Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 029, 34 pages      arXiv:2403.12626      https://doi.org/10.3842/SIGMA.2025.029

On Integrable Nets in General and Concordant Chebyshev Nets in Particular

Michal Marvan
Mathematical Institute in Opava, Silesian University in Opava, Na Rybnívcku 1, 746 01 Opava, Czech Republic

Received March 20, 2024, in final form March 31, 2025; Published online April 28, 2025

Abstract
We consider general integrable curve nets in Euclidean space as a particular integrable geometry invariant with respect to rigid motions and net-preserving reparameterisations. For the purpose of their description, we first give an overview of the most important second-order invariants and relations among them. As a particular integrable example, we reinterpret the result of I.S. Krasil'shchik and M. Marvan (see Section 2, Case 2 in [Acta Appl. Math. 56 (1999), 217-230]) as a curve net satisfying an $\mathbb R$-linear relation between the Schief curvature of the net and the Gauss curvature of the supporting surface. In the special case when the curvatures are proportional (concordant nets), we find a correspondence to pairs of pseudospherical surfaces of equal negative constant Gaussian curvatures. Conversely, we also show that two generic pseudospherical surfaces of equal negative constant Gaussian curvatures induce a concordant Chebyshev net. The construction generalises the well-known correspondence between pairs of curves and translation surfaces.

Key words: integrable surface; integrable curve net; differential invariant; pseudospherical surface; Chebyshev net; concordant net.

pdf (2152 kb)   tex (1519 kb)  

