|
SIGMA 21 (2025), 031, 284 pages arXiv:1706.02131
https://doi.org/10.3842/SIGMA.2025.031
Contribution to the Special Issue on Integrability, Geometry, Moduli in honor of Motohico Mulase for his 65th birthday
Unobstructed Immersed Lagrangian Correspondence and Filtered $A_{\infty}$ Functor
Kenji Fukaya
Yau Mathematical Sciences Center, Jingzhai, Tsinghua University, Haidian District, Beijing, 100084, P.R. China
Received October 11, 2019, in final form March 06, 2025; Published online April 29, 2025
Abstract
In this paper, we 'construct' a 2-functor from the unobstructed immersed Weinstein category to the category of all filtered $A_{\infty}$ categories. We consider arbitrary (compact) symplectic manifolds and its arbitrary (relatively spin) immersed Lagrangian submanifolds. The filtered $A_{\infty}$ category associated to $(X,\omega)$ is defined by using Lagrangian Floer theory in such generality, see Akaho-Joyce (2010) and Fukaya-Oh-Ohta-Ono (2009). The morphism of unobstructed immersed Weinstein category (from $(X_1,\omega_1)$ to $(X_2,\omega_2)$) is by definition a pair of an immersed Lagrangian submanifold of the direct product and its bounding cochain (in the sense of Akaho-Joyce (2010) and Fukaya-Oh-Ohta-Ono (2009)). Such a morphism transforms an (immersed) Lagrangian submanifold of $(X_1,\omega_1)$ to one of $(X_2,\omega_2)$. The key new result proved in this paper shows that this geometric transformation preserves unobstructedness of the Lagrangian Floer theory. Thus, this paper generalizes earlier results by Wehrheim-Woodward and Mau's-Wehrheim-Woodward so that it works in complete generality in the compact case. The main idea of the proofs are based on Lekili-Lipyanskiy's Y diagram and a lemma from homological algebra, together with systematic use of Yoneda functor. In other words, the proofs are based on a different idea from those which are studied by Bottmann-Mau's-Wehrheim-Woodward, where strip shrinking and figure 8 bubble plays the central role.
Key words: Floer homology; Lagrangian submanifold; $A$ infinity category; symplectic manifold.
pdf (5017 kb)
tex (2282 kb)
References
- Abouzaid M., Bottman N., Functoriality in categorical symplectic geometry, Bull. Amer. Math. Soc. (N.S.) 61 (2024), 525-608, arXiv:2210.11159.
- Abouzaid M., Fukaya K., Oh Y.-G., Ohta H., Ono K., Quantum cohomology and split generation in Lagrangian Floer theory, in preparation.
- Akaho M., Intersection theory for Lagrangian immersions, Math. Res. Lett. 12 (2005), 543-550.
- Akaho M., Joyce D., Immersed Lagrangian Floer theory, J. Differential Geom. 86 (2010), 381-500, arXiv:0803.0717.
- Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M., The geometry of the master equation and topological quantum field theory, Internat. J. Modern Phys. A 12 (1997), 1405-1429, arXiv:hep-th/9502010.
- Amorim L., Tensor product of filtered $A_\infty$-algebras, J. Pure Appl. Algebra 220 (2016), 3984-4016, arXiv:1404.7184.
- Amorim L., The Künneth theorem for the Fukaya algebra of a product of Lagrangians, Internat. J. Math. 28 (2017), 1750026, 38 pages, arXiv:1407.8436.
- Bespalov Yu., Lyubashenko V., Manzyuk O., Pretriangulated $A_\infty$-categories, Proceedings of Institute of Mathematics of NAS of Ukraine, Vol. 76, Institute of Mathematics of NAS of Ukraine, Kyiv, 2008.
- Biran P., Cornea O., Lagrangian cobordism. I, J. Amer. Math. Soc. 26 (2013), 295-340, arXiv:1109.4984.
- Bondal A.I., Kapranov M.M., Framed triangulated categories, Math. USSR-Sb. 181 (1990), 93-107.
- Bottman N., Geometric composition and strip-shrinking, Talk at Simons Center for Geometry and Physics, 2014, http://scgp.stonybrook.edu/archives/7151.
- Bottman N., Pseudoholomorphic quilts with figure eight singularity, J. Symplectic Geom. 18 (2020), 1-55, arXiv:1410.3834.
- Bottman N., Wehrheim K., Gromov compactness for squiggly strip shrinking in pseudoholomorphic quilts, Selecta Math. (N.S.) 24 (2018), 3381-3443, arXiv:1410.3834.
- Chekanov Yu.V., Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J. 95 (1998), 213-226.
- Chekanov Yu.V., Invariant Finsler metrics on the space of Lagrangian embeddings, Math. Z. 234 (2000), 605-619.
- Cornea O., Shelukhin E., Lagrangian cobordism and metric invariants, J. Differential Geom. 112 (2019), 1-45, arXiv:1511.08550.
- Daemi A., Fukaya K., Atiyah-Floer conjecture: a formulation, a strategy of proof and generalizations, in Modern Geometry: a Celebration of the Work of Simon Donaldson, Proc. Sympos. Pure Math., Vol. 99, American Mathematical Society, Providence, RI, 2018, 23-57, arXiv:1707.03924.
