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Abstract. We investigate geometric evolution equations for Legendrian curves in the 3-
sphere which are invariant under the action of the unitary group U(2). We define a natural
symplectic structure on the space of Legendrian loops and show that the modified Korteweg–
de Vries equation, along with its associated hierarchy, are realized as curvature evolutions
induced by a sequence of Hamiltonian flows. For the flow among these that induces the
mKdV equation, we investigate the geometry of solutions which evolve by rigid motions
in U(2). Generalizations of our results to higher-order evolutions and curves in similar
geometries are also discussed.
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1 Introduction

Broadly speaking, the study of integrable geometric evolution equations for curves has led to
fruitful discoveries of the interactions between the structures associated to integrability (e.g.,
Lax pairs, conservation laws, and Bäcklund transformations) and the geometric and topological
features of solution curves. While several authors (including some of us) have extensively stud-
ied integrable realizations of the sine-Gordon and nonlinear Schrödinger equations in Euclidean
geometry [2, 3, 16], additional integrable equations arise through investigations of flows in less
familiar geometries. For example, the KdV equation appears in many geometric contexts, in-
cluding flows for curves in the centroaffine plane [5, 27] and null curves in Minkowski 3-space [23],
and investigations of curve evolutions in the projective plane and higher-dimensional centroaffine
spaces have uncovered geometric flows that realize the Boussinesq and Kaup–Kuperschmidt hi-
erarchies [6, 22].

In this article, we study flows for curves in 3-dimensional pseudohermitian Cauchy–Riemann
(CR) geometry, specializing to the homogeneous geometry of the 3-sphere. Recall that a CR
structure of hypersurface type (sometimes referred to as a pseudoconformal structure) on a mani-
fold of real dimension 2n+ 1 consists of a contact structure together with a compatible almost-
complex structure on the 2n-dimensional contact planes. (Additional non-degeneracy conditions
are usually assumed, but these are vacuous in the case n = 1 on which we will focus.)
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The 3-sphere inherits its standard CR structure via its embedding as the hypersurface in C2

comprised of the set of unit length of vectors with respect to the Hermitian inner product.
The automorphism group of this structure is strictly larger than U(2); in fact, the pseudocon-
formal 3-sphere is preserved by the 8-dimensional group SU(2, 1) acting on C3 by preserving
a Hermitian inner product of split signature. In that setting, the 3-sphere is identified with the
projectivization of the cone of non-zero null vectors in C3 and the standard contact structure
in S3 can be expressed in terms of this inner product.

In previous work [4, 21, 24, 25], we investigated geometric invariants and geometric evolu-
tion equations for Legendrian curves as well as curves transverse to the contact distribution
in the pseudoconformal 3-sphere. The setting of this article is pseudohermitian CR geometry,
a sub-geometry of CR geometry in which a contact form is specified, resulting in a compati-
ble hermitian metric on the contact planes. The canonical connection and curvature for such
structures were introduced by Webster [30]. In dimension three, the simply-connected homoge-
neous pseudo-Hermitian CR manifolds with constant Webster curvature consist of the 3-sphere
S3 = U(2)/U(1), the universal cover of anti-de Sitter space A3 = U(1, 1)/U(1), and the Heisen-
berg group H3. In each case, the group preserves a fibration to a 2-dimensional space form,
where the fibers are transverse to the contact planes. For the case of the 3-sphere, this is the
Clifford map πC : S3 → S2, a geometrical version of the Hopf fibration (see Section 2.1 for
details).

In this article, we will focus on closed Legendrian curves in pseudo-Hermitian S3, in particular
their discrete invariants, how their geometry is related to that of their images under πC , and
integrable geometric evolution equations that arise naturally for such curves. Among other
results, we will show that there exists an infinite sequence of geometric evolution equations

∂γ

∂t
= Zn[γ], n ≥ 1, (1.1)

which induce the nth flow of the mKdV hierarchy for the curvature of the Legendrian curve γ.
These evolution equations are related to geometric realizations of the mKdV hierarchy that

have already appeared in the literature. Indeed, applying the Clifford projection to a Legendrian
curve in S3 produces a curve in S2 with the same curvature (up to a factor of 1/2), and curves
evolving by (1.1) project to curves evolving by flows previously identified by Goldstein and
Petrich [10, 11] as inducing the mKdV hierarchy (see also the works by Doliwa and Santini [7]
and by Langer and Perline [17]). However, the flows we define in this work are geometrically
distinctive for two reasons. First, each flow Zn is Hamiltonian with respect to a symplectic
structure on the space of periodic Legendrian curves, which is not induced by any corresponding
structure on S2. Moreover, while curves in S2 can be lifted to Legendrian curves in S3, the
Clifford projection does not induce a surjective map from the space of closed Legendrian curves
to closed curves in S2. As we shall see, a closed curve in S2 must satisfy a rationality condition on
its total curvature in order to have a lift into S3 as a closed Legendrian curve, where the resulting
rational number is related to the discrete invariants of the lift, as a closed Legendrian curve.

We now summarize the contents of the paper:

– In Section 2, we review the geometry of Legendrian curves in S3 – in particular, the
moving frame and curvature, and their relation to the projection under πC . We define the
Legendrian lift of a regular curve in S2, and compute the lifts of constant curvature circles
as an example. We also review the discrete invariants of closed Legendrian curves, and
compute such invariants for the circle lifts.

– In Section 3, we define a symplectic structure on the space of periodic Legendrian curves
in S3 (modulo symmetries), and show that Hamiltonian vector field for total length induces
mKdV evolution for curvature. More generally, we show that the entire mKdV hierarchy
can be induced by geometric flows for Legendrian curves.
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– In Section 4, we compute the stationary curves for the mKdV vector field Z1, determining
which of these are closed and, possibly, periodic in time. For a selection of representative
examples, we use the Heisenberg projection, a contactomorphism of the sphere punctured
at a point with R3, to obtain planar projections that enable us to compute discrete invari-
ants, such as the Maslov index and Bennequin number (see [8] and the literature therein
for an introduction to Legendrian knots and their contact invariants.)

– In Section 5, we discuss some open questions and directions for future research.

2 Legendrian curves in pseudohermitian S3

2.1 Moving frames and curvature

Let ⟨−,−⟩ be the standard Hermitian inner product on C2, and S3 ⊂ C2 denote the set of unit
vectors. We will think of a regular parametrized curve γ : R → S3 as a C2-valued function of
parameter x. Differentiating ⟨γ, γ⟩ = 1 shows that ⟨γx, γ⟩ is pure imaginary. The curve γ is
Legendrian if it satisfies the condition

⟨γx, γ⟩ = 0. (2.1)

We will say that γ is a unit-speed curve if ⟨γx, γx⟩ = 1 identically, and we will use s in place
of x whenever we are assuming a unit-speed parametrization. We let P denote the set of regular
parametrized Legendrian curves in S3, and P1 denote the subset of those with unit speed. The
group U(2) of unitary matrices acts transitively on S3, preserving the Hermitian inner product,
and thus inducing actions on P and P1.

Differentiating ⟨γ, γ⟩ = 1 and using both the Legendrian condition (2.1) and the unit-speed
condition ⟨γs, γs⟩ = 1, shows that the matrix

Γ =
(
γ γs

)
takes value in U(2). We will refer to this as the U(2)-valued moving frame of γ.

Lemma 2.1. The moving frame Γ satisfies the Frenet-type equation

Γs = ΓU, U =

(
0 −1
1 ik

)
, (2.2)

where we designate k(s) as the curvature function of γ.

Proof. Expanding γss in terms of the moving frame gives

γss = −γ + ikγs, (2.3)

where the first coefficient is determined by differentiating (2.1), and differentiating the unit-
speed condition ⟨γs, γs⟩ = 1 implies the second coefficient is purely imaginary. Its imaginary
part is computed by k = Im⟨γss, γs⟩. ■

For a more general parametrization, we have the following.

Lemma 2.2. If γ is a regular Legendrian curve parametrized by an arbitrary variable x, its
curvature is given by

k =
Im⟨γxx, γx⟩
⟨γx, γx⟩3/2

. (2.4)

Moreover, if β := ⟨γx, γx⟩1/2 denotes the speed of γ, then the analogue of (2.3) is

γxx = −β2γ +

(
βx
β

+ iβk

)
γx. (2.5)
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Proof. Since any arclength parameter satisfies ds/dx = β, then

γs = β−1γx, γss = β−1
(
β−1γx

)
x
= β−2γxx − β−3βxγx.

It follows that

⟨γss, γs⟩ = β−3⟨γxx, γx⟩ − β−2βx.

Since β is real, we obtain (2.4) by taking the imaginary part of each side of the last equation.
Using (2.3), we write

β−2γxx − β−3βxγx = −γ + iβ−1kγx,

which, when solved for γxx, gives (2.5). ■

Definition 2.3. If γ is periodic with minimal period L, we say that γ is a closed Legendrian
curve of period L, and we let |[γ]| ⊂ S3 denote the image or trace of γ. We let P1

L denote the
space of closed unit-speed Legendrian curves in S3 with fixed length L. If the map γ : S1

L → S3

is injective, we say that γ is a (parametrized) Legendrian knot.

We remark that the elements of P1
L can be viewed as isometric immersions of the circle S1

L

of circumference L into S3. Also note that the curvature function of a closed curve of period L
must satisfy k(x+ L) = k(x), but L is not necessarily the minimal period of k.

Clifford projections and Legendrian lifts

The well-known diffeomorphism between S3 and the group SU(2) can be defined by mapping
a unit vector w = (w1, w2)

T ∈ S3 to the matrix

pw =

(
w1 −w2

w2 w1

)
∈ SU(2). (2.6)

We also identify the Lie algebra su(2) with R3 via the linear isomorphism

j :

(
ix1 ix2 + x3

ix2 − x3 −ix1

)
7→ (x1, x2, x3)

T.

Combining these allows us to define the 2-to-1 spin-covering homomorphism σ : S3 → SO(3) as

σ(w) := j ◦Ad
pw ◦ j−1, (2.7)

where Ad denotes the adjoint representation of SU(2), and we take the standard inner product
on R3.