References

  1. Agafonov S.I., Quadratic integrals of geodesic flow, webs, and integrable billiards, J. Geom. Phys. 161 (2021), 104041, 7 pages, arXiv:2004.12374.
  2. Alekseevskij D.V., Vinogradov A.M., Lychagin V.V., Basic ideas and concepts of differential geometry, in Geometry I, Editor R.V. Gamkrelidze, Encyclopaedia Math. Sci., Vol. 28, Springer, Berlin, 1991, 1-264.
  3. Aoust A., Analyse infinitésimale des courbes tracées sur une surface quelconque, Gauthier-Villars, Paris, 1869.
  4. Baran H., Marvan M., On integrability of Weingarten surfaces: a forgotten class, J. Phys. A 42 (2009), 404007, 16 pages, arXiv:1002.0989.
  5. Baran H., Marvan M., Classification of integrable Weingarten surfaces possessing an $\mathfrak{sl}(2)$-valued zero curvature representation, Nonlinearity 23 (2010), 2577-2597, arXiv:1002.0992.
  6. Barnhill R.E., Farin G., Fayard L., Hagen H., Twists, curvatures and surface interrogation, Comput. Aided Des. 20 (1988), 341-344, 345-346.
  7. Beetle R.D., A formula in the theory of surfaces, Ann. of Math. 15 (1913-1914), 179-183.
  8. Bianchi L., Lezioni di Geometria Differenziale, Vol. 1, E. Spoerri, Pisa, 1902.
  9. Bianchi L., Lezioni di Geometria Differenziale, Vol. 2, E. Spoerri, Pisa, 1903.
  10. Bianchi L., Le reti di Tchebychef sulle superficie ed il parallelismo nel senso di Levi-Civita, Boll. Unione Mat. Ital. 1 (1922), 1-6.
  11. Bobenko A.I., Surfaces in terms of $2$ by $2$ matrices. Old and new integrable cases, in Harmonic Maps and Integrable Systems, Editors A.P. Fordy, J.C. Wood, Aspects Math., Vol. E23, Friedr. Vieweg, Braunschweig, 1994, 83-127.
  12. Bobenko A.I., Pinkall U., Discretization of surfaces and integrable systems, in Discrete Integrable Geometry and Physics (Vienna, 1996), Editors A.I. Bobenko, R. Seiler, Oxford Lecture Ser. Math. Appl., Vol. 16, Oxford University Press, New York, 1999, 3-58.
  13. Bobenko A.I., Pottmann H., Rörig T., Multi-nets. Classification of discrete and smooth surfaces with characteristic properties on arbitrary parameter rectangles, Discrete Comput. Geom. 63 (2020), 624-655, arXiv:1802.05063.
  14. Bobenko A.I., Suris Yu.B., Discrete differential geometry. Integrable structure, Grad. Stud. Math., Vol. 98, American Mathematical Society, Providence, RI, 2008.
  15. Bortolotti E., Su alcune questioni di geometria delle superficie, Boll. Unione Mat. Ital 4 (1925), 162-166.
  16. Brander D., Pseudospherical surfaces with singularities, Ann. Mat. Pura Appl. 196 (2017), 905-928, arXiv:1502.04876.
  17. Bruce J.W., Tari F., On binary differential equations, Nonlinearity 8 (1995), 255-271.
  18. Catalano Ferraioli D., de Oliveira Silva L.A., Nontrivial 1-parameter families of zero-curvature representations obtained via symmetry actions, J. Geom. Phys. 94 (2015), 185-198.
  19. Chebyshev P.L., On the cutting of garments, Russian Math. Surveys 1 (1946), no. 2, 38-42.
  20. Chern S.-S., Tenenblat K., Foliations on a surface of constant curvature and the modified Korteweg-de Vries equations, J. Differential Geometry 16 (1981), 347-349.
  21. Cieśliński J., Nonlocal symmetries and a working algorithm to isolate integrable geometries, J. Phys. A 26 (1993), L267-L271.
  22. Cieśliński J., Goldstein P., Sym A., Isothermic surfaces in $\mathbf{E}^3$ as soliton surfaces, Phys. Lett. A 205 (1995), 37-43, arXiv:solv-int/9502004.
  23. Darboux G., Leçons sur la théorie générale des surfaces, Première Partie, Gauthier-Villars, Paris, 1887.
  24. Darboux G., Leçons sur la théorie générale des surfaces, Deuxième Partie, Gauthier-Villars, Paris, 1889.
  25. Darboux G., Leçons sur la théorie générale des surfaces, Troisième Partie, Gauthier-Villars, Paris, 1894.
  26. Décaillot A.-M., Géométrie des tissus. Mosaïques. Échiquiers. Mathématiques curieuses et utiles, Rev. Histoire Math. 8 (2002), 145-206.
  27. Dini U., Sopra alcune formole generali della teoria delle superficie, e loro applicazioni, Ann. Mat. Pura Appl. 4 (1870), 175-206.
  28. Dubnov Ya.S., Semitensors of a two-dimensional net, Izv. Vyssh. Uchebn. Zaved. Mat. (1958), no. 3, 74-83.
  29. Dubrovin B.A., Theta-functions and nonlinear equations, Russian Math. Surveys 36 (1981), no. 2, 11-92.
  30. Eisenhart L.P., Three particular systems of lines on a surface, Trans. Amer. Math. Soc. 5 (1904), 421-437.