- Daemi A., Fukaya K., Lipyanskiy M., Lagrangians, SO(3)-instantons and the Atiyah-Floer conjecture, arXiv:2109.07032.
- De Deken O., Lowen W., Filtered $cA_{\infty}$-categories and functor categories, Appl. Categ. Structures 26 (2018), 943-996.
- Evans J.D., Lekili Y., Generating the Fukaya categories of Hamiltonian $G$-manifolds, J. Amer. Math. Soc. 32 (2019), 119-162, arXiv:1507.05842.
- Fukaya K., Floer homology for oriented $3$-manifolds, in Aspects of Low-Dimensional Manifolds, Adv. Stud. Pure Math., Vol. 20, Kinokuniya, Tokyo, 1992, 1-92.
- Fukaya K., Morse homotopy, $A^\infty$-category, and Floer homologies, in Proceedings of GARC Workshop on Geometry and Topology '93 (Seoul, 1993), Lecture Notes Ser., Vol. 18, Seoul National University, Seoul, 1993, 1-102.
- Fukaya K., Floer homology for $3$-manifolds with boundary, in Topology, Geometry and Field Theory, World Scientific Publishing, River Edge, NJ, 1994, 1-21.
- Fukaya K., Floer homology of connected sum of homology $3$-spheres, Topology 35 (1996), 89-136.
- Fukaya K., Floer homology for 3-manifolds with boundary I, 1997, available at https://www.math.kyoto-u.ac.jp/ fukaya/fukaya.html.
- Fukaya K., Anti-self-dual equation on $4$-manifolds with degenerate metric, Geom. Funct. Anal. 8 (1998), 466-528.
- Fukaya K., Floer homology and mirror symmetry. II, in Minimal Surfaces, Geometric Analysis and Symplectic Geometry (Baltimore, MD, 1999), Adv. Stud. Pure Math., Vol. 34, Mathematical Society of Japan, Tokyo, 2002, 31-127.
- Fukaya K., Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math. 50 (2010), 521-590, arXiv:0907.4219.
- Fukaya K., Differentiable operads, the Kuranishi correspondence, and foundations of topological field theories based on pseudo-holomorphic curves, in Arithmetic and Geometry Around Quantization, Progr. Math., Vol. 279, Birkhäuser, Boston, MA, 2010, 123-200.
- Fukaya K., ${\rm SO}(3)$-Floer homology of 3-manifold with boundary 1, arXiv:1506.01435.
- Fukaya K., Categorification of invariants in gauge theory and symplectic geometry, Jpn. J. Math. 13 (2018), 1-65, arXiv:1703.00603.
- Fukaya K., Gromov-Hausdorff distance between filtered $A_{\infty}$ categories 1: Lagrangian Floer theory, arXiv:2106.06378.
- Fukaya K., Lie groupoids, deformation of unstable curves, and construction of equivariant Kuranishi charts, Publ. Res. Inst. Math. Sci. 57 (2021), 1109-1225, arXiv:1701.02840.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction. Part I, AMS/IP Stud. Adv. Math., Vol. 46.1, American Mathematical Society, Providence, RI, 2009.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction. Part II, AMS/IP Stud. Adv. Math., Vol. 46.2, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Anchored Lagrangian submanifolds and their Floer theory, in Mirror Symmetry and Tropical Geometry, Contemp. Math., Vol. 527, American Mathematical Society, Providence, RI, 2010, 15-54, arXiv:0907.2122.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010), 23-174, arXiv:0802.1703.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Technical details on Kuranishi structure and virtual fundamental chain, arXiv:1209.4410.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Displacement of polydisks and Lagrangian Floer theory, J. Symplectic Geom. 11 (2013), 231-268, arXiv:1104.4267.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Kuranishi structure, pseudo-holomorphic curve, and virtual fundamental chain: Part 1, arXiv:1503.07631.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian Floer theory and mirror symmetry on compact toric manifolds, Astérisque 376 (2016), vi+340 pages, arXiv:1009.1648.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Antisymplectic involution and Floer cohomology, Geom. Topol. 21 (2017), 1-106, arXiv:0912.2646.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Kuranishi structure, pseudo-holomorphic curve, and virtual fundamental chain: Part 2, arXiv:1704.01848.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: I, in Surveys in Differential Geometry 2017. Celebrating the 50th Anniversary of the Journal of Differential Geometry, Surv. Differ. Geom., Vol. 22, International Press, Somerville, MA, 2018, 133-190, arXiv:1710.01459.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory, Mem. Amer. Math. Soc. 260 (2019), x+266 pages, arXiv:1105.5123.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Kuranishi structures and virtual fundamental chains, Springer Monogr. Math., Springer, Singapore, 2020.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Construction of Kuranishi structures on the moduli spaces of pseudo-holomorphic disks: II, Adv. Math. 442 (2024), 109561, 63 pages, arXiv:1808.06106.