We define the Clifford map πC : S3 → S2 in terms of σ as follows. Let {e1, e2, e3} be the
standard basis on R3; then

πC(w) := σ(w)e1.

Since σ
(
eiθw

)
differs from σ(w) by rotation that fixes e1, this endows S

3 with the structure of
a circle bundle whose fibers are the integral curves of the characteristic vector field w 7→ iw.
Thus, condition (2.1) can be interpreted as saying that a curve in S3 is Legendrian if and only
if it is orthogonal to the fibers of the Clifford map.

Definition 2.4. The Clifford projection of a Legendrian curve γ is the immersed curve η : R→S2

defined by η = πC ◦ γ. (Note that γ is regular if and only if η is regular.)
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Proposition 2.5. Let γ be a Legendrian curve parametrized by arclength s, with curvature
function k(s). Then its Clifford projection has speed 2 and Frenet curvature k/2.

Proof. Let w = (w1, w2)
T be the vector of components of γ. By applying (2.7) to the standard

basis, we can write σ(w) in matrix form as

σ(w) =

 |w1|2 − |w2|2 −w1w2 −w1w2

w1w2 + w1w2
1
2

(
w2
1 − w2

2

)
1
2

(
w1

2 − w2
2
)

i(w1w2 − w1w2)
1
2 i
(
w2
1 + w2

2

)
−1

2 i
(
w1

2 + w2
2
)

1 0 0

0 1 −i

0 1 i

 , (2.8)

and compute

σ(w)s = σ(w)

 0 −2 cosα −2 sinα
2 cosα 0 0
2 sinα 0 0

 ,

where cosα + i sinα = w1w
′
2 − w′

1w2. (The fact that this has unit modulus follows from the
Legendrian condition w1w1

′+w2w2
′ = 0 and the unit-speed condition w′

1w1
′+w′

2w2
′ = 1.) The

last equation shows that σ(w) gives a parallel orthonormal along the Clifford projection.
In order to construct a Frenet frame for the Clifford projection, we modify σ(w). From (2.8),

one can check that

σ
(
eiϕw

)
= σ(w)

1 0 0
0 cos(2ϕ) sin(2ϕ)
0 − sin(2ϕ) cos(2ϕ)

 .

(Note that the first column of σ(w), which gives the value of the Clifford map, is unchanged.)
In particular, setting ϕ = −α/2 and differentiating this formula shows that F = σ

(
e−iα/2w

)
satisfies

Fs = F

0 −2 0
2 0 −αs

0 αs 0

 .

On the other hand, the component-wise form of (2.3) gives

w′′
1 = −w1 + ikw′

1, w′′
2 = −w2 + ikw′

2,

from which we compute

iαs =
(w1w

′
2 − w′

1w2)
′

w1w′
2 − w′

1w2
=

w1w
′′
2 − w′′

1w2

w1w′
2 − w′

1w2
= ik.

This gives αs = k and the result follows. ■

Remark 2.6. Conversely, suppose η : R → S2 is a curve parametrized by x with constant
speed 2 and curvature function k/2. Identify SO(3) with the oriented orthonormal frame bundle
of S2, with the basepoint map SO(3) → S2 is given by the first column. Then the Frenet frame
F = (η, T,N) is a lift of η into SO(3) satisfying

Fx = F

0 −2 0
2 0 −k
0 k 0

 .

In turn, let γ̃ : R → S3 be a lift of F relative to the double cover σ
(
i.e., such that F = σ ◦ γ̃

)
,

which is unique up to a minus sign. Then, if α(x) is an antiderivative of k(x), γ(x) = eiα/2γ̃(x)
is a unit-speed Legendrian lift of η, unique up to multiplication by a unit modulus constant.
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2.2 Closed Legendrian curves in S3 and their discrete invariants

The classical invariants of closed Legendrian curves and Legendrian knots are the Maslov index
(or rotation number) and the Bennequin invariant (see, e.g., [8]). We first discuss how these are
computed, before passing to less familiar discrete invariants.

For a given unit vector w = (w1, w2)
T ∈ S3, let w∗ = (−w2, w1)

T (i.e., the second column
in (2.6)). Then vector fields w 7→ w∗ and w 7→ iw∗ give an orthogonal parallelization of
the contact distribution on S3. Hence, for any γ ∈ P1

L there is a unique smooth function
θ : R/(LZ) → R/(2πZ) such that

γs = eiθγ∗, (2.9)

and the Maslov index µγ is the degree of θ.
If |[γ]| is a Legendrian knot K, we define the Bennequin invariant tbγ by the following

construction. For ε ∈ R, let Kε = e2πiεK. Then there exists a connected open interval I ⊂ (0, 1)
such that K ∩ Kε = ∅ for every ε ∈ I, and the Bennequin invariant tbγ equals the linking
number Lk(K,Kε).

Definition 2.7. Let η be the Clifford projection of γ ∈ P1
L and let Lη be its length. Since the

Clifford map doubles the speed of the curve, there is a positive integer clγ called the Clifford
index such that 2L = clγLη.

We say that γ has spin 1 if σ ◦ γ has trivial homotopy class in π1(SO(3)) = Z/2, or has
spin 1/2 if the homotopy class is non-trivial. Similarly, we say a closed curve in S2 has spin 1 if
its Frenet frame F has trivial homotopy class, and has spin 1/2 if the Frenet frame has non-trivial
homotopy class.

Proposition 2.8. Let γ ∈ P1
L. Then

µγ =
1

2π

∫ L

0
k(s) ds.

Hence, the total curvature1 of a closed Legendrian curve is an integer. In addition, this implies
that the total curvature of the Clifford projection is the rational number µγ/clγ.

Proof. Differentiating (2.9), we get

γss = iθsγs + eiθ(γ∗)s = iθsγs + eiθ(γs)
∗ = iθsγs − γ.

Comparing with (2.3) shows that θs = k. Hence, deg(θ) = 1
2π

∫ L
0 k(s) ds. On the other hand,

if we use š to denote the arclength parameter along the Clifford projection, then š = 2s and
κ(š) = 1

2k(2s), so∫ L

0
k(s) ds =

∫ clγLη

0
κ(š) dš = clγ

∫ Lη

0
κ(š) dš,

and the second assertion follows. ■

Remark 2.9. Conversely, let η be a closed curve in S2 of length 2T , with total curvature equal
to a/b, where a ∈ Z and b ∈ Z+ have no common divisors. Let γ be a unit-speed Legendrian
lift of η constructed as described in Remark 2.6. Then

γ(s+ bT ) =

{
(−1)aγ(s) if η has spin 1,

(−1)a+bγ(s) if η has spin 1/2.

Hence, in the case of spin 1, the Clifford index is clγ = b if a is even and clγ = 2b if a is odd. In
the case of spin 1/2, clγ = b if a+ b is even and clγ = 2b if a+ b is odd.

1For the sake of convenience, for us the ‘total curvature’ will always mean the integral of the curvature function
with respect to arclength, divided by 2π.
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Figure 1. Left: the Heisenberg projection of the Legendrian knot γ1,1, a topologically trivial knot

with Maslov index 0 and Bennequin invariant −1. Right: the Heisenberg projection of the Legendrian

knot γ3,5, a torus knot of type (−3, 5) with Maslov index 2 and Bennequin invariant −15. The tori are

the Heisenberg projections of Tm,n ⊂ S3, m = n = 1 (left) and m = 3, n = 5 (right).

Definition 2.10. The CR-analogue of stereographic projection is the Heisenberg projection pH ,
a contactomorphism from the punctured sphere to R3 with the contact form dz − ydx + xdy.
Taking S = (−1, 0) ∈ C2 as the omitted point, then for

(
z1, z2

)
∈ S3 \ {S},

pH :
(
z1, z2

)
7→
(
Re

(
i
√
2z2

1 + z1

)
, Im

(
i
√
2z2

1 + z1

)
,Re

(
i(1− z1)

1 + z1

))T

. (2.10)

Remark 2.11. The Maslov index and the Bennequin invariant can be computed directly from
the Heisenberg projection γH = pH ◦ γ, assuming that S /∈ |[γ]|. The Maslov index is the
turning number of the Lagrangian projection of γH , defined by α = πz ◦ γH , where πz denotes
the orthogonal projection from R3 onto the xy-coordinate plane. If γ is a knot, the Bennequin
number is the writhe of α with respect to upward oriented z-axis (see, e.g., [8]).

2.3 Constant-curvature examples

To illustrate the Legendrian lift, we consider lifting circles obtained by intersecting the unit
sphere S2 ⊂ R3 with the plane x = h. Let C(h) =

{
(x, y, z) ∈ S2 | x = h

}
for h ∈ (−1, 1).

Since C(h) has radius ℓ =
√
1− h2 and constant curvature h/ℓ as a curve on S2, the total

curvature of C(h) is equal to h. (Note that the curvature may be negative due to choice of
orientation.) Thus, the only circles with closed Legendrian lifts are those for which h is rational.

Proposition 2.12. For a pair of relatively prime positive integers m, n, let Cm,n denote be the
circle C(h) for h = (m − n)/(m + n). Then Cm,n has spin 1/2, and its Legendrian lifts are
left-handed torus knots of type (−m,n). Moreover, these lifts have constant curvature km,n =
(m− n)/

√
mn, total curvature equal to m− n, and Clifford index m+ n.

Proof. Let γm,n : R → S3 be defined by

γm,n(s) =
1√

m+ n

(√
me−ins/

√
mn,

√
neims/

√
mn
)
. (2.11)

One can check that γm,n is a unit-speed Legendrian curve with curvature km,n = (m−n)/
√
mn

and least period 2π
√
mn. Thus, the total curvature of γm,n is m − n. By construction,
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γm,n is a closed solenoidal curve of type (−m,n) contained in the embedded torus Tm,n ⊂ S3

parametrized by

fm,n(θ1, θ2) =
1√

m+ n

(√
meiθ1 ,

√
neiθ2

)
.

