¥ and p, and then our BPS equations (3.18) and (3.19) would not make sense.
Therefore, any analogous study in these directions would require some modifications to what we
have described.

A second limitation of our formulation is that we have restricted attention to a specific
equivariant cohomology class, namely the class [Viy +u] € HZ (N, R) associated with the volume
form of N. Other classes could be interesting to study. One concrete example is electroweak
skyrmions, associated with the left action of SU(2) on itself. As was noted above, in this
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case HgU(Q)(SU(Q),]R) = 0 but skyrmions on R3 can still be topologically non-trivial [16, 17].
Another example is SU(2) monopoles, for which SU(2) acts adjointly on N = su(2). In this
case the topological degree is given by the integral of tr(F A qub), which is the pullback of
the equivariant form X ~— tr(Xdz). This form represents a trivial class in the equivariant
cohomology of su(2) = R3, but it defines a nontrivial class in the relative equivariant cohomology
of a ball B3 ¢ R? with boundary S2.

Although we have focused attention on topological energy bounds, another important use
of cohomology in gauge theory is in the construction of topological lagrangians. Just as the
topological charge density tr(F A F) of four-dimensional Yang-Mills theory can be used to define
a three-dimensional Chern—Simons lagrangian, so too can other n-dimensional topological charge
densities be used to define (n — 1)-dimensional Lagrangians. The paper [30] seeks to classify
lagrangians for gauged sigma-models that arise in this way. Equivariant cohomology, as reviewed
in this article, could be used to systematically classify such lagrangians.

Finally, this article has focused on generalising to gauge theory the ordinary Skyrme en-
ergy (3.2) consisting of only two terms — the Dirichlet term |d¢|?, and Skyrme term |¢*%|? —
which are quadratic and quartic in derivatives, and are constantly coupled. Over the years, all
sorts of different Skyrme energies have been proposed which include additional terms which do
not necessarily adhere to this constraint, for example by adding higher or lower order terms, or
including field-dependent couplings (see, e.g., [2, 3, 19, 20]). Of particular interest in physically-
realistic models is the inclusion of a potential term which gives the pion mass [1], and recently
some work has been done in understanding gauged skyrmions with massive pions [21]. It would
be interesting to consider all of these generalised Skyrme models within a geometric framework
in a similar vein to what we have described here.
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