- Fukaya K., Oh Y.-G., Ohta H., Ono K., Exponential decay estimates and smoothness of the moduli space of pseudoholomorphic curves, Mem. Amer. Math. Soc. 299 (2024), v+139 pages, arXiv:1603.07026.
- Fukaya K., Ono K., Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), 933-1048.
- Gao Y., Wrapped Floer cohomology and Lagrangian correspondences, arXiv:1703.04032.
- Gromov M., Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
- Hofer H., On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 25-38.
- Joyce D., On manifolds with corners, in Advances in Geometric Analysis, Adv. Lect. Math. (ALM), Vol. 21, International Press, Somerville, MA, 2012, 225-258, arXiv:0910.3518.
- Keller B., Introduction to $A$-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), 1-35, arXiv:math.RA/9910179.
- Keller B., $A$-infinity algebras, modules and functor categories, in Trends in Representation Theory of Algebras and Related Topics, Contemp. Math., Vol. 406, American Mathematical Society, Providence, RI, 2006, 67-93, arXiv:math.RT/0510508.
- Kelley J.L., General topology, Grad. Texts Math., Vol. 27, Springer, New York, 1975.
- Kontsevich M., Soibelman Y., Notes on $A_\infty$-algebras, $A_\infty$-categories and non-commutative geometry, in Homological Mirror Symmetry, Lecture Notes in Phys., Vol. 757, Springer, Berlin, 2009, 153-219, arXiv:math.RA/0606241.
- Lefèvre-Hasegawa K., Sur les $A_{\infty}$ catégories, arXiv:math.CT/0310337.
- Lekili Y., Lipyanskiy M., Geometric composition in quilted Floer theory, Adv. Math. 236 (2013), 1-23, arXiv:1003.4493.
- Lipyanskiy M., Gromov-Uhlenbeck compactness, arXiv:1409.1129.
- Lyubashenko V., Category of $A_\infty$-categories, Homology Homotopy Appl. 5 (2003), 1-48, arXiv:math.CT/0210047.
- Markl M., Shnider S., Associahedra, cellular $W$-construction and products of $A_\infty$-algebras, Trans. Amer. Math. Soc. 358 (2006), 2353-2372, arXiv:math.AT/0312277.
- Ma'u S., Wehrheim K., Woodward C., $A_\infty$ functors for Lagrangian correspondences, Selecta Math. (N.S.) 24 (2018), 1913-2002, arXiv:1601.04919.
- Oh Y.-G., Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks, I, Comm. Pure Appl. Math. 46 (1993), 949-994.
- Oh Y.-G., Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks, II: $({\mathbb C}{\rm P}^n,{\mathbb R}{\rm P}^n)$, Comm. Pure Appl. Math. 46 (1993), 995-1012.
- Oh Y.-G., Addendum to ''Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks, I'', Comm. Pure Appl. Math. 48 (1995), 1299-1302.
- Ono K., Lagrangian intersection under Legendrian deformations, Duke Math. J. 85 (1996), 209-225.
- Ono K., Sign convention for $A_{\infty}$ operations in Bott-Morse case, SIGMA 21 (2025), 030, 16 pages.
- Saneblidze S., Umble R., A diagonal on the associahedra, arXiv:math.AT/0011065.
- Seidel P., Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), 103-149, arXiv:math.SG/9903049.
- Seidel P., Fukaya categories and Picard-Lefschetz theory, Zur. Lect. Adv. Math., European Mathematical Society (EMS), Zürich, 2008.
- Solomon J.P., Tukachinsky S.B., Differential forms, Fukaya $A_\infty$ algebras, and Gromov-Witten axioms, J. Symplectic Geom. 20 (2022), 927-994, arXiv:1608.01304.
- Stasheff J.D., Homotopy associativity of $H$-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
- Stasheff J.D., Homotopy associativity of $H$-spaces. II, Trans. Amer. Math. Soc. 108 (1963), 293-312.
- Toën B., The homotopy theory of $dg$-categories and derived Morita theory, Invent. Math. 167 (2007), 615-667, arXiv:math.AG/0408337.
- Wehrheim K., Figure eight bubbles in pseudo-holomorphic quilts, Talk at SCGP, 2012-11-12.
- Wehrheim K., Woodward C.T., Orientation for pseudo-holomorphic quilt, arXiv:1503.07803.
- Wehrheim K., Woodward C.T., Functoriality for Lagrangian correspondences in Floer theory, Quantum Topol. 1 (2010), 129-170, arXiv:0708.2851.
- Wehrheim K., Woodward C.T., Quilted Floer cohomology, Geom. Topol. 14 (2010), 833-902, arXiv:0905.1370.
- Wehrheim K., Woodward C.T., Floer cohomology and geometric composition of Lagrangian correspondences, Adv. Math. 230 (2012), 177-228, arXiv:0905.1368.
- Wehrheim K., Woodward C.T., Pseudoholomorphic quilts, J. Symplectic Geom. 13 (2015), 849-904, arXiv:0905.1369.
- Weinstein A., The symplectic ''category'', in Differential Geometric Methods in Mathematical Physics, Lecture Notes in Math., Vol. 905, Springer, Berlin, 1982, 45-51.
|
|