The Clifford projection of γm,n is

ηm,n(s) = (h, ℓ cos(2s/ℓ), ℓ sin(2s/ℓ)),

where we define ℓ := 2
√
mn/(m + n) for short. Thus, ηm,n is a parametrization with constant

speed 2 of Cm,n. The least period of ηm,n is πℓ, while the least period of γm,n is 2π
√
mn; it

follows from Proposition 2.8 that m+ n is the Clifford index of γm,n.

As in the proof of Proposition 2.8, we use š = 2s to denote the arclength parameter along
the Clifford projection, and let η̌m,n(š) = ηm,n(š/2) be its unit-speed reparametrization. This
has least period 2πℓ and curvature h/ℓ. Thus, its Frenet frame is of the form Fm,n(š) =
A exp (šMm,n), where A is some fixed matrix in SO(3) and

Mm,n =

0 −1 0
1 0 −h/ℓ
0 h/ℓ 0

 .

Since the Lie algebra isomorphism induced by the spin-covering homomorphism σ is

(
ib11 −a21 + ib21

a21 + ib21 −ib11

)
7→

 0 −2a21 −2b21
2a21 0 2b11
2b21 −2b11 0

 ,

the lift of Fm,n to SU(2) is F̂m,n(š) = Â exp(sM̂m,n), where σ(Â) = A and

M̂m,n =

(
−ih/(2ℓ) −1/2

1/2 ih/(2ℓ)

)
.

On the other hand, the eigenvalues of M̂m,n are ±i/(2ℓ), so it follows that the least period
of F̂m,n is 4πℓ, which is twice the least period of Fm,n. This proves that Cm,n has spin 1/2. ■

Remark 2.13. Proposition 2.12 is an adaptation to the context of pseudo-Hermitian geometry
of the classification of Legendrian curves with constant CR-curvature given in [25]. It follows
from Propositions 2.8 and 2.12 that the Maslov index of γm,n is m− n. Computing the writhe
of the Lagrangian projection of pH ◦γm,n, we find that the Bennequin invariant of γm,n is −mn.
Thus, according to the classification of the contact isotopy classes of Legendrian torus knots [9],
closed Legendrian curves with constant curvature provide explicit models for negative torus
knots with maximal Maslov index and maximal Bennequin number.

Remark 2.14. We also note a rather curious fact: the inversion of the Lagrangian projection
of pH ◦ γm,n with respect to the origin is an epicycloid traced by the path of a point at distance(√

m+
√
m+ n

)
/
√
2n from the origin, generated by rolling a circle of radius r = m/

√
2n(m+ n)

along a fixed circle of radius R = n/
√
2n(m+ n) centered at the origin (see Figure 2). Indeed,

from (2.10) and (2.11), it follows that the Lagrangian projection of pH ◦ γm,n is

αm,n(u) =
1

ϱm,n(u)

(
−cm,n sinu− dm,n sin

(
m+ n

m
u

)
, cm,n cosu+ dm,n cos

(
m+ n

m
u

))
,
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Figure 2. Left: the Lagrangian projection α3,5 of pH ◦γ3,5. Its turning number is 2, and there are fifteen

ordinary double points, each with intersection index −1. Right: the epicycloid obtained inverting α3,5

with respect to the origin.

where cm,n =
√

2n(m+ n), dm,n =
√
2mn, ϱm,n(u) = 2m+n+2

√
m(m+ n) cos(nu/m) and we

have made the change of variable u =
√
(m/n)s. Thus, the inversion βm,n = ∥αm,n∥−2αm,n is

βm,n(u) =

(
−ĉm,n sinu− d̂m,n sin

(
m+ n

m
u

)
, ĉm,n cosu+ d̂m,n cos

(
m+ n

m
s

))
,

where ĉm,n =
√
m+ n/

√
2n = R + r and d̂m,n =

√
m/

√
2n. By comparison, the epicycloid

traced by the path of the point (a+ R + r, 0), generated by rolling of a circle with radius r on
the fixed circle of radius R centered at the origin, can be parametrized by

ηR,r,a(u) =

(
(R+ r) cosu+ a cos

(
R+ r

r
u

)
, (R+ r) sinu+ a sin

(
R+ r

r
u

))
.

Hence, if we set a = d̂m,n, then |[βm,n] is obtained by rotating the epicycloid by π/2 about the
origin.

3 mKdV-type flows for Legendrian curves

3.1 Symplectic structure

Recall that PL denotes the space of regular periodic parametrized Legendrian curves γ : R → S3

with period L in parameter x. The space PL has the structure of an infinite-dimensional mani-
fold.2 We begin by characterizing its tangent spaces.

Lemma 3.1. Assume γ ∈ PL and let pγ(x, t) be a variation of γ, i.e., pγ(x, t) is smooth, belongs

to PL for every fixed t (for |t| sufficiently small) and pγ(x, 0) = γ(x). Let V = ∂pγ(x,t)
∂t

∣∣∣
t=0

. Then

the variation vector field V along γ is of the form

V = pγx + q(iγx) + r(iγ),

where p, q, r are real-valued L-periodic functions of x satisfying rx = 2q⟨γx, γx⟩.
2It can be shown that PL has a Fréchet manifold structure by adapting the argument used in Section 43.19 of

Kriegl and Michor’s monograph [15] for the group of contact diffeomorphisms. See also Lerario and Mondino [19],
where a Hilbert manifold structure is discussed, and Haller and Vizman [12], where it is proven that the space of
weighted Legendrian knots in a contact 3-manifold is a co-adjoint orbit of the group of contact diffeomorphisms,
endowed with a Fréchet manifold structure.
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Proof. We compute

0 = ∂/∂t
∣∣
t=0

〈
pγx, pγ

〉
= ⟨Vx, γ⟩+ ⟨γx,V⟩
= ⟨(px + iqx)γx + rx(iγ) + (p+ iq)γxx + r(iγx), γ⟩

+ ⟨γx, (p+ iq)γx + r(iγ)⟩
= irx⟨γ, γ⟩+ (p+ iq)⟨γxx, γ⟩+ (p− iq)⟨γx, γx⟩,

where several terms vanish because ⟨γx, γ⟩ = 0. Differentiating the latter gives ⟨γxx, γ⟩ +
⟨γx, γx⟩ = 0. Using this, and ⟨γ, γ⟩ = 1, we get

0 = ∂/∂t
∣∣
t=0

〈
pγx, pγ

〉
= irx − 2iq⟨γx, γx⟩. ■

In particular, the deformations generated by vector fields H = iγ and Rf = f(x)γx, where
f(x) is any L-periodic function, preserve the Legendrian condition. These deformations are, re-
spectively, a constant-speed rotation along the fibers of the Clifford map, and reparametrization
in x (while fixing the period). We wish to consider functionals on PL that are invariant under
these transformations (which form a group); accordingly, we define QL to be the quotient of PL

by the action of this group, and let [γ] ∈ QL denote the equivalence class of γ ∈ PL.
A tangent vector V ∈ T[γ]QL corresponds to an equivalence class of vector fields V along γ,

any two of which differ by adding the sum of a constant multiple of H and a vector field of the
form Rf . Thus, V has a unique representative of the form

V0 =
rx

2|γx|2
(iγx) + r(iγ),

such that
∫ L
0 r dx = 0.

We define the following skew-symmetric form on QL. Given V,W ∈ T[γ]QL, choose represen-
tatives V,W ∈ TγPL, and compute

Ω[γ](V,W) = −
∫ L

0
det R(γ, γx,V,W) dx, (3.1)

where the notation detR means that we apply a standard3 identification C2 ∼= R4 to each vector
before taking the determinant of the resulting 4× 4 matrix. (Note that the value of Ω[γ](V,W)
does not depend on the choice of representative.) If we write

V = pV γx + qV (iγx) + rV (iγ)

and similarly for W, then it is easy to compute that

Ω[γ](V,W) =
1

2

∫ L

0
(rV (rW )x − rW (rV )x) dx =

∫ L

0
rV (rW )x dx.

Theorem 3.2. Ω is a symplectic form on QL.

Proof. The skew-symmetric product is non-degenerate, since if Ω[γ](V,W) = 0 for all V ∈
T[γ]QL, then rW is constant, and hence W is equivalent to zero.

The fact that Ω is a closed 2-form follows as a special case of the calculus developed by
Vizman in [28] for a ‘hat pairing’ of differential forms. Let S be a compact oriented k-dimensional
manifold and M a finite-dimensional manifold, and let ω be a differential p-form on M and α
a differential q-form on S. Then the pairing

zω · α := −
∫
S
ev∗ ω ∧ pr∗ α,

3In other words, column (z1, z2)
T ∈ C2 is identified with column (Re z1, Im z1,Re z2, Im z2)

T ∈ R4.
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defines a differential (p+ q − k)-form on F(S,M), the space of smooth functions from S to M .
Here ev : S × F(S,M) → M is the evaluation map ev(x, f) := f(x), pr : S × F(S,M) → S the
projection pr(x, f) := x, and −

∫
S denotes the fiber integration. Then by [28, Theorem 1],

d(zω · α) = {(dω) · α+ (−1)p{ω · dα. (3.2)

We will show that the 2-form Ω in (3.1) can be realized as the hat pairing pν = yν · 1 = −
∫
S1 ev

∗ν,
where ν is the canonical volume form on S3 and 1 is the constant function on S1.

(
Note that ν

is the pullback to the sphere of the interior product ıEµ, where µ is the standard volume form
on R4 and E is the Euler vector field r∂/∂r.

)
When γ is an embedding of the circle into the 3-sphere, pν applied to a given V and W

in TγF
(
S1, S3

)
reduces to the so-called transgression map (see [28])

pν(V,W ) =

∫
S1

γ∗(ıW (ıV ν)).

We compute

pν(V,W ) =

∫
γ
ıW (ıV ν) =

∫ L

0
ν(γx, V,W ) dx =

∫ L

0
det R(γ, γx, V,W ) dx.