  31. Eisenhart L.P., A treatise on the differential geometry of curves and surfaces, Ginn, Boston, 1909.
  32. Faux I.D., Pratt M.J., Computational geometry for design and manufacture, Math. Appl., Ellis Horwood, Chichester, 1979.
  33. Fuchs D., Tabachnikov S., Mathematical omnibus. Thirty lectures on classic mathematics, American Mathematical Society, Providence, RI, 2007.
  34. Gambier B., Surfaces de Voss-Guichard, Ann. Sci. École Norm. Sup. 48 (1931), 359-396.
  35. Ghys É., Sur la coupe des vêtements: variation autour d'un thème de Tchebychev, Enseign. Math. 57 (2011), 165-208.
  36. Graustein W.C., Parallel maps of surfaces, Trans. Amer. Math. Soc. 23 (1922), 298-332.
  37. Graustein W.C., Parallelism and equidistance in classical differential geometry, Trans. Amer. Math. Soc. 34 (1932), 557-593.
  38. Green G.M., Nets of space curves, Trans. Amer. Math. Soc. 21 (1920), 207-236.
  39. Gürses M., Tek S., Integrable curves and surfaces,in Proceedings of the 17th International Conference''Geometry, Integrability and Quantization'' (Sts. Constantine and Elena, June 5-10, 2015), Editors I.M. Mladenov,G. Meng, A. Yoshioka, Geom. Integrability Quantization, Vol. 17, Bulgarian Academy of Sciences, Sofia, 2016, 13-71.
  40. Hasimoto H., A soliton on a vortex filament, J. Fluid Mech. 51 (1972), 477-485.
  41. Howell P.D., Ockendon H., Ockendon J.R., Draping woven sheets, ANZIAM J. 62 (2020), 355-385.
  42. Kagan V.F., Fundamentals of the theory of surfaces in tensorial representation II, Gostechizdat, Moskva, 1948.
  43. Khesin B., Tabachnikov S., Polar bear or penguin? Musings on earth cartography and Chebyshev nets, Math. Intelligencer 43 (2021), 20-24.
  44. Kilian M., Müller C., Tervooren J., Smooth and discrete cone-nets, Results Math. 78 (2023), 110, 40 pages.
  45. Koch R., Parallelogrammnetze, Monatsh. Math. 86 (1979), 265-284.
  46. Koch R., Diagonale Tschebyscheff-Netze, Abh. Math. Sem. Univ. Hamburg 52 (1982), 43-66.
  47. Konopel'chenko B.G., Nets in $\mathbb{R}^3$, their integrable evolutions and the DS hierarchy, Phys. Lett. A 183 (1993), 153-159.
  48. Krasil'shchik J., Marvan M., Coverings and integrability of the Gauss-Mainardi-Codazzi equations, Acta Appl. Math. 56 (1999), 217-230, arXiv:solv-int/9812010.
  49. Kuznetsov E.N., Underconstrained structural systems, Mech. Engrg. Ser., Springer, New York, 1991.
  50. Lamb Jr. G.L., Solitons on moving space curves, J. Math. Phys. 18 (1977), 1654-1661.
  51. Levi D., Sym A., Tu G.-Z., A working algorithm to isolate integrable surfaces in $E^3$, Preprint DF INFN Roma 761, 1990.
  52. Liddell I., Frei Otto and the development of gridshells, Case Stud. Struct. Eng. 4 (2015), 39-49.
  53. Lie S., Beiträge zur Theorie der Minimalflächen. I. Projectivische Untersuchungen über algebraische Minimalflächen, Math. Ann. 14 (1878), 331-416.
  54. von Lilienthal R., Die auf einer Fläche gezogenen Kurven, in Enzyklopädie der Mathematischen Wissenschaften mit Einschluß ihrer Anwendungen, Teubner, Leipzig, 1902, 105-183.
  55. Lin R., Conte R., On a surface isolated by Gambier, J. Nonlinear Math. Phys. 25 (2018), 509-514, arXiv:1805.10450.
  56. Liu D., Pellis D., Chiang Y.-C., Rist F., Wallner J., Pottmann H., Deployable strip structures, ACM Trans. Graph. 42 (2023), 103, 16 pages.
  57. Mack C., Taylor H.M., The fitting of woven cloth to surfaces, J. Text. Inst. Trans. 47 (1956), T477-T488.
  58. Margulies G., Peterson's theorem on surfaces corresponding by parallelism. I, Proc. Amer. Math. Soc. 12 (1961), 577-587.
  59. Marvan M., Reducibility of zero curvature representations with application to recursion operators, Acta Appl. Math. 83 (2004), 39-68, arXiv:nlin.SI/0306006.
  60. Marvan M., On the spectral parameter problem, Acta Appl. Math. 109 (2010), 239-255, arXiv:0804.2031.
  61. Masson Y., Existence and construction of Chebyshev nets with singularities and application to gridshells, Ph.D. thesis, Université Paris Est, 2017, available at https://theses.hal.science/tel-01676984v1.
  62. Masson Y., Monasse L., Existence of global Chebyshev nets on surfaces of absolute Gaussian curvature less than $2\pi$, J. Geom. 108 (2017), 25-32.
  63. Matveev V.B., 30 years of finite-gap integration theory, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366 (2008), 837-875.