The closure of Ω follows immediately from the hat calculus formula (3.2), since dν = 0, as ν is
a volume form on S3, and d1 = 0. ■

The symplectic form defines a correspondence between functionals on QL (Hamiltonians)
and vector fields in TQL in the usual way. Namely, given a smooth functional H : QL → R, the
associated Hamiltonian vector field WH is defined by the correspondence

dH[γ](V) = Ω[γ](V,WH).

In other words, whenever pγ(x, t) is a one-parameter family of Legendrian curves such that
dpγ/dt|t=0 = V, then

d

dt

∣∣∣∣
t=0

H (pγ(·, t)) = Ω[γ](V,WH).

Proposition 3.3. Let A denote the total arclength functional on QL, defined by

A : [γ] 7→
∫ L

0
⟨γx, γx⟩1/2 dx.

Then the Hamiltonian vector field for 4A is equivalent to

WA =
kx

⟨γx, γx⟩
(iγx) + 2k(iγ).

Proof. Let γ ∈ PL, let pγ(x, t) be a variation of γ, and let

V =
∂pγ(x, t)

∂t

∣∣∣
t=0

= pV γx + qV (iγx) + rV (iγ). (3.3)

Using (2.4), we compute

∂

∂t

∣∣∣∣
t=0

〈
pγx, pγx

〉1/2
=
〈
pγx, pγx

〉−1/2
Re
〈
pγxt, pγx

〉∣∣
t=0

= ⟨γx, γx⟩−1/2Re⟨Vx, γx⟩
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= ⟨γx, γx⟩−1/2Re⟨((pV + iqV )x + irV ) γx + (pV + iqV )γxx, γx⟩
= ⟨γx, γx⟩−1/2Re ((pV )x⟨γx, γx⟩+ (pV + iqV )⟨γxx, γx⟩) . (3.4)

Because A is invariant under period-preserving reparametrizations, we may assume that γ has
constant speed c = ⟨γx, γx⟩1/2. Then ⟨γxx, γx⟩ = ic3k from (2.4), and integrating (3.4) gives

dA[γ](V) =

∫ L

0

(
c(pV )x − c2kqV

)
dx = −

∫ L

0
c2kqV dx.

Setting this equal to

Ω[γ](V,WA) = −
∫ L

0
rW (rV )x dx = −

∫ L

0
2rW

(
c2qV

)
dx,

we get rW = 1
2k. Hence,

qW =
(rW )x

2⟨γx, γx⟩
=

kx
4⟨γx, γx⟩

. ■

Corollary 3.4. Let γ ∈ P1 be a unit-speed curve (not necessarily periodic), let pγ(x, t) be a vari-
ation of γ through unit-speed curves, and let V be as in (3.3). Then ps = kq and rs = 2q.

Proof. If we set
〈
pγx, pγx

〉
= 1 identically and x = s in (3.4), we obtain

0 = (pV )s +Re((pV + iqV )⟨γss, γs⟩).

Then substituting the expansion (2.3) for γss gives ps = kq, while rs = 2q follows from
Lemma 3.1. ■

We now consider the evolution of the curvature function k induced by vector fields in TγP.
(Again, for what follows it is not necessary to assume periodicity.)

Proposition 3.5. Let γ(x, t) be a family of regular Legendrian curves and let

V =
∂γ

∂t
= pγx + q(iγx) + r(iγ) (3.5)

for real-valued functions p, q, r depending on x and t. Let β(x, t) = ⟨γx, γx⟩1/2 be the speed
function. Then the curvature k satisfies the PDE

∂k

∂t
=

(βqx)x
β2

+
q

β

(
βx
β

)
x

+ kxp+ β
(
k2 + 4

)
q. (3.6)

In particular, if we have a family of unit-speed curves, then x = s and

kt = qss + (kp)s + 4q. (3.7)

Proof. From differentiating (2.4), we have

kt = β−3 Im (⟨Vxx, γx⟩+ ⟨γxx,Vx⟩)− 3kβ−1βt. (3.8)

Recall from (2.5) that γxx = −β2γ + bγx where b := β−1βx + iβk.
Next, we differentiate the expansion (3.5) twice, substitute into (3.8), and use the inner

product formulas

⟨γxx, γ⟩ = −β2, ⟨γxx, γxx⟩ = β2
(
β2 + bb

)
,

⟨γxx, γx⟩ = β2b, ⟨γxxx, γx⟩ = β2
(
bx + b2 − β2

)
.



mKdV-Related Flows for Legendrian Curves in the Pseudohermitian 3-Sphere 13

As well, from the proof of Proposition 3.3, we have

βt = β−1Re⟨Vx, γx⟩ = (βp)x − β2kq. (3.9)

The expression for kt then follows by substituting these expressions into (3.8) and simplifying.
Then (3.7) follows by setting β = 1 and using the relation ps = kq from Corollary 3.4. ■

Along a unit-speed curve γ ∈ P1
L, the Hamiltonian vector field W4A from Proposition 3.3

has a representative

1

2
k2γs + ks(iγs) + 2k(iγ),

which satisfies the conditions from Corollary 3.4, and is thus tangent to P1
L. By Proposition 3.5,

this vector field induces the curvature evolution

kt = ksss +
1

2

(
k3
)
s
+ 4ks,

which differs by a Galilean transformation from the mKdV equation (with s as spatial variable).
In what follows, we will identify an infinite hierarchy of Hamiltonian vector fields that induce
evolution equations for curvature which belong to the mKdV hierarchy.

3.2 The mKdV hierarchy

In this subsection, we review the recursive construction of the mKdV hierarchy. What follows
is essentially the same as in Olver [26], with some changes in notation; for example, we use u to
denote a scalar function of spatial variable s and time t, and let u0 = u and u1, u2, . . . denote
its successive s-derivatives. In this notation, the mKdV takes the form

ut = u3 +
3

2
u2u1. (3.10)

On the space J [u] of differential polynomials in finitely many of the uj , we will need the total
s-derivative operator δ and the Euler operator E, defined respectively by

δP =

∞∑
j=0

uj+1
∂P

∂uj
, EP =

∞∑
j=0

(−δ)j
(

∂P

∂uj

)
, P ∈ J [u].

The mKdV hierarchy is an infinite sequence of evolution equations

ut = Mj , j ≥ 1,

where M1 = u1 and M2 is the right-hand side of (3.10). It can be constructed recursively as
follows. There is an infinite sequence {ρj} of differential polynomials in u with ρ1 = 1

2u
2 and

satisfying

DEρj+1 = EEρj , (3.11)

where

D = δ, E = δ3 + δuδ−1uδ.

Then Mj = DEρj (e.g., M1 = u1). Since D, E are a Hamiltonian pair of skew-adjoint dif-
ferential operators (in the sense of [26, Definition 7.19]) each member of the mKdV hierarchy
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is a bi-Hamiltonian system; moreover, each ρj is a conserved density for each of these flows
(see [26, Theorem 7.24]).

It follows from (3.11) that the Mj satisfy the recurrence Mj+1 = RMj , where

R = E ◦D−1 = δ2 + δuδ−1u,

while the densities satisfy the recurrence Eρj+1 = R∗Eρj for R∗ = D−1 ◦ E. For example,

M1 = u1, M2 = u3 +
3

2
u2u1, M3 = u5 +

5

2
u20u3 + 10u0u1u2 +

5

2
u31 +

15

8
u1u

4
0, . . .

ρ1 =
1

2
u2, ρ2 = −1

2
u21 +

1

8
u4, ρ3 =

1

2
u22 +

5

6
u30u2 +

5

4
u20u

2
1 +

1

16
u60, . . .

It also follows from Mj+1 =
(
δ2 + δuδ−1u

)
Mj that there are differential polynomials Nj such

that uMj = δNj .
Let Lj = 2Eρj . The connection between the ingredients of the mKdV hierarchy and defor-

mations of Legendrian curves becomes apparent when we observe that if

V = pγs + q(iγs) + r(iγ) ∈ TγP1,

then by Corollary 3.4, p, q and r satisfy the same relationships as Nj , Mj and Lj , respectively –
provided we replace u by k. Moreover, from (3.7) the curvature of a unit-speed curve, under
flow by V, evolves by

kt = (R+ 4)q,

where again we replace u by k in the expression for R. Matters being so, we define the following
mKdV-type vector fields

Vj = Njγs +Mj(iγs) + Lj(iγ), j ≥ 1.

(From now on, we will take Lj , Mj , Nj , as well as the operators for the mKdV hierarchy, as
having u replaced by k.) As noted, these are tangent to the submanifold P1, and it is easy to see
that on unit-speed curves they induce curvature evolutions by linear combinations of members of
the mKdV hierarchy (see below). However, these vector fields are defined on the larger space P,
and in the periodic case we will explore their properties in relation to the symplectic structure.

For example, when we restrict our attention to the space PL of periodic curves, the vector
field

V1 =
1

2
k2γs + ks(iγs) + 2k(iγ) =

k2

2⟨γx, γx⟩1/2
γx +

kx
⟨γx, γx⟩

iγx + 2k(iγ)

is equivalent to the Hamiltonian vector field from Proposition 3.3. Similarly, we will show below
that the rest of the vector fields Vj represent Hamiltonian vector fields on QL.

Proposition 3.6. Let Vj be the vector field on QL represented by Vj. Then Ω(Vm,Vj) = 0 for
j = 1, . . . ,m− 1.

Proof. Let γ ∈ PL. By definition of Ω[γ], the statement is equivalent to
∫ L
0 Lm(Lj)x dx = 0.

Because this equation is invariant under arbitrary reparametrizations, it suffices to verify this
when γ ∈ P1

L and x = s, an arclength parameter. The rest of the argument is essentially the
same as the last step in the proof of [26, Lemma 7.25]. ■

To show that the Vj are Hamiltonian, we need to compute the variations of reparametrization-
invariant integrals involving the curvature and its derivatives.
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Lemma 3.7. Let γ ∈ PL, let pγ( · , t) ∈ PL be a smooth variation of γ, and let V be as in (3.3),
but with the subscript V omitted from the components p, q, r. Let kj denote the jth derivative
of curvature with respect to arclength and let β = ⟨γx, γx⟩1/2. Then for the functional

H(γ) =

∫ L

0
f(k, k1, . . . , kn)β dx,

we have

d

dt

∣∣∣∣
t=0

H(pγ) =

∫ L

0
(Ef)

(
(βqx)x

β
+ q

(
βx
β

)
x

+ β2(k2 + 4)q

)
− (Ff)β2kq dx,

where

Ef =

n∑
m=0

(
− ∂

∂s

)m ∂f

∂km
, Ff = f −

n∑
m=0

m−1∑
j=0

km−j

(
− ∂

∂s

)j ∂f

∂km
.

Proof. By straightforward differentiation,

d

dt

∣∣∣∣
t=0

H(pγ) =

∫ L

0

(
n∑

m=0

∂f

∂km
k̇m

)
β + fβ̇ dx, (3.12)

where the dot indicates ∂/∂t. We wish to express k̇m in terms of k̇. For this purpose, note that[
∂

∂t
,
∂

∂s

]
=

[
∂

∂t
, β−1 ∂

∂x

]
= −β−2β̇

∂

∂x
= −β−1β̇

∂

∂s
.

Applying this to kj , we obtain

k̇j+1 =
∂

∂s
k̇j − β−1β̇kj+1.

By iterating this formula, it follows that

k̇m =

(
∂

∂s

)m

k̇ −
m−1∑
j=0

(
∂
∂s

)j (
β−1β̇km−j

)
.

We substitute this in (3.12), use dx = β−1ds to apply integration by parts with respect to s,
and substitute expressions for k̇ from (3.6) and for β̇ from (3.9), giving

dH[V] =

∫ x=L

x=0

 n∑
m=0

∂f

∂km

( ∂

∂s

)m

k̇ −
m−1∑
j=0

(
∂

∂s

)j (
β−1β̇km−j

)+ fβ−1β̇ ds

=

∫ x=L

x=0

[
n∑

m=0

((
− ∂

∂s

)m ∂f

∂km

)]
k̇

+

f −
n∑

m=0

m−1∑
j=0

km−j

((
− ∂

∂s

)j ∂f

∂km

)β−1β̇ ds

=

∫ L

0
(Ef)

(
(βqx)x

β
+ q

(
βx
β

)
x

+ βkxp+ β2
(
k2 + 4

)
q

)
+ (Ff)

(
(βp)x − β2kq

)
dx.

It is easy to check that

(Ef)kx = (Ff)x, (3.13)

and thus the terms in dH[V] involving p make up an exact x-derivative of a periodic function,
whose integral is zero. This gives the desired expression. ■
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Proposition 3.8. Each mKdV vector field Vj represents a Hamiltonian vector field on QL.

Proof. Let γ ∈ PL, and let functional H and vector field V be as in Lemma 3.7. Because of
reparametrization invariance of H, we can assume that γ is parametrized with constant speed β.
Then, using rx = 2β2q, we have

dH[V] =

∫ L

0
(Ef)

(
qxx +

1
2rx
(
k2 + 4

))
− 1

2(Ff)krx dx.

Applying integration by parts to the second derivative term gives

dH[V] =
1

2

∫ L

0

(
β−2(Ef)xx +

(
k2 + 4

)
Ef − kFf

)
rx dx.

Since (kEf − Ff)s = k(Ef)s from (3.13), we can express this in terms of an mKdV recursion
operator applied to Ef :

dH[V] =
1

2

∫ L

0
rx
(
δ2 + kδ−1kδ + 4

)
Ef dx =

1

2

∫ L

0
rx(R

∗ + 4)Ef dx,

where δ denotes the total s-derivative.
Recall that the third ‘r’ component of Vj is Lj . Since Lj = 2Eρj and R∗ is the recursion

operator for the Lj , then

Lj+1 + 4Lj = 2(R∗ + 4)Eρj , j ≥ 1.

Using this inductively, we have

Lj+1 − (−4)jL1 =

j∑
k=1

(−4)j−k(Lk+1 + 4Lk) = 2(R∗ + 4)

j∑
k=1

(−4)j−kEρk.

In particular, if we set f =
∑j

k=1(−4)j−kρk, we see that

dH[V] = Ω
(
Vj+1 − (−4)jV1,V

)
.

Since it has already been shown that V1 is Hamiltonian, it follows that Vn is Hamiltonian for
any n ≥ 1. ■

From (3.7), when restricted to unit-speed curves, the Hamiltonian vector field Vj induces
the curvature evolution

kt = (R+ 4)Mj = Mj+1 + 4Mj (3.14)

for j ≥ 1. For the sake of convenience, we define V0 = γx, which induces the translation flow
kt = ks. If we define

Zn =
n∑

j=0

(−4)n−jVj ,

then Zn induces the curvature evolution

kt = (−4)nM1 + (R+ 4)

(
n∑

j=1

(−4)n−jMj

)
,
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since M1 = ks. Using (3.14) and telescoping, this simplifies to

kt = (−4)nM1 +

n∑
j=1

(−4)n−j(Mj+1 + 4Mj) = Mn+1.

Thus, Zn induces the (n+ 1)st mKdV equation for curvature.
For later use, we now derive the evolution of the Frenet frame under flow Z1.

Lemma 3.9. Let pΓ(s, t) be the U(2)-valued Frenet frame for a smooth family of curves pγ(s, t)
parametrized by arclength s, such that

∂pγ

∂t
= Z1 =

(
1

2
pk2 − 4

)
pγs + pks(iγs) + 2pk(iγ),

where pk(s, t) is the curvature. Then pΓ satisfies
∂pΓ

∂t
= pΓP , where

P =

(
2ipk 4− 1

2
pk2 + ipks

1
2
pk2 − 4 + ipks i

(
pkss +

1
2
pk3 − 2pk

)) . (3.15)

Proof. Since pγ is the first column of pΓ, then entries of the first column of P are dictated by the
flow of pγ. Since pΓ is U(2)-valued then P takes value in u(2), and this determines the upper-right

entry. Finally, since pΓs = pΓU where U =
(

0 −1

1 ipk

)
, then equating mixed partials leads to the

necessary compatibility condition

Ut − Ps − [U,P ] = 0,

which determines the lower right entry in P . ■

4 Stationary curves

Let γ be a periodic unit-speed Legendrian curve with curvature function k and let pγ(s, t) be its
evolution by the flow of Zn. We say that γ is stationary if pγ(s, t) = A(t)γ(s−at) for some constant
a ∈ R and A: R → U(2). If γ is stationary, then the evolving curvature pk(s, t) := k(s − at) is
a periodic traveling wave solution of the (n+ 1)st mKdV equation.

This section focuses on closed curves with non-constant curvature which are stationary for Z1,
which we will call s-loops. By substituting pk into the mKdV equation, we see that k(s) = pk(s, 0)
is a solution of the third-order ODE

k′′′ +
3

2
k2k′ + ak′ = 0, (4.1)

where prime denotes d/ds. Obviously the converse also holds: if k is a solution of (4.1), then
pk(s, t) := k(s− at) is a traveling wave solution of the mKdV equation.

Remark 4.1. Equation (4.1) implies that the Clifford projection of an s-loop is a closed elastic
curve in S2 (see, e.g., [13] and the literature therein). However, due to the constraint on the
rationality of the total curvature, the Legendrian lifts of closed elastica of S2 are, in general, not
closed.

We will refer to a unit-speed Legendrian curve whose curvature is a non-constant periodic
solution of (4.1) as an s-curve; thus, while s-loops are closed, s-curves are not necessarily closed
despite having periodic curvature.

The study of s-loops is organized in two steps. The first is the analysis of the s-curves
(obtained from periodic solutions of (4.1)) and the second is the derivation of the closure con-
ditions, via integration of the Frenet equations (2.2). We describe this scheme for the general
case, suppressing some details, before we apply it to a specific class of stationary curves.
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4.1 The general scheme

By integrating (4.1) twice, we obtain the two conservation laws

k′′ +
1

2
k3 + ak +

1

2
b = 0, (4.2a)

(k′)2 +
1

4
k4 + ak2 + bk + c = 0. (4.2b)

Thus, k is determined by inverting an Abelian integral along the phase curve y2 +Pa,b,c(x) = 0,
where Pa,b,c is the fourth-degree polynomial

Pa,b,c(x) =
1

4
x4 + ax2 + bx+ c.

As a consequence of the Poincaré–Bendixon theorem, periodic solutions of (4.2b) exist if and
only if Pa,b,c possesses either

� four distinct real roots e1 > e2 > e3 > e4 = −(e1 + e2 + e3), which we will call the dnoidal
case; or

� two distinct real roots e1 > e2 and two complex conjugate roots −1
2(e1 + e2) ± ie3 where

e3 > 0, which we will call the cnoidal case; or

� three distinct real roots, one them with multiplicity two, which is a degenerate limit of the
cnoidal case.

In each case, the coefficients a, b and c of Pa,b,c can be written as functions of real parameters
(e1, e2, e3). We will refer to e = (e1, e2, e3) as the modulus of k.

Assuming that γ is an s-curve, we can arrange (by translating in s, and reversing the orien-
tation of γ if necessary) that k(0) = e2, from which it follows that k′(0) = 0. With this choice
of initial condition, the modulus e uniquely determines k(s). Moreover, any other s-curve with
the same modulus is of the form Aγ0(s + c) for some matrix A ∈ U(2) and constant c, and is
thus congruent to γ. Consequently, the congruence classes of s-curves of dnoidal type are in
one-to-one correspondence with the elements of

D =
{
(e1, e2, e3) ∈ R3 | e1 > e2 > e3 > −(e1 + e2 + e3)

}
,

while the congruence classes of s-curves of cnoidal type are in one-to-one correspondence with
the elements of

C =
{
(e1, e2, e3) ∈ R3 | e1 > e2, e3 > 0

}
.

Sets C and D are the moduli spaces of the s-curves of dnoidal and cnoidal type, respectively.