  64. Montagne N., Douthe C., Tellier X., Fivet C., Baverel O., Voss surfaces: A design space for geodesic gridshells, in Inspiring the Next Generation (Proc. IASS Annual Symp. 2020 and 7th Int. Conf. Spatial Structures), Editors S.A. Behnejad, G.A.R. Parke and O.A. Samavati, Spatial Structures Research Centre University Surrey, UK, 2021, 3473-3483.
  65. Mukherjee R., Balakrishnan R., Moving curves of the sine-Gordon equation: new links, Phys. Lett. A 372 (2008), 6347-6362.
  66. Norden A.P., Theory of surfaces, GITTL, Moscow, 1956.
  67. Peterson K.M., Sur les relations et les affinités entre les surfaces courbes, Ann. Fac. Sci. Univ. Toulouse 7 (1905), 5-43, translated from Russian: Mat. Sb. 1 (1866), 391-438.
  68. Pottmann H., Eigensatz M., Vaxman A., Wallner J., Architectural geometry, Comput. Graph. 47 (2015), 145-164.
  69. Rogers C., Schief W.K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2002.
  70. Sageman-Furnas A.O., Chern A., Ben-Chen M., Vaxman A., Chebyshev nets from commuting PolyVector fields, ACM Trans. Graph. 38 (2019), 172, 16 pages.
  71. Sannia G., Geometria differenziale dei reticolati piani invariante per un gruppo di collineazioni, Rend. Circ. Mat. Palermo 48 (1924), 289-307.
  72. Sauer R., Weckelige Kurvennetze bei einer infinitesimalen Flächenverbiegung, Math. Ann. 108 (1933), 673-693.
  73. Sauer R., Differenzengeometrie, Springer, Berlin, 1970.
  74. Scherrer W., Die Grundgleichungen der Flächentheorie. I, Comment. Math. Helv. 29 (1955), 180-198.
  75. Scherrer W., Die Grundgleichungen der Flächentheorie. II, Comment. Math. Helv. 32 (1957), 73-84.
  76. Scherrer W., Die Grundgleichungen der Flächentheorie. III, Comment. Math. Helv. 37 (1962), 177-197.
  77. Schief W.K., On the integrability of Bertrand curves and Razzaboni surfaces, J. Geom. Phys. 45 (2003), 130-150.
  78. Schief W.K., Discrete Chebyshev nets and a universal permutability theorem, J. Phys. A 40 (2007), 4775-4801.
  79. Schief W.K., Rogers C., Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), 3163-3188.
  80. Servant M., Sur l'habillage des surfaces, C. R. Acad. Sci. 137 (1903), 112-115.
  81. Shin H.J., Lund-Regge vortex strings in terms of Weierstrass elliptic functions, Nuclear Phys. B 624 (2002), 431-451.
  82. Shulikovsky V.I., Classical differential geometry, GIFML, Moscow, 1963.
  83. Spivak M., A comprehensive introduction to differential geometry. Vol. III, Publish or Perish, Inc., Boston, MA, 1975.
  84. Sym A., Soliton surfaces and their applications (soliton geometry from spectral problems), in Geometric Aspects of the Einstein Equations and Integrable Systems (Scheveningen, 1984), Lecture Notes in Phys., Vol. 239, Springer, Berlin, 1985, 154-231.
  85. Tellier X., Bundling elastic gridshells with alignable nets. Part I: Analytical approach, Autom. Constr. 141 (2022), 104291, 36 pages.
  86. Tian C., Foliation on a surface of constant curvature and some nonlinear evolution equations, Chinese Ann. Math. Ser. B 9 (1988), 118-122.
  87. Toda M., On a duality property of isothermic surfaces, JP J. Geom. Topol. 20 (2017), 85-90.
  88. Vashpanova T.Yu., Bezkorovaynaya L.L., LGT-network of a surface and its properties, Visn. Kyiv. Univ. im. Tarasa Shevchenka, Ser. Fiz.-Mat. Nauk 2010 (2010), no. 2, 7-11.
  89. Vaxman A., Campen M., Diamanti O., Panozzo D., Bommes D., Hildebrandt K., Ben-Chen M., Directional field synthesis, design, and processing, Comput. Graph. Forum 35 (2016), 545-572.
  90. Voss A., Ueber ein neues Princip der Abbildung krummer Oberflächen, Math. Ann. 19 (1881), 1-26.
  91. Wang H., Pottmann H., Characteristic parameterizations of surfaces with a constant ratio of principal curvatures, Comput. Aided Geom. Design 93 (2022), 102074, 23 pages.
  92. Weatherburn C.E., On Levi-Civita's theory of parallelism, Bull. Amer. Math. Soc. 34 (1928), 585-590.
  93. Weise K.H., Invariante Charakterisierung von Kurvennetzen, Math. Z. 46 (1940), 665-691.
  94. Whittemore J.K., Total geodesic curvature and geodesic torsion, Bull. Amer. Math. Soc. 29 (1923), 51-54.
  95. Wolf T., A comparison of four approaches to the calculation of conservation laws, European J. Appl. Math. 13 (2002), 129-152.
  96. Zakharov V.E., Shabat A.B., Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II, Funct. Anal. Appl. 13 (1979), 166-174.

Previous article  Next article  Contents of Volume 21 (2025)