The curvature of an s-curve with modulus e = (e1, e2, e3) is given by

k(s) =
q11 + q12 dn

2(qs,m)

q21 + q22 dn
2(qs,m)

, dnoidal case,

k(s) =
q11 + q12 cn(qs,m)

q21 + q22 cn(qs,m)
, cnoidal case, (4.3)

where cn and dn are the Jacobi elliptic functions, m is the square of the Jacobi modulus [18],
and coefficients qij and parameters q, m are certain functions of e (see [1, formulas (256.00)
and (259.00)]). In the degenerate cnoidal case, m = 0 and cn(qs,m) is replaced by cos(qs); in
the sequel, we will not consider this case.



mKdV-Related Flows for Legendrian Curves in the Pseudohermitian 3-Sphere 19

The wavelength (i.e., the least period of the curvature) is

ω =

{
2K(m)/q, dnoidal case,

4K(m)/q, cnoidal case,
(4.4)

where K(m) denotes the complete elliptic integral of the first kind. By integrating the curvature
over its wavelength, we obtain the quantum of total curvature

Φ1(e) :=
1

2π

∫ ω

0
k ds = AK(m) + BΠ(n1,m), (4.5)

which can be expressed in terms of K(m) and the complete elliptic integral of the third kind
Π(n1,m), where A, B and n1 are functions of e (see in [1, formulas (340.03) and (341.03)]). By
Proposition 2.8, rationality of the quantum of curvature is a necessary condition for an s-curve to
be closed; however, this is not sufficient. In order to deduce sufficient conditions, we next define
the conserved momentum and show how explicit s-curves can be obtained through integration
by quadratures.

The momentum. Let h0(2) be the vector space of traceless 2× 2 hermitian matrices. For
every modulus e, we consider the map H : R → h0(2) defined by

H =

(
2k + 1

4b k′ + i
(
1
2k

2 + a− 4
)

k′ − i
(
1
2k

2 + a− 4
)

−2k − 1
4b

)
, (4.6)

where k is as in (4.3). From (4.2), it follows that H has constant eigenvalues ±λ, where

λ =
1

4

√
256− 128a+ 16a2 + b2 − 16c > 0.(

Given the expression for λ2 in terms of the components of e, it is straightforward to use calculus
to prove that it never vanishes in either the cnoidal or dnoidal cases.

)
Moreover, equation (4.2)

implies that

H′ + [U, H] = 0, where U =

(
0 −1
1 ik

)
as in formula (2.2).

It follows that, if Γ is the moving frame along an s-curve γ with curvature k, then

ΓHΓ−1 = m, (4.7)

where m is a constant element of h0(2), called the momentum of γ. By multiplying γ by a matrix
in U(2) if necessary, we can assume that

m =

(
−λ 0
0 λ

)
. (4.8)

4.2 Integrability by quadratures

Let Vj : R → C2 for j = 1, 2 be the periodic maps

V1 =

(
H12

−H11 − λ

)
, V2 =

(
−H22 + λ

H21

)
. (4.9)

Proposition 4.2. For every s ∈ R, V1(s) and V2(s) belong to the ∓λ-eigenspaces of H(s),
respectively. They are everywhere linearly independent if γ is of dnoidal type, or if γ is of
cnoidal type with generic modulus (i.e., 8e2 + b+ 4λ ̸= 0). In the exceptional (i.e., non-generic
cnoidal) case, V1 and V2 vanish at s = hω for each h ∈ Z (where ω is the wavelength in (4.4)),
and are linearly independent everywhere else.
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Proof. The first part of the statement is a straightforward consequence of (4.9). Moreover,
if V1 and V2 are nonzero then they are linearly independent as they are eigenvectors for different
eigenvalues.

Since V1, V2 are periodic, we can assume that s ∈ [0, ω). Note that the derivative k′ vanishes
at s = 0 or s = 1

2ω and is nonzero elsewhere, so V1(s), V2(s) are nonzero if s ̸= 0 and s ̸= 1
2ω.

Note also that k(0) = e2 and k
(
1
2ω
)
= e1. Thus, we have

V1(0) =

(
1
2 i
(
e22 + 2a− 8

)
−1

4(8e2 + b)− λ

)
, V2(0) =

(
1
4(8e2 + b) + λ
1
2 i
(
e22 + 2a− 8

)) ,

and

V1
(
1
2ω
)
=

(
1
2 i
(
e21 + 2a− 8

)
−1

4(8e1 + b)− λ

)
, V2

(
1
2ω
)
=

(
1
4(8e1 + b) + λ
1
2 i
(
e21 + 2a− 8

)) .

Hence, it suffices to prove that V1 is nowhere zero in the dnoidal or generic cnoidal cases, and
that, in the exceptional case, V1 vanishes only at s = 0.

Consider the cnoidal case. In this case, expressing a in terms of e1, e2, e3 gives

e21 + 2a− 8 =
1

8

(
5e21 − 2e1e2 − 3e22 + 4e23 − 64

)
(4.10)

for one half of the imaginary part of the upper entry of V1
(
1
2ω
)
. Suppose this vanishes; then

e3 =
1

2

√
−5e21 + 2e1e2 + 3e22 + 64.

Using this equality and writing λ and b as a functions of e1 and e2, minus one times the bottom
entry of V1

(
1
2ω
)
becomes

1

4
(b+ 8e1) + λ =

1

8
(e1 − e2)

(
16 + (e1 + e2)

2
)
> 0.

Hence, V1
(
1
2ω
)
̸= 0. It is clear that if 8e2 + b + 4λ ̸= 0 then V1(0) ̸= 0. On the other hand, if

4λ = −(8e2 + b), then squaring both sides and using (4.10) gives e22 + 2a− 8 = 0, so V1(0) = 0.
Consider now the dnoidal case. In this case, the analogue of (4.10) is

e21 + 2a− 8 =
1

2

(
e21 − e22 − e23 − e1e2 − e1e3 − e2e3 − 16

)
. (4.11)

Suppose that left-hand side
(
which is one half of the imaginary part of the upper entry of V1

(
1
2ω
))

vanishes. Recall that the roots e1, e2, e3, e4 have been ordered so that e1 > e2 > e3 > e4. Since
their sum is zero, root e1 is positive. Then, setting the right-hand side of (4.11) to zero and
solving gives

e1 =
1

2

(
e2 + e3 +

√
64 + 5e22 + 6e2e3 + 5e23

)
.

Then, expressing b in terms of e1, e2, e3 and using the last equation gives

b+ 8e1 =
1

4

(
16 + (e2 + e3)

2
)(

2e2 + 2e3 +
√
64 + 5e22 + 6e2e3 + 5e23

)
> 0.

Hence, since λ is positive we have b+8e1+4λ > 0, and so V1
(
1
2ω
)
̸= 0. Next, suppose the upper

entry of V1(0) vanishes. Then (4.11) gives

e21 − e22 + e23 + e1e2 + e1e3 + e2e3 + 16 = 0.
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Solving with respect to e1 and taking into account that e1 > e4, we obtain

e1 =
1

2

(
−e2 − e3 +

√
5e22 − 2e2e3 − 3e23 − 64

)
.

Again, expressing b in terms of the moduli and using the last equation gives

−1

4
(b+ 8e2)− λ =

1

16

(
−(e2 − e3)

(
(e2 + e3)

2 + 16
)
−
∣∣(e2 − e3)

(
(e2 + e3)

2 + 16
)∣∣).

Since e2 > e3 the left hand side is strictly negative, and thus V1(0) ̸= 0. ■

Let J = R in the generic case and J = R \ {hω}h∈Z in the exceptional case. From (4.7),
it follows that Γ(s)V1(s) and Γ(s)V2(s) are ∓λ-eigenvectors of m, for every s ∈ J. Since these
vectors are fixed up to scalar multiple, it follows that there exist smooth functions ℓj : J → C,
j = 1, 2 such that

d

ds

(
ΓVj
)
= ℓjΓV

j , j = 1, 2. (4.12)

Using (2.2), we rewrite (4.12) in the form

d

ds
Vj = −(U − ℓjId2×2)V

j , j = 1, 2. (4.13)

From (4.6) and (4.9), we can express Vj and its derivative in terms of k and k′. Solving (4.13)
for ℓ1 and ℓ2, we obtain

Re ℓ1 = Re ℓ2 =
4k′

8k + 4λ+ b
, Im ℓ1 =

3k

4
+ Λ, Im ℓ2 =

k

4
− Λ,

where

Λ =
16(4− a) + (b+ 4λ)k

4(8k + 4λ+ b)
. (4.14)

On the other hand, (4.12) implies that

Γ|J e−
∫
ℓjdsVj = Ξj , j = 1, 2,

where Ξ1 and Ξ2 are locally constant maps with values in the ∓λ-eigenspaces of m. Since m is in

diagonal form, Ξ1 =
(
ξ11 , 0

)T
and Ξ2 =

(
0, ξ22

)T
, where ξ11 , ξ

2
2 are nonzero constants. Choosing

appropriately the primitives of the ℓj-functions, we may assume ξ11 = ξ22 = 1. Hence, the Frenet
frame along an s-curve with modulus e is given by

Γ|J =
√
8k + 4λ+ b

(
ei

∫
3
4
k+Λds 0

0 ei
∫

1
4
k−Λds

)
V−1, (4.15)

where V =
(
V1, V2

)
and Λ is as in (4.14). Using (4.3), we can rewrite Λ in the form

Λ(s) =
p11 + p12 dn

2(qs,m)

p21 + p22 dn
2(qs,m)

, dnoidal case,

Λ(s) =
p11 + p12 cn(qs,m)

p21 + p22 cn(qs,m)
, cnoidal case,

the coefficients pij being appropriate functions of e. Using standard elliptic integrals we obtain

Φ2(e) :=
1

2π

∫ ω

0
Λds = CK(m) + DΠ(n2,m),

where C, D and n2 are functions of the modulus e. As a consequence of (4.5) and (4.15), we
have the following.



22 A. Calini, T. Ivey and E. Musso

Proposition 4.3. An s-curve with modulus e is closed if and only if

(Φ1(e),Φ2(e)) ∈ Q2.

Remark 4.4. If we compute the monodromy M := Γ|ω Γ|−1
0 ∈ U(2) for an s-curve γ, then γ is

closed if and only if M has finite order, the order being the wave number of γ.

Proposition 4.5. Let γ be an s-curve with modulus e and momentum m given by (4.8). Then

pγ(s, t) = exp

(
i

(
m− 1

4
bId2×2

)
t

)
γ(s− at)

is the evolution of γ by the flow of Z1.

Proof. From (2.2) and Lemma 3.9, we have

pΓ−1dpΓ = U(s− at) ds+ P (s− at) dt,

where U(s − at) =
(

0 −1
1 ik(s−at)

)
and P (s − at) is given by (3.15) with pk(s, t) = k(s − at).

Using (4.2a), we can write

kss(s− at) +
1

2
k(s− at)3 − 2k(s− at) = −(a+ 2)k(s− at)− 1

2
b,

so that

P (s− at) =

(
2ipk 4− 1

2
pk2 + ipks

−4 + 1
2
pk2 + ipks −i

(
(a+ 2)pk + 1

2b
)) . (4.16)

Since γ is stationary, its evolving Frenet frame satisfies pΓ(s, t) = A(t)Γ(s − at), where

A: R → U(2) is a smooth map with A(0) = Id2×2. Substituting this into ∂pΓ
∂t = pΓP (s − at),

we deduce that

P (s− at) = Γ(s− at)−1A(t)−1 ∂

∂t
(A(t)Γ(s− at))

= Γ(s− at)−1A(t)−1

(
A′(t)Γ(s− at) + A(t)

∂

∂t
Γ(s− at)

)
= Γ(s− at)−1A(t)−1A′(t)Γ(s− at)− aU(s− at). (4.17)

From (4.16) and (4.6), we obtain

P (s− at) + aU(s− at) = i

(
H(s− at)− 1

4
b Id2×2

)
. (4.18)

Then (4.17) and (4.18) imply that

A(t)−1A′(t) = iΓ(s− at)H(s− at)Γ(s− at)−1 − i
1

4
b Id2×2 = i

(
m− 1

4
b Id2×2

)
.

Exponentiating the matrix on the right and substituting in pγ(s, t) = A(t)γ(s − at) gives the
required formula. ■

Remark 4.6. The evolution of γ is periodic in t if and only if there exist p1, p2 ∈ Q such that
b = p1λ and πa = p2ωλ. An s-loop satisfying these two constraints is said to be t-periodic.
However, in some cases (for instance if b = 0) the trace |pγ(−, t)| can evolve periodically in time
even though γ is not time-periodic.
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4.3 Phase-symmetrical s-curve of cnoidal type

We now specialize the general scheme to s-curves and s-loops of cnoidal type whose phase curves
are symmetrical about the imaginary axis; we call these ϕ-curves and ϕ-loops for short. The
moduli of a ϕ-curve satisfy e2 = −e1. We drop the dependence upon e2 and we identify the
moduli space of ϕ-curves with the quadrant C0 =

{
(e1, e3) ∈ R2 | e1 > 0, e3 > 0

}
. (The zero

subscript indicates our symmetric assumption.) The curvature and the wavelength of a ϕ-curve
with modulus e = (e1, e3) are given by

k = −e1 cn(ℓs,m), ωe =
4

ℓ
K(m), (4.19)

where m =
e21

e21+e23
and ℓ = 1

2 |e| =
1
2

√
e21 + e23. From the curvature formula it follows that the

quantum Φ1 of total curvature of a ϕ-curve vanishes. As a consequence we have:

Corollary 4.7. A ϕ-curve of modulus e is closed if and only if Φ2(e) ∈ Q. The Maslov index
of a ϕ-loop is zero.

Remark 4.8. The modulus e is exceptional (in the sense of Proposition 4.2) if and only if it is
an element of C∗

0 = {e ∈ C0 | |e| = 4}.

In order to compute Φ2(e) :=
1
2π

∫ ωe

0 Λds, we start with the expressions for a and λ in terms
of the modulus, take into account that b = 0, and use (4.19). Then expression (4.14) for the
Λ-function becomes

Λ =
16 + e21 − e23 − λe1 cn(ℓs,m)

4λ− 8e1 cn(ℓs,m)
, (4.20)

while (4.14) specializes to λ = 1
4

√
(e21 + e23 − 16)2 + 64e21.

From (4.20), using the standard elliptic integral (341.03) of [1], we obtain

Φ2(e) =


λ

2π|e|

(
K(m)− |e|2 + 16

|e|2 − 16
Π

(
−64e21

(|e|2 − 16)2
,m

))
, e /∈ C∗

0 ,

e1
4π

K

(
e21
16

)
, e ∈ C∗

0 .

The function Φ2 is real-analytic on C0 \ C∗
0 and has a jump discontinuity on C∗

0 . However, its
regularization

Φ̃2(e) =


Φ2(e), e ∈ C−

0 ,

Φ2(e) +
1

2
, e ∈ C∗

0 ,

Φ2(e) + 1, e ∈ C+
0 ,

where C+
0 = {e ∈ C0 | |e| > 4} and C−

0 = {e ∈ C0 | |e| < 4} are the connected components

of C0 \ C∗
0 , is real analytic on C0. Since Φ̃2 differs from Φ2 by a rational number, we have the

following.

Corollary 4.9. A ϕ-curve with modulus e is closed if and only if Φ̃2(e) ∈ Q.

Definition 4.10. Let γ be a ϕ-loop with modulus e such that Φ̃2(e) = q ∈ Q. We call q the
characteristic number of γ.

An experimental analysis of the symplectic gradient of Φ̃2 leads to the following observations
(see also Figure 3):
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Figure 3. Selected level sets Σr for r-values specified in the legend.

� The map Φ̃2 is a submersion from C0 onto the interval J1/2 = (1/2,+∞). For r ∈ J1/2,

let Σr denote the fiber (or level set) Φ̃−1
2 (r). Then Σr intersects C∗

0 transversely in a single
point. In particular, for every q ∈ J1/2∩Q, the points along Σq correspond to a 1-parameter
family of distinct congruence classes of ϕ-loops with characteristic number q.

� The fiber Σ1 is unbounded, and ∂Σ1 = {e−1 } where e−1 = (0, 2). When e ∈ Σ1 tends to e−1 ,
the tangent to Σ1 at e limits to a horizontal line. In addition, the oblique line e3 = pe1
for p ≈ 0.448103 is an asymptote of Σ1.

� If r ∈ (1/2, 1), the fiber Σr is bounded, lies above Σ1, and has two boundary points
along the e3-axis: the upper boundary point e+r =

(
0, e+3,r

)
where e+3,r > 4, and the lower

boundary point e−r = (0, e−3,r) where 2 < e−3,r < 4. When e ∈ Σr tends to e±r , the tangent
to Σr at e tends to a horizontal line.

� If r > 1, the fiber Σr lies below Σ1 and has a unique boundary point e−r = (0, e−3,r), with

e−3,r ∈ (0, 2). As in the previous case, when e ∈ Σr tends to e−r , the tangent to Σr at e

tends to the horizontal line e3 = e−3,r. In addition, the e1-axis is an asymptote of Σr.

For q ∈ J1/2∩Q, we call Σq the modular curve of q. The exceptional point Σq ∩C∗
0 is denoted

by e∗q . Then Σq \ {e∗q} has two connected components: Σ−
q ⊂ C−

0 and Σ+
q ⊂ C+

0 .

Congruence class representative

For a given modulus e, we pick a representative ϕ-loop γe, uniquely specified by initial conditions

γe(0) = ∥U−1
e ∥Ue, γ′e(0) = ∥U−1

e ∥U∗e,

where

Ue =

(
−4i(2e1 + λ)
|e|2 − 16

)
, U∗e =

(
−U2e
U1e

)
.

We call this is a standard ϕ-loop; clearly, any ϕ-loop is congruent to a standard one. From now
on we assume that ϕ-loops are in their standard forms.
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Figure 4. Left: for e = (0.600642, 2.44722) ∈ Σ5/6, the Clifford projection ηe of the loop γe; the blue

vector passing through the cyan point is i = (1, 0, 0). Right: the Heisenberg projection (γe)H of γe; the

blue vector is parallel to k = (0, 0, 1).

Figure 5. Left: for e∗5/6 ≈ (2.39412, 3.2044), the Clifford projection ηe of the loop γe. Right: the

Heisenberg projection (γe∗
5/6

)H . (Blue vectors are the same as in Figure 4.)

Definition 4.11. We call the 1-parameter family Gq = {γe | e ∈ Σq} of ϕ-loops the isomon-
odromic family of q. The terminology is motivated by the fact that every loop in Gq has mon-
odromy

Mq =

(
ei2π q 0
0 e−i2π q

)
.

(The diagonal form of the monodromy is the reason for our choice of initial conditions for
standard loops.)

Finally, we discuss the geometry of ϕ-loops, along with several examples.

Geometric features

Let e ∈ Σq for q = m/n ∈ J1/2 ∩Q. From formula (4.15) for the Frenet frame, setting Φ1 = 0,

Φ̃2 = q along Σq, and using the properties of the map Φ̃2, we derive the following results:

� If n is odd, the spin s and the Clifford index cl of γe are both 1. If n is even, s = 1/2
and cl = 2.

� The image of γe is invariant by the group of order n generated by the monodromy, while
the image of the Clifford projection ηe is invariant by the group generated by the rotation
of 2π/(sn) around the x-axis.
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Figure 6. Left: the Clifford projection ηe of the loop with modulus e = (2.59382, 3.35732) ∈ Σ5/6 The

blue vector passing through the cyan point is i = (1, 0, 0). Right: the Heisenberg projection (γe)H of γe.

The blue vector is parallel to k = (1, 0, 0).

Figure 7. Left: the Clifford projection ηe′ of the loop with modulus e′ = (2.65939, 3.41132) ∈ Σ5/6 The

blue vector passing through the cyan point is i = (1, 0, 0). Right: the Heisenberg projection (γe′)H of γe′ .

The blue vector is parallel to k = (1, 0, 0).

� The image of ηe∗q passes through each of the poles N± = (±1, 0, 0) ns times. If e ̸= e∗q ,

the image of ηe is bounded by the planes x = η1e(0) ∈ (0, 1) and x = η1e(ωe/2) = −η1e(0) ∈
(−1, 0), where η1e denotes the first component of ηe.

� Let S1x ⊂ S2 be the equator S2∩Oyz oriented counterclockwise with respect to i = (1, 0, 0).
Taking the homotopy class of S1x as generator, we identify the fundamental group π1

(
S2 \

{N±}
)
with Z. Similarly, if we let S1z ⊂ R3\Oz be the unit circle centered at the origin and

contained in the plane z = 0, equipped with the counterclockwise orientation with respect
to upward oriented z-axis, then that generator allows us to identify the fundamental group
π1
(
R3 \ Oz

)
with Z. Using these identifications, for a given e ∈ Σ+

q the homotopy class
[ηe] ∈ π1

(
S2 \ {N±}

)
is 2s(n−m); equivalently, the homotopy class

[
γ̃e
]
∈ π1

(
R3 \Oz

)
is

2s(n−m). For e ∈ Σ−
q , the homotopy classes [ηe] and

[
γ̃e
]
are both 2sm sign(n−m).

� As e limits to e±q , ηe tends to the (standard) Legendrian lifts of the corresponding multiply-
covered circles.

� If e ∈ Σq, the Clifford projection ηe is a simple curve if and only if m = n − 1 and
∥e− e+q ∥ < εq, where εq > 0 depends on q = (n− 1)/n.
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Figure 8. Left: the Clifford projection ηẽ of the loop with modulus ẽ = (3.99723, 5.1619) ∈ Σ5/6. The

blue vector passing through the cyan point is i = (1, 0, 0). Right: the Heisenberg projection (γẽ)H of γẽ.

The blue vector is parallel to k = (1, 0, 0).

� There exist countably many e ∈ Σq such that the evolution γ̂e(−, t) of γe is periodic in t.
More precisely, let Pq : Σq → R be the real-analytic function

Pq(e) =
π
(
e23 − e21

)
|e|

16λK(m)

and suppose its range is the interval Iq ⊂ R. From Proposition 4.5 and Remark 4.6,
it follows that the evolution γ̂e(−, t) of a ϕ-loop γe ∈ Gq is periodic in t if and only if
P(e) = m̃/ñ ∈ Q. The time period is 2πñn/hλe, where h = gcd(n, m̃).

Examples

We consider the isomonodromic family with q = 5/6. Given e, e′ ∈ Σq, let Σq(e, e
′) be the

oriented, open arc of Σq joining e and e′. The limit points of Σ5/6 are e−5/6 = (0, 12/5) and

e+5/6 = (0, 12). The exceptional point is e∗5/6 = (2.39412, 3.2044).

� Let e ∈ Σ5/6

(
e−5/6, e

∗
5/6

)
. Then the image of ηe is contained in S2\{N±} and has 12 ordinary

double points (see Figure 4). Since ηe(s) for s ∈ [0, 3ωe] turns clockwise 5 times around the
x-axis, then [ηe] ∈ π1

(
S2 \N±) is −5. Meanwhile, the image of the Heisenberg projection

(γe)H is a Legendrian unknot contained in R3 \ Oz and (γe)H(s), s ∈ [0, 6ωe], turns
clockwise 5 times around the upward-oriented vertical axis. Thus, [(γe)H ] ∈ π1

(
R3 \ Oz

)
is −5.

� For the exceptional modulus e∗5/6, ηe∗5/6 passes three times through the poles of S2 and has

six additional ordinary double points, while
(
γe∗

5/6

)
H

intersects the Oz-axis in six points

(see Figure 5).

� Let e ∈ Σ5/6

(
e∗5/6, e

+
5/6

)
. The image of ηe is contained in S2 \ {N±} and ηe(s), s ∈

[0, 3ωe], turns counterclockwise once around the x-axis, so that [ηe] ∈ π1
(
S2 \ {N±}

)
is 1. Meanwhile, the image of the Heisenberg projection (γe)H is a Legendrian unknot
contained in R3 \ Oz and (γe)H(s), s ∈ [0, 6ωe], turns counterclockwise once around the
upward-oriented vertical axis. Hence, [(γe)H ] ∈ π1

(
R3 \Oz

)
is 1.

� Let e′ = (2.65939, 3.41132) ∈ Σ5/6. ηe′ has six tangential double points (see Figure 7).

If e ∈ Σ5/6

(
e′, e+5/6

)
, ηe is a simple curve (see Figure 8).
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Figure 9. pγě(−, t), t = 0, 0.05, 0.1, 0.12 and the orbit t → pγě(0, t).

� The function P5/6 has an absolute minimum p−≈0.408156 attained at e†≈(2.7904, 3.5253).

The function is decreasing on Σ5/6

(
e−5/6, e

†), increasing on Σ5/6

(
e†, e+5/6

)
and tends to

p+ ≈ 6.75 as e → e+5/6. Thus, for every p = m̃/ñ ∈ (p−, p+) ∩ Q there exist a time-

periodic γěp ∈ Gq whose evolution has period 12πñ/gcd(6, m̃)λep . For instance, let ě =
(3.245612, 10.568031) ∈ Σ5/6, then P5/6(ě) = 5. Hence, γě is time-periodic and the time-
period of pγě is 6τ , τ = 0.229849. Figure 9 depicts the evolving curves pγě(−, t), t =
0, 0.05, 0.1, 0.12, and the orbit t → pγě(0, t).

5 Discussion

To summarize, we have shown that, in the context of pseudo-Hermitian geometry on S3, there
are flows for Legendrian curves that induce curvature evolution by any integrable PDE in the
mKdV hierarchy. Moreover, we constructed a natural symplectic structure on the space of pe-
riodic Legendrian curves relative to which each of these flows is Hamiltonian. For the flow Z1

which induces evolution by the mKdV equation itself, we have carried out a detailed analysis
of curves that are stationary (i.e., whose flows are congruent to the initial curve), identify-
ing closure conditions and obtaining a complete description of periodic stationary curves in
a significant special case. These results naturally suggest further questions and directions for
research.

First, it is worth highlighting that the closure conditions for stationary curves could only
be obtained because these curves are integrable by quadratures (see Section 4.2). In fact,
Z1-stationary curves arise as projections to S3 of trajectories of a completely integrable contact-
Hamiltonian system on U(2) × R3. It is natural to ask if this holds for higher flows in the
hierarchy. That is, for n > 1 are Zn-stationary curves also the projections of the trajectories of
some completely integrable finite-dimensional contact-Hamiltonian system?

Next, as a completely integrable PDE the mKdV equation has a rich structure, including
infinitely many conservation laws (as mentioned above), but also a Bäcklund transformation
which generates new solutions from old ones [14, 29]. Since this transformation can be realized
as a gauge transformation or ‘dressing’ at the level of the Lax pair, and these Lax equations are
equivalent to the AKNS-type system satisfied by our U(2)-valued Frenet frame, it is natural to
ask if there is a geometric transformation for Legendrian curves that corresponds to the Bäcklund
transformation for curvature. If available, this transformation could be used to generate new and
interesting solutions to our flows, starting with some of the stationary curves we have obtained
above.
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Last, the pseudo-Hermitian 3-sphere has, as mentioned in the introduction, a non-compact
dual A3, the 3-dimensional anti-de Sitter space equipped with its pseudo-Hermitian structure of
constant Webster curvature −1. In this case, we expect that the defocusing mKdV equation and
its associated hierarchy can be realized by flows of Legendrian curves in A3. It is also possible
that there are integrable flows for null curves in this space, which would likely be related to the
KdV hierarchy. If this is the case, it is natural to ask whether the Miura transformation [20]
between KdV and defocusing mKdV equations has some geometric realization that mediates
between flows of Legendrian and null curves in A3.
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[5] Calini A., Ivey T., Maŕı-Beffa G., Remarks on KdV-type flows on star-shaped curves, Phys. D 238 (2009),
788–797, arXiv:0808.3593.
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[29] Wadati M., Bäcklund transformation for solutions of the modified Korteweg–de Vries equation, J. Phys.
Soc. Japan 36 (1974), 1498–1498.

[30] Webster S.M., Pseudo-Hermitian structures on a real hypersurface, J. Differential Geometry 13 (1978),
25–41.

https://doi.org/10.1090/surv/053
https://doi.org/10.1090/surv/053
https://doi.org/10.1007/BF01209148
https://doi.org/10.1016/S0375-9601(97)00945-6
https://doi.org/10.1007/978-1-4757-3980-0
https://doi.org/10.1090/btran/33
https://arxiv.org/abs/1509.07000
https://doi.org/10.1063/1.1664700
https://doi.org/10.3842/SIGMA.2012.030
https://arxiv.org/abs/1205.5329
https://doi.org/10.1088/0951-7715/23/9/005
https://arxiv.org/abs/0911.4467
https://doi.org/10.15407/mag16.03.312
https://arxiv.org/abs/2004.11350
https://doi.org/10.1007/s10231-020-00974-7
https://doi.org/10.1007/s10231-020-00974-7
https://arxiv.org/abs/2003.01713
https://doi.org/10.1007/978-1-4612-4350-2
https://doi.org/10.1007/BF03322836
https://arxiv.org/abs/1111.3889
https://doi.org/10.1143/JPSJ.36.1498
https://doi.org/10.1143/JPSJ.36.1498
https://doi.org/10.4310/jdg/1214434345

	1 Introduction
	2 Legendrian curves in pseudohermitian S^3
	2.1 Moving frames and curvature
	2.2 Closed Legendrian curves in S^3 and their discrete invariants
	2.3 Constant-curvature examples

	3 mKdV-type flows for Legendrian curves
	3.1 Symplectic structure
	3.2 The mKdV hierarchy

	4 Stationary curves
	4.1 The general scheme
	4.2 Integrability by quadratures
	4.3 Phase-symmetrical s-curve of cnoidal type

	5 Discussion
